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Abstract
In this paper, we use methods for assessing the
quality of generative models and apply them to
a problem from the physical sciences. We turn
our attention to astrophysics, where cosmolog-
ical simulations are often used to create mock
observations that mimic telescope images. These
simulations and their mock observations are often
slow and challenging to generate, inspiring some
to use generative modeling to enhance the amount
of data available to study. In this work, we add re-
alism to simulated images of galaxy clusters and
use probability mass estimation to assess their
fidelity compared to reality. We find that the sim-
ulations show a degree of bias compared to real
observations and suggest that researchers apply-
ing generative modeling to these systems should
proceed with caution.

1. Introduction
With its great success in the past few years, generative
modeling has attracted the attention of researchers from
a wide range of fields. As performance becomes increas-
ingly strong, many researchers from the natural sciences
look to generative models to help accelerate the creation
and acquisition of new data. One great strength of these al-
gorithms is the ability to produce additional samples of data
that may be difficult to obtain. This is particularly useful
in the field of astronomy, where real observations require
sophisticated telescopes, and simulated ones require signifi-
cant computational resources. As a result, some researchers
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use generative modeling as a way of enhancing available
data (Smith et al., 2022; Holzschuh et al., 2022).

In this work, we look at cosmological simulations, where
physicists attempt to simulate astrophysical objects and their
evolution. More specifically, we study simulated galaxy
clusters from The Three Hundred project (Cui et al., 2018).
Though the details of cosmological simulations are often
complex, the premise is quite simple. Theorists begin by
programming a box representing some large volume of phys-
ical space. They then assume some physical laws and some
initial conditions, and they have the system evolve over
time. The results can then be studied and compared with
observations. If simulated results agree with observed data,
we can have some degree of confidence in our assumptions
regarding the physical laws that govern the system. As a
result, theorists creating these simulations will look to ob-
servations to verify whether their models are correct. On the
other hand, observers often look at simulations to explain
the physics driving what they see from the telescope.

Though these cosmological simulations are of great use,
they tend to be extremely expensive from a computational
perspective. Not only can they take millions of CPU hours
to run (Nelson et al., 2019), theorists must typically com-
promise between resolution and box volume. This causes
the quantity of data from cosmological simulations to be
limited and difficult to scale. For those interested in mak-
ing inferences based on these simulations, it is natural to
look for ways of enhancing the available data. Generative
modeling is a promising avenue to achieve this goal. How-
ever, it is crucial to first assess the quality of these mock
observations and to be cognisant of their limitations. If the
simulated observations are biased compared to reality, then
any distribution learned from them will likely also be biased.
To test this, we study the underlying distribution of mock
images and compare it to real data using the sample-based
method of probability mass estimation (Lemos et al., 2024).
More details on this method can be found in section 2.1.

We begin with simulated observations of galaxy clusters
from The Three Hundred project simulation. The Three
Hundred project contains 324 large galaxy clusters modeled
with full-physics hydrodynamical re-simulations. To test
the fidelity of these simulations, we create mock observa-
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tions mimicking data from the Sloan Digital Sky Survey
(SDSS) (York et al., 2000), focusing on the eighth data re-
lease (DR8) (Aihara et al., 2011). Because simulated obser-
vations are clean and do not contain the same noise patterns
as SDSS, they require post-processing to make them similar
in appearance to real data. Real data will generally contain
foreground and background objects, as well as noise pat-
terns such as Gaussian noise or Poisson noise. Furthermore,
optical instruments respond to point sources and smooth
the light via a point spread function (PSF). To mimic these
effects, we use an approach for adding realism to simulated
images (Bottrell et al., 2017) via a modified version of the
RealSim Python package (Bottrell et al., 2019). We then
compare these images to real observations of galaxy clusters
obtained from the WHL12 galaxy cluster catalogue (Wen
et al., 2012). Further details on The Three Hundred project
simulations can be found in section 2.2, while further details
on SDSS and the WHL12 catalogue can be found in section
2.3.

2. Data
2.1. Comparing two distributions with PQMass

PQMass is a sample-based method designed to assess the
quality of generative models, though it can be applied to
more general distributions as well. The algorithm takes
as input two sets of samples and estimates the probabil-
ity that the two sets are drawn from the same distribution.
This comparison is done by dividing the space into non-
overlapping regions and comparing the number of samples
in each region. The number of regions nR is an important
parameter. By selecting a large value for nR, the regions
become smaller, allowing us to study the finer details in
greater depth. However, this may require more samples and
a longer runtime. In the unbiased case, PQMass will output
a series of values (henceforth called χ2

PQM) that will follow
a chi-squared distribution with nR − 1 degrees of freedom.
In the biased case, these χ2

PQM values will be larger.

