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Abstract

Predicting the binding affinity of protein-ligand complexes plays a vital role in drug
discovery. Unfortunately, progress has been hindered by the lack of large-scale
and high-quality binding affinity labels. The widely used PDBbind dataset has
fewer than 20K labeled complexes. Self-supervised learning, especially graph
contrastive learning (GCL), provides a unique opportunity to break the barrier by
pretraining graph neural network models based on vast unlabeled complexes and
fine-tuning the models on much fewer labeled complexes. However, the problem
faces unique challenges, including a lack of a comprehensive unlabeled dataset
with well-defined positive/negative complex pairs and the need to design GCL
algorithms that incorporate the unique characteristics of such data. To fill the gap,
we propose DecoyDB[’| a large-scale, structure-aware dataset specifically designed
for self-supervised GCL on protein—ligand complexes. DecoyDB consists of high-
resolution ground truth complexes (< 2.5A) and diverse decoy structures with
computationally generated binding poses that range from realistic to suboptimal.
Each decoy is annotated with a Root Mean Square Deviation (RMSD) from the
native pose. We further design a customized GCL framework to pretrain graph
neural networks based on DecoyDB and fine-tune the models with labels from
PDBbind. Extensive experiments confirm that models pretrained with DecoyDB
achieve superior accuracy, sample efficiency, and generalizability.

1 Introduction

Drug discovery is a lengthy and costly endeavor that involves identifying highly potent molecules
capable of interacting with specific molecular targets, such as proteins, to treat diseases. Predicting
protein—ligand binding affinity is a fundamental task in the early stages of drug discovery [Kitchen ef
al.,2004], with two major applications. First, it enables virtual screening and de novo design—key
computer-aided drug discovery techniques—to efficiently narrow down promising hit compounds
from a vast chemical space targeting a specific protein [Li ef all [2022b]. Second, it supports the
subsequent optimization of these identified molecules to further improve their binding affinities and
other pharmacological properties [Li ef al.[2020].

Classical methods typically employ theory-inspired, fixed functional forms that utilize predefined
features extracted from the protein—ligand complex to estimate affinity. Although certain compu-
tational techniques such as molecular mechanics/Poisson—Boltzmann or generalized Born surface
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area (MM/PBSA, MM/GBSA) [Genheden and Rydel 2015]], thermodynamic integration (TT) [Kirk/
wood, [1935]], free energy perturbation (FEP) [Zwanzig, |1954], can offer decent precision, they are
computationally intensive and impractical for use in virtual screening.

In recent years, deep learning-based affinity prediction has seen significant improvement [Rezaei
et al., 2022; [Zhang et al., 2024f, with models utilizing 3D convolutional neural networks
(CNNs) [Stepniewska-Dziubinska et al.| 2018bj; [Li et al) 2019] and graph neural networks
(GNNs) [Lim et al., [2019; [Yang et al.l 2023]] to learn structural representation from ligands and
proteins. Despite these advances, the accuracy of current scoring functions remains unsatisfactory,
and further improvements are hindered by the limited availability of ground truth protein-ligand
binding affinity labels. For instance, the widely used PDBbind dataset [Wang ef al.| [2005] contains
fewer than 20,000 labeled complexes. Such labels are typically obtained through laborious and
time-consuming experiments and thus are unlikely to grow dramatically. In contrast, there is an
abundance of unlabeled protein-ligand complexes in structural databases, which could potentially
enhance the learning of spatial structural interaction features for binding affinity prediction.

Self-supervised learning (e.g., masked autoencoders, contrastive learning) has shown great promise
for pretraining deep neural networks on vast amounts of unlabeled data, followed by fine-tuning with
limited labeled samples for diverse downstream tasks such as natural language processing [Radford
et al., 2018]] and computer vision [He et al.||2022]. Among these approaches, contrastive learning
has emerged as a particularly effective framework for learning representations from unlabeled graph
data [He et al.| 2020; |Chen et al., 2020], including protein-ligand complexes [Luo et al., 2024].
Motivated by this success, we adopt contrastive learning as a pretraining strategy to leverage large-
scale unlabeled protein—ligand complexes, enabling subsequent fine-tuning on smaller labeled datasets
for accurate binding affinity prediction.

However, several unique challenges arise in this context. First, there is a lack of a comprehensive
unlabeled dataset containing well-defined positive and negative complex pairs, which are essential
for contrastive learning. Second, preserving the original 3D structural integrity of protein—ligand
complexes is critical for maintaining biochemical validity. Conventional graph contrastive learning
techniques—such as generating augmented pairs through node or edge perturbations [[Chen ef al.}
2020;|Wang and Qil 2022 —may produce unrealistic conformations that violate physical and chemical
constraints [Qin ef al.,[2024]]. Third, the downstream task of binding affinity prediction requires the
model to capture interactions corresponding to low-energy (stable) conformations, a property that
standard contrastive learning objectives typically overlook [Liu et al., 2023|.

