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Abstract

Language modeling has seen seen a tremen-
dous development over past few years, with a
considerable rise in their deployment for solv-
ing domain-specific Natural Language Process-
ing (NLP) tasks. In recent times, the fundamen-
tal building blocks of language models are es-
sentially composed of either an encoder-based
architecture or a decoder-based architecture or
a combination of both. In the scholarly domain,
the majority of use cases have explored only the
utilization of encoder-only models for a variety
of tasks using the pre-trained model fine-tuning
approach. But the same has not yet been repli-
cated for decoder based models in spite of the
recent popularity of LLMs. To address this is-
sue, we fine-tune both encoder-based language
models and decoder-based language models
on an array of traditional scholarly NLP tasks.
This allows us to compare the effect of learned
representations in contrast to generation-based
techniques on standard scholarly benchmark
datasets. We conduct extensive experiments
on 10 highly popular human-annotated datasets
over 6 different tasks and also study the ef-
fect of domain-specific pre-training on these
tasks. We achieve SOTA over two tasks using
decoder-based language models.

1 Introduction

Scientific literature understanding is an important
facet of Natural Language Understanding and is
highly useful in the comprehension of large collec-
tions of scientific text. There has been a growing
interest to explore the nuances of standard NLP
tasks in the scholarly domain and, in most cases,
the best results have come from fine-tuning a pre-
trained language model (Beltagy et al., 2019; Lahiri
et al., 2024; Sadat and Caragea, 2022).

Recently, Large Language Models (LLMs) are
increasingly adopted for most NLP tasks. They
contain tens to hundreds of billions of parameters,
and are much larger than their predecessor Pre-
trained Language Models (PLMs).

Best encoder-based model = Best decoder-based model
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Figure 1: Comparison of the scores achieved by the best
performing encoder-based and decoder-based LMs.

LLMs and PLMs trace their architectural roots
to the original Transformer model (Vaswani et al.,
2017). While LLMs like LLaMA (Touvron et al.,
2023a) generally use only the decoder module of
the Transformer, PLMs like BERT (Devlin et al.,
2019) typically leverage only the encoder while
PLMs like TS (Raffel et al., 2020) are comprised of
both the encoder and the decoder. Encoder-based
models, although task-agnostic, generally need to
go through fine-tuning over a limited amount of
task-specific data to achieve proficiency in that par-
ticular task. LLLMs possess greater emergent and
reasoning capabilities (Wei et al., 2022a,b; Yao
et al., 2023), yet, they are reported to be even more
accomplished when fine-tuned over task-specific
data (Minaee et al., 2024; Wadden et al., 2024).

Given that LLMs (that are decoder-only models)
incur exorbitant computational and environmental
costs, we ask if they indeed outperform the smaller
PLMs which are either encoder-only or use both
encoders and decoders. Inspired by the existing
NLP task sets, we build a novel set of common
scholarly NLP tasks with a focus on those where
encoders have been applied successfully and LLMs
have been hardly experimented with. We fine-tune
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Figure 2: Fine-tuning for a Transformer encoder-based LM (left) and for a Transformer decoder-based LM (right).

all the chosen models on the corresponding datasets
and evaluate on the test sets.

Figure 1 gives a sneak preview into your observa-
tions. Although very recently related studies have
been conducted for word meaning understanding
(Qorib et al., 2024) and multi-lingual natural lan-
guage understanding (Nielsen et al., 2024), ours is
the first in scholarly NLP. To this end, we have iden-
tified 6 scholarly tasks and corresponding publicly
available datasets on which we fine-tune several
PLMs (encoder-only and encoder-decoder models)
and LL.Ms (decoder-only), some of which are pre-
trained on scholarly datasets and some only on
open-domain corpora. Note that our aim is not to
achieve state-of-the-art (SOTA) results — though we
do achieve SOTA for two tasks — but rather contrast
the performance among the model types.

Contributions

* We compare decoder-only, encoder-only,
and encoder-decoder based models on 10
benchmark scholarly datasets over 6 differ-
ent tasks. We use 2 encoder-based LMs and
6 decoder-based LMs.

* Our experiments indicate that encoder-
only models outperform decoder-only and
hybrid models for most of the tasks. More-
over, decoder models hallucinate novel out-
put categories even when prompted with the
correct label set for classification.

* We study the effect of domain-specific
data in the pre-training corpus. Pre-training
with in-domain data generally improves
downstream performance for all encoders,
encoder-decoders and decoders.

* Parameter-efficient fine-tuning of LL.Ms
takes much longer than full fine-tuning of
encoder-based and hybrid models.

