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Abstract

Quantitative behavioral analysis is fundamental to ethological research, yet auto-
mated approaches remain limited by the gap between pose estimation and meaning-
ful behavioral classification. Most existing methods focus on either pose detection
or behavior recognition in isolation, lacking integrated frameworks for compre-
hensive behavioral analysis. We present an end-to-end framework that bridges
markerless pose estimation with machine learning classification for automated
behavioral analysis. Our framework integrates SLEAP pose estimation, systematic
feature engineering, multiple machine learning algorithms, and robust validation
strategies into a unified pipeline. We demonstrate the framework on Drosophila
larvae videos, automatically classifying three behavioral states (feeding, sleep-
ing, crawling) from pose trajectories. We evaluate five machine learning models
across three validation strategies and engineer twelve position-invariant features
from four anatomical landmarks. The framework provides computational ethology
researchers with practical tools for pose-based behavioral classification, compre-
hensive model evaluation, and deployment guidance for real-world applications.

1 Introduction

Quantitative analysis of animal behavior represents a cornerstone of ethological research, providing
insights into evolutionary adaptations, ecological relationships, and neurobiological mechanisms
underlying complex behaviors. Traditional behavioral analysis methods rely heavily on manual
observation and coding processes that are time-intensive, subject to observer bias, and limited in
their capacity to capture subtle behavioral nuances or analyze large-scale datasets. The emergence of
computational ethology has introduced automated approaches that promise to revolutionize behavioral
research through objective, high-throughput analysis. Accurate behavioral prediction is particularly
valuable for research on learning, memory formation, sensory perception, and abnormality detection.
This is especially critical during development, when organisms exhibit rapid transitions between
conflicting behavioral states (feeding for growth versus sleep for neural development) that later
consolidate into mature circadian patterns [} [2, 3]. However, current automated approaches face
significant limitations, especially for developing organisms. Existing methods for larval behavior
analysis, often based on heuristic image comparisons, are slow and limited in scalability. Most
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Figure 1: A machine learning powered framework for automated animal behavior classification using
markerless pose estimation. (A) A few frames per video are labeled manually with animal pose (body
parts of interest). (B) A markerless pose estimation tool (like SLEAP) is used to predict the poses
for all remaining frames. (C) Pose features are processed and normalized. (D) Videos are labeled
with the starting and ending frame number for each behavior. (E) A variety of validation strategies
for splitting the frames into train and test sets are adopted. (F) Various ML behavior classifiers are
trained. (G) A visualization for predicted behaviors is generated for each animal.

computational approaches focus on mature organisms with well-defined anatomical features, creating
gaps for developing organisms with less distinct morphological landmarks (body parts).

Recent advances in computer vision and machine learning have enabled sophisticated tools for
automated behavioral analysis, particularly markerless pose estimation technologies [4}15]. However,
a critical gap exists in translating pose trajectories into meaningful behavioral classifications. Most
studies focus either on pose estimation accuracy or behavioral classification in isolation, rather
than developing integrated end-to-end frameworks. For soft-bodied organisms like Drosophila
larvae, existing approaches are limited in behavioral scope, typically focusing on locomotion while
lacking comprehensive frameworks for simultaneous analysis of multiple behavioral states including
sleeping, feeding, and social behaviors. Drosophila larvae represent an ideal model system due to their
simplified neural architecture and established role in studying neurodevelopmental processes [2]. This
study addresses these limitations by presenting a comprehensive framework for automated behavioral
classification that integrates SLEAP pose estimation with machine learning approaches. We bridge the
gap between pose estimation and behavioral classification through an end-to-end pipeline including
pose labeling, feature engineering, multi-model evaluation, and robust validation strategies. Our
framework is demonstrated on Drosophila larvae, enabling simultaneous classification of feeding,
sleeping, and crawling behaviors while providing practical guidance for researchers. Through
systematic evaluation of validation strategies, we establish practices for temporal dependency handling
and cross-individual generalization assessment essential for computational ethology applications.