To fill this gap, we propose DecoyDB, a comprehensive dataset of high-resolution, ground-truth 3D
protein—ligand complexes filtered from the PDB, augmented with diverse decoy complexes generated
computationally to produce binding poses ranging from realistic (positive pairs) to suboptimal
(negative pairs). DecoyDB contains 61,104 ground-truth 3D complexes and 5,353,307 decoys, and
each decoy is annotated with its Root Mean Square Deviation (RMSD) from the native pose, i.e., the
spatial distances between the atoms of the decoy’s ligand and the corresponding atoms in the original
ligand. We further design a customized graph contrastive learning algorithm that incorporates (1)
a two-category contrastive loss, where negative samples are drawn both from decoys of the same
complex (with varying RMSD levels) and from different real complexes, and (2) a denoising score
matching (DSM)-based regularization term in the loss. Extensive experiments demonstrate that
our pretraining framework improves base models in prediction accuracy, sample efficiency, and
generalizability. It is worth noting that although we focus on enhancing binding affinity prediction,
DecoyDB also has potential for broader applications, such as molecular docking and virtual screening.

2 Related Work

Deep Learning for Protein-Ligand Binding Affinity Prediction: In recent years, deep learning has
emerged as a powerful tool for predicting protein-ligand binding affinity. Earlier methods are mostly
based on CNNs, including Pafnucy [Stepniewska-Dziubinska ez al.l [2018b], OnionNet [Zheng et
al.,|2019]], and DeepAtom [Li ef al., 2019]], which typically rasterize the binding pocket and ligand
into a grid structure. However, these methods are inherently dependent on the grid resolution and
do not consider the topological structure of a complex. In addition, some methods for drug target
affinity prediction, such as DeepDTA [Lennox et al.2021]] and GraphDTA [Nguyen et al.||2020],
miss the interaction structures. Recent works have shifted towards graph neural networks (GNNs) to



Table 1: Public datasets related to protein—-ligand complexes for binding affinity prediction.

Category Dataset # of complexes 3D structure Affinity Measurement
PDBbind2013 10,370 Exp. Exp. ICs0, Ka, K;
PDBbind2016 13,189 Exp. Exp. ICs0, Ka, K
PDBbind2020 19,443 Exp. Exp. IC50,Ka, K;
MISATO 19,443 Exp.+QC+MD Exp. I1C50,Kq, K;
Both affinity labels LP-PDBbind 18,795 Exp. Exp. 1C50,Kq, K;
and 3D structure BDB2020+ 115 Exp. Exp. 1C50,Kq4, K;
HiQBind 32,275 Exp. + Refined Exp. 1C50,Kq4, K;
Binding MOAD 41,409 Exp. Exp. I1C50,Ka, K;
BiOLip 48,291 Exp. Exp. IC5() 5 Kd 5 Ki
BindingNet 69,816 Exp.+Comp. Exp. 1C50, Kq4, K;
Only affinity labels, KIBA 117,657 - Exp. KIBA (IC50, K4, K;)
no 3D structure . D%MS 30,056 B Exp. Ka
BindingDB 679,000 - Exp. I1C50,Kq4, K;
L. PDB (05/2025) 178,900 Exp. - -
yrﬁ;f;lD“‘griﬁiz Redocked 2020 786.960 Exp. + Decoys
" DecoyDB 5,414,411 Exp. + Decoys

learn a flexible representation of 3D graph structures, such as PotentialNet [Feinberg et al.,[2018]],
IGN [Jiang et al}[2021], EGNN [Satorras et al.[2021]], PSICHIC [Koh et al. [2024], and GIGN [Yang
et al.l2023]].

Graph Contrastive Learning: Generic graph contrastive learning (GCL) methods generate positive
and negative sample pairs through random node dropping, perturbation, or subgraph sampling [[You
et al.,[2020; |Xu et al.| [2021; Tong et al.,[2021]], which often disrupt biochemical properties. Although
recent advances have introduced GCL frameworks specifically for molecular data [[Guan and Zhang]
2023} |[Fang et al., 2023} [Liu et al.l 2022} [Sun et al., 2021} |L1 et al.l[2022a]], these models typically
focus on a single molecular graph and fail to capture the interaction network between a protein
and its ligand. |Wu et al.|[2022]] proposed a self-supervised learning method but required additional
molecular dynamics simulations. |Ni ef al.| [2024]] also evaluated their molecular foundation model
on protein—ligand binding affinity prediction, but their base model was pretrained only on single
molecules. [Luo ef al.|[2024] introduced a two-step supervised learning framework for protein—ligand
binding prediction, consisting of (1) a supervised learning step with an auxiliary contrastive loss
based on decoys, and (2) a supervised parameter refinement step using true complex affinity labels
only. However, this approach is not true pretraining, as the first step’s loss includes pseudo-labels
of binding affinity for decoys, and their decoy dataset was derived solely from PDBbind (relatively
small in size). In addition, their contrastive loss does not account for varying degrees of negativeness
among decoys with different deviations, and the anchors in their triplets are complex-free (lacking
interaction structural information).