2 Related Work

Since the first Transformer model was proposed
in 2017 (Vaswani et al., 2017), several PLMs and
LLMs have been developed, many of which are
specifically pre-trained or fine-tuned on domain-
specific data. Models built by fine-tuning and
instruction-tuning LLaMA (Touvron et al., 2023a)
and LLaMA-2 (Touvron et al., 2023b) include
Code LLaMA (Roziere et al., 2024), Vigogne
(Huang, 2023), Tiillu (Wang et al., 2023), Tiilu-
2 (Ivison et al., 2023) and Stable Beluga2 (Mahan
et al.). Galactica (Taylor et al., 2022), DARWIN
(Xie et al., 2023), SCITULU (Wadden et al., 2024)
and SciLitLLM (Li et al., 2024) are some recently
developed LLMs that have scientific knowledge
injected into them, and they perform better than
general-domain LLMs on scientific tasks.
Evaluation of PLMs and LLMs — in open-
domain as well as domain-specific areas — is a
critical and challenging research area. Popular
NLP task benchmarks include GLUE (Wang et al.,
2019b), SuperGLUE (Wang et al., 2019a) and
MMLU (Hendrycks et al., 2021) — all spanning
multiple domains. (Al4Science and Quantum,
2023) explores the performance of GPT-4 on a
range of scientific domains including drug discov-
ery, biology, computational chemistry, materials de-
sign, and partial differential equations. SCIBENCH
(Wang et al., 2024) and SciEval (Sun et al., 2024)
are benchmarks designed for evaluating the scien-
tific reasoning capabilities of LLMs. These studies
mainly examine only the zero-shot, few-shot and
chain-of-thought inferencing capabilities of LLMs
to identify the best performing models. Perhaps,
the closest work to ours is the SCIRIFF (Wadden
et al., 2024), which creates an instruction-tuning
dataset for scientific literature understanding and
fine-tunes the TULU V2 checkpoint. In contrast,
our work is more aligned towards the evaluation of
decoder-based, encoder-based and hybrid LMs.



3 Tasks

Inspired by NLP task benchmarks like GLUE
(Wang et al., 2019b), MMLU (Hendrycks et al.,
2021) and datasets for multi-task learning for
LLMs (Wadden et al., 2024), we have built a col-
lection of 6 scholarly NLP tasks, each of which is
briefly described below. The details of the datasets
shown in Figure 3 are in the Appendix A.
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Figure 3: Tasks and Datasets

Dataset Selection Rationale: Our emphasis is
on tasks where the focus is on understanding and
classification problems rather than tasks that are pri-
marily generative in nature. We started with tasks
like keyphrase recognition, meta-review generation,
scientific publication rating and extractive question
answering, but later on, we excluded these tasks
due to their generative nature. Among the tasks
that we select, we include all the major datasets in
that task domain and are publicly available.

3.1 NER/TK: Named Entity Recognition/
Typed Keyphrase Recognition

Named Entity Recognition (NER) is the Informa-
tion Extraction (IE) task of identifying references
to rigid designators (Nadeau and Sekine, 2007).
Recently (Lahiri et al., 2024) presented a broader
definition for this task in the scientific domain and
termed it as Typed Keyphrase Recognition.
Definition: The input is a sequence of tokens
x = (21,9, ..., Ty ), from which we derive a set
S = {s1,...5p}, which represents a set of seman-
tically meaningful within-sentence contagious se-
quence spans each of which is assigned a label
from the set Y = {y1,y2, ..., Ym }. The elements in
set .S may contain words, phrases or other syntactic
units from the given text sequence x. Therefore,
the final output can be construed as Z = {(s;,y;) :
iel,..,pjel,..,mys;eSy; €Y}

3.2 REL: Relation Classification

Relation Classification is also an Information Ex-
traction task, wherein the objective is to predict the
relationship type between a given ordered pair of
spans within a sentence.

Definition: The input is a sequence of tokens
x = (x1, 2, ..., Ty) and two entities (spans), s4 =
(xi,...,z;) and sp = (zy,...,Zy), the expected
output is a triple (s4, sp, ), where r € R such
that R is a pre-defined set of relation labels.

3.3 PPHRASE: Paraphrase Recognition

Sentences or phrases conveying identical meaning
but with the use of different wording are called para-
phrases. The model’s ability to demonstrate special-
ized domain knowledge is tested in the scholarly
paraphrase identification task(He et al., 2020).
Definition: A pair of sentences (s, s2) are to be
classified as paraphrases or non-paraphrases.

3.4 NLI: Natural Language Inference

Natural Language Inference (NLI), also known
as Textual Entailment (Bowman et al., 2015; Sa-
dat and Caragea, 2022), is the task of identifying
whether there is an entailment or a contradiction
between a pair of sentences or whether they are
independent of each other.

Definition: Given a pair of sentences (s1, s2), the
task is to assign a label y € Y which indicates the
semantic relatedness of the latter to the former.

3.5 CIC: Citation Intent Classification

Citations form an important part of scientific doc-
uments. The kind of purpose the citation serves
in the scholarly document is known as its citation
intent (Roman et al., 2021).

Definition: The input is a citation sentence x and
the aim is to assign a class label y € Y, where Y
is the set of citation intents.

3.6 CLAIM: Claim Verification

This task intends to assess the truthfulness of a
claim (Vlachos and Riedel, 2014), which is impor-
tant in the scientific domain due to the possibility
of a far-reaching impact of a decision taken based
on some scientific misinformation. We follow the
simplified setting of (Vladika and Matthes, 2024)
where the model is provided with golden abstracts:
Definition: Given a claim ¢ and an evidence ab-
stract d (each of which is a sequences of tokens),
the task is to find whether c supports or refutes the
abstract d.



CS-NER (Titles)

CS-NER (Abstracts)

NERTK  Model

Precision Recall F1 H Precision Recall F1 H

BERT 72.83 76.81 7477 O 69.38 7132 7033 O
SciBERT 72.98 76.66 7478 O 72.97 71.35 7214 O
T5 30.53 8.74 1225 0 59.22 26.60 36.62 0
SciFive 25.30 8.14 1125 0 59.59 26.55 3662 O
LLaMA-7B 66.00 70.38  68.12 1 83.29 68.18 7498 0
LLaMA-13B 65.72 7050 68.03 3 82.64 69.03 7522 O
LLaMA-70B 66.41 70.61 6845 3 90.00 6292 7406 O
SciLitLLM-7B 67.33 6935 6832 0 86.42 7079 7783 O
Tiilu-2-dpo-7B 66.47 6574 66.10 1 79.85 70.70  75.00 O
Tiilu-2-dpo-70B 67.25 6983 6852 3 88.35 69.82 78.00 O

Table 1: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on CS-NER (Titles)
and CS-NER (Abstracts) for Named Entity Recognition. H stands for Hallucinated Tags, i.e., the tags which LLMs
have generated, but are not part of the dataset’s annotation schema.

