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Abstract

Many real-world robot learning problems, such as pick-and-place or arriving at a
destination, can be seen as a problem of reaching a goal state as soon as possible.
These problems, when formulated as episodic reinforcement learning tasks, can
easily be specified to align well with our intended goal: —1 reward every time step
with termination upon reaching the goal state, called minimum-time tasks. Despite
this simplicity, such formulations are often overlooked in favor of dense rewards due
to their perceived difficulty and lack of informativeness. Our studies contrast the
two reward paradigms, revealing that the minimum-time task specification not only
facilitates learning higher-quality policies but can also surpass dense-reward-based
policies on their own performance metrics. Crucially, we also identify the goal-hit
rate of the initial policy as a robust early indicator for learning success in such sparse
feedback settings. Finally, using four distinct real-robotic platforms, we show that
it is possible to learn pixel-based policies from scratch within two to three hours
using constant negative rewards. Our video demo can be found here.!

1 Introduction

In Reinforcement Learning (RL), the task designer implicitly specifies the desired behavior using
the reward signal. In order to guide the learning agent to a reasonable solution, task designers often
rely on task-specific domain knowledge to hand-craft a dense reward function with state-to-state
differences that facilitate faster learning. Since guiding rewards reflect the task designer’s preferred
behaviors, they could bias the solutions that the agent finds, potentially leading to sub-optimal
outcomes (Riedmiller et al. 2018). For most goal-reaching problems, there is a simpler alternative
that is easy to specify but still incorporates our intended goal accurately: a constant negative
reward every time step, with termination upon reaching the goal state. We call this the minimum-
time specification since maximizing the undiscounted sum of these rewards leads to reaching the
goal state as soon as possible. This specification avoids biasing the final solution, focusing solely on
recognizing task success. This approach is also suitable for specifying unforeseen goal-reaching tasks
where a human instructor may be unable to provide domain knowledge beforehand.

1Video demo: https://youtu.be/a6z1VUuKzBc
Code for simulation experiments: https://github.com/gauthamvasan/rl_suite
Code for robot experiments: https://github.com/rlai-lab/relod
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Figure 1: Real World Robot Tasks

An alternative and simple specification of rewards is to give a discounted positive reward upon “suc-
cess” and zero everywhere else. Such a reward is often considered a sparse reward, as a differentiating
reward signal is available only sparsely. The minimum-time reward can be seen as an extreme form
of sparse reward, where the reward value never changes and the differentiating signal only comes
from episodic accumulated rewards, called the return. However, minimum-time specification has the
advantage of being simpler as it does not require discounting as part of the problem.

Despite its simplicity and ease of specification, minimum-time tasks are generally thought to be
hard to solve (Andrychowicz et al. 2017). Guiding reward formulations offer state-by-state reward
differences, which can be informative for quick policy improvement. This can provide early signs
of learning, allowing us to determine whether learning can occur quickly. Sparse-reward tasks may
take much longer to show any signs of learning, as informative signals are given only sparsely; a
robot may only rarely stumble upon the goal via trial-and-error interactions (Kober et al. 2013).

In this paper, we conduct a series of carefully designed studies to compare dense-reward and
minimum-time formulations in RL. Our research confirms the popular notion that dense-reward
formulations facilitate faster learning in comparison to sparse-reward formulations. However, our
findings also demonstrate that agents trained with minimum-time specification outperform those
trained with dense rewards, even in terms of dense-reward performance metrics. In particular, we
establish the superiority of the minimum-time formulation over the guiding reward formulation on
tasks involving reaching with simulated and industrial robotic arms, both in terms of ease of speci-
fication and its ability to attain the desired final behavior. We identify that RL agents can quickly
and reliably solve complex vision-based tasks in the minimum-time formulation if the agent can
reach the goal often enough using its initial policy. Leveraging our insights, we successfully set up
vision-based reaching tasks with sparse rewards on four distinct real robots and demonstrate their
ability to learn a pixel-based control policy from scratch within two to three hours (see Fig. 1).

