
VPDroid System Design
Anonymous Author(s)

1 VPDROID SYSTEM DESIGN
We develop a lightweight Android OS virtualization architecture,
VPDroid, to assist data-clone attacks. With VPDroid, attackers can
configure different device settings according to the victim phone’s
attributes and then boot up a virtual phone (VP) environment that
closely approximates the victim’s device. To deceive the cloned
apps into thinking the smartphone is not changed, VPDroid has to
meet two requirements (RQ1 & RQ2):

(1) RQ1: the VP always gets direct access to hardware devi-
ces and thus revels native performance; this design ensures
VPDroid can evade the detection of Android emulators.

(2) RQ2: the auto-login functions of cloned apps are impercep-
tible to the change of device; this requires our virtualization
and the editing of device-specific attributes are invisible to
cloned apps.

VPDroid is built on top of Cells [1], because its foreground VP
design meets RQ1. However, Cells fails to meet RQ2: it is not
designed to edit device attributes, and its user-level device virtu-
alization modifies the VP’s application framework layer, which
can be detected by cloned apps. Besides, Cells’s kernel-level device
virtualization to many hardware devices are not compatible with
Android 6.0 and later versions any more. We extend Cells in many
ways to achieve our requirements on mainstream Android versions.

1.1 Overview
Figure 1 provides an overview of VPDroid’s device virtualization.
We keep Cells’s foreground VP design but remove the support
to background VPs. For data-clone attacks, maintaining one cus-
tomizable VP will suffice. This design choice also simplifies our
virtualization implementation and device attribute customization.
The isolated VP runs a stock Android userspace environment. VP-
Droid utilizes Linux namespaces as well as the device namespace
introduced by Cells to transparently remap OS resource identifiers
to the VP. The VP has its private namespace so that it does not
interfere with the host smartphone.

We retain Cells’s virtualization solutions on Input (e.g., tou-
chscreen and input buttons), Sensors (e.g, accelerometer and light
sensors), and Audio. We also keep the custom process, “CellD”, in
the host device’s root namespace. CellD manages the starting and
switching of VPs, and it also coordinates our virtualization to ADB,
which is used for copying data to the VP. §1.2 ∼ §1.5 present our
updates and new additions to Cells’s device virtualization solutions.
Among them, VPDroid improves Cells in two major ways. First, we
design a new user-level device virtualization solution, which has
better portability and transparency than Cells (see §1.2). Second,
VPDroid is able to customize the VP’s device attributes, but this
function is not offered by Cells (see §1.5).

1.2 New User-level Device Virtualization
For Cells’s obsoleted device virtualization solutions, rewriting every
kernel driver to adapt to new Android versions is error-prone

and complicated. Especially, some hardware vendors provide pro-
prietary software stacks that are completely closed source (e.g.,
telephone & Bluetooth). Without hardware vendor’s support, it
would be difficult if not impossible to virtualize them in the kernel.
VPDroid’s user-level virtualization offers a flexible and portable
alternative without compromising transparency. In particular, our
mechanism contains two methods to fit different devices.

Binder service sharing. For the system services that are re-
gistered in ServiceManager (e.g, WifiService & SurfaceFlinger),
we develop a new way to virtualize them. Binder is the inter-
process communication (IPC) mechanism in Android. The Binder
driver is a custom pseudo driver with no corresponding physi-
cal device. We first modify the Binder-driver data structure (e.g.,
context_mgr_node, procs, dead_nodes, etc) to ensure that the VP
has its own Binder-driver data structure. In addition, we create a
new specific handler in Binder’s data structure and make it point to
the host’s context_mgr_node. As context_mgr_node is associated
with ServiceManager, with this handler, the VP can access the host
phone’s ServiceManager node. Therefore, this mechanism allows
a service process in the VP to share the corresponding service in
the host system. Furthermore, we leverage SELinux technology to
enforce which services in the host system can be shared by the
VP. In VPDroid, we use Binder service sharing to multiplex Wi-Fi
configuration, display, and GPU.