4 Hypothesis and Research Questions

Hypothesis: We hypothesize that, in traditional
scholarly NLP tasks, encoder models perform bet-
ter than the (much larger) decoder-based models.
More specifically, we ask:

* RQI: (a) Do decoder-based or encoder-
decoder-based models outperform their
encoder-based counterparts?

(b) Are decoder-based LLMs lacking in se-
quence labeling and classification tasks?

* RQ2: Are domain-specific models better than
their counterparts?

* RQ3: Which models are more computation-
ally efficient?

5 Experimental Setup

We test our hypothesis with three categories of mod-
els: only-encoder-based models, encoder-decoder-
based models and only-decoder-based models.

Encoder-based Language Models: We use the
BERT-base model (Devlin et al., 2019) and the
SciBERT-base model (Beltagy et al., 2019) model
checkpoints as the encoder-based LMs in our ex-
periments. More details about the models and the
experimental setup are present in the Appendix B.

Encoder-Decoder-based Language Models:
We use the T5-base (Raffel et al., 2020) and
the SciFive-base-PMC (Phan et al., 2021) as the
encoder-decoder-based models in our experiments.
The details about the hyperparameters and the mod-
els are in the Appendix C.

Decoder-based models: We use the 7B, 13B
and the 70B model variants of LLaMA-2 (Touvron
et al., 2023b), SciLitLLM-7B! (Li et al., 2024)

"https://huggingface.co/Uni-SMART/ScilitLLM

and 7B and 70B variants of Tiilu-2 (Ivison et al.,
2023) as the decoder-based LMs in our experi-
ments. We instruction-tune the decoder-based LMs
using QLoRA (Dettmers et al., 2023), which is
an efficient approach for fine-tuning LLMs using
relatively less GPU memory. QLoRA uses 4-bit
NormalFloat, Double Quantization and Paged Op-
timizers on the Low-rank Adapter (LoRA) fine-
tuning approach (Hu et al., 2022). Details about
the models and the hyperparameters used can be
found in Appendix D.

Prompt Creation: We follow (Taori et al., 2023)
We use simple intuitive prompts that are similar to
the ones used for the Alpaca project’. We do not fo-
cus on prompt optimization (Schulhoff et al., 2024)
as we fine-tune and evaluate the LLLMs with the
same prompts and our target is to make a compar-
ative performance study of the models rather than
achieving SOTA results.

Below is an instruction that describes a task,
paired with an input that provides further con-
text. Write a response that appropriately com-
pletes the request.

###Instruction:

[Instruction Prompt]

###Input:
[Input Text]

###Response:
[Output Text]

. J

The instruction and input-output pair format for
every task can be found in Appendix G.

2https://huggingface.co/datasets/tatsu—lab/
alpaca
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REL. Model Cmp. Cnj. Evl-for Ft.-of Hyp.-of Pt.-of Used-for F1 H
BERT 81.58  90.98 82.47 60.00 91.30 53.57 92.19 7887 0
SciBERT 84.21 93.17 84.82 58.91 89.21 59.65 92.95 8042 0
TS5 80.00 9243 82.84 59.46 88.73 50.47 92.77 78.10 0
SciFive 70.13  90.62 78.36 52.63 82.01 4545 90.29 7279 0
LLaMA-7B 8732 944 87.01 71.54 94.03 68.38 93.67 74.54 2
LLaMA-13B 88.31 94.02 89.73 64.08 90 64.35 94.34 8355 O
LLaMA-70B 88.57 93.02 86.34 66.67 84.93 37.97 93.66 78.74 0
SciLitLLM-7B  87.32  94.82 89.13 64.91 92.09 61.95 93.95 73.02 1
Tiillu-2-dpo-7B ~ 88.57 92.86 84.21 60.00 82.64 60 92.84 80.16 0
Tiilu-2-dpo-70B  87.18  93.06 83.17 62.50 90.91 66.07 93.83 72.09 3

Table 2: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SCIERC for

Relation Classification. H stands for Hallucinated Tags.

NER/TK  Model P R F1 H NERTK Model P R F1 H
BERT 59.71 6595 6267 O BERT 40.59 45.05 42.66 0
SciBERT 62.24 67.2 6462 O SciBERT 46.87 4782 4729 O
T5 51.74 24.60 3267 O TS 39.68 13.14 18.71 0
SciFive 5420 2599 3444 0 SciFive 35.63 1192 16.93 0
LLaMA-7B 58.57 6183 60.16 4 LLaMA-7B 39.54 40.17 39.86 5
LLaMA-13B 57.94 6226 60.02 0 LLaMA-13B 40.51 46.12 43.13 8
LLaMA-70B 6142 6495 63.14 4 LLaMA-70B 40.4 4438 42.29 5
SciLitLLM-7B 58.39 60.67 59.51 1 SciLitLLM-7B 4147 4496 43.15 16
Tiilu-2-dpo-7B 59.95 61.9 60.91 2 Tiilu-2-dpo-7B 38.36 4148 39.86 15
Tiilu-2-dpo-70B  60.81  60.55 60.68 3 Tiilu-2-dpo-70B  42.55 4554 4399 5

Table 3: Results for fine-tuning encoder-based LMs and
instruction-tuning decoder-based LMs on SCIERC for
Named Entity Recognition. H stands for Hallucinated
Tags.