Protein-ligand complex datasets: Table[I]summarizes the existing public protein-ligand complex
datasets. Most datasets are derived from the Protein Data Bank (PDB) [Berman et al.| 2000], a
comprehensive repository of experimentally determined 3D biomolecular structures. PDB (as of
05/2025) provides around 178,900 protein-ligand complexes but does not provide binding affinity
labels. To fill the gap, PDBbind provides fewer than 20K complexes with experimentally measured
affinity and is the most widely used benchmark for binding affinity prediction. Several datasets aim
to enrich or refine the PDBbind with additional structural or physical information. For example,
MISATO [Siebenmorgen et al.,2024] augments PDBbind entries with quantum-chemically (QC) opti-
mized ligand geometries and 10-nanosecond molecular dynamics (MD) trajectories. LP-PDBbind [Li
et al.l,20244a] provides a leakage-proof split of PDBbind based on structural information. In addition,
the authors construct a high-quality test set, BDB2020+, by selecting new protein-ligand complexes
published after PDBbind2020 for independent testing. There are several additional labeled datasets.
Binding MOAD [Wagle ef al.| [2023]] provides 41,409 complexes, of which only 15,223 (37%) are
annotated with affinity labels. BioLiP [Yang ef al.|[2012] integrates Binding MOAD, PDBbind, and
BindingDB, providing over 48,000 labeled complexes, but it does not apply resolution filtering and
thus can contain low-quality 3D complex structures. HiQBind [Wang et al.|[2025]] collects 32,275
protein-ligand complexes with refined structures. Despite their high-quality affinity labels, these
datasets remain relatively small in scale, and there exist substantial overlaps between them. For
example, BioLiP shares 26,009 complexes with Binding MOAD, and most complex structures in
HiQBind are from Binding MOAD and BioLiP. To support larger-scale labels, BindingNet [Li ez al.|
2024b| expands PDBbind to 69,816 complexes by superimposing ligands in the original complexes.



However, since the 3D complex structures are computationally generated rather than experimentally
resolved, discrepancies may exist between the modeled conformations and their corresponding bind-
ing affinities. Separately, several other datasets such as KIBA [Tang ef al.l|2014], Davis [Davis ef
al.2011], and BindingDB [Liu ef al.,[2007] provide a larger number of binding affinity labels, but
they do not provide corresponding 3D conformal structures. In summary, most existing datasets
are designed exclusively for supervised learning and therefore cannot leverage the vast number of
unlabeled 3D complexes. One existing dataset, Redocked2020 [[Francoeur et al.l 2020], augments
3D complexes in PDBbind to 786,960 binding poses by adding decoys (via redocking ligands into
protein structures) for self-supervised pretraining based on graph contrastive learning [Luo et al.,
2024]. However, since the 3D complexes are entirely derived from PDBbind, there exists leakage
between pretraining and fine-tuning. In contrast, our DecoyDB is filtered from PDB with many
complexes outside the PDBbind dataset, providing an opportunity to validate the generalizability of
pretrained models during fine-tuning.

3 Problem Definition

Definition 1. A protein-ligand complex refers to the binding interaction between a protein and
a ligand. It can be represented as s, = (G, Xy, ay), where Gy, = (Vi, Ey,) is a 3D graph whose
nodes (v € V) represent atoms of the protein or ligand, and whose edges (e € FEy) represent
chemical interactions either within the protein, within the ligand, or between them (interaction edges).
xj, € RIVEIXU denotes the matrix of spatial node features (1 = 3 for 3D coordinates). a;, € RIVeIxm
denotes the matrix of non-spatial node features (e.g., atom type or other chemical descriptors), where
m is the number of features. y;, € R is the binding affinity score associated with the complex, which
is unavailable in an unlabeled dataset.

The problem of protein-ligand binding affinity prediction can be formally defined as follows:

Input:

e A set of protein-ligand complexes S = {s;|1 < k < K}.

o A small subset of ground truth binding affinity scores ) = {yx|1 < k < K}, where K; << K.
o A base GNN encoder fy and regression head g4: g = go(fo(sk))

Output:

e Parameters 6 of pretrained GNN encoder fy based on S.

o Parameters ¢ in regression head g4 based on V.

Objective:

e Minimize the prediction errors of the fine-tuned model.

e Maximize the label efficiency in fine-tuning.

4 Our DecoyDB Dataset

4.1 The Construction of DecoyDB

In order to use unlabeled complexes in self-supervised learning (graph contrastive learning), we
need to first establish positive and negative sample pairs. Common data augmentation methods in
general graph contrastive learning (e.g., edge perturbation, node dropping) are inadequate since they
destroy biochemical structures. Thus, we constructed a specialized dataset to augment the original
protein-ligand complexes with decoys. A decoy refers to an artificial protein-ligand complex with a
computationally generated suboptimal binding pose. We name our augmented dataset DecoyDB.

Figure|l|illustrates our data construction process. We started by retrieving all available structures
containing ligand-protein complexes from the PDB, focusing on entries obtained by X-ray crystallog-
raphy with a resolution of 2.5A or less. We refined our DecoyDB dataset by excluding complexes
with ligands that had molecular weights outside the (50, 700) range, metal clusters, monoatomic
ions, common crystallization molecules, and ligands containing elements other than C (carbon),
N (nitrogen), O (oxygen), H (hydrogen), S (sulfur), P (phosphorus), or X (halogens). To avoid
redundancy and irrelevant protein chains, we isolated the target ligand in each remaining PDB entry
and retained only those protein chains with at least one atom within 10A of the ligand and saved a
PDB file containing only the protein and ligand. This threshold captures relevant interactions, while
excluding distant, noninteracting parts of the protein. In cases where multiple ligands were present
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Figure 1: The data construction pipeline of DecoyDB.
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Figure 2: Statistical analysis of DecoyDB. (a) Distribution of the number of atoms in each protein-ligand
complex. (b) Distribution of the number of decoys per complex. (c) Distribution of RMSD values for decoy
complexes. (d) Cumulative distribution of RMSD values for decoy complexes.

within a complex, we generated a separate PDB file for each ligand-protein pair. We collected 63,837
3D complexes after the split.