2.2. Simulated observations

The Three Hundred project simulation used in this paper
contains 324 different galaxy clusters that can be viewed at
different ages via discrete snapshots in time. These times
are expressed by their redshift z. To maximize available
data while minimizing evolutionary effects, we select all
four available snapshots in the redshift range of z = 0.15
to z = 0.25. We then randomly generate 10 unit vectors
for a given snapshot and cluster, and we project the cluster
along each of these axes using a modified version of EzGal
(Mancone & Gonzalez, 2012). We create these images in 5
photometric bands which match the filters from the SDSS
telescope. These filters are ultraviolet (u), green (g), red
(r), near-infrared (i), and infrared (z). We also compare

two different codes used to generate the simulations named
Gadget-X (Rasia et al., 2015) and GIZMO-SIMBA (Cui
et al., 2022), which each make unique assumptions about
the physics of the system. The simulated images cover a
physical distance of roughly 1 Mpc.

2.3. Real observations

Images of real galaxy clusters are obtained from the WHL12
cluster catalogue. The WHL12 catalogue is a collection
of 132,684 galaxy clusters between z = 0.05 and z =
0.8. It contains celestial coordinates, redshift, and other
information for each cluster. To ensure that our real data
matches our simulated data, we limit ourselves to the range
of z = 0.15 to z = 0.25 and only select images properly
positioned on their central galaxy. Accounting for these
differences, we are left with just over 10 000 cluster images.

We also obtain noise that we will use to add realism to
the simulated images. To do this, we select images by
randomly generating coordinates from areas in the BOSS
survey (Dawson et al., 2012) of SDSS. We then cut out a 1
Mpc sky image in each of the five SDSS bands for a given
coordinate. We convert each image into standard units of
flux (erg/s/cm2). A sample of a simulated cluster embedded
into this SDSS noise can be seen in Figure 1.

Figure 1. Image samples showing simulated GIZMO-SIMBA clus-
ters in the first row, random SDSS sky images in the second row,
and the addition of the two in the third row. A real galaxy cluster
is shown in the fourth row for comparison. Columns represent
different photometric SDSS bands. Pixel values are in units of flux
and are scaled logarithmically.

3. Results
A crucial step before applying PQMass to our data is to
show that the null test is passed. To perform the null test,
we must split our dataset of real 5-channel galaxy cluster
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images into two and compare random samples. Picking 49
degrees of freedom and samples of 1000 images, we repeat
the test until we have 100 χ2

PQM values. We find that the
images are in distribution with one another, with the mean
χ2

PQM being very close to the expected value of 49. Results
from this test are shown in Figure 2.

Figure 2. The PQMass null test with 49 degrees of freedom. The
real 5-channel cluster images are split into two equal parts and
tested against each other over 100 samples. The samples begin to
form a χ2 distribution with their mean approaching 49.

With the null test passed, we can now study different meth-
ods of adding realism to these images. We investigate
three ways of doing this. The first is by adding a Gaus-
sian sky designed to capture the Gaussian noise present in
SDSS. We use RealSim’s default standard deviation of 24.2
AB mag/arcsec2. The remaining two ways both involve
combining the clean simulated galaxy cluster images with
real SDSS sky images. Because the different images do not
necessarily have the same dimensions, we must resize them
before combining. One way of doing this is simple inter-
polation using the Python Imaging Library (Umesh, 2012)
or SciPy (Virtanen et al., 2020). Another way is the flux-
conserving rebinning method described in RealSim, which
is specifically designed to conserve the total flux in an im-
age when resizing. We examine the performance of these
three techniques by running a PQMass against real cluster
images. We select 49 degrees of freedom and compute the
mean χ2

PQM across 30 samples. PQMass tests are run on all
5 channels together to ensure that the entire distribution is
covered at once. The results can be seen in Figure 3.

As expected, the clean images are out of distribution com-
pared to real data. Interestingly, it appears that adding a
Gaussian sky does little to bring the simulations closer to
being in distribution. It also appears that adding SDSS sky
without proper flux conservation performs even worse than
the clean images, highlighting the importance of proper flux
conservation. Adding SDSS sky with proper flux conserva-
tion greatly reduces the bias, bringing the two datasets closer

Figure 3. PQMass samples comparing simulations to real data with
different methods of embedding the images into a mock sky. Re-
binned SDSS sky refers to images resized with flux-conserving
rebinning, while resized SDSS sky refers to images resized with
standard interpolation techniques. Simulated images are tested
against real images resized using the same method.

into distribution with each other. The GIZMO-SIMBA sim-
ulation code also appears to produce more faithful results
than the Gadget-X code. We now investigate these results
further.