6 Results

6.1 Named Entity Recognition

Table 1 presents the results for the CS-NER (Ab-
stracts) and CS-NER (Abstracts) datasets (D’Souza
and Auer, 2022). Table 3 shows the results ob-
tained for SCIERC (Luan et al., 2018), another
NER dataset. For the NER task, the generative
decoder-based LMs, despite having the class names
specified in the prompt, hallucinate new labels such
as Objective, Scenario, Author, Profession, User,
and Drug among others. We see that for CS-NER
(Abstracts), none of the models hallucinate, which
is perhaps due to the fact that it consists of only
two classes, whereas SCIERC and CS-NER (Ti-
tles) contains six and seven classes respectively.

6.2 Typed Keyphrase Recognition

Table 4 shows the results on the Few-TK dataset
(Lahiri et al., 2024). Similar to the results for NER,
here too we see that SciBERT outperforms all other
models, although the results are generally low for
this dataset. This is due to large number of classes,

Table 4: Results for fine-tuning encoder-based LMs and
instruction-tuning decoder-based LMs on Few-TK for
Typed Keyphrase Recognition. H stands for Halluci-
nated Tags.

which is 38, in this dataset, that is much higher than
that of other datasets in this domain. This shows
that simple vanilla fine-tuning or instruction-tuning
may not be enough for more complex multi-label
tasks such as these as they require significantly
higher reasoning capabilities. We also see that
due to the larger number of classes into which the
keyphrases are to be divided, the number of hallu-
cinations for this dataset are also much larger.

6.3 Relation Classification

Table 2 shows the results for relation classification
on the SCIERC dataset. LLaMA-13B is found to
be the best performing model for this task, which
to the best of our knowledge is also the SOTA for
relation classification on this dataset. Some of the
hallucinated labels from generative decoder-based
LMs are Induced-from, Sum-of and Weighted-sum,
in the very rare cases where they hallucinate.

6.4 Paraphrase Recognition

Table 5 shows the results for the task of paraphrase
recognition. Although the results achieved by each



PPHRASE Model Paraphrase Non-paraphrase Accuracy Precision Recall F1
BERT 72.21 73.28 72.78 72.88 72.83 7274
SciBERT 71.77 73.63 72.59 72.54 7255  72.54
TS 72.65 71.96 72.32 72.54 72.48  72.30
SciFive 69.74 74.20 72.20 72.41 7198  71.97
LLaMA-7B 73.69 72.18 72.96 73.39 73.20 7293
LLaMA-13B 73.13 71.24 72.22 72.72 7249  72.19
LLaMA-70B 73.30 77.30 75.46 75.58 7525  75.30
SciLitLLM-7B 73.15 77.65 75.61 75.82 75.36  75.40
Tiilu-2-dpo-7B 65.93 77.27 72.73 75.20 72.02  71.60
Tiilu-2-dpo-70B 63.83 76.86 71.78 74.86 70.98  70.35

Table 5: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on PARADE for
paraphrase recognition. We report the overall precision, recall, macro F1, accuracy and the class-wise macro F1.

N1 Model Contrasting Reasoning Entailment Neutral F1 Accuracy
BERT 77.17 71.25 74.37 74.01 74.20 74.27
SciBERT 79.69 74.35 74.35 76.46 77.68 77.67
T5 79.68 72.06 75.54 77.65 76.10 76.16
SciFive 80.86 73.88 77.34 78.52 77.65 77.72
LLaMA-7B 78.22 69.53 73.53 61.05 70.58 71.10
LLaMA-13B 82.92 74.93 77.60 71.71 76.79 76.98
LLaMA-70B 86.17 74.45 77.77 64.51 75.73 76.50
SciLitLLM-7B 82.54 76.52 77.06 69.77 76.47 76.80
Tiilu-2-dpo-7B 79.82 71.03 74.87 63.86 72.39 72.85
Tiilu-2-dpo-70B 87.24 78.22 79.20 76.23 80.22 80.37

Table 6: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SciNLI for
Natural Language Inference. We report the overall macro F1, accuracy and the class-wise macro F1.

of the models are very close to each other, decoder-
based LMs hold a slight edge in performance over
encoder-based LMs, with the SciLitLLM-7B being
the best performing model by outperforming even
the 70B models.

6.5 Natural Language Inference

Table 6 shows the results for scientific Natural
Language Inference. The Tiilu-2-dpo-70B model
shows superior performance among the tested mod-
els and also achieves the SOTA performance on
this dataset (Sadat and Caragea, 2024).

6.6 Citation Intent Classification

Table 7 and Table 8 shows the result for Citation In-
tent Classification on the ACL-ARC (Jurgens et al.,
2018) and SciCite (Cohan et al., 2019) datasets,
respectively. We see that for both the datasets SciB-
ERT shows better performance. Only for F1 scores
of two classes of the ACL-ARC dataset and the
overall accuracy score, other language models are
able to perform better than SciBERT. LLaMA-70B
and Tiilu-2-dpo-70B — both 70B LLMs clock al-
most about the same overall F1 score, whereas the

two 7B models show some hallucinations like Re-
peats and Inspired.

6.7 Claim Verification

Table 9 shows the result for Claim Verification on
the SCIFACT dataset (Wadden et al., 2020). This
is the only task where we find that a large lan-
guage model i.e. the Tiilu-2-dpo-70B model is the
best performing model on all metrics and is also
separated from the encoder-based LMs by a huge
margin.