To generate decoy complexes, we used AutoDock Vina 1.2 [Eberhardt e al,2021]], one of the most
widely used open-source programs for molecular docking. For each PDB file (a real protein-ligand
complex), we defined a grid box around the ligand with a 5A padding in each dimension to ensure
sufficient space for ligand flexibility during redocking. We generated 100 different poses per ligand
using an exhaustiveness parameter of 8, which balances computational efficiency with pose diversity.
The final (RMSD) between the generated pose and the original crystallized ligand was calculated to
quantify the deviation of the decoys from the native binding pose.

The resulting DecoyDB dataset contains 61,104 protein-ligand complexes and 5,353,307 decoys,
with an average of 88 successfully generated decoys per complex. The data distribution is shown in
Figure The RMSD of the decoys ranges from 0.03A to 25.56A, with an average of 7.22A. This
wide range of RMSD values ensures a diverse set of decoys that represent both near-native (positive
samples, RMSD < 2A) and far-from-native poses (negative samples, RMSD > 2A), with the 2 A
cutoff following docking success criteria [Buttenschoen et al.l[2024; [Cole ef al.[2005]. Such diversity
is crucial for contrastive learning, as it allows the model to learn from a broad range of binding
interactions and spatial conformations, improving its generalization in predicting protein-ligand
binding affinity.

4.2 A Customized Graph Contrastive Learning Framework

We now introduce a customized graph contrastive learning framework that pretrains a neural network
based on two-category negative sample pairs and denoising-based regularization.

Two-category Graph Contrastive Loss with Continuous Negative Samples

DecoyDB augments the original real complexes with positive and negative sample pairs. For each real
complex (anchor), we define positive pairs by matching the complex with its decoys whose RMSD



is no greater than 2A (positive samples), and define negative pairs in two categories: (1) matching
the anchor complex with its decoys whose RMSD values is greater than 2A), and (2) matching the
anchor complex with a different complex. Based on the two-category negative pairs, we customize
the graph contrastive loss.

Our proposed two-category InfoNCE contrastive loss is in Equation |1} where zy is the embedding of
areal complex (the anchor) from the encoder, and z; is the embedding of one positive sample, z; is
the embedding of a negative sample, and NN is the total number of samples in the minibatch. Each
minibatch has one positive pair and N — 1 negative pairs.

s = — log — exp(sim(zk,zi)/T)

1
1 By 5D (s (1 25)/7) W
One important factor in the above loss is (3 ;. It is defined in Equation [2} where dy, 5, is the RMSD
between embeddings zy and z;, dyqz is the max RMSD between the real complexes and their decoys
(to normalize dy, ), sim is the cosine similarity function, and « is a hyper-parameter to balance the
relative weight between two categories of negative samples. Specifically, if the negative sample z;
is from a decoy, we use a normalized continuous RMSD to reflect the extent of negativeness in the
contrastive loss. For decoys that have more deviations from the anchor complex, our intuition is that
their embeddings need to be pushed away further from the anchor. If the negative sample z; is from a
different complex (than the current anchor complex), then we use a binary weight 5 = 1.

dmag

Br,j = @

dopzy  .p . .
a—=% if z; is a negative decoy of zy,
1 otherwise.

Suppose there are K anchors in the complex dataset and each anchor has m positive pairs. The loss
function L is a sum over all complexes and their positive pairs:

1 K m
lemeZZlm 3)

k=11i=1

Denoising-based Regularization

Although the above two-category graph contrastive loss helps supervise the relative closeness of
embedding pairs, it does not reflect the fact that each real complex has a binding pose with minimum
energy. Inspired by a recent work [Jin et al., 2024, we add a denoising-based regularization method.
Our intuition is that the real complex structure is the most stable structure and represents the local
minimum potential energy in its pose.

Specifically, we add Gaussian noise to the 3D coordinates of atoms in the complex to get perturbed
complex s’ = (G,x’,a), i.e., x' = x + ¢, where € ~ p(e) = N(0,0%I), x are the coordinates of
the atoms and x’ are perturbed coordinates of atoms. Note that we add Gaussian noise to the ligand
atoms only. We apply DSM only to original complexes (not decoys). For simplicity, we reuse the
same symbol of x to represent the coordinates of a ligand. The model’s output denotes the structural
energy. Our intuition is that the gradient of the model’s score with respect to the input vanishes in the
absence of noise. Specifically, denoising score matching (DSM) loss based on [Zaidi et al.| [2023] is:

dlog f(s') x—x
4o (X' %) ox o2 “

g

Ly=F

where ¢, (x’, x) is the joint distribution of perturbed and non-perturbed structures.

To optimize the performance on the prediction task, we integrate contrastive learning with noise-based
regularization by combining two different constraints to formulate the overall objective function:

Here, p is a hyper-parameter adjusted to balance the contribution of contrastive learning with DSM-
based regularization.



5 Experiments

Dataset description: For the pretraining phase, we used the proposed DecoyDB dataset and removed
overlapping samples from fine-tuning binding affinity datasets. For other pretraining methods,
Frad and ConBAP, we used the pretraining model provided by the authors. Specifically, Frad
was pretrained on PCQM4Myv2 [Nakata and Shimazaki, [2017] and ConBAP was pretrained on
Redocked2020 [Francoeur et al.| 2020]. For fine-tuning, we used the PDBbind2016 and PDBbind2013
datasets [Wang et al.||2005], which contain 13,189 complexes and 10,370 complexes, respectively.
Each sample is associated with a binding affinity. Note that we conduct pretraining only on GNN-
based models. For other models, we train them directly on the PDBbind dataset without self-
supervised pretraining. To ensure a fair comparison during fine-tuning, we followed the established
setup by randomly selecting 11,904 training and 1,000 validation complexes for PDBbind2016, and
7,977 training and 1,000 validation complexes for PDBbind2013. For model testing, we used two
independent benchmark test sets: the PDBbind2013 core set and PDBbind2016 core set, containing
107 and 285 complexes, respectively. These test sets are also removed from our pretraining dataset to
conduct a rigorous evaluation of our pretraining framework.