Related work: Deep learning-based pose estimation has revolutionized animal behavior analysis
through high-throughput, objective quantification. DeepLabCut [4] pioneered transfer learning for
markerless pose estimation in laboratory animals, while SLEAP [5] extended these capabilities to
multi-animal scenarios. Such systems employ convolutional neural networks based on U-Net [6],
ResNet [7]], or EfficientNet [8] architectures to predict anatomical landmark coordinates. Contem-
porary systems demonstrate varying approaches to automated phenotyping. FlyVISTA [9] utilizes
closed-loop video imaging for adult Drosophila, providing higher spatiotemporal resolution than
traditional DAM (Drosophila activity monitoring) systems [10] and enabling detection of microbe-
haviors like antennal movements during sleep. Similar advances in mice [11}[12] have established
automated phenotyping capabilities for mature organisms with well-defined anatomical features. For
Drosophila larvae, computational approaches remain limited. LarvaTagger [[13]], TrackMate [14]],
and IMBA [15] provide body position tracking but require complex scripting and focus primarily



on locomotion behaviors (crawling, bending, rolling). These systems lack integrated frameworks
for comprehensive behavioral analysis encompassing sleeping [[16| 2|, feeding [17]], and memory
formation [18]]. The soft-bodied morphology and limited anatomical landmarks of larvae present
unique computational challenges that existing approaches have not fully addressed.

2  Framework

Our methodology comprises a comprehensive framework for automated behavioral classification
using SLEAP pose estimation followed by machine learning classification. The pipeline consists
of four main phases illustrated in Figure[l} (1) dual annotation of pose landmarks and behavioral
states by domain experts, (2) training SLEAP models for automated pose prediction across all
video frames, (3) engineering position-invariant features from pose coordinates, and (4) evaluating
multiple machine learning algorithms with different validation strategies. We manually annotated
10 videos containing 13 Drosophila larvae with four anatomical landmarks (head, neck, center, tail)
and three behavioral states (sleeping, feeding, crawling). A two-stage SLEAP pipeline automatically
predicted pose coordinates across all frames. We engineered 12 features: 6 center-normalized
coordinates, 4 inter-landmark distances, 1 body curvature measure, and 1 velocity-based activity
metric. Five machine learning classifiers (Random Forest, SVM, Gradient Boosting, K-Nearest
Neighbors, Neural Network) were evaluated using three validation strategies: stratified random split,
temporal block-based split, and animal-level split. Detailed methodology is provided in Appendix [A]

3 Results and discussion

The processed dataset comprises 16,552 frames from 10 videos featuring 13 Drosophila larvae, with
behavioral distribution of: feeding (55.4%), sleeping (23.1%), and crawling (21.6%). Individual
animals exhibited distinct behavioral profiles ranging from feeding-dominant to sleeping-dominant
and crawling-dominant phenotypes, providing diverse training examples for machine learning classi-
fication. Dataset composition and animal profiles are provided in Appendix Tables[d]and 5]

Pose estimation performance: The centroid detection model finished training at 29 epochs, achieving
a final training loss of 1.97 x 10~° and validation loss of 1.22 x 10~5. The centered instance model
finished training at 18 epochs with a final training loss of 1.65 x 107> and validation loss of
2.49 x 10~*. Both models demonstrated robust convergence during training with automatic learning
rate reduction and early stopping triggered by plateau detection. They exhibited consistent decrease
in validation loss throughout training, indicating effective learning without overfitting. Trained
models achieved a mean pixel error of 3.05 x 107° and 2.12, and a mean percentage of correct
keypoints (PCK) score of 100 and 82.17 for the centroid and centered-instance models respectively,

Table 1: Model performance results

Stratified Random | Temporal Blocks Animal-Level
Feature Set Model | Acc. Fl-score Acc.  Fl-score | Acc. Fl-score

RF 0.979 0.979 0.910 0.909 0.170 0.204
SVM | 0.811 0.806 0.827 0.821 0.187 0.262
GB 0.862 0.857 0.845 0.839 0.196 0.257
KNN | 0.966 0.966 0912 0.910 0.223 0.277
NN 0.855 0.856 0.832 0.831 0.122 0.157