7 Performance Analysis

RQ1: (a) Do decoder-based or encoder-decoder-
based models outperform their encoder-based
counterparts?

We find that encoder-based LMs offer stiff com-
petition to their decoder-based counterparts even
though the encoder-based LMs are quite smaller
in size and trained on much less data. Decoder-
based LMs perform well in those tasks where the
number of labels or classification heads are less



cic Model Bckg. Comp. Extends Future Motiv. Uses Accuracy F1 H
BERT 84.12  59.15 44.81 21.67 00.00 6491 45.78 70.74 0
SciBERT 87.67 73.76 73.13 76.26 41.79  78.42 74.96 7770 0
T5 84.80  73.62 44.44 75.56 54.55 7229 77.94 6754 0
SciFive 89.33  77.93 64.45 88.38 53.03  76.31 82.73 7490 O
LLaMA-7B 84.62  60.00 61.54 50.00 71.43  84.44 77.70 58.86 2
LLaMA-13B 86.09  68.18 50.00 66.67 40.00  80.77 78.42 6529 0
LLaMA-70B 84.97  63.41 72.73 80.00 26.67  79.17 76.98 67.82 0
SciLitLLM-7B  84.00  60.47 61.54 72.73 36.36  76.00 75.54 65.18 0
Tiilu-2-dpo-7B  84.93 60.00 46.15 72.73 4444  77.55 74.82 5512 1
Tiilu-2-dpo-70B 8497  61.90 80.00 72.73 53.33  85.11 79.14 73.01 0

Table 7: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on ACL-ARC for
Citation Intent Classification. We report the overall macro F1, accuracy and the class-wise macro F1. H stands for

Hallucinated Tags.

cac Model Background Method Result Accuracy F1
BERT 88.28 85.28 80.6 86.17 84.72
SciBERT 88.51 86.33 81.53 86.75 85.46
TS 88.72 84.63 81.53 86.39 84.96
SciFive 88.46 85.62 82.56 86.69 85.54
LLaMA-7B 85.85 81.44 77.96 83.37 81.75
LLaMA-13B 85.31 80.28 77.12 82.56 80.90
LLaMA-70B 86.83 82.58 79.92 84.55 83.11
SciLitLLM-7B 86.10 81.02 79.06 83.48 82.06
Tiilu-2-dpo-7B 86.54 82.41 76.73 83.80 81.89
Tiilu-2-dpo-70B 86.19 83.09 80.00 84.23 83.10

Table 8: Results for fine-tuning encoder-based LMs
and instruction-tuning decoder-based LMs on SciCite
for Citation Intent Classification. We report the overall
macro F1, accuracy and the class-wise macro F1.

than or equal to 3. Among the tasks considered,
decoder-based LMs have been found to work well
in tasks like Paraphrase Recognition, Natural Lan-
guage Inference and Claim Verification.

On the bright side, our experiments on decoder-
based LMs have led to achieving SOTA perfor-
mance on two tasks — Relation Classification and
Natural Language Inference.

RQ1: (b) Are decoder-based LLMs lacking in
sequence labeling and classification tasks?

We see that the 110M-parameter SciBERT is a
better performer than most decoder-based models
on most tasks. We can attribute two factors to this
performance: the first is that difference in the way
that encoder-based and decoder-based models are
pre-trained and the second, as mentioned in our pa-
per, is due to the hallucinations in LLMs. Encoder-
based models undergo pre-training majorly using
the Masked Language Modelling objective, while
decoder-based models are pre-trained on the Next
Token Prediction objective. Therefore, we postu-
late that the embedding generated by encoder-based
models using bidirectional attention contains much

more precise information than the unidirectional
attention used by decoder-based models. Decoder-
based models are only trained to see the next token,
which may not be so useful in tasks like sequence
labeling like NER or sentence classification tasks
like NLI and others.

(Wadden et al., 2024) reports the F1 score in the
SCIERC using GPT-4 to be 42.2 and using their
own SCITULU 70B model to be 35.9. Therefore,
we see that fine-tuning decoder-based LMs gives
far better results than the simply prompting.

We see that many of the decoder-based LMs
hallucinate when there are too many labels for clas-
sification. Hallucinations are a major reason for
the overall decrease in performance of decoder-
based LMs in many tasks. We postulate that the
pre-training of large generative models plays a ma-
jor part in such hallucinations, where in spite of
the classes being mentioned in the training prompt,
the model in a few exceptional cases generates data
which is meaningful but does not pertain to the
constrained framework of the given task.

RQ2: Are domain-specific models better than
their counterparts?

We see across all tasks that language models
that have been pre-trained on scholarly data have
a slight edge over those trained on general do-
main data. We observe this trend both in the case
of encoder-based models (SciBERT) and decoder-
based models (SciLitLLM and Tiilu-2). But, we
notice an interesting scenario in the case of Tiilu-2:
SCIERC (one of our NER and relation classifica-
tion datasets) is included within its pre-training
data and even after explicitly fine-tuning on the
same data, we do not obtain an improvement in the
results. Yet, although SciFact occurs in Tiilu-2 pre-



camm Model  Support Contradict Accuracy Precision Recall F1
BERT 77.14 00.52 62.82 34.15 49.21 38.83
SciBERT 80.22 53.15 69.82 66.89 65.15 65.41
T5 75.47 52.95 67.75 64.69 63.95 64.21
SciFive 78.26 53.68 70.41 67.73 65.44 6597
LLaMA-7B 81.87 51.89 73.67 74.64 66.20 66.88
LLaMA-13B 85.59 71.11 80.77 79.90 7746  78.35
LLaMA-70B 90.20 79.26 86.69 87.86 83.16 84.73
SciLitLLM-7B 85.27 69.68 80.18 79.47 76.46 7748
Tiilu-2-dpo-7B 83.41 67.83 78.11 76.55 75.02  75.62
Tiilu-2-dpo-70B  93.08 88.72 91.42 90.25 91.86 90.9