Evaluation metrics: During pretraining, we used the early stopping strategy based on training and
validation loss. During fine-tuning, we assessed the model’s test performance using Root Mean Square
Error (RMSE) and Pearson’s correlation coefficient (R), following previous works [Stepniewska-
Dziubinska et al.l [2018a; Zheng et al.|[2019].

Baselines: The baseline models include: Docking method (AutoDock Vina [Eberhardt er al.|
2021])), Drug-Target Affinity methods (DeepDTA [Lennox et al.,2021]], GraphDTA [Nguyen et al.,
2020]), CNN-based methods (Pafnucy [Stepniewska-Dziubinska ez al., 2018b], OnionNet [Zheng
et al.|, 2019]), GNN-based methods (SchNet [Schiitt ez al.| 2017]], EGNN [Satorras et al. [2021]],
GIGN [Yang et al.l [2023]]), General GCL with edge perturbation on GIGN (GIGN + GCL-EP),
GCL with node dropping on GIGN (GIGN + GCL-ND) and pretraining for biochemistry graphs
(Frad [N1 et al., 2024]], ConBAP [Luo et al.| 2024]]). We compare our customized GCL algorithm
(named OURS) on DecoyDB against baselines. More details are provided in Appendix [B]

Implementation details: For baseline models, we used the original source code provided by the
authors. For the pretraining methods, we used the pretrained model parameters provided by the
authors and fine-tuned them on our dataset, where ConBAP used EGNN as its base model, and Frad
used TorchMD-Net [Tholke and De Fabritiis, [2022] as its base model. Our pretraining framework
used these GNNs as the base encoders for complexes, with two separate dense layers during the
pretraining and fine-tuning phases to make predictions. We used GIGN as the base model for the
ablation study, sensitivity analysis, the impact of dataset size and the model generalization.

We used the same learning rate (5e-4) and weight decay (1e-6) for each model in two phases. During
the pretraining phase, we trained each model for 20 epochs (Figure ] (a)). In the fine-tuning phase,
each model was trained for a maximum of 300 epochs, with early stopping applied if there was
no improvement on the validation set within 40 epochs. The detailed setup can be found in our
supplementary materials. All experiments were executed on an NVIDIA DGX-2 node with AMD
EPYC 7742 64-core CPU and eight A100 GPUs. We ran each model ten times to obtain the average
performance and standard deviations. Additional experimental details are provided in Appendix [A]

5.1 Overall Performance

Table [2] summarizes the detailed comparison of our framework against baseline models on two
datasets. Among the baselines, DTA-based methods show relatively high RMSE values, likely
because they do not take into account the detailed spatial structures related to binding interactions.
CNN-based models show moderate improvements, with reduced RMSE and increased R values, but
their reliance on volume-based representations cannot capture the graph structural information. In
contrast, GNN-based models, such as EGNN and GIGN, outperform other baselines, even without
pretraining. Particularly, GIGN achieves the best accuracy among all base models. We also compared
our pretraining framework with alternative contrastive learning methods (when their source codes
were available) on several GNN base models. Results show that adding our pretraining framework
significantly improves the base model performance. For instance, on the EGNN base model, our
pretraining framework (OURS) reduces the RMSE from 1.304 to 1.250 on the PDBbind 2016, while
the existing ConBAP method (which also uses decoys to augment negative samples) only reduces



Table 2: Performance comparison on PDBbind core set 2013 and PDBbind core set 2016.

Method Pretraining PDBbind core set 2013 PDBbind core set 2016

dataset RMSE | RT RMSE | R1T

Docking AutoDock Vina - 2.400 0.570 2.350 0.600
DTA DeepDTA - 1.603 (0.014)  0.717 (0.016)  1.366 (0.0IT)  0.777 (0.013)
GraphDTA - 1.742(0.039)  0.673 (0.032)  1.543(0.033)  0.707 (0.021)
CNN Pafnucy - 1.544(0.024)  0.778 (0.013)  1.423(0.040)  0.793 (0.023)
OnionNet - 1.562 (0.071)  0.747 (0.031)  1.421(0.069)  0.772 (0.024)
TorchMD-Net - 1.466 (0.034)  0.763 (0.016) 1.294 (0.026)  0.808 (0.011)
+Frad PCQM4Mv2 1.447 (0.016) ~ 0.780 (0.008)  1.264 (0.043)  0.811 (0.006)
SchNet - 1.642(0.030)  0.739 (0.016)  1.526(0.037)  0.744 (0.014)
+OURS DecoyDB 1.577 (0.034)  0.763 (0.015)  1.481(0.031)  0.755 (0.012)
GNN EGNN - 1.496 (0.047)  0.761 (0.012)  1.334(0.024)  0.801 (0.010)
+pretrain +ConBAP Redocked 2020 1.479 (0.038)  0.766 (0.010) 1.300 (0.019)  0.802 (0.014)
+OURS DecoyDB 1.437 (0.044)  0.781 (0.013)  1.267 (0.021)  0.813 (0.011)
GIGN - 1.421(0.038) 0.786 (0.016)  1.262(0.032)  0.811 (0.010)
+ GCL-EP DecoyDB 1.417 (0.034)  0.789(0.014)  1.251(0.029)  0.814 (0.008)
+ GCL-ND DecoyDB 1.420 (0.026)  0.787 (0.011)  1.254(0.026)  0.813 (0.013)
+OURS DecoyDB 1.377 (0.039)  0.813(0.013)  1.189 (0.031)  0.838 (0.011)