Device namespace proxy. For the anonymous services that are
not registered in ServiceManager such as telephone and Bluetooth,
as the kernel does not have their binder_node and binder_ref
structures, we cannot apply binder service sharing to them. Instead,
we modify Cells’s device namespace proxy to virtualize telephone
and Bluetooth. The core of Cells’s design is creating its own proxy
for each VP, and this proxy in turn interacts with related hardware
vendor library running in the host through CellD. However, like
API hooking, Cells’s proxy in the VP can be detected by cloned
apps. §1.3.4 and §1.4.1 describe how we address the transparency
issue by creating device namespace proxy in the host only.

1.3 VPDroid’s Updates to Cells’s Virtualization
As labeled as light grey boxes in Figure 1, we update Cells’s im-
plementation in following modules by modifying both kernel and
user-level virtualization methods.

1.3.1 Network. Networking virtualization involves two steps to
multiplex: 1) core network resource, and 2) wireless configuration
management. In the first step, we reuse most of Cells’s kernel-level
work to virtualize core network resources such as network adapters,
IP addresses, and port numbers. The only exception happens when
handling multiple routing tables. Since Android 5.0, Android sys-
tem has adopted so-called “policy routing” to work with multiple
routing tables and rules. Policy routing defines for which traffic a
specific routing table is used. We extend Cells by configuring ndc
and iptables commands to add new rules for policy routing.

1

Anonymous Submission, 2020 Anon.

U
s
e

r-
le

v
e

l
D

e
v
ic

e

V
ir

tu
a

liz
a

ti
o

n

cellService

CellD

 Virtual Phone

Binder

...Input GPS

Namespace (pid, uts, mnt, net, user, ipc, device)

Linux Kernel

Network

Network

Power

Bluetooth

Telephony

GPS

Display &

GPU

Input

Binder

Virtualized Devices

CGroup chroot

 Binder Service

Sharing
SurfaceFlingerWifiService

Device Namespace

Proxy
Bluetooth ServiceRiLD Proxy

IPC

Host

Bluetooth

Wi-Fi

Display RiLD

…

 Standard Android Environment
 Standard Android Environment

PowerManager

Service

ServiceManager

InputManager

LocationManager

Service

Net Service

Cell’s virtualization

reused by VPDroid

PowerManager

Service

ServiceManager

InputManager

LocationManager

Service

Net Service cellService

Kernel-Level Device Virtualization

Cell’s virtualization

modified by VPDroid

New virtualization

added by VPDroid

Sensors

ADB

Sensors

K
e

rn
e

l-
le

v
e

l
D

e
v
ic

e

V
ir

tu
a

liz
a

ti
o

n

Filesystem

Audio

GPU

Figure 1: VPDroid’s device virtualization architecture (kernel-level & user-level) and our changes to Cells.

The second step is to virtualize wireless configuration and status
notifications, which occur in user space. Cells’s device namespace
proxy forwards all configuration requests from the foreground
VP proxy to the host’s “wpa_supplicant”, which is a user-level li-
brary that contains wireless network service code. Cells replaces
“wpa_supplicant” inside the VP with a Wi-Fi proxy. In contrast, we
leverage our proposed binder service sharing to achieve the same
goal, but leaving no change in the VP’s userspace. We illustrate
our approach in Figure 2. In Android system, WifiService calls the
library of “wpa_supplicant” to detect Wi-Fi connections, and such
information is sent through NetworkAgent to ConnectivityService,
which answers app queries about the state of network connectivity.
We use the binder service sharing mechanism to share WifiService
between the VP and the host system. The blue two-way line in Fi-
gure 2 shows the workflow to answer a Wi-Fi status query from the
VP’s app. In addition, we create a new NetworkAgent in the host
system and bind it to the VP’s device namespace. Like sharing Wi-
fiService, we also use binder service sharing mechanism to transfer
the new NetworkAgent to the VP’s ConnectivityService; as shown
in Figure 2’s red line, the purpose of doing this is to automatically
forward network status notifications to the VP.