RF 0.977 0.977 0.913 0.912 0.131 0.152
Relative Coordinates SVM | 0.843 0.841 0.839 0.837 0.214 0.283
+ Distances GB 0.887 0.884 0.873 0.870 0.171 0.226
(10 total) KNN | 0.945 0.945 0.897 0.895 0.244 0.308
NN 0.848 0.851 0.868 0.867 0.134 0.162

RF 0.982 0.982 0.936 0.935 0.224 0.269
SVM | 0.873 0.873 0.882 0.880 0.729 0.691
GB 0.893 0.892 0.890 0.888 0.258 0.305
KNN | 0.952 0.952 0.909 0.906 0.696 0.697
NN 0.889 0.890 0.890 0.890 0.733 0.700

Relative Coordinates
(6 total)

Relative Coordinates
+ Distances

+ Activity + Curvature
(12 total)




demonstrating that the models found the identification of the position of the larva in the frame an
easier task than the identification of their pose landmarks. This is expected for the larvae since they
possess less distinct body parts when compared to adult Drosophila or other animals.

Behavioral classification performance: Model performance was evaluated across three validation
strategies and feature sets to comprehensively assess generalization capabilities and feature impor-
tance. Results demonstrate clear performance differences between validation strategies: stratified
random split achieves optimistic performance (98.2% accuracy for Random Forest with all features)
due to temporal correlations, temporal block split provides more realistic estimates (93.6% accuracy
with all features), and animal-level split reveals the most challenging cross-individual generalization
scenario (73.3% accuracy for Neural Network with all features). The temporal block split success-
fully addresses temporal dependency by creating 15-frame chunks with balanced representation (831
training blocks and 195 test blocks). For the animal-level split, two animals with distinct behavioral
profiles were chosen as test subjects: one exhibiting pure feeding behavior (1647 frames, 100% feed-
ing) and another showing mixed behaviors (1265 frames: 53% feeding, 28% sleeping, 19% crawling),
constituting 17.6% of the total dataset. This combination provides a realistic test for cross-individual
generalization with feeding bias but behavioral variation. Feature engineering demonstrates consistent
value across all validation strategies: coordinate normalization provides robust baseline performance,
while adding distance features generally improves classification accuracy. Random Forest achieved
the highest performance across feature sets for stratified random and temporal block splits, while
Neural Network performed best for animal-level splits. Appendix Figure [2] shows the timeline for
predictions, and Appendix Figure [3|the confusion matrices, for the best performing model for each
validation strategy.

Framework validation and generalizability: The SLEAP pose estimation achieved 100% PCK
for centroid detection and 82.17% PCK for instance models, validating the two-stage pipeline for
challenging soft-bodied organisms. The systematic performance degradation from stratified random
(98.2%) through temporal blocks (93.6%) to animal-level split (73.3%) successfully exposes different
generalization challenges, confirming the framework’s capacity to provide realistic performance
assessment across deployment scenarios. The validation hierarchy reveals critical insights: temporal
block splitting addresses temporal dependency while maintaining behavioral context, and animal-level
evaluation exposes the substantial challenge of cross-individual generalization. Feature engineering
proved robust across all validation strategies, with the 12-feature approach showing consistent patterns
that validate the design for position invariance and behavioral transferability. Importance of proper
model selection emerged clearly, demonstrating that one model could be optimal for within-video
scenarios and another for cross-individual applications. The modular design enables adaptation across
organisms and contexts while maintaining methodological rigor. This framework provides ethology
researchers with bespoke evidence-based tools for integrating pose and behavior analysis.

4 Conclusions, limitations and future direction

Our framework integrates SLEAP-based pose estimation, feature engineering, multi-model evaluation,
and robust validation strategies into a cohesive pipeline prioritizing methodological rigor and practical
applicability. The pose estimation component demonstrates effective adaptation to challenging
soft-bodied organisms through a two-stage pipeline, while the behavioral classification component
establishes methodology for translating pose trajectories into behavioral insights. Evaluation across
validation strategies reveals critical insights: stratified random splits provide optimistic baselines
but suffer from temporal correlations, temporal block splits offer realistic performance estimates
by addressing temporal dependencies, while animal-level splits expose the substantial challenge
of cross-individual generalization. The 12-feature engineering approach establishes principles for
extracting behaviorally meaningful descriptors that maintain position invariance and transferability.
Experiments with a variety of models guide and emphasize the need for selecting the correct model
for a given scenario. Current approach is limited to pose-based features; incorporating raw image
patches or optical flow could capture behavioral nuances not represented in skeletal coordinates.
Dataset size and class imbalance limit generalization capabilities. The framework’s dependence on
manual annotation creates scaling bottlenecks. Future research should integrate temporal sequence
models for time-dependent behavioral patterns, develop semi-automated learning approaches to
reduce annotation burden, and explore multi-modal integration.
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A Detailed methodology