Table 3: P-values for pairwise comparisons between OURS and baselines on PDBbind 2013/2016. Bold denotes
p < 0.05 (statistically significant).

Comparison RMSE (2013) R (2013) RMSE (2016) R (2016)
SchNet + OURS vs SchNet 0.00056 0.0038 0.00015 0.069
EGNN + OURS vs EGNN 0.040 0.00069 0.00086 0.034
EGNN + OURS vs EGNN + ConBAP 0.071 0.00043 0.045 0.022
GIGN + OURS vs GIGN 0.015 0.0014 0.00018  0.000046
GIGN + OURS vs GIGN + GCL-EP 0.019 0.0046 0.00012 0.00065
GIGN + OURS vs GIGN + GCL-ND 0.011 0.0032 0.00014 0.00036

the RMSE to 1.285. As another example, our pretraining method reduces the RMSE of GIGN (the
best base model) from 1.460 to 1.386 on the PDBbind core set 2013 and from 1.263 to 1.188 on the
PDBbind core set 2016. In contrast, general GCL does not show significant improvement on GIGN.
For key comparisons, we also conducted paired t-tests on both RMSE and R. As summarized in
Table |3} most improvements are statistically significant (p < 0.05). For the two borderline cases, we
provide per-run results over ten runs in Appendix C.

5.2 Sensitivity Analysis

In this section, we evaluate the impact of two key hyperparameters c and 1. o (Equation[2)) influences
the relative weight of the factor 3 (i.e., relative weight of decoy negative samples versus negative
samples from different complexes), while p balances the relative weight of contrastive learning and
DSM. We varied both parameters ranging from 0.4 to 2.0 and observed variations in RMSE across
the test datasets. As shown in Figure[3] RMSE initially decreases and then increases with rising c,
but it is persistently lower than the RMSE of the baseline GIGN model (shown as the red dashed
line). The results of 1 follow a similar trend.
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Figure 3: Sensitivity analysis of two key hyper-parameters, c and g, in our loss function, as shown in Equation
and Equation 3] (a) and (c) show the RMSE performance across different values of 1 on the two datasets,
PDBbind2013 and PDBbind2016. (b) and (d) show the RMSE variation with different values of « on the same
two datasets. The red dashed lines show the baseline GIGN model.
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Figure 4: (a) is the training and validation loss curve during pretraining. (b) is the ablation study. (c) is the
impact of fine-tuning dataset size on the binding affinity prediction. (d) is the validation curve in fine-tuning.
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Figure 5: (a) Negative to Positive ratio vs. RMSE; (b) Filtering out top 1% highest RMSD decoys.

5.3 Ablation Study

Table 4: Ablation study of our two-category graph contrastive loss.

Method PDBbind core set 2013  PDBbind core set 2016
with one-category graph contrastive loss 1.406 (0.047) 1.246 (0.014)
with two-category graph contrastive loss 1.394 (0.036) 1.221 (0.022)

Table 5: Paired t-tests for ablations.

Ablation comparison p-value
No pretraining vs. OURS 0.0280
OURS w/o DSM vs. OURS  0.0013
OURS w/o GCL vs. OURS  0.0325

Our ablation study evaluates the impact of two key modules, i.e., the graph contrastive learning (GCL)
and denoising score matching (DSM)-based regularization in the pretraining phase. We used GIGN as
the base model, starting with a full framework that included both components and then removing each
component to observe the impact on model performance. As shown in Figure #(d), removing either
GCL or DSM led to a modest increase in RMSE (although their RMSE levels are still lower than the
RMSE of no pretraining), indicating that both of them play a crucial role in capturing meaningful
representations and improving performance. We also added an ablation study of our two-category
graph contrastive loss. We pretrained two models, one model with two-category contrastive loss (both
decoy negative samples and different complexes as negative samples, denoted as “with two-category
graph contrastive loss”) and the other with one-category GCL loss (only different complexes as
negative samples, denoted as “without decoy samples”). Results in Table ] show that the proposed
two-category graph contrastive loss slightly outperforms a one-category contrastive loss on both
datasets. To analyze each component’s contribution, we run 10 times per variant and conduct paired
two-sided t-tests on RMSE. As summarized in Table[3] all comparisons are statistically significant (p
< 0.05), indicating that pretraining, DSM, and GCL contribute non-trivially to overall performance.