1.3.2 Display & GPU. The display is one of the most important
devices in modern smartphones, and GPU provides hardware dis-
play acceleration. Android system takes Linux framebuffer (FB)
as an abstraction to a physical display and screen memory. Cells

virtualizes FB by multiplexing FB device driver. However, Android
6.0 and later versions have switched to the ION driver for managing
the screen memory. Instead of modifying the ION driver, we take a
much simpler way via our user-level device virtualization.

W still use the binder service sharing mechanism to make the
VP share an essential graphics service—SurfaceFlinger of the host
system. SurfaceFlinger is responsible for compositing all of the
application and system surfaces into a single framebuffer that is
finally to be displayed. Besides, we also adapt related data structures,
graphics rendering APIs, and interfaces for our needs: 1) we add
system tag field in the Layer data structure to detect which system
(VP or host) the Layer belongs to; 2) with the added system tag, we
identify the foreground system layer from SurfaceFlinger’s APIs
such as layer cropping and compositing to display the final image on
the screen; 3) to switch the screen between the VP and host, we add
new interfaces for clearing and redrawing images in SurfaceFlinger.
Our design offers another advantage: we do not need to takes special
measures for GPU virtualization. Since the VP actually multiplexes
the host system’s screen memory buffer, the host’s GPU can directly
work on it for display acceleration.

1.3.3 Power. In power management virtualization, VPDroid in-
herits Cells’s solution in wake locks virtualization, and the major
difference is how to manage early suspend. After Android 5.0, the
management of display’s on/off screen has been replaced by Surfa-
ceFlinger’s setPowerMode interface rather than using early suspend

2

VPDroid System Design Anonymous Submission, 2020

Host Userspace

Linux Kernel

Host: Binder

WifiService

NetworkAgent

VP NetworkAgent

wpa_supplicant

Wi-Fi Java Native

Interface

WPA Server &

Client

Binder service sharing

VP Userspace

ConnectivityService

WifiManager

App

VP: Binder

The app in VP receives

network status

notifications.

The workflow to answer a

Wi-Fi status query from

the app in VP.

1 1

1 2

2

2

Figure 2: VPDroid leverages binder service sharing mecha-
nism to virtualize wireless configuration management.

subsystem. As we have already virtualized SurfaceFlinger service,
we just need to prevent the background system from using the
setPowerMode interface. In this way, the background system can-
not put the foreground system into a low power mode.

1.3.4 Telephony. As smartphone vendors customize their own pro-
prietary radio stack, Cells adopts user-level device namespace proxy
to provide a separate telephony functionality for each VP. Each VP
has its own proxy Radio Interface Layer (RIL) library. The RIL proxy
is loaded by Radio Interface Layer Daemon (RilD) and connects
to CellD running in the host’s root namespace, and CellD in turn
communicates the hardware vendor library to respond to the VP’s
requests. However, the RIL proxy in the VP, like API hooking, is
not invisible to cloned apps, which does not meet our RQ2.

As shown in Figure 3, we implement a socket-interface based
proxy scheme only in the host userspace, and it does not require the
assistance of CellD. In the host’s Radio Interface Layer, we create a
RiLD proxy between the communication flow of Android telephony
Java libraries (RIL Java) and RilD. Then we create another two
standard Unix Domain sockets in the proxy. One socket connects to
the RIL Java of the VP, and the other one connects to the RIL Java
of the host system. The RIL Java in the VP communicates with the
proxy of the host system, and the proxy passes the communication
data (e.g, dial request and SIM) to the host system’s RilD. In turn,
the RilD proxy passes the VP-related arguments (e.g., call ring and
signal strength) to the VP’s RIL Java over a socket.