2 Related Work

Reward shaping Learning with sparse rewards can be challenging since the agent has to explore
the environment extensively to discover the right set of actions that lead to the reward. Hence,
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task designers often manually craft a reward function through trial-and-error such that it maximizes
both the task performance metric and enables fast learning (Vasan and Pilarski 2017, Mahmood
et al. 2018, Lee et al. 2019, Knox et al. 2023). Ma et al. (2023) proposed using a large language
model to automate reward design in various tasks using task-specific prompts, reward templates and
evolutionary search. Recent work by Rocamonde et al. (2023) and Wang et al. (2024) explores using
large pre-trained vision-language models (VLMs) to design reward functions for RL tasks. These
approaches, akin to neural architecture search, incur high computational costs. VLMs face challenges
like sensitivity to visual realism, hallucinations, scalability issues, and mis-alignments between visual
and language modalities. They often struggle to provide precise, task-relevant feedback necessary
for effective RL, especially in tasks requiring detailed spatial understanding or abstract reasoning.

Ad hoc reward design often leads to reward shaping, where the reward function is used to commu-
nicate the underlying performance metric and to steer the agent’s learning towards a desired policy
(Ng et al. 1999). For example, Mataric (1994) proposed rewarding the agent for taking steps up the
gradient rather than just for achieving the final goal to speed up learning. However, it is also widely
recognized that ad hoc reward shaping is unsafe as it may alter the optimal solution for a particular
RL task (Amodei et al. 2016, Knox et al. 2023).

Although guiding reward design seems like a sound approach, Booth et al. (2023) show that relying
on trial-and-error to design guiding rewards can result in over-fitting, where reward functions are
inadvertently excessively tailored for use with a specific algorithm. Rewards should only commu-
nicate to the agent what we want achieved rather than detailing how we want it achieved (Sutton
and Barto 2018). In this work, we adhere to this principle and sidestep the complexities of reward
function (mis)-design, thus focusing solely on making learning with sparse rewards tractable.

Learning from sparse rewards Riedmiller et al. (2018) introduced SAC-X, a method for learning
from sparse rewards, which learns policies for auxiliary tasks concurrently with the main task to
explore the observation space efficiently. Hertweck et al. (2020) extended this by proposing agent-
internal auxiliary tasks to enhance exploration in sparse reward settings, particularly for tasks like
Ball-in-Cup, using only raw sensor data. Andrychowicz et al. (2017) presented Hindsight Experience
Replay (HER) for learning from failed episodes by treating seen states as pseudo-goals, applicable to
environments with multiple goal states but limited in vision-based tasks. Nair et al. (2018) expanded
HER for vision-based tasks like Reaching and Pushing but with constraints on camera setup and
applicability to 2D plane environments. Korenkevych et al. (2019) use autoregressive processes for
smoother exploration compared to Gaussian policies. While these approaches use novel strategies to
improve exploration in sparse reward scenarios, our work differs by predicting whether a minimum-
time task can be effectively learned from scratch based on initial policy performance.

Minimum time problems in optimal control aim to transfer a system from an initial to a final
state in the shortest time, with the cost function being the time taken between steps (Chui and Chen
2012, Chapter 9). For example, Penicka et al. (2022) combines classical path planning with model-
free deep RL to optimize a neural network policy for minimum-time flight of a quadrotor through
a sequence of waypoints with obstacles. Control benchmarks in RL like MountainCar (Sutton and
Barto 2018) and DotReacher (Garg et al. 2022) also use the minimum-time formulation with a
reward of —1 each step until termination.

3 How to Specify Goal-Reaching Tasks in RL?

In this section, we explore various formulations of goal-reaching tasks as discussed in the literature.
We use the classic Reacher problem as an illustrative example (Fig. 2). The reaching task using
a two-link robot arm aims to move the fingertip of a planar arm with two degrees of freedom to a
random spherical target on a 2D plane (Tassa et al. 2018). In this scenario, we hold an abstract
concept wherein the objective is for the robot arm to swiftly reach a designated target state and remain
there. The difficulty of the Reacher task is conditional on the size of the target.
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Background A Markov Decision Process (MDP) is used to model the agent-environment inter-
action, where an agent interacts with its environment at discrete timesteps. The agent takes an
action A; € A at state S; € S every timestep ¢ using a probability distribution 7 called a pol-
icy: Ay ~ w(:|St). After executing the action, the agent receives the next state Sy; at the sub-
sequent timestep ¢+ 1 and a reward R according to a transition probability density function
Stt1, Rey1 ~ p(-,+|St, At). We use continuous state space S and action space A for all our tasks.