5.4 Varying Label Sizes in Fine-Tuning

We also assessed the effect of our pretraining on sample efficiency and learning efficiency during fine-
tuning, especially when the amount of labels is limited. We changed the number of labeled samples
from 2000 to 12000 during fine-tuning. As shown in Figure[d{c), the pretrained model consistently
achieves lower RMSEs across all label sizes, with the most notable improvements observed with
fewer labeled samples (lower mean RMSE and smaller variance). Moreover, pretraining appears to
accelerate the convergence during the fine-tuning phase. To confirm this, we used an early stopping
mechanism with a patience of 10 epochs. Figure d(d) shows that the pretrained model not only starts
with a lower initial RMSE but also reaches convergence more quickly (around 20 epochs) compared
to the base model without our pretraining (over 40 epochs). This confirms that our pretraining
enhances the label sample efficiency during fine-tuning.

5.5 Model Generalizability

It has been shown that the default split of general (training), refined (validation), and core (test)
datasets in PDBbind is cross-contaminated with proteins and ligands with high similarity. To
rigorously evaluate the effect of our pretraining on a model’s generalizability, we used a leakage-
proof split called LP-PDBbind [Li ef al., |2024a]], which partitions PDBbind into training (10980
samples), validation (2312 samples), and test (4651 samples) sets based on high sequence and
structural similarity across proteins and ligands. As a comparison, we also randomly split the data
into training, validation, and test sets with the same sizes. The experimental results in Table E]
on the GIGN base model show a much more significant improvement after pretraining on the LP-
PDBbind compared with a random split. This indicates that our pretraining framework enhances the
generalizability of a base model across different protein and ligand structures.

Table 6: Model generalizability test on a leakage-proof split (LP-PDBbind)

No pretrain Pretrain
LP-PDBbind split  1.496 (0.029)  1.371 (0.006)
Random split 1.294 (0.017)  1.269 (0.015)

5.6 Impact of Decoy Dataset Size and Quality

We assessed the impact of pretraining dataset (DecoyDB) configuration over model performance
through: (1) varying the number of decoys by applying different ratios of negative pairs to positive
pairs (negative-to-positive ratio); and (2) by filtering out the top 1% highest-RMSD decoys (outliers).
We used the GIGN backbone for pretraining and PDBBind Core 2016 for fine-tuning. The results are
from ten runs. As shown in Figure performance improves by increasing the number of decoys
and peaks at 10:1, after which the gain slightly fluctuates. We used 10:1 as the default in our main
experiments. Filtering out extremely high-RMSD decoys makes little difference (Figure [J(b)).

6 Conclusion and Future Works

In this paper, we propose DecoyDB, a comprehensive dataset of high-resolution 3D complexes
augmented with decoys for pretraining graph neural networks in protein-ligand binding affinity
prediction. We also design a customized GCL algorithm based on DecoyDB. Experiments show that
pretraining on DecoyDB improves multiple base models in prediction accuracy, sample learning
efficiency, and model generalizability.

In the future, we plan to extend the proposed framework to other tasks beyond binding affinity
prediction, such as binding pose estimation. Another interesting direction is to systematically study
how the choice of decoy generation tools and their parameterizations influences model performance.
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A Experiment Setup

A.1 Evaluation metrics

In this section, we provide the details about our two evaluation metrics in our experiment. Root Mean
Square Error (RMSE) and Pearson’s correlation coefficient (R) are denoted as:

1 N
RMSE = || + ;(y — §i)? ©
B Sy = 9) (@i — 9) )

- 97 S - 9

y; and g; represents experimental and predicted binding affinity, respectively.

A.2 Data Preprocessing

The edges F;; between atoms can be determined by the chemical bonds (covalent bonds) or a distance
threshold. In our case, we used a distance threshold (5A) to establish edges within the protein and the
interactive edges between protein atoms and ligand atoms. We used the same distance threshold to
filter out relevant atoms within protein binding pockets for the graphs. We kept the covalent bonds
within a ligand as ligand edges.

A.3 Training Parameters

In our experiments, we trained and evaluated the DeepDTA, GraphDTA, Pafnucy, OnionNet, SchNet,
EGNN, TorchMD-Net and GIGN models. The Adam optimizer was employed for all models with
the following settings: the initial learning rate was set to 5 x 10, weight decay was set to 1 x 1076,
To prevent overfitting and enhance the generalization ability of the models, we reduced the learning
rate by a factor of 0.1 whenever the performance on the validation set did not improve for 10
consecutive epochs. Additionally, an early stopping strategy was adopted for all models, where
training was terminated if the validation performance did not improve within 40 consecutive epochs.
The pretraining phase for each model was set to 20 epochs, while the maximum number of epochs
for the fine-tuning phase was set to 300. In the fine-tuning phase, we set the batch size to 128. In
the pretraining phase, we set the batch size to 8. Each sample in the batch contained 21 structures: 1
real data sample, 10 randomly selected decoys, and 10 perturbed data samples generated by adding
Gaussian noise. In addition to performance improvements, we also examined the time cost of our
framework. Using GIGN as an example, the pretraining stage took approximately 23 hours, while the
fine-tuning stage required only about 30 minutes.

A.4 Model Architecture Parameters

In our experiments, we used the following parameter settings for the baseline models to ensure
optimal performance. For Pafnucy, we set the channels of the three-layer 3D convolutions to 64,
128, and 256, respectively. For OnionNet, the input features were set to 3840, and there are 3
convolutional layers with 32, 64, and 128 filters. The kernel size was set to 4. The maximum length of
protein sequences in DTA method was set to 1000. SchNet was configured with 3 interaction layers,
each having an embedding dimension of 128. Both EGNN and GIGN models utilized a three-layer
architecture with each layer having a dimension of 256. For TorchNet-MD, there are 6 layers and
each layer has 256-dimensional embeddings.