Because we know from Figure 3 that the 5-channel images
have relatively low bias when using proper rebinning, we
now focus on each channel individually. We increase the
number of PQMass regions to be 100, allowing us to study
the finer details and subtler differences between the two
distributions. Once again, we must verify that the null test
is passed for every one of the five SDSS bands. To do this,
we divide the 5-channel images and separate each channel
individually. For a given channel, we compare two sets of
1000 samples to each other and repeat the trial 100 times.
We then perform this test on all 5 SDSS bands. Looking at
the results shown in Figure 4, we find all mean χ2

PQM values
to be close to the expected value of 99.

We also test whether PSF convolution and the addition of
Poisson noise can help reduce the bias of our data. We
compare the flux-conserving SDSS sky with three other
datasets. The first is with the addition of Poisson noise
before adding the SDSS sky, and the second is by convolving
with a PSF before adding the SDSS sky. In the third, we
convolve with a PSF, add Poisson noise, and then add the
SDSS sky. We use the default false PSF from RealSim,
which corresponds to a Gaussian with a full width at half
maximum (FWHM) of one arcsecond. This also serves as
a rough approximation to what has been found in studies
(Ross et al., 2011). Results are shown in Figure 5.
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Figure 4. PQMass null test with 99 degrees of freedom for each
SDSS band. Red points indicate the mean over 100 χ2

PQM values,
with black error bars indicating the standard deviation. The distri-
bution of individual χ2

PQM values is shown in blue.

We find that Poisson noise and PSF convolution seem to
have little effect on the the images. In fact, these changes
may even bring the images slightly further out of distri-
bution. The evidence on this, however, is not particularly
strong, as many results agree within one standard devia-
tion. We highlight two particularly noteworthy results from
Figure 5.

The first noteworthy result is that we continue to see a larger
bias in the Gadget-X clusters compared to the GIZMO-
SIMBA ones, further supporting the trend seen in Figure 3.
The second result is that certain bands appear to be more
biased than others. For example, the u-band shows consis-
tently small bias compared to the others. This bias then
increases for the other bands and peaks at the i-band before
it falls slightly at the z-band. This roughly corresponds with
the relative visibility of the clusters in each band. If we look
back at Figure 1, we find that the galaxy clusters are quite
dim in the ultraviolet bands. They become more noticeable
in the green, red, and near-infrared bands and appear to
slightly dim in the infrared.

4. Discussion and conclusions
We begin by noting the extreme importance of properly
replicating the sky in which simulated images are embedded.
For those wishing to perform inference on their simulations
by adding realism, we stress the importance of ensuring that
the added noise is in distribution with real data. Failing
to properly model this noise will result in highly biased
results and will greatly hurt the ability to perform unbiased
inference.

We also highlight that even after carefully adding realism,
it may not be sufficient to eliminate bias. Even after we

Figure 5. PQMass test with 99 degrees of freedom. Tests are run
on individual image channels across different methods of adding
realism such as PSF convolution and the addition of Poisson noise.

add noise and carefully handle flux conservation, the mock
observations continue to be slightly out of distribution. We
believe that the remaining bias can be the result of two
possibilities. The first is that it comes from differences
in data collection or post-processing. For instance, real
PSFs are not necessarily Gaussian, which can be a source
of uncertainty in our results. The simulated images also
have smoothing applied to each particle before they are
output. This means that the particles are not treated as point
sources like they would be at a telescope, and that a PSF
may not be particularly helpful. There is also the fact that
SDSS galaxies may have false detections that would not
occur in simulations. Another potential source is the fact
that real observations were taken from a range of redshifts,
while the simulations were only taken from the four discrete
snapshots. In sum, there may be many possible systematic
uncertainties; we believe that these contribute to some, but
not all, of the differences.

The other possibility is that the simulated galaxy clusters
are simply biased compared to real ones. This is reinforced
by the fact that the two simulation codes showed notice-
ably different levels of fidelity. Recall that the Gadget-X
simulations perform worse than the GIZMO-SIMBA ones;
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this aligns with findings that the brightest cluster galaxies in
GIZMO-SIMBA are more realistic than in Gadget-X (Cui
et al., 2022). This is also supported by the fact that the
the bands which showed the worst results are the ones in
which the galaxy clusters are the most visible. When noise
dominates, the distributions are closer together, indicating
that the noise appears to be properly modeled. However, in
bands where the galaxies are brighter, the results worsen,
suggesting that the differences are coming from the clusters
rather than the noise.

We reiterate that this experiment shows quantifiable differ-
ences when comparing simulated observations to real ones,
and that this bias can be mitigated or worsened depending on
the fidelity of the simulation. Though generative modeling
is a promising way to scale the number of observations from
cosmological simulations, this must be done with caution.
Those interested in generating unseen observations based
on simulated data must be aware of the limitations of this
technique and act accordingly.
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