The observation space consists of the position and velocity of the fingertip, and the vector from the
fingertip to the target. The action space is the torques to be applied to the two joints. We now
introduce three specifications based on the choice of reward function and termination.

Guiding Reward Formulation Contact Reward Formulation Minimum-Time Formulation
1 if in target, 1 if in target, i )
R, = tm ange R, = nm albrge R, = —1 (until reaching the target)
—||%goar — Tpos|| otherwise. 0 otherwise.
Fixed length episodes (7" = 1000) Fixed length episodes (7" = 1000) Varying length episodes; Termination upon
sth ep - gth ep B reaching the goal with near zero velocity

Table 1: Task Formulations: Choices for reward function and termination conditions

Guiding reward formulation The reward function is inspired by
Brockman et al. (2016), where reacher is incentivized to get as close
to the target as possible. We also include a commonly used preci-
sion reward term previously used on a real robot reacher task using
the UR5 industrial arm (Lan et al. 2022, Farrahi and Mahmood
2023, Che et al. 2023, Elsayed et al. 2024). The reward function
has two components: (i) penalty term calculated as the negative of
the Euclidean distance between the fingertip and the target, and (ii) Figure 2: Reacher-Easy (left)
precision term where the agent receives +1 reward when the finger- and Reacher-Hard  (right)
tip is inside the target (see Table 1). Each episode has a time limit
of 1000. The time limit is set long enough to incentivize the agent
to remain at the goal once reached.

from DeepMind Control Suite

Contact Reward Formulation The agent will receive a reward of +1 whenever it is within the
target sphere and 0 otherwise (see Table 1). Each episode has a time limit of 1000. This choice of
reward and timeout follows the dm__control suite (Tassa et al. 2018).

Minimum-Time formulation Shorter episodes are encouraged by imposing a reward of —1 for
each step until termination. The episode terminates when the fingertip of the arm reaches the target
with near-zero velocity. An episode is completed only when the agent reaches the goal state. If the
agent exceeds the time limit, we reset the environment such that the goal state remains the same,
but the robot arm moves to a different starting state. Note that, unlike the previous formulations,
we get rid of the fixed time limit horizon, where all episodes have a uniform episode length.

Since resetting the agent has an associated time cost in the real world, we also penalize the agent
when it fails to reach the goal state within the time limit (e.g., —K where K timesteps is required to
reset the agent). The episodic returns and lengths are adjusted appropriately. For example, consider
a task where the reward is —1 each timestep, the time limit is 100 steps, and reset penalty = —20. If
an agent times out thrice consecutively and finally reaches the goal in 25 steps since the last timeout,
then the return of the episode, in this case, is —100 — 20 — 100 — 20 — 100 — 20 — 25 = —385, and the
length of the episode is 385. Our learning curves use undiscounted returns estimated in this manner.

4 Which Formulation Achieves the Desired Reaching Behavior?

We use a state-of-the-art RL method— Soft Actor-Critic (SAC) to to solve each formulation of the
Reacher task (Haarnoja et al. 2018). We use the same hyper-parameters (listed in A.1) to train all
variants. From Fig. 3a, it is clear that both Reacher-Easy and Reacher-Hard agents learn fast with
the guiding reward formulation. While the speed of learning is not as rapid, it is still fast with the
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(a) Guiding reward formulation  (b) Minimum-time formulation  (c¢) Contact reward formulation

Figure 3: Each solid learning curve is an average of 30 independent runs. The shaded regions
represent a 95% confidence interval

contact reward formulation (see Fig. 3c). In contrast, when utilizing the minimum-time formulation
(see Figure 3b), the learning curves exhibit a slower progression and more pronounced variability.