1.3.5 Filesystem. Cells’s SD card partition virtualization does not
comply with the new SD card access management starting from
Android 4.4, in which Filesystem in Userspace (FUSE) technology
kicks in to manage the SD card partition. Recent Android versions
directly fork a process in Volume Daemon (Vold) subsystem and
start the sdcard process to mount the FUSE filesystem. Because the
FUSE module supports file system creation in userspace, and the

RIL Java

Vendor RIL

RilD

Android Java

Libraries

Drivers/PPP

Baseband

GSM/CDMA

Linux Kernel

Drivers/ PPP

Linux Kernel

GSM/CDMA

Baseband

RIL Java

Host Userspace VP Userspace

RilD

RiLD Proxy

RIL Java

Vendor RIL

(a) Android

Radio Interface Layer

(b) VPDroid

Radio Interface Layer

Figure 3: VPDroid’s Radio Interface Layer (RIL).

VP in VPDroid runs a complete userspace, we take the following
two steps to virtualize SD card partition: 1) open a “dev/fuse” node
in the VP’s Vold process and fork a sdcard process; 2) mount FUSE
filesystem to the “dev/fuse” node.

1.4 VPDroid’s New Additions to Cells’s
Virtualization

Cells did not virtualize Bluetooth and GPS. However, accessing
Bluetooth and GPS in the VP is indispensable to evading Android
sandbox detections and device-consistency checks. Therefore, we
add virtualization support to Bluetooth, GPS, as well as Android
Debug Bridge (ADB). After an attacker customizes a VP environ-
ment and then boot it up, ADB helps the attacker copy the victim’s
private data into the VP and then launch a data-clone attack.

1.4.1 Bluetooth. Bluetooth virtualization is the most challenging
implementation in VPDroid. The Bluetooth vendor library is like a
black box and entirely closed source. As shown in Figure 4(a), to
require Bluetooth service, other apps first call Android Bluetooth
APIs (1), which further send the request to Bluetooth service
process (2) via Binder IPC. After that, Bluetooth service process
connects to Hardware Abstraction Layer (HAL) via Java Native
Interface (JNI) to interact with Bluetooth stack and the hardware
vendor library (3). However, each smartphone manufacturer pro-
vides its own proprietary Bluetooth vendor library. In addition, the
number of Bluetooth profiles that complete different short-range
communication functions is also increasing.

Bluetooth service process (2) only provides the anonymous Bin-
der service externally, which does not submit the registered Binder
to the ServiceManager. This means we cannot apply binder service
sharing mechanism to 2 . Instead, we implement a new service
proxy to virtualize Bluetooth. Figure 4(b) illustrates our workflow.
We modify the Bluetooth app (“packages/apps/Bluetooth”) and em-
bed a Bluetooth JNI proxy. After our modification, Bluetooth service
process now only contains the JAVA module (4), and the original
JNI module is put into the newly added Bluetooth JNI proxy (5).
Therefore, now it is the Bluetooth JNI proxy to interact with HAL,
Bluetooth stack, and the hardware vendor library.

3

Anonymous Submission, 2020 Anon.

APP

Android Bluetooth

APIs

HAL

Bluetooth Stack

libbt-vendor.so

Drivers

APP

Android Bluetooth

APIs

Binder IPC

HAL

Bluetooth Stack

libbt-vendor.so

APP

Android Bluetooth

APIs

Binder IPC

 Java Native

Interface (JNI)

Linux Kernel Linux Kernel

Drivers

 Java Native

Interface (JNI)

JAVA Module

com.android.bluetooth

JNI Module

JAVA Module

 com.android.bluetooth

JNI Module

packages/apps/Bluetooth

Binder service

JAVA Module

 com.android.bluetooth

Yes

B
lu

e
to

o
th

 J
N

I
P

ro
xy Foreground ?

