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Abstract
We present OtoWorld1, an interactive environ-
ment in which agents must learn to listen in or-
der to solve navigational tasks. The purpose of
OtoWorld is to facilitate reinforcement learning
research in computer audition, where agents must
learn to listen to the world around them to navi-
gate. OtoWorld is built on three open source li-
braries: OpenAI Gym for environment and agent
interaction, PyRoomAcoustics for ray-tracing and
acoustics simulation, and nussl for training deep
computer audition models. OtoWorld is the audio
analogue of GridWorld, a simple navigation game.
OtoWorld can be easily extended to more complex
environments and games. To solve one episode
of OtoWorld, an agent must move towards each
sounding source in the auditory scene and “turn it
off”. The agent receives no other input than the
current sound of the room. The sources are placed
randomly within the room and can vary in num-
ber. The agent receives a reward for turning off
a source. We present preliminary results on the
ability of agents to win at OtoWorld. OtoWorld is
open-source and available.23

1. Introduction
Computer audition is the study of how computers can orga-
nize and parse complex auditory scenes. A core problem
in computer audition is source separation, the act of iso-
lating audio signals produced by each source when given
a mixture of audio signals. Examples include isolating a
single speaker in a crowd, or singing vocals from musical
accompaniment in a song. Source separation can be an in-
tegral part of solving several computer audition tasks, such
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Figure 1. A visualization of the OtoWorld game. Sources are ran-
domly placed in a room. The agent is equipped with two micro-
phones spaced 20 cm apart to mimic human ears. The agent can
navigate the environment by rotating and moving forward or back-
ward. The left image could represent the beginning of an episode.
In the right image, the agent can be seen achieving its goal of
turning off sources.

as multi-speaker speech recognition (Seki et al., 2018), mu-
sic transcription (Manilow et al., 2020) and sound event
detection in complex environments (Wisdom et al., 2020).

The current state-of-the-art for source separation is to train
deep neural networks, which learn via thousands of synthetic
mixtures of isolated recordings of individual sounds. As the
ground truth isolated sources that go into each mixture are
known, the deep network can take as input a representation
of the mixture and produce estimates of the constituent
sources which can be compared to the ground truth sources
via a loss function. The model can then be used to separate
sources in new environments.

The way that deep models learn is very different from how
humans learn to parse the auditory scene. Humans rarely
have sounds presented in isolation and paired with the asso-
ciated mixture. Instead, we learn directly from the complex
mixtures that surround us every day (Bregman, 1994; Mc-
Dermott et al., 2011a;b). Part of our ability to do this stems
from our ability to interact with our environment. We can
move around the world, investigate sounds, and effectively
change the way we hear the world by re-positioning and
orienting ourselves within it. If an unfamiliar sounds occurs
in another room, we tend to navigate to the source of the
unfamiliar sound and investigate what it is. By doing this,
we can slowly learn about different types of sounds in our
environment, and remember what they are later on.
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In this work, we present a simple game environment in
which researchers can explore how to create machines that
can mimic this remarkable human behavior. In OtoWorld, an
agent is tasked with moving around an auditory environment
with only sound to guide it. The agent is equipped with two
“ears”, spaced 20 cm apart, which are used to listen to the en-
vironment. Multiple sounding sources are placed around the
agent, which can be arbitrary in type. OtoWorld is designed
to support moving or stationary sources. Several games can
be designed within the OtoWorld framework. The game
we design is one where the agent is tasked with discover-
ing each source by navigating towards it. When the agent
reaches a source, the source is turned off, simplifying the
auditory scene and rewarding the agent. Once every source
is turned off in the auditory scene, the agent has won. This
game is very simple, but requires the agent to understand
its auditory scene in order to win. As such, OtoWorld is a
very difficult game for reinforcement learning models, as
multiple tasks need to be solved - audio source classification,
localization, and separation. We believe OtoWorld could be
an important game to solve for training autonomous com-
puter audition agents that can learn to separate by learning
to move. An overview of OtoWorld can be seen in Figure 1.

2. Related Work
OtoWorld is at the cross-section of self-supervised com-
puter audition and reinforcement learning. In the former,
the goal is to learn salient audio representations that are use-
ful for audio tasks like event detection and source separation
without access to labelled training data of any kind. Sev-
eral techniques for self-supervised learning exist, including
bootstrapping from noisy data (Seetharaman et al., 2019;
Tzinis et al., 2019; Drude et al., 2019), using supervision
from a pre-trained visual network (Aytar et al., 2016), us-
ing audio-visual correspondence (Cramer et al., 2019; Zhao
et al., 2018; Gao et al., 2018; Owens & Efros, 2018; Arand-
jelović & Zisserman, 2018), and using multi-task learning
(Ravanelli et al., 2020).