Evaluating the final learned behaviours

For a fair comparison of the three task speci- Guiding Reward | Contact Reward | Minimum-Time

. . . Formulation Formulation Formulation
fications, we evaluate the final learned policies o of p y

. . . . X

using three metrics (see Table. 4): 1) Ease of specification

. . . . ‘ast
specification: Do you require any domain knowl- Learning v ~ *
edge to craft a reward function? 2) Fast learn- | Sgperor Finel x x v

i X X . erformance

ing: Is learning quick and robust during train-
ing? 3) Superior Final Performance: Once the Figure 4: Evaluating each task specification

training phase concludes, which version demon-
strates the most desirable final learned behavior, as intended by the task designer?

To answer which formulation achieves superior final performance, we measure: 1) the number of time
steps needed to reach the target (termed “steps to goal”), and 2) the duration the agent remains
at the target once reached (termed “steps on goal”). We evaluate all 30 learned policies from each
formulation (90 runs in total) on 500 episodes, lasting 5K timesteps each (2.5M steps in total).

80 4600 | 4400

50 60 4400 4200
Steps to 40 Steps to Steps 4200 Steps.

Goal Goal on goal on goal 4000
4000
3800 - TR
3800
3600

0 0 3600

Guiding  Minimum-time ~ Contact Guiding  Minimum-time ~ Contact Guiding ~ Minimum-time ~ Contact Guiding ~ Minimum-time ~ Contact
Reward  Formulation  Reward Reward  Formulation  Reward Reward  Formulation  Reward Reward  Formulation  Reward
Formulation Formulation Formulation Formulation Formulation Formulation Formulation Formulation

(a) Reacher-Easy (b) Reacher-Hard (c) Reacher-Easy (d) Reacher-Hard

Figure 5: Comparison of the three formulations of the reaching task using the number of steps it
requires to reach the goal (5a, 5b) and the number of steps it stays within the target sphere upon
reaching it (5¢, 5d). The standard error is estimated over 30 independent runs. In bar charts 5a &
5b, a lower value signifies better performance. In 5¢ & 5d, a higher value signifies better performance.

While the guiding reward formulation achieves faster learning compared to guiding reward and
minimum-time formulation (Fig. 3), it is not easy to specify. Despite slower learning and less
visually appealing learning curves, the final learned performance shows surprisingly superior quality
and robustness when using the minimum-time formulation (Fig. 5): ~ 3X faster on Reacher-Easy
and ~ 2X faster on Reacher-Hard (Fig. 5a & 5b). The minimum-time policy also stays inside the
target area longer, resulting in over 500 higher accrued rewards (Fig. 5¢ & 5d).

Do the learned policies achieve superior performance in their own formulations? We
evaluate policies trained using contact reward and minimum-time formulations on the guiding reward
task by assessing policies trained on other formulations every 10K timesteps. The minimum-time
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formulation performs comparably to the guiding reward formulation on Reacher-Easy (Fig. 6a) but
surpasses it on Reacher-Hard (Fig. 6d). While a distinct hierarchy exists in terms of optimality of
minimum-time policies, the same is not true for policies trained with guiding rewards.

We perform a similar evaluation on other formulations. While the contact reward policy performs
on par or slightly better than the guiding reward policy, it still lags behind the minimum-time
policy (Fig. 6b and 6e). In the minimum-time task, both the guiding reward and contact reward
formulations perform poorly (Fig. 6¢ and 6f). Notably, the agents trained by the guiding reward
and contact reward formulations struggle to achieve near-zero velocity at the goal state, which is
necessary for completing episodes in the minimum-time formulation.