Binder Service

Sharing

H
o

s
t
U

s
e

rs
p

a
c
e

(a) Android Bluetooth

Architecture
(b) VPDroid Bluetooth Architecture

4 4
2

3

7

V
P

 U
s
e

rs
p

a
c
e

1 1 1

3

5

6

Binder IPC Binder IPC

Figure 4: VPDroid’s Bluetooth virtualization.

Furthermore, to enable our proxy to communicate with the new
Bluetooth service process (4) in the host or the VP, we also build a
binder service in the Bluetooth JNI process (6). In this way, the VP
can finally access the Bluetooth driver in the host device. However,
the Bluetooth driver does not support multiplexing, and an excep-
tion will happen if both the host and the VP establish a connection
with the driver. Therefore, we add an additional namespace check
in our proxy (7): we only forward Bluetooth service requests for
the foreground system. Note that the user apps in the VP have no
privilege to access 4 to detect our change unless they perform
process injection or modify the related SELinux policy.

1 void dump_stack(void)

2 {
3 dump_stack_print_info(KERN_DEFAULT);

4 show_stack(NULL , NULL);

5 }

Listing 1: Dump the current task’s stack trace.

The app running in the VP may find the signs of virtualization
from a full stack trace. We take Bluetooth virtualization (Figure 4(b))
as an example.When an app in the VP initializes a Bluetooth request,
it can print a stack trace and find “/system/lib64/libbinder.so” in
the call chain—we use Binder service sharing to connect the VP’s
Bluetooth service process with our Bluetooth JNI proxy in the
host. To hide virtualization footprints from a full stack trace, we
customize Linux kernel function “dump_stack” (Listing 1): when
it receives a stack trace dump request from the VP, it will return a
normal stack trace just like the one dumped from a physical phone.

1.4.2 GPS. GPS relies on a physical chip for location tracking.
GpsLocationProvider is the GPS provider in the Android frame-
work layer. It calls HAL interface via JNI methods. The HAL in-
terface interacts with GPS chip through “/dev/gss” driver. GPS
chip is an active tracking device. This means after a user’s first re-
quest, GPS chip will continue to report the location information to
GpsLocationProvider without interruption. However, GPS chip
only supports one connection.

Our virtualization of GPS is to rewrite ‘/dev/gss” driver. We
modify “gss_open” and “gss_event_output” functions to support:
1) multiple connections; and 2) the location information received
from the chip is forwarded to multiple clients at the same time. The
location information goes through HAL and eventually reaches
GpsLocationProvider in the Android framework layer of the host
and the VP, respectively.

1.4.3 ADB. ADB is a command-line utility that can debug apps,
transfer files back and forth with a PC, and run shell commands.
ADB includes three components: a client, a server, and a daemon
(adbd). Usually, the ADB server and ADB client in one device com-
municate with adbd process in another device. The cross-device
communication performed by ADB complicates its virtualization.
If the host and the VP are running ADB command at the same time,
we must virtualize the two ends of ADB protocol to avoid conflict.

We build a mutual exclusion mechanism in the Android fra-
mework layer. When switching a system to the foreground, we
terminate the adbd process in the other one. In this way, only the
foreground system can use ADB exclusively. This mechanism is
simple to implement, but the side effect is the host system’s ADB
does not work when it is displayed in the background. We argue
that this tradeoff does not affect us, as the VP is always activated
during virtualization-assisted data-clone attacks. Besides, as the
ADB protocol partition can be only mounted for one time, we also
solve the difficulty of sharing the ADB protocol partition with the
VP. In CellD process, we intentionally mount “/dev/usb-ffs/adb”, the
ADB protocol partition’s mount point, to the VP’s system directory.
As a result, the ADB protocol partition is visible to the VP.