In the latter, the goal is to learn agents that can move around
effectively in environments by observing the current state
and taking actions according to a policy. Reinforcement
learning is a well-studied field. Recent advances are pri-
marily due to the use of deep neural networks as a way to
model state and produce actions (Mnih et al., 2015; Foer-
ster et al., 2017). Audio in reinforcement learning is not
as well-studied as most software that exists for research in
reinforcement learning has a strong focus on visual stim-
uli (Ramakrishnan et al., 2020; Xia et al., 2018). Existing
work incorporates both audio and visual stimuli to perform
navigation tasks (Gan et al., 2019; Gao et al., 2018; Chen
et al., 2019). OtoWorld is unique in that it uses only audio
to represent the world, forcing the agent to rely strongly

on computer audition to solve tasks. Gao et al. (2020) pro-
pose VisualEchoes, the most closely related work to our
own. In their work, the model must learn spatial representa-
tions by interacting with its environment with sound, like
a bat would. In our work, the agent makes no sound but
must navigate to sounding sources. The two approaches
could be complementary to one another. Further, our goal
in OtoWorld is to provide software in which researchers can
easily try tasks like echolocation, source localization, and
audio-based navigation.

3. OtoWorld
The environment is built on top of OpenAI Gym (Brockman
et al., 2016), PyRoomAcoustics (Scheibler et al., 2018) and
the nussl source separation library (Manilow et al., 2018). It
consists of a room that contains an agent and unique audio
sources. The agent’s goal is to learn to move towards each
source and “turn it off.” An episode of the game is won when
the agent has turned off all of the sources. Our hypothesis
is that if an agent can successfully learn to locate and turn
off sources, it has implicitly learned to separate sources.

3.1. Room Creation

The rooms are created using the PyRoomAcoustics library.
Users can create a simple Shoebox (rectangular) room or
more complicated n-shaped polygon rooms by specifying
the location of the corners of the room. Through PyRoomA-
coustics, the environment supports the creation of rooms
with different wall materials and energy absorption rates,
temperatures, and humidity. For more details and control,
we refer the reader to (Scheibler et al., 2018) and the associ-
ated documentation.

The user provides audio files to the environment to be used
as sources. Additionally, users can specify the number of
sources which are then spawned at random locations in
the room. Every audio source in the room has the same
configurable threshold radius which is used to inform the
agent that it is close enough to the audio source for it to be
turned off. When initially placed, the sources are spaced
such that no there is overlap of the threshold radii. By
default, the sources remain in place until found by the agent.

Next, the agent is randomly placed in the room outside of
the threshold radius for each audio source. The user has the
option to keep the agent and source locations fixed across
episodes, meaning that the initial locations of the agent and
source will be the same at the beginning of each episode.
Seeding the environment keeps these initializations the same
for different experiment runs.
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3.2. Action Space

The agent is allowed to take one of the four discrete actions,
A = {0, 1, 2, 3}, which are translated as follows:

• 0: Move forward
• 1: Move backward
• 2: Rotate right x degrees (default x = 30)
• 3: Rotate left x degrees (default x = 30)

Actions 2 and 3 are cumulative in nature, i.e. the values
of degrees stack up. So, if x = 30 degrees and the agent
performs action number 3 twice, then the agent rotates a
total of 60 degrees to the left. If the agent chooses action
0 or 1, the agent is moved forward or backward to a new
location according to the step size. Remember that the agent
has two microphones (representing two human ears) and
thus hears sound from left mic and right mic, receiving a
stereo mix of the sources as the state. Rotation is included
in the action space of the agent because the orientation of
the microphones can help localize sounds more accurately.

We use the ε-greedy approach to action selection where ε is
the probability of choosing a random action fromA. This is
a technique used for balancing exploration and exploitation,
a commonly known trade-off in reinforcement learning. A
higher epsilon causes the agent to take more random ac-
tions, which means more exploration. We balance this by
initializing epsilon to a fairly high number and exponentially
decaying the probability of taking random actions as the
agent learns during training.

3.3. State Representation

At each step in an episode, the environment calculates a new
room impulse response (RIR) and then provides the mixture
of sources to the agent as a representation of the state of the
environment. The RIR is computed using the dimensions
of the room, the locations of the sources in the room, the
current location of the agent, and other features of the room
such as absorption. The 2-channel time-domain audio data
is then returned to the agent from the step function along
with the appropriate reward and the “won” flag.