A.1 Animals and video acquisition

Adult Drosophila were maintained on standard molasses-based diet (8.0% molasses, 0.55% agar, 0.2% Tegosept,
0.5% propionic acid) at 25°C on a 12:12 light:dark (LD) cycle. In order to collect synchronized third instar
larvae, adult flies were placed in an embryo collection cage (Genesee Scientific, cat#: 59-100) and eggs were
laid on a petri dish containing a molasses-based diet with yeast paste on top. Animals developed on this media
for three days. After this time, molting 3rd instar Drosophila larvae were manually selected and placed into
individual wells of a modified Larval.odge containing 95 pl of 3% agar and 2% sucrose media covered with
a thin layer of yeast paste. The LarvalLodge was covered with a transparent acrylic sheet and placed under a
camera for recording. Videos were acquired in 5 minute intervals in IC Capture (The Imaging Source) using
an Imaging Source DMK 23UP031 camera (2592 X 1944 pixels, The Imaging Source, USA) equipped with a
Fujinon lens (HF12.55A-1, 1:1.4/12.5 mm, Fujifilm Corp., Japan) and a Hoya 49 mm R72 Infrared Filter.

A.2 Manual labeling

Body parts labeling using SLEAP: Anatomical annotation was performed using SLEAP’s graphical user
interface. Video recordings were loaded into the SLEAP software, and four key anatomical landmarks were
manually identified and marked: head, neck, center (torso), and tail. To define the animal’s skeletal structure,
three edges were established connecting these landmarks: head-neck, neck-center, and center-tail, creating a
simplified but biologically meaningful representation of the animal’s body configuration. For each video in the
dataset, 20 equispaced frames (1 to 2% of total frames) were selected for manual annotation to ensure temporal
coverage and provide sufficient training data for the pose estimation model.

Behavior labeling by domain expert: Behavioral annotation was conducted by domain experts among the
authors who examined each video frame-by-frame and classified animal behaviors into three primary behavioral
states: sleeping (periods of inactivity with no body position movement), feeding (periods of only mouth
part movement), and crawling (locomotory behavior characterized by coordinated crawling behavior). Each
behavioral epoch was carefully delineated with precise start and end frame indices. Frames that did not clearly
exhibit any of the three primary behaviors, or contained ambiguous behavioral states, were assigned the label
‘other’ in order to accomplish complete timeline coverage. Later, ‘other’ frames, due to their small number, were
excluded from analysis. Behavior labels were stored as Python dictionaries mapping frame ranges to behavioral
states for downstream processing.

A.3 Pose estimation using SLEAP

Following the manual annotation of anatomical body parts, a SLEAP pose estimation model was trained to
automatically identify (and optionally track) the four body parts across all frames of all videos.

Model architecture and training: The pose estimation pipeline employed a two-stage ‘multi-animal top-down’
approach that uses pretrained models optimized for multi-animal pose estimation. It consists of two sequential
deep learning models: The first, a centroid detection model, to identify animal instances within each frame
and the second, a centered instance model, for precise landmark localization. Both models utilize a U-Net
backbone architecture. A variety of parameter values were tried with mixed success in terms of validation test
accuracy and quality of prediction on unlabeled frames (as judged by visual inspection by a domain expert),
before settling on the values shown in Table 2] Users are recommended to follow a similar process for their
datasets: unfortunately, it is not possible to determine these parameters beforehand.