1.5 Virtual Phone Customization
The virtualization solutions from §1.2 to §1.4 attempt to provide VP-
Droid users the same experiences as using a physical smartphone.
Our design ensures that Android emulator detection heuristics are
in vain for VPDroid. Now we present how we achieve our RQ2—
evading device-consistency checks, so that cloned apps are unaware
of the change of device even they have the root privilege. Figure 5
shows the workflow of customizing the VP’s device attributes. VP-
Droid users provide a configuration file “build.VPDroid.prop” in
advance, which stores device-specific attributes in the form of key-
value pairs. We classify these key-value pairs into three categories:
Android system properties, user-level-virtualized device properties,
and kernel-level-virtualized device properties. Each category has a
different customization method. Besides, we incorporate multiple
namespaces to isolate our customization.

1.5.1 Android System Properties. Android system properties are
const values that describe the configuration information of the mo-
bile device, including brand, model, serial number, IMEI, android_id,

4

VPDroid System Design Anonymous Submission, 2020

Shared

Memory

User-level-virtualized

Device Properties

Host: init process

2

5

Kernel-level-virtualized

Device Properties

property_get
Customized Syscall

7

1

IPC

Namespace

Host Memory

build.VPDroid.prop

Yes Yes

3

VP Memory

Android System

Properties

 Binder Service Sharing

&

Proxy Processes

 VP Namespace ?

Display &

GPU

Customization Functions

Bluetooth

…

H
o

s
t
U

s
e

rs
p

a
c
e

Kernel Drivers

 VP Namespace ?

Battery

Customization Functions

GPS
Kernel

Version

K
e

rn
e

l
 S

p
a

c
e

VPDroid Device Virtualization

Location

 Telephony

/proc/meminfo

&

/proc/cpuinfo

4 6

System Properties

 Virtualized Device Properties

Cell Site

Figure 5: VPDroid users provide device-specific attributes in “build.VPDroid.prop” configuration file. The VP’s customization
happens either in the kernel drivers or the host’s userspace.We incorporatemultiple namespaces to isolate our customization.

etc. They are stored in the init process’s shared memory but not
related to our device virtualization. This shared memory is typically
used to store some system and hardware information when the
system is being initialized. Other processes enquire about Android
system properties at run time by calling “property_get”, an API for
native code to read the data in the shared memory space from other
processes. Therefore, during the process of booting up the VP, its
init process will call “load_system_props” to load the customized
Android system properties in “build.VPDroid.prop” into the VP’s
shared memory space (1). Then the customized system properties
are ready for other apps running in the VP to access and inquire.

1.5.2 User-level Customization. Recall that we virtualize some de-
vices such as Bluetooth, Wi-Fi, and telephony at the host userspace.
The second category of “build.VPDroid.prop” just contains the de-
vice attributes that we customize for these user-level-virtualized
devices. The customized data in the second category will be loaded
into the host init process’s shared memory (2). We enforce the IPC
namespace for the host and VP shared memory isolation (3). We
embed customization functions (4) in the places where we perform
user-level device virtualization such as Bluetooth JNI proxy and
RiLD proxy. The customization function first determines whether
the current query request is from the VP by checking the associated
device namespace. If yes, it calls “property_get” to get the customi-
zed data from the shared memory that maps “build.VPDroid.prop”
and then returns the fake data to the VP (5).

1.5.3 Kernel-level Customization. The third category contains key-
value pairs that are used to customize for kernel-level-virtualized
devices, such as power and GPS. In addition, certain kernel drivers
contain device basic attributes (e.g., kernel version and memory/-
processor information), which are included in the third category
of our customized data as well. These kernel-related configuration
data are also stored in the host init process’s shared memory.

We embed customization functions (6) in these kernel drivers to
interact with the shared memory of the host’s init process. However,
the customized data loaded into the init process have no privilege
to enter the kernel space. To overcome this obstacle, we create a
new system call to copy data from the userspace to the kernel space

(7). All of our customization functions in the kernel drivers work
in a similar style. For example, we customize the battery-related
profiles (e.g, battery level, temperature, and voltage) in the kernel
power driver and use the device namespace to determine whether
the query request is from the VP or the host. If the request is from
the VP, it will call our created syscall to extract customized data.
Due to the isolation of device namespace, the cloned app in the
VP is by no means to bypass our customization.