3.4. Reward Structure

The agent is given a large positive reward (+100) for turning
off a source in addition to a small step penalty (-0.5) for
every action taken. There is an option to introduce dense
rewards where the agent is rewarded based on its euclidean
distance to the nearest source at each step. We consider the
agent to have found the source once the agent is within the
specified threshold radius. The source is then removed from
the room environment, indicating the agent has found and
“turned off” the source.

Figure 2. Our approach has three components - a monaural separa-
tion model for separating audio sources, a spatial feature extractor
to localize the sources, and a Q-network for choosing actions.

3.5. Experience Replay Buffer

We employ the experience replay (Foerster et al., 2017)
technique where the experiences of the agent are stored
at each time step, et = (st, at, rt, st+1) where st is the
current state, at is the action, rt is the reward and st+1 is
the next state experienced after taking action at. These
observations are stored in a replay buffer data set and are
randomly sampled when fed to the model.

4. Approach
Our approach consists of three components, as shown in
Figure 2. The first component is a monaural separation
network whose goal is to take the 2-channel audio represen-
tation of the state and process each channel independently
to produce separated sources. The second component uses
the separated sources produced by the monaural separation
network to extract spatial features from the state. Finally,
the last component uses the extracted spatial features along
with an optional additional state such as the location of the
agent and its current orientation to produce an action. The
agent takes the action, and the process repeats.

4.1. Monaural Separation Model

The monaural separation model is a standard deep separation
network based on recurrent layers (Wang et al., 2018; Luo
et al., 2017; Hershey et al., 2016). The input to the network
is time-domain single-channel audio. The network then
takes the STFT of the audio, with a filter length of 256
samples, a hop length of 64 samples, and the square root
of the Hann window as the window function. A batch
normalization layer is then applied, followed by a stack
of bidirectional long short-term memory layers. Finally, the
output of the recurrent layer is put through a fully-connected
layer with a softmax activation to produce two masks which



OtoWorld

are then applied to the complex STFT of the audio. The
complex STFT is then inverted to produce individual time-
domain audio sources. We use a simple 1-layer recurrent
network with 50 hidden units. However, the complexity of
the network can be easily scaled up to harder variants of
OtoWorld.

4.2. Spatial Feature Extraction

The spatial features we use are the inter-aural phase and
level difference between the two channels - IPD and ILD,
respectively. We base our method on a simple separation
method which exploits these two features to separate sources
via clustering (Vincent et al., 2007; Rickard, 2007; Kim
et al., 2011). The assumption of this method is that time-
frequency bins that have similar spatial features are likely
to come from a single direction. Sounds that come from a
single direction belong to the same sources. If sources are
coming from multiple directions, then you will observe two
distinct clusters of spatial features.

To compute IPD, ILD the time-domain mixture audio data
x(t) is converted to a stereo complex spectrogram X

(c)
t,f

where c is the channel, t the time index, and f the frequency
index. The inter-aural phase difference and inter-aural level
difference are then calculated for each time-frequency point
as follows:

θt,f = ∠
(
X

(0)
t,fX

(1)
t,f

)
, (1)

ILDt,f =
(
|X(0)

t,f |
)
/
(
|X(1)

t,f |
)
. (2)

While the traditional approach to exploiting IPD/ILD fea-
tures is to clustering via K-Means or Gaussian Mixture Mod-
els, here our goal is to learn a monaural separation model
jointly with the spatial features. The monaural separation
model produces a time-frequency mask for each source j:
Mj(t, f). The mask is used to compute the mean IPD/ILD
for each source:

µIPD
j =

1

N

∑
t,f

Mj(t, f)θt,f (3)

µILD
j =

1

N

∑
t,f

Mj(t, f)ILDt,f (4)

where N is the number of time-frequency points in X(t, f).
µIPD
j and µILD

j are concatenated into a feature vector:

[µIPD
0 , µILD

0 , . . . , µIPD
J , µILD

J ] (5)

where J is the total number of sources separated by the
monuaural separation network.

4.3. Q-Network

In our model, we use a Q-network to get the softmax proba-
bility scores over the possible action set. The spatial features

(IPD, ILD) are calculated inside of the forward pass of the
Q-net and then combined with the magnitudes of STFT data
along with agent information (current agent location and
orientation). The combined data is passed through a fully
connected layer with a PRelu activation (He et al., 2015).
Finally, it is passed through a softmax layer to get the output
probabilities for each possible action.

4.4. Loss and Optimization

We use a replay buffer and fixed-Q target networks as speci-
fied in (Mnih et al., 2015). We use the following L1 loss:

L = |Q(s, a, w)− r + γ ∗maxa′Q(s′, a′, ws)|1 (6)

Here ws are the stable weights (i.e., weights of the fixed-Q
target networks). This L1 loss is back-propagated through
all three model components.