1000 [
800 —250
D ONAAN
800
Return on i Return on -500
Guiding 600 Contact Return on
Reward Reward 600 Minimum- —750
Task 400 4 Task Time Task _; 490
200 400 -1250
0 Guiding Reward Formulation 200 -1500
Minimum-Time Formulation —~1750
200 - e Contact Reward Formulation
T T T T 1 0 T T T T 1 —2000
0 100K 200K 300K 400K 500K 0 100K 200K 300K 400K 500K 0 100K 200K 300K 400K 500K
Timesteps Timesteps Timesteps
(a) Guiding Reward task (b) Contact Reward task (¢) Minimum-Time task
0
800 + 800 —250
Return on Return on ~500
Guiding 600 - Contact ggo Return on
Reward Reward Minimum- =750
Task 400 o Task Time Task
400 - -1000
200 4 -1250
0 4 s Guiding Reward Formulation 200 1 —1500
= Minimum-Time Formulation —-1750
—200 4 s Contact Reward Formulation 0 -
T T T T 1 T T T T 1 —2000
0 100K 200K 300K 400K 500K 0 100K 200K 300K 400K 500K 0 100K 200K 300K 400K 500K
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(d) Guiding Reward task (e) Contact Reward task (f) Minimum-Time task

Figure 6: Evaluating the performance of all formulations across the different specifications of
Reacher-Easy (Fig. 6a, 6b, 6¢) and Reacher-Hard (Fig. 6d, 6e, 6f). Each solid learning is an
average of 30 independent runs. The shaded regions represent a 95% confidence interval.

5 Does Choice of Time Limit Impact Success in Minimum-Time Tasks?

While specifying tasks in the minimum-time formulation is straightforward, achieving successful
learning can be challenging with complex real-world problems. One factor that impacts the difficulty
of a minimum-time task is the exploration strategy. An implicit way of controlling exploration in
RL is to invoke a environment reset after a certain time limit. Many benchmark tasks in RL, such
as OpenAl Gym (Brockman et al. 2016) and DeepMind Control Suite (Tassa et al. 2018), including
existing minimum-time tasks, such as Mountain Car (Sutton and Barto 2018), treat time limits as
an intrinsic property of their task formulations. They often use fixed time limits to separate episodes
and improve exploration efficiency. Intuitively, a large time limit increases the chances of reaching
the target since the agent has more time to explore the environment. However, a large time limit
can hurt exploration if the agent gets stuck in uninformative states due to a sub-optimal policy.

To investigate the effect of the time limit on the frequency of reaching the goal state, we recorded the
number of target hits, that is, times the agent reaches the goal state using an initial gaussian policy
N(0,1) within 20K timesteps. We plot the number of target hits versus the choice of time limits
for a minimum-time variant of Ball-in-Cup (Tassa et al. 2018) and Reacher in Fig. 7, revealing that
time limits indeed affect an agent’s exploration substantially.

We used the Non-Visual and Visual Ball-in-Cup, Non-Visual Reacher-Easy, and Non-Visual Reacher-
Hard tasks to test whether the number of target hits affects training performance. The learning
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Figure 7: A histogram plot of the choice of time limits versus the number of target hits, that is, the
number of times the agent reaches the goal state using an initial policy within 20K timesteps.
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Figure 8: Learning performance of SAC on three non-visual and one visual task in simulation for
multiple choices of timeout. Each solid curve is averaged over 30 independent runs. The shaded
regions represent a 95% confidence interval.

curves of each task across multiple time limits shown in Fig. 8 establish a clear relationship between
the learning performance and the number of target hits. See Appendix A.2 for training details.

Timeout is a solution parameter While timeouts can indeed help exploration in RL, depending
on the specific context and implementation, it is oft-ignored as a parameter in task specification. Our
results confirm that the choice of the time limit can substantially affect overall learning performance,
as there is a direct correlation between the frequency of reaching the goal state and the final learning
performance. We suggest that time limits should be treated as a tunable solution parameter that a
learning system can tweak rather than a fixed parameter inherent to the problem. Since our definition
of an episode is independent of the choice of the time limit in the minimum-time formulation, we
can safely modify the time limit of a task without altering the problem.