Customizing kernel version information is a little bit tricky. Lis-
ting 2 shows the kernel version information. It consists of two ob-
jects defined in the UTS namespace data structure (“UTS_RELEASE”
and “UTS_VERSION ”), as well as linux_proc_banner information
(as shown in Listing 3). The customization of linux_proc_banner in-
formation (Listing 3) is similar to other kernel-related profile custo-
mizations, butwe need to take special measures for “UTS_RELEASE”
and “UTS_VERSION”. These two objects are bound to the UTS
namespace, and the only place that we can edit them is in the
function “clone_uts_ns”, which creates a new UTS namespace when
booting the VP. Therefore, we embed a customization function in
“clone_uts_ns” to: 1) access our customized “UTS_RELEASE” and
“UTS_VERSION” via our created syscall; 2) update the data structure
“new_utsname” which defines these two objects.
1 const char linux_banner [] =

2 "Linux version " UTS_RELEASE " (" LINUX_COMPILE_BY "@"

3 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION "\n";

Listing 2: Kernel version information.

1 const char linux_proc_banner [] =

2 "%s version %s"

3 " (" LINUX_COMPILE_BY "@" LINUX_COMPILE_HOST ")"

4 " (" LINUX_COMPILER ") %s\n";

Listing 3: linux_proc_banner.

1.5.4 The Advantages of VPDroid Customization. Compared with
existing Android device-attribute editing tools, our customization
solution revels distinct advantages. All of our editings do not rely
on any user-level hooking mechanism and happen out of the VP’s
runtime environment, which means our device customization is

5

Anonymous Submission, 2020 Anon.

Exit the original VP

Start a new VP

Replace

/system/build.VPDroid.prop

Compile image files

Install image

User

Initialize a VP

Control center

PC

USB USB

User

HOST

Control center

Configure

build.VPDroid.prop

Create a VP

(a) Create and Initialize a VP (b) Start a New VP

 adb remount

Figure 6: The workflow of creating and starting a VP.

invisible to cloned apps. Although our user-level device virtualiza-
tion allows the VP’s process to share certain services in the host
system, with the device namespace isolation, the app running in
the VP is still unaware of any device-specific differences even it has
the root privilege, and we will confirm this in our evaluation.

VPDroid now provides 101 device configuration options, which
span a wide spectrum of device attributes. We collect them from

the existing Android sandbox detection work and our reverse en-
gineering of the apps that perform device-consistency checks. To
the best of our knowledge, VPDroid offers the largest and most
comprehensive Android device-attribute editing options so far.

2 VPDROID IMPLEMENTATION
VPDroid’s prototype contains 11, 674 new lines of C/JAVA code to
Cells’s codebase.1 10% of lines of code are used to update kernel
drivers; 83% of lines of code work at the host phone’s native C/C++
libraries, and the left are Java code working at the host phone’s
application framework layer. Currently, VPDroid is compatible with
Android 6.0 to 10.0. As shown in Figure 6(a), the VP images are
created and configured on a PC and downloaded to the host device
via USB. We provide a control center app for VPDroid users to
switch between the VP and the host system swiftly. Figure 6(b)
shows how to start a new VP to simulate a different device: 1) exit
the original VP; 2) update and replace a new “build.VPDroid.prop”
configuration file; 3) stat a new VP via the control center app.

REFERENCES
[1] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason

Nieh. Cells: A Virtual Mobile Smartphone Architecture. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP’11), 2011.

1Cells’s lines of code is 8, 028.

6

	1 VPDroid System Design
	1.1 Overview
	1.2 New User-level Device Virtualization
	1.3 VPDroid's Updates to Cells's Virtualization
	1.4 VPDroid's New Additions to Cells's Virtualization
	1.5 Virtual Phone Customization

	2 VPDroid Implementation
	References