We apply gradient clipping during optimization to prevent
exploding gradients, and train with an Adam optimizer with
an initial learning rate of 1e-2. For training, we sample
randomly from the experience replay buffer with a batch
size of 50. For each state that is passed into the monaural
separation network, we extract 4-second excerpts.

5. Experiments
The purpose of this paper is to establish OtoWorld as a viable
reinforcement learning environment for computer audition.
We establish a baseline for a simple OtoWorld environment
that can be improved upon in future works. We instantiate a
very simple game in which there are two stationary sources
that the agent must find. To further simplify it, the location
of the sources and the agent is fixed across episodes. We
use a dense reward structure, where the agent is rewarded
by the lowest euclidean distance to either sources - a sort
of getting hotter/colder signal. The absorption rate is set
to 1.0, making the environment anechoic. With a simple,
consistent environment and a dense reward structure, we
find that separation models are difficult to train, suggest-
ing that further research is needed into OtoWorld, and that
OtoWorld is a challenging game due to the high complexity
of representing game state as audio.

For our experiments, we used two simple audio sources:
a phone ringing and a police siren. The step size was 1.0
meters and the threshold radius was 1.0 meters. If the agent
did not win within 1000 steps, the episode was terminated.
The first experiment ran for 50 episodes in a 6x6 meter Shoe-
box (rectangular) room. The second ran for 135 episodes
in an 8x8 Shoebox room. Models are saved during train-
ing and could be used to test generalization in different
environments.

Baselines: The lower baseline is a random agent that moves
around the environment by sampling actions uniformly from
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Figure 3. Comparing the total steps to complete an episode for our
trained agent, the random agent, and the oracle agent. Our agent is
significantly worse than the oracle agent but noticeably better than
the random agent.

A. This agent sometimes discovers both sources and is
rewarded, depending on which actions it randomly draws.
Thus, beating this agent is important to determine whether
the model learns anything at all. The upper baseline is an
oracle agent which knows the exact location of the sources
and finishes episodes in roughly the same number of steps
each time. This provides a nearly perfect benchmark for the
trained agent to strive for.

Evaluation: We evaluate our approach in three ways: mean
reward per episode, separation quality by listening, and
objective separation quality using scale-invariant source-to-
interference ratio (SISIR) (Le Roux et al., 2019), which
measures how well an estimate matches the ground truth
source. In order to obtain the ground truth, we compute the
RIR at the beginning of episode with the agent and a single
source in their initial locations to get the ground truth audio
for that particular source.

5.1. Results

As shown in Figure 3, our reinforcement learning agent
slightly outperforms the random agent while performing
significantly worse than the oracle when it comes to how
quickly the agent can complete an episode. The random
agent takes on average 409 steps per episode, while the
trained agent takes 271. The oracle agent far out-performs
the other two, taking 26 steps on average. In Figure 4, we
show the separation performance as measured by SI-SIR
of the monaural separation model and its relationship with
mean reward. The preliminary nature of this experiment
makes it difficult to draw clear conclusions, but we ob-
serve that better separation performance can result in higher
reward. However, we have noticed that separation perfor-
mance in OtoWorld can be highly unstable with the mixture
sometimes collapsing into one source while the other source

Figure 4. Above is the mean reward for the agent in the 8x8 Shoe-
box room. Below is the SI-SIR of the sources produced by the
monaural separation model at each episode.

is empty, which occurred after episode 100 in Figure 4. Sta-
bilizing the performance of trained models in OtoWorld will
be the subject of future work.

6. Conclusion
OtoWorld is a challenging game for reinforcement learning
agents. Indeed, our experiments are highly preliminary and
separation performance and mean reward is quite low. We
plan to develop OtoWorld further, as well as the agents
we place into OtoWorld. In this work, we hope to have
established benchmarks which researchers can strive to beat.
The difficulty of OtoWorld is highly dependent on user
specified settings such as the actual sources being used
(whether similar or distinct), the number of sources, the size
and shape of the room, and the absorption rate. As research
advances, OtoWorld will be able to support more difficult
and meaningful separation tasks.

OtoWorld is designed to be extended to accommodate new
games and ideas. The core functionality of OtoWorld is
the placement of sounding sources and agents in complex
environments and an interaction paradigm where an agent
can move around the environment and listen to it in different
ways. While simple, to date audio-only environments for
reinforcement learning are either not available, accessible,
or open-source. OtoWorld seeks to fill this gap in the litera-
ture. We hope to scale up to more complex environments
(e.g. speech separation), extend OtoWorld to new types
of games (predator-prey games, audio-only hide-and-seek),
and encourage others to use OtoWorld.
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