Table 9: Results for fine-tuning encoder-based LMs and instruction-tuning decoder-based LMs on SciFact for Claim
Verification. We report the overall precision, recall, macro F1, accuracy and the class-wise macro F1.

training corpus, hallucinations do not occur during
claim verification on SciFact. Therefore, we again
conclude that hallucinations play a large role in the
performance of decoder-based models.

RQ3: Which models are more computationally
efficient?

The time taken by decoder models is shown
in 5. Encoder-based LMs take much lower time
for both training and inferencing than decoder-
based LMs, which require anywhere about 4 to
26 A100 GPU hours per dataset only for the train-
ing part. Apart from this, the inferencing stage is
also a time-consuming process with datasets like
CS-NER which have large amounts of test data re-
quiring more than 12 hours on an A100 GPU. In
comparison, encoder-based LMs require at most
5-6 hours for the completion of both the training
and inferencing stages. SciLitLLM (Li et al., 2024)
takes an inordinately large amount of time for the
inferencing phase in spite of its model size.

7.1 Experimental Setup Analysis

We do not opt for multi-task fine-tuning of LLMs
as we have chosen a diverse range of tasks and
therefore, there is a high possibility of negative
transfer even though multi-task fine-tuning is a vi-
able option sometimes while dealing with related
tasks (Karimi Mahabadi et al., 2021).

We choose BERT (Devlin et al., 2019) over other
variants of Transformer encoder based model vari-
ants because other architecturally similar models
do not show any drastic improvement in perfor-
mance over BERT and also because of the popular-
ity of BERT on standard NLP tasks. We do not use
the SCITULU (Wadden et al., 2024) checkpoints

for our experiments as most of the datasets overlap
with their training data and this would not have
been suitable for our experiments.
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Figure 4: Train loss in decoder-based language models

Figure 4 shows the training loss of all the
decoder-based language models. All the models
have near about the same training loss. We see that
the Tiilu-2-dpo-70B model gets optimized the most
in terms of loss in all the datasets.

8 Conclusion

We fine-tune and examine 2 encoder-based lan-
guage models, 2 encoder-decoder based language
models and 6 decoder-based language models on
10 benchmark scholarly datasets over a span of
6 tasks. In the case of decoder-based language
models, we find that there is a huge dissimilarity
between the performance achieved and the compu-
tational costs involved. We also report the useful-
ness of fine-tuning and using domain-specific large
language models.



Limitations

We do not test over different prompt templates due
to computational costs. More language models, in-
cluding more LLMs and PLMs, can be tested for
these tasks. We also do not aim for SOTA results
for the tasks we considered. SOTA results some-
times use very specialized techniques that optimize
the model for the task.
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A Dataset Description

A.1 Named Entity Recognition/ Typed
Keyphrase Recognition

We make use of the following popular datasets for
Named Entity Recognition: SCIERC (Luan et al.,
2018), CS-NER (Abstracts) (D’Souza and Auer,
2022), CS-NER (Abstracts) (D’Souza and Auer,
2022). For the Typed Keyphrase Extraction task,
we use FEW-TK (Labhiri et al., 2024). Almost all
of these datasets are annotated on research paper
abstracts or titles or both.

A.2 Relation Classification

We use SCIERC (Luan et al., 2018), which con-
tains about 4, 716 relations over 500 scientific doc-
ument abstracts.

A.3 Paraphrase Recognition

PARADE (PARAphrase identification based on Do-
main knowledgE) (He et al., 2020) is a dataset
tailored for paraphrase identification consisting of
10, 182 pairs of definitions that describe 788 dis-
tinct entities in the Computer Science domain. Out
of these, 4, 778 are paraphrases and 5, 404 are non-
paraphrases.

A.4 Natural Language Inference

NLI for the scientific domain is relatively new
and also quite challenging due to the difference
in the vocabulary and sentence structure in com-
parison to the general domain. SciNLI (Sadat and
Caragea, 2022) is a Natural Language Inference
(NLI) dataset tailored for the scientific domain, con-
sisting of 101,412 samples in the training set, 2,000
samples in the validation set, and 4,000 samples in
the test set. In comparison to traditional datasets,
this dataset contains two new classes, taking the
total number of classes to four: "Contrasting", "En-
tailment", "Reasoning" and "Neutral".

A.5 Citation Intent Classification

Citation intents are useful in tasks like the measure-
ment of scientific impact (Cohan et al., 2019) and
the temporal study of scientific concepts (Jurgens
et al., 2018).

We consider two datasets for this task: ACL-
ARC (six categories) (Jurgens et al., 2018) and
SciCite (three categories) (Cohan et al., 2019). Sci-
Cite consists of 11, 020 instances and is larger than
ACL-ARC which contains 1,941 data points.
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A.6 Claim Verification

SCIFACT (Wadden et al., 2020) is a dataset that is
made up of 1,409 expert-written scientific claims
which are verified against a corpus of 5,183 ab-
stracts. The claims in this dataset

B Encoder Model Checkpoints and
Experimental Setup

B.1 BERT

BERT (Devlin et al., 2019) stands for Bidirec-
tional Encoder Representations from Transformers.
BERT is a multi-layer bidirectional Transformer
encoder model that is pre-trained on unlabelled
data from the BooksCorpus and English Wikipedia
for two different tasks: the masked language mod-
elling (MLM) task and the next sentence prediction
(NSP) task. The BERT model may be fine-tuned
for several downstream tasks and this fine-tuning
paradigm has found success in almost all major
NLP tasks.