6 Learning Vision-Based Minimum-Time Tasks on Real Robots

As demonstrated in simulation, we aim to show that the initial policy’s performance can help predict
if a minimum-time task can be learned swiftly and consistently with real robots as well. We employ
a carefully tuned setup to showcase learning using the minimum-time formulation on four held-out
robot tasks. After analyzing our simulation results, we consider that achieving an average of 10
target hits per 20K steps is sufficient for successful learning. With the hyper-parameters we have
selected, including a mini-batch size of 256 and a replay buffer capacity of 100K, we estimate that
approximately one out of every 8 mini-batch updates would involve a transition sample featuring
the goal state. The replay buffer would contain at least 50+ diverse target hits.

Using this heuristic, we aim to choose a time limit for the robot task such that the number of target
hits exceeds 10 within 20K timesteps using the initial policy. Typically, an action cycle time of
10 — 125H z is commonly utilized with robot control. In this scenario, collecting 20K samples would
take utmost 35 minutes, which is feasible for real-world experimentation. Once an appropriate time
limit is chosen, we proceed with training the task using an asynchronous implementation of the SAC
algorithm and the hyper-parameters specified in Appendix A.1 Note that as per the minimum-time
formulation, a reward of —1 is assigned at every step for all robot tasks until the episode ends.

Create-Reacher We modified the guiding reward task introduced by Wang et al. (2023) into a
minimum-time task, as illustrated in Fig. la. To facilitate image-based tasks and onboard inference,
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we equipped a Depstech 4K camera and a Jetson Nano 4GB computer. The objective of this task is
to swiftly reach one of the green sticky notes. Each episode terminates when the green sticky note
occupies at least 20% of the camera image.

URS5-VisualReacher This task is a minimum-time adaptation of the guiding reward task proposed
by Yuan and Mahmood (2022) . The objective is to move the robot’s fingertip to the target (red
blob) on the screen as fast as possible (Fig. 1b). The episode terminates once the target occupies
more than 1.5% pixels of the current image. The target remains unchanged until the arm reaches
it. Upon termination, we reset the arm to a predefined posture and generate new random targets.

Vector-ChargerDetector We propose a novel vision-based goal-reaching task involving a low-cost
mobile robot called Anki Vector (Fig. 1c). The agent sends actions in the form of velocity commands
to the wheels of the robot every 100ms over WiFi. The episode terminates when the charger symbol
is centred and occupies roughly 25% of the image. During a reset, Vector first moves backwards and
reorients itself in a random direction.

Franka-VisualReacher We also introduce another novel task involving a 7-DOF robot arm, Franka
Emika Panda. The task is to move the wrist-mounted camera close to a randomly placed bean bag
on the table (see Fig. 1d). Every episode, we place the arm and the bean bag in random positions.
The agent controls the arm by sending velocity commands for each joint at 25Hz. The episode
ends when the bean bag covers more than 12% of the image captured by the camera. We use an
adaptation of the code from Karimi et al. (2023) to set up this task.

. Average - Control Initial Hits Robot
Time Training . . .
Task Limit Target (Steps) Frequency | Estimation Experience
Hits p (Hz) Time (mins) | Time (hours)
75 (3s) | 126+ 1.0
Visg;;lé‘;cher 150 (6s) | 13.0 & 2.08 60k 25 13.3 111
750 (30s) | 7.8 +£0.87
Create 333 (15s) | 18.843.92 | 100k 22.23 15 1.25
Reacher
URS5 . - T
VisualReacher 150 (6s) | 14.4+25 100k 25 13.3 1.11
Vector 5 =
ChargerDetector 300 (30s) 11+1.1 160k 10 33.33 4.44

Table 2: Robot experiment setup. The average target hits are calculated over five independent runs
using the initial Gaussian policy N(0,1) spanning 20K timesteps for each task. Note that robot
experience time does not include time required to reset the environment, charging the batteries, etc.