Pose prediction: The trained models were used to generate pose landmark predictions for every frame of every
video. The centroid model first identifies animal instances, followed by the centered instance model for precise
landmark coordinates. Optionally, a cross-frame tracking algorithm (called ‘simple’ and packaged with SLEAP)
can be used to establish the identity and trajectory of each animal. This inference process produces structured
analysis files (.csv format) containing time-series data of (x, y) coordinates for each landmark for each
animal in each video frame, along with confidence scores for each prediction.

A.4 Feature engineering and pose normalization

Raw coordinate data from SLEAP was transformed through comprehensive feature engineering to create
meaningful behavioral descriptors. The 12-feature set includes:

Center-normalized coordinates (6 features): All pose coordinates were normalized relative to the animal’s
center landmark to achieve position invariance: head_rel_x = head.x — center.x, head_rel_y = head.y —
center.y, with similar transformations applied to neck and tail coordinates.



Table 2: SLEAP parameters for training of Centroid and Centered-Instance models

Parameter Centroid Model Centered-Instance
Data

Validation fraction 0.1 0.1

Input Scaling 0.5 1

Crop size 0 (set by Auto) 320 (set by Auto)
Optimization

Batch size 16 16
Epochs 30 30

Initial learning rate le-04 le-04

Stop on plateau True True
Plateau min. delta 1e-08 1e-08
Plateau patience 20 10
Augmentation

Rotation True True
Rotation min angle -15 -15
Rotation max angle 15 15

Model

Backbone U-Net U-Net

Max stride 16 32

Filters 16 24

Filters rate 2 2

Middle block True True

Up interpolate True True
Heads centroid centered_instance
Anchor part center center
Sigma 2.5 2.5
Output stride 2 4

Size (after training) 30 MB 268 MB

Inter-landmark distances (4 features): Four key distances were calculated to capture postural configurations:
head-neck distance (captures head orientation and movement), head-center distance (indicates overall body
extension), neck-center distance (torso configuration), and center-tail distance (reflects body posture and tail
position).

Body curvature (1 feature): Computed as the absolute angle between head-center and center-tail vectors:

curvature = | arccos( Igl‘\%l )|
where,

—

U1 = (head.x — center.x, head.y — center.y) and

—

U3 = (tail.x — center.x, tail.y — center.y)

Activity level (1 feature): Velocity-based movement measure computed as the rolling 10-frame average of
center-of-mass displacement between consecutive frames, providing a temporal smoothing of instantaneous
movement.

All features were standardized using StandardScaler to ensure comparable scales across different feature types,
with the exception of body curvature which was already normalized to [0, 7] radians.

A.5 Validation strategy

Multiple data splitting strategies were evaluated to address the unique challenges of temporal behavioral data:

Stratified random frame sampling - random selection of 20% of frames from each behavior class, maintaining
class balance but potentially inflating performance due to temporal correlations between nearby frames.

Temporal block-based split - dividing video data into non-overlapping 15-frame chunks (approximating
duration of 1 second) and allocating entire blocks to train (80.9%) or test (19.1%) sets, ensuring temporal
independence while preserving behavioral context within blocks.



Table 3: Train-Test split characteristics by validation strategy

Split Strategy Entity Train  Test Sleep Feed Crawl
Data Data  Train/Test Train/Test Train/Test

Stratified Random  Frames 13,241 3,311 3,054/763  7,332/1,833  2,855/715

Temporal Blocks Blocks 831 195 188/40 472/110 171/45
p Frames 12,417 2905 2,885/666 7,020/1,654 2,512/585
Animals 11 2 8/1 9/2 91

Animal-Level Frames  13.640 2912 3460/357 6.848/2.317 3.332/238

Animal-level split - entire animals allocated to training or testing sets to evaluate cross-individual generalization,
where two animals with distinct behavioral profiles (one pure feeding animal: 1647 frames, 100% feeding;
one mixed behavior animal: 1265 frames, 53% feeding, 28% sleeping, 19% crawling) serve as test subjects,
constituting 17.6% of the dataset.

The temporal block split was specifically developed to address the fundamental challenge of achieving both
temporal independence and balanced class representation in behavioral time series data. By processing only
uniform behavior blocks (containing a single behavior class throughout the 15-frame window), this strategy
ensures clean behavioral labels while reducing the risk of overfitting to temporal autocorrelations. This filtering
removes mixed-behavior blocks. Table[B]summarizes the train-test distribution characteristics for each strategy.