B.2 SciBERT

SciBERT (Beltagy et al., 2019) is domain-specific
variant of BERT that is pre-trained on scientific
text. SCiBERT retains the architecture as well as all
the major characteristics of BERT except that it is
pre-trained on a corpus that consists of papers from
the biomedical domain and the computer science
domain in a 82 : 18 ratio.

The experimental details for fine-tuning encoder-
based LMs are as follows:

NER/TK: We train the uncased versions of
BERT and SciBERT by passing their output
through a linear classifier and training using the
cross-entropy loss for 20 epochs. The maximum
sequence length considered is 256.

REL: This task is formulated for encoder-based
LMs as a special case of text classification: the
given entities are delineated with special tokens
and the model learns to predict the relation between
these entities (Beltagy et al., 2019).

PPHRASE: We fine-tune BERT and SciBERT
by considering this task as a text classification task
as was done for the original PARADE dataset (He
et al., 2020). We fine-tune the backbone PLMs for
5 epochs using a learning rate of 2e — 5.

NLI: The pair of sentences provided as input are
concatenated separated by a [SEP] token between
them. A softmax layer is used to predict the out-
put class from the [CLS] token embedding. Each
backbone model is trained for 5 epochs and the



Corpora Domain Classes Papers Tokens Entities

SCIERC (Luan et al., 2018) Al 5 500 60,749 8,089
CS-NER (Abstracts) (D’Souza and Auer, 2022) Al 2 12,271 1,317,256 29,273
CS-NER (Titles) (D’Souza and Auer, 2022) CL 7 31,044 263,143 67,270
FEW-TK (Lahiri et al., 2024) Al 38 500 115,745 20064

Table 10: Details of standard scientific-domain Named Entity Recognition datasets and FEW-TK for Typed
Keyphrase Recognition

maximum input length is set at 300. We use the D.1 LLaMA family of models
cased versions of the BERT and SciBERT models
keeping in line with the original paper (Sadat and
Caragea, 2022).

CIC: It is treated as a simple text classification
problem given the citation sentence, as in (Beltagy

LLaMA is a family of pre-trained foundational lan-
guage models that have been open-sourced by Meta
in recent times. LLaMA models incorporates the
following three minor architectural changes within
the original Transformer architecture (Vaswani
et al., 2019) Therefore, the BERT vector is given et al., 2017) (1) use of SwiGLU (Shazeer, 2020)
as input into a linear classification layer. The learn- activation function instead of ReLU, (2) use of ro-
ing rate is taken as 2 — 5 and the model is trained tary positional embeddings (Su et al., 2021) instead
for 5 epochs. of absolute positional embedding, and, (3) use of

CLAIM: We model the claim verification task as ~ RMSNorm (Zhang and Sennrich, 2019) normaliz-

a two-class classification problem, such that given ing function instead of layer-normalization.
the claim-evidence pair, the model predicts whether

the claim supports or contradicts the evidence. D.2 SciLitLLM

SciLitLLM (Li et al., 2024) is a very recently re-

C Encoder-Decoder Model Checkpoints leased LLM designed for the task of scientific litera-

and Hyperparameters ture understanding that has been trained using both

continual pre-training (CPT) and supervised fine-

T5 is an encoder-decoder model pre-trained on a  tuning (SFT).This strategy is used on Qwen2.5 to

multi-task mixture of unsupervised and supervised  gbtain SciLitLLM. The CPT stage uses 73,000 text-

tasks and for which each task is converted into a  books and 625,000 academic papers, while the SFT

text-to-text format. stage uses SciLitIns, SciRIFF (Wadden et al., 2024)

SciFive (Phan et al., 2021) is a Text-Text frame- and Inﬁnity-Instruct3. We use the SciLitLLM 7B*
work for biomedical language and natural language  for our experimental purposes.

in NLP. We use the checkpoint trained on PMC.

For all the text classification datasets i.e. ev- D.3 Tiilu family of models
erything except NER and TK, we use a maximum Tiilu (Wang et al., 2023) is a set of models that

sequence length of 512, a learning rate of 3e-4 and ;0 intruction-tuned on LLaMA (Touvron et al.,
a batch size of 16. 2023a) using a mixture of human-generated as well

For all the NER and TK datasets, we use a max-  as GPT-generated data. Tiilu-2 (Ivison et al., 2023)
imum sequence length of 256, a learning rate of s trained on LLaMA-2 over a more updated and

3e-4 and a batch size of 8. refined data mixture, which contains even datasets
from scientific literature like SciERC (Luan et al.,
D Decoder Model Checkpoints 2018), Qasper (Dasigi et al., 2021), SciFact (Wad-

den et al., 2020) and SciTLDR (Cachola et al.,
2020). Tiilu-2 is further trained using the direct
preference optimization (DPO) algorithm (Rafailov
et al., 2023).