. Create-Reacher . URS-VisualReacher . Franka-VisualReacher

Vector-ChargerDetector
-50 -50 -50
-100 -100 -100 ,Il"

-150 -150 -150
Retum _,0 Return 0 Return_, 00 ,“
-250 -250 -250 —250
-300 -300 ~300

350 350 350 J

400 T T T T 1 —400 T T T T 1 ‘l

0 20K 40K 60K  BOK 100K 0 20k 40K 60K  BOK 100K
Timesteps Timesteps

Figure 9: Learning performance of SAC on four vision-based policy learning tasks with robots. Each

thin learning curve here represents an independent run. The bold learning curves of the same color
are the average of all independent runs.

_400 4 ! ! | — T
© 10K 20K 30K 40K 50K  6OK 20K 40K 60K 80K 100K 120K 140K 160K
Timesteps o

While seemingly simple, these tasks pose significant complexity for model-free learning algorithms
aiming to learn vision-based policies from scratch within a reasonable timeframe. The initial random
policy performs poorly, warranting its exclusion from Fig. 9. Real robot task data collection is
slow and costly, leading us to test only three time limits for Franka-VisualReacher and select one
heuristically for other tasks (Table 2). Five runs were conducted for each task. Utilizing the ReLoD
system (Wang et al. 2023) is essential for effective real-time learning. Franka-VisualReacher and
Vector-ChargerDetector achieve sufficient target hits, while Create-Reacher and UR5-VisualReacher
surpass this threshold. We anticipate SAC agents can effectively learn policies for all tasks, which is
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supported by the successful learning curves depicted in Fig. 9. This validates our observation that
the initial policy’s performance is indicative of successful learning on minimum-time tasks.

Using a curriculum to train a robust policy Using a hand-crafted curriculum in RL involves
designing a structured sequence of tasks to accelerate an agent’s learning. Beginning with simpler
tasks and gradually introducing more challenging ones accelerates skill development and knowledge
transfer. It’s possible to seamlessly integrate a curriculum with minimum-time tasks, where the
acceptable threshold for reaching a goal state can be progressively reduced over time. We present a
single demonstration featuring the UR5-VisualReacher and Franka-VisualReacher tasks, which were
trained with a curriculum over 200K timesteps, and we showcase their performance in our video?

UR5-VisualReacher Franka-VisualReacher UR5-VisualReacher Franka-VisualReacher

0 40 200
175 200
Stteps 30 Stfp; 30 Steps 150 Steps. I
o
goal goal goal 125 ]
20 20 100 }
75
10 10 50 50
2

Guiding Reward Minimum. -time Guiding Reward Minimum. -time Guiding Reward Minimum -time Guiding Reward Minimum. -time
Formulation Formulation Formulation Formulation Formulation Formulation Formulation Formulation

(a) Steps to goal plot for (b) Steps to goal plot for (¢) Steps on goal plot for (d) Steps on goal plot for
URS5-VisualReacher Franka-VisualReacher URb5-VisualReacher Franka-VisualReacher

Figure 10: Comparison of the guiding reward and minimum-time formulations of the reaching task
using the number of steps it requires to reach the goal (10a, 10b) and the number of steps it stays
on target upon reaching it (10c, 10d). In bar charts 10a & 10b, a lower value signifies better
performance. In 10c & 10d, a higher value signifies better performance.

Evaluation of final learned behaviors on the robot arms We evaluate UR5-VisualReacher
and Franka-VisualReacher policies under minimum-time and guiding reward formulations, akin to
Section 4, using steps to goal and steps on goal metrics. The guiding reward task has been previously
used in Yuan and Mahmood (2022) and Grooten et al. (2024) and is detailed in Appendix A.3. We
conduct 2500 episodes lasting 500 timesteps each (1.25M steps total) for UR5-VisualReacher and
1000 episodes lasting 1000 timesteps each (1M steps total) for Franka-VisualReacher. Analysis
of Figure 10 shows that minimum-time policies are marginally faster and maintain target contact
longer compared to guiding reward policies, consistent with simulation results (Fig. 5), highlighting
the effectiveness of the minimum-time formulation.