A.6 Machine learning model specifications
Five machine learning classifiers were implemented with conservative hyperparameters. All models used
random_state=42.

Random Forest Classifier - 50 trees chosen for balance between performance and computational efficiency on
the 16K frame dataset.

Support Vector Machine - radial basis function kernel selected for non-linear behavioral patterns.
Gradient Boosting Classifier - 50 boosting stages to prevent overfitting while maintaining learning capacity.
K-Nearest Neighbors - five neighbors chosen to balance local sensitivity with noise robustness.

Neural Network - Two hidden layers consisting of 12 and 6 neurons with early stopping for convergence.

Table 4: Dataset composition before and after processing and cleaning

Dataset Characteristic Value
Raw Data

Initial frames (all videos) 18,483
Labeled frames (SLEAP) 13,714
Videos analyzed 10
Data Processing

Frames with missing coordinates 205
Frames removed (poor visibility) 1,726
Final clean dataset 16,552

Final Dataset Composition

Total animals tracked 13
Feeding frames 9,165 (55.4%)
Sleeping frames 3,817 (23.1%)
Crawling frames 3,570 (21.6%)

Feature Engineering

Original pose coordinates
Relative pose coordinates
Additional engineered features

AN O\




A.7 Behavior evaluation

Model performance was assessed using standard classification metrics computed on a per-frame basis: accuracy
(overall correct predictions), precision (true positives per predicted class), recall (true positives per actual class),
and F1-score (harmonic mean of precision and recall). These metrics were calculated on the test set separately
for each validation strategy. Confusion matrices were generated for the best-performing model in each validation
strategy to provide detailed insight into class-specific performance patterns and common misclassification
behaviors. Frame-by-frame temporal visualizations were created to enable qualitative assessment of prediction
consistency and identification of systematic errors across different validation strategies.

Table 5: Individual animal behavioral profiles

Animal Total Frames Sleeping Feeding Crawling
video 1 animal 2 1,647 0 1,647 0
video 2 animal 1 1,279 0 1,192 87
video 2 animal 2 1,265 357 670 238
video 3 animal 1 1,025 954 0 71
video 3 animal 2 980 8 194 778
video 4 animal 1 911 459 321 131
video 5 animal 1 771 724 0 47
video 5 animal 2 898 66 184 648
video 6 animal 1 1,455 32 1,004 419
video 7 animal 1 1,588 428 1,160 0
video 8 animal 1 1,588 588 1,000 0
video 9 animal 1 1,571 0 1,234 337
video 10 animal 1 1,574 201 559 814
Total 16,552 3,817 9,165 3,570

A.8 Computational resources

Manual pose and behavior labeling was performed using SLEAP GUI and LosslessCut on various consumer
grade laptops and PCs. A High Performance Computing Center node powered by two Intel Xeon Gold 6130
32 core CPUs and one A100 GPU running Centos 6.5 was used for running SLEAP GUI for pose training and
inference. Training took approximately 3 minutes and 1.5 minutes per epoch for the centroid and the centered
instance models respectively. Inference on all frames of all videos took around 30 minutes. A Hyperplane 8
server powered by two Intel Xeon Gold 6248 20 core CPUs and 8 Tesla V100 GPUs running Ubuntu 20.04 was
used for behavior classification tasks in Python. Training time for behavior classification models ranged from
seconds to minutes depending on the number of features, training set size, and model parameters.

B Dataset composition and processing results

The dataset demonstrates substantial behavioral diversity across individual animals, with three distinct behavioral
profiles emerging: feeding-dominant animals (7/13), sleeping-dominant animals (3/13), and crawling-dominant
animals (3/13) (Tables E] and E]) This individual variation provides diverse training data for behavioral classifica-
tion models while ensuring generalizability across different behavioral phenotypes.

C Behavior timeline and confusion matrices

10
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Figure 2: Behavior timeline for each animal showing the ground truth labels for behavior as the top
bar and the predictions by the best performing model for each of the three validation strategies.
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Figure 3: Confusion matrices for the best performing models for each validation strategy.
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