We follow QloRA’s original hyperparameter set-
tings instead of doing a exhaustive hyperparameter
search. We fix both the source length and the target
length to 512 for better comprehension. The learn- @—————

. . https://huggingface.co/datasets/BAAL/

ing rate is kept at 2e — 4, and we fine-tune each  1,¢inity-Instruct

model for 1, 875 steps. *https://huggingface.co/Uni-SMART/ScilitLLM
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https://huggingface.co/datasets/BAAI/Infinity-Instruct
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E Hallucinated Labels

The following tables show the hallucinated labels
in different decoder-based language models.

F Decoder Time Analysis

Model SGERC (REL)
COMBINATION-STRATEGY
LLaMA-7B -OVER, WEIGHTED-SUM.
LLaMA-13B ]
LLaMA-70B ;
SciLitLLM-7B INDUCED-FROM

Tulu-2-dpo-7B )
FOR-FOR, SUM-OF,
Tulu-2-dpo-70B OUT-OF-NLP.

Table 11: Hallucinated Labels for Relation Extraction
datasets

Model ACL-ARC
LLaMA-7B INSPIRED, TUV
LLaMA-13B -
LLaMA-70B -

SciLitLLM-7B -
Tulu-2-dpo-7B -
Tulu-2-dpo-70B REPEATS

Table 12: Hallucinated Labels for Citation Intent Classi-
fication datasets

G Prompt Template

Table 15 shows the prompt templates used by the
generative decoder-based language models.
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Model Few-TK

‘Data Mining Information Retrieval metrics’, ‘Compute architecture’, ‘Data Mining’
LLaMA-7B ‘Information Retrieval dataset’, ‘Statistical Mathematical domain’,
‘Statistical Mathematical phenomenon’

‘Astronomy term’, ‘Astronomy term’, ‘Astronomy term’, ‘Astronomy term’,
LLaMA-13B ‘Statistical Mathematical domain’, ‘Statistical Mathematical technique’,
‘Statistical Mathematical domain’, ‘Bioinformatics algorithm tool’

‘Garbage value: Tourism is the typed
LLaMA-70B keyphrase identified from the given text.’, ‘Statistical Mathematical focus’, ‘Statistical
Mathematical domain’, ‘New York City dog park’, ‘Al ML DL metrics’

‘Reference’, ‘Optimization

algorithm tool’, ‘Data Mining Information Retrieval dataset’,

‘Al ML DL library’, ‘Q&A site for programmers’,

‘Commercial LP solver’, ‘Data Mining Information Retrieval dataset’,
‘Miscellaneous result’, ‘Data Mining Information Retrieval strategy’,
’Statistical Mathematical focus’,

*Statistical Mathematical domain’, ‘NLP author’, ‘NLP author’, ‘Information
Retrieval focus’, ‘Garbage value: 600 words of type’

SciLitLLM-7B

‘Miscellaneous dataset’, ‘Miscellaneous dataset’, ‘Miscellaneous result’, ‘Statistical
Mathematical focus’, ‘Statistical Mathematical focus’
, ‘Data Mining Information Retrieval

Tulu-2-dpo-7B  dataset’, ‘Computer vision algorithm step’,
‘Financial term’, ‘Quality metrics’, ‘Statistical Mathematical focus’,
‘Statistical Mathematical discipline’, ‘author’, ‘author’, ‘Information retrieval
focus’, ‘Statistical Mathematical focus

‘Application term’, ‘Computer Vision algorithm tool’,
Tulu-2-dpo-70B  ‘Data Mining Information Retrieval tool’,
‘Miscellaneous dataset’, ‘NLP framework’

Table 13: Hallucinated Labels for Typed Keyphrase Recognition dataset, Few-TK
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Figure 5: Time taken by decoder-based language models
Model CS-NER (Titles) SciERC (NER)
LLaMA-7B AUTHOR OBJECTIVE, SCENARIO, AUTHOR
LLaMA-13B DATE -
LLaMA-70B AUTHOR, R, REGION AUTHOR, HUMAN
SciLitLLM-7B - PROFESSION
Tulu-2-dpo-7B DATE FUNCTION, AUTHOR
Tulu-2-dpo-70B  DATE, REGION, DATE USER, PLATFORM, DRUG

Table 14: Hallucinated Labels for Named Entity Recognition datasets

16



Task Instruction Input Output
. In the gi t , find th .
Named Entity 1 the glven sentence 'ndt ¢ named The entities s; of type y; are
.. entity mentions and classify them among X . . .
Recognition . . . identified from the given text.
the following possible categories - Y
In the gi find th
Typed n the given sentence,. nd the The typed keyphrases s;
typed keyphrase mentions and . .
Keyphrase . . X of type y; are identified
... classify them among the following .
Recognition . . from the given text.
possible categories - Y
In the given sentence, find and
. classify the relation between the .
Relation . . . The relation between
Extraction mentioned pair of named entities, X s and sn is
where the relation can be of the A B '
following types: Y
Paraphrases are sentences that
express.the same me?ming by The given pair of
Paraphrase using different wording. Are
. . . (s1,s2)  sentences are paraphrases/
Recognition the following pair of sentences
non-paraphrases.
paraphrases or non-paraphrases?
SEP separates the two sentences.
Natural Analyze the provideFl pair (,)f
Laneuace sentences to determine their (51, 5) cy
guag relationship. Choose one of the o2 Y
Inference . .
following categories: Y
Given a scientific text containing The intent of the citation
Citation Intent a citation and the citation string, D falls under the
Classification classify the intent of the citation following category:
among the following categories: Y. yey
Claim Given a scientific claim, evaluate the The given evidence
. ) evidence to determine whether (s1,52) supports/refutes
Verification

it supports or refutes the claim.

the scientific claim.

Table 15: Table showing prompts used to instruction-tune LLMs
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