7 Conclusions

Our research advocates for re-evaluating the use of constant negative rewards in real robot learning
as a cost-effective approach to reduce the need for extensive reward engineering and achieve superior
final performance. We showed that the minimum-time approach not only simplifies task specification
but can also surprisingly lead to better policies, even when assessed using metrics designed for the
guiding reward approach, as demonstrated through empirical evidence in simulation and real robots.
Through an empirical investigation of the performance of SAC on multiple complex vision-based
simulated and real robotic control tasks in the minimum-time formulation, we identified that an
agent could achieve successful learning performance if it can reach the goal often enough using its
initial policy. Contrary to popular belief, we showed that it is possible to have robust, and reliable
learning from scratch on complex vision-based robotic control tasks within a reasonable timeframe
using only constant negative rewards. We established that the time limit should be a tunable solution
parameter instead of a problem parameter in the minimum-time formulation. In total, we conducted
multiple independent runs in our experiments, which took nearly 200 hours of usage on real robots.
Our model-free reinforcement learning system achieved real-time learning of pixel-based control of
several different kinds of physical robots from scratch.

%https://drive.google.com/file/d/108D30CWq5xf2hi1J01MBbs6W1C1rvUFb/view?usp=sharing
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A Appendix

A.1 Choice of Hyper-parameters

Hyper-parameter Values
Replay buffer 100K
Actor step size 3e-4
Critic step size 3e-4
Entropy coefficient step size 3e-4
Batch size 256
Discount factor (7) 0.99
Update every k steps 2
Num. update epochs every k' step 1
Actor MLP hidden sizes [512 512
Critic MLP hidden sizes [512 512]
Warm-up time steps 1000
Adam optimizer betas [0.9, 0.999]
Initial temperature 0.1
Neural network activation ReLU
Table 3

In most configurations, effective learning is achieved without tuning the hyper-parameters, which
indicates the reliability of the algorithm, our learning architecture, and our task setup. Note that
for experiments in Sec. 5, the warm-up time steps is set to 20000.

A.2 Neural Network Architecture

Our convolutional neural network (CNN) archi-
tecture comprises four convolutional layers, fol-
lowed by a combination of a Spatial Softmax
layer and proprioception information. The con-
volutional layers have 32 output channels and
3x3 kernels, with stride of two for the first three
layers and one for the last layer. After these con-
volutional layers, tuse spatial-softmax (Levine
et al. 2016) to convert the encoding vector into
soft coordinates to track the target more pre-
cisely. Additionally, proprioception information
is concatenated with the spatial softmax fea-
tures. The exact number of parameters depends
on the input data size and task-specific require-
ments. The two MLP layers have 512 hidden
units each. All the layers except the final output
layer use ReLLU activation. We use a squashed
Gaussian policy, which means that samples are
obtained according to:

ag(s,e) = tanh(ug(s) + oo(s) ®¢€),e ~ N(0,1)

Figure 11: Our CNN architecture combines vi-
sion and proprioception information. The yellow
blocks represent convolutional layers. The teal
block represents proprioception vector. The ma-
genta blocks represent fully connected layers. The
red block represents the previous action.



RLJ | RLC 2024

We also apply random cropping to augment images in mini-batches to learn more robust representa-
tions given our limited amount of observations (Laskin et al. 2020). Note that we train the encoder
only using the critic loss. The actor does not propagate any gradients to the shared encoder.

A.3 Guiding Reward Specification for the UR5 and Franka Reaching Tasks

The reward function is defined as follows (Yuan and Mahmood 2022):

c
hw
Here, c represents a scaling coefficient, while h and w denote the height and width of the image in
pixels, respectively. M; is a binary mask of shape h x w, identifying whether each pixel currently
displays the color red. Additionally, W refers to a weighting matrix of shape h x w, characterized
by values decreasing from 1 at its center to 0 towards the edges. These quantities are combined
element-wise through the Hadamard product ®.

M, OW

T =

The reward function encourages the robot to maneuver its camera closer to the target and ensure
the target remains centered within the frame. For consistency across experiments, we set ¢ = 800
and bound the rewards between 0 and 4.

Each episode spans 150 timesteps, with each timestep lasting 40 ms, totaling 6 seconds. The agent
sends an action every timestep, which the SenseAct system repeats five times every 8 ms.