B Baseline models

* Docking Method: AutoDock Vina [Eberhardt ef al.,[2021]] is a widely used program for
molecular docking, which can also predict binding affinity. Since it is not a deep learning
model, we directly cite the results from [Macari et al.,[2020]]. Note that there are no repeated
experiments, so there is no standard error being reported.
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Drug-Target Affinity (DTA) methods: DeepDTA [Lennox et al.,[2021]] predict binding
affinity based on protein and ligand sequences separately without interaction networks.
GraphDTA [Nguyen ef al.,2020] is similar to DeepDTA but uses a GNN.

CNN-based methods: Pafnucy [Stepniewska-Dziubinska ez al., 2018b] is a 3D-CNN
model. OnionNet [Zheng et al.,|2019]] uses 2D-CNN to learn representations.

GNN-based methods: TorchMD-Net [Tholke and De Fabritiis| [2022] is a GNN-based
model specially designed for the force field. SchNet [Schiitt et al., 2017] is a GNN
model based on essential quantum chemical constraints. EGNN [Satorras ef al., 2021]]
is a GNN based on rotation and translation equivariance. GIGN [Yang et al.| 2023] is a
GNN specifically designed for protein-ligand interactions. This is among the state of the art
methods.

pretraining for general graphs: General GCL based on edge perturbation and node
dropping. We only tested these methods on top of the best baseline GNN model GIGN,
including GCL with edge perturbation (GIGN+GCL-EP) or node dropping (GIGN+GCL-
ND).

pretraining for biochemistry graphs: (1) Frad [Ni e al.,[2024] designed a chemical-
guided noise and utilizes denoising for pretraining. We only evaluated Frad on top of
TorchMD-Net due to the availability of source codes. (2) ConBAP [Luo er al.| [2024]
designs a contrastive learning strategy based on (binary) negative samples from decoys. We
only evaluated ConBAP on EGNN due to the availability of source codes.

OURS: This is our proposed graph contrastive learning framework. We evaluated our
framework on top of GIGN, EGNN, and SchNet.

C Per-run Results

Table 7: R (2016) per-run results for SchNet vs SchNet + OURS.

Run Index Runl Run2 Run3 Run4 RunS5 Run6 Run7 Run8 Run9 Runl10

SchNet 0.742 0.741 0.717 0.762 0.761 0.747 0.755 0.740 0.747  0.728
SchNet + OURS 0.758 0.748 0.764 0.748 0.771 0.753 0.763 0.747 0.763  0.730

Table 8: RMSE (2013) per-run results for EGNN + OURS vs EGNN + ConBAP.

Run Index Runl Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Runl10

EGNN + ConBAP 1.478 1539 1503 1.494 1.398 1.502 1.459 1485 1.499
EGNN + OURS 1473 1436 1460 1.399 1.502 1484 1400 1.354 1.459

1.436
1.406

D Pseudocode

Our framework is in Algorithm [I|and Algorithm[2] For simplicity, we omit the loop over epochs.

Algorithm 1 Graph Contrastive Pretraining

1: Input: Protein-ligand complexes S, a GNN encoder fy, DecoyDB
2: Qutput: Pretrained parameters 6 of encoder fy
3: for each unlabeled protein-ligand complex s € S do

4: With s as an anchor, sample positive and negative pairs from DecoyDB
5: Compute latent representation z = fy(s) for them
6: Compute contrastive loss L; (Equation 3)
7: Sample Gaussian noise €
8: Apply noise to ligand coordinates: x’ = x + ¢
9: Compute denoising loss Lo (Equation 4)
10: Compute total loss: £ (Equation 5)
11: Update encoder parameters: § < 0 — nVoL
12: end for
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Algorithm 2 Fine-tuning

1:

Input: Pretrained encoder fy, labeled protein-ligand complexes S; and a new regression head g¢
st = g (fols))

Output: Fine-tuned parameters ¢ and ¢

Replace regression head g,

for each labeled protein-ligand complex s € S; do

Predict binding affinity: § = g4 (fs(s))
Compute 108s: Lenetune = (7 — 4)?
Update parameters: [0, @] < [0, ¢] — 1V g, ¢ Linetune

end for

NeurlIPS Paper Checklist
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Answer: [Yes]
Justification: The main claims are made in the abstract and introduction accurately.
Guidelines:
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made in the paper.
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are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:

Justification: This paper focuses on the construction of a large-scale dataset and its ef-
fectiveness in model pretraining. As our primary contribution lies in data design and
evaluation of pretraining performance, we did not include an explicit discussion of the
dataset’s limitations.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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main experimental results that support its claims and conclusions.
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whether the code and data are provided or not.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released datasets and code with detailed documentation and instruc-
tions.
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¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
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results?

Answer: [Yes]
Justification: The full details can be found in the appendix.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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material.
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Justification: The paper reports error bars based on standard deviations over repeated trials.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about the computational resources used in the Experi-
ments section, with more detailed descriptions available in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully complies with the NeurIPS Code of Ethics. We ensured
transparency, reproducibility, and responsible handling of data throughout the study.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses potential positive impacts, such as accelerating drug
discovery in the introduction.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data used in this work, experimentally resolved protein-ligand complex
structures, do not pose a high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: We cite all the origin papers of the code and data.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All the data and codes are well documented. They can be found in our
huggingface dataset and our github repo.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This research does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This research does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper focus on the dataset construction and does not involve LLM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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