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A B S T R A C T

Wire and arc additive manufacturing (WAAM) is an emerging manufacturing technology that is widely used
in different manufacturing industries. To achieve fully automated production, WAAM requires a dependable,
efficient, and automatic defect detection system. Although machine learning is dominant in the object detection
domain, classic algorithms have defect detection difficulty in WAAM due to complex defect types and noisy
detection environments. This paper presents a deep learning-based novel automatic defect detection solution,
you only look once (YOLO)-attention, based on YOLOv4, which achieves both fast and accurate defect detection
for WAAM. YOLO-attention makes improvements on three existing object detection models: the channel-wise
attention mechanism, multiple spatial pyramid pooling, and exponential moving average. The evaluation on
the WAAM defect dataset shows that our model obtains a 94.5 mean average precision (mAP) with at least
42 frames per second. This method has been applied to additive manufacturing of single-pass, multi-pass
deposition and parts. It demonstrates its feasibility in practical industrial applications and has potential as a
vision-based methodology that can be implemented in real-time defect detection systems.
1. Introduction

Wire and arc additive manufacturing (WAAM) [1,2] is a wire-feed
directed energy deposition technology. It adopts an electrical arc as
its heat source for fusion to melt the metal feedstock and accumulate
it to form a rudimentary part layer by layer [3–5]. Compared with
other techniques, WAAM has reasonable precision and much higher
efficiency because its deposition rate is on the order of 50–130 g/min,
while a rate of 2–10 g/min is achieved for laser-based and electron-
based metal additive manufacturing technologies [6–8]. In addition,
WAAM specializes in making large and high-strength parts. Some ad-
vanced manufacturing industries have adopted WAAM to fabricate
intricate metal workpieces, such as titanium alloy and aluminium
alloy load-bearing frame parts for aeroplanes [9–11] and high-strength
alloyed pumps for ships [12]. However, because of the extensive en-
ergy input needed and the liquid state of the melting metal material,
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bottleneck problems such as cracking, shrinkage porosity, and deforma-
tion occur frequently, which seriously affect the surface tolerance and
forming accuracy of the final workpiece.

To achieve the integration and high performance of the whole
process, this progressive industry requires a closer collaboration be-
tween manufacturing and defect detection. While automatic WAAM is
prevalent, an efficient and real-time defect detection system is highly
desirable but still lacking. Manual detection techniques not only are
associated with dangerous conditions, such as high temperatures and
specific gasses [13], but also require operators with great expertise. In
addition, transferring workpieces between automated and manual pro-
duction lines is time consuming. To ensure an integrated industrialized
time-intensive weld defect detection system, it is important to establish
an inspection algorithm to monitor weld bead processing in real time.

In summary, the formidable challenges for researchers of a real-time
WAAM defect detection system are threefold. First, the slag inclusions
736-5845/© 2022 Elsevier Ltd. All rights reserved.
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Fig. 1. Defects in wire and arc additive manufacturing. 15(a): Different types of surface pores on the weld beads (three large surface pores and one small surface pore). 15(b):
Groove problems occurred at three locations. 15(c): Numerous slag inclusions on the weld bead.
Fig. 2. Performance comparison between YOLOv4 and our method (confidence threshold 0.5).
and surface pores in the weld bead are often small and dense, which
leads to difficulties in recognizing them. Second, the background of the
object is deceptive because some defects do not need to be detected,
such as slag inclusions in the metal base (Fig. 15(c)). Third, the three
types of defects, slag inclusions, surface pores, and grooves (Fig. 1),
vary in shape and size and do not have common characteristics that
allow us to distinguish and locate them.

To apply the object detection model in deep learning to defect
detection for WAAM, we manually produce a dataset containing four
kinds of targets: welds, surface pores, grooves, and slag inclusions. An
undercut is an irregular groove that is formed between the substrate
and the deposited material. The lack of fusion in multi-pass deposition
is the groove between the weld beads. The two defects are similar in
image, so they are summarized as grooves defects in this research.
The dataset we produce contains 760 images of welds taken by a
CMOS camera, with a total of 8583 objects. These images contain data
from our actual industrial production and harsh conditions created by
manual experiments.

You only look once, version 4 (YOLOv4) [14] is a popular object
detection model that achieves both accuracy and efficiency. For ex-
ample, when processing images on a 15.3 TFLOP accelerator (NVIDIA
GTX 1080Ti), YOLOv4 achieves an accuracy and recall rate of 43 mAP
(mean average precision) on the COCO [15] dataset and a processing
rate of 45 images per second (a.k.a., frames per second). This processing
rate is sufficient to meet the object detection rate requirement both in
academia [16] and industry [17] (30 frames per second is the minimum
requirement for real-time detection generally).

YOLOv4 achieves both efficiency and accuracy through three major
design choices. First, unlike the two-stage target detection model, it
classifies and regresses data only once, which saves a large amount of
detection time, making it fast enough to be deployed online. Second,
the residual structure it uses over the backbone network enables it
2

to extract more in-depth information with high efficiency. Third, the
feature fusion of the feature pyramid network (FPN) preserves the
information of small targets to improve its detection effect. However,
applying YOLOv4 to WAAM defect detection tasks is impeded by one
main difficulty: bare-metal YOLOv4 often overlooks minor defects (only
48.8 mAP for slag inclusions on the weld bead in our experiment, as
shown in Fig. 2(a)). In our experiment, the original YOLOv4 achieves
only 72.8 mAP for all objects, which is not sufficient for application in
actual industrial production.

To adapt to the requirements of defect detection in WAAM, we
establish our WAAM defect detection system on YOLOv4 and optimize
our model specifically for the two original problems with three primary
techniques—channel-wise attention, multiple spatial pyramid pooling
(SPP), and exponential moving average (EMA)—where the first two
techniques are used to enhance the detection performance against small
targets, and the last is used to stabilize the training process and make
the model converge to the optimal global solution. In addition to these
techniques, we adopt some strategies to optimize and strengthen the
effect of the final model, such as mosaic data augmentation, cosine
decay, and transfer learning.

In summary, the main contributions of our work are as follows:

• We propose a deep learning-based object detection algorithm for
defect detection in WAAM. By learning from a large number of
samples, four kinds of defects can be accurately detected from
input images.

• We propose YOLO-attention to improve the performance of the
defect detection model, which is based on YOLOv4; YOLO-
attention provides improvements in three primary techniques:
channel-wise attention, multi-SPP, and EMA.

• We conduct sufficient experiments to verify the effectiveness and
robustness of our proposed method. The results show that our
approach achieves 94.5 mAP on our defect dataset for accurate
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non-destructive online defect detection at 42 frames per second
(FPS). Our method eliminates redundant slag inclusions in a
complex background and identifies real defects (Fig. 2).

2. Related work

2.1. Traditional defect detection technologies

The recent advancement in artificial inspection is promising for
research on improving the accuracy of detection while ensuring effi-
ciency. Some existing commercial automatic defect detection systems
are available. Atomic titanium and vanadium optical emissions have
been found to be correlated with defects [18], but the type of materials
directly limits this method. Everton et al. [19] detected manufactured
surface pores by using laser ultrasonic testing. However, their tech-
nique cannot detect multiple defects and is too slow to be viable
for in situ process inspection. In the area of traditional computer
vision, such as the model-based method [20–22], spectral method [23–
25], structural method [26–29], and threshold method [30–34], the
approaches require stringent data acquisition conditions and precise
thresholds set for different defects, which not only define application
scenarios but also reduce the accuracy rate. For other technologies,
such as ultrasound [35–37], infrared thermal imaging [38,39], and
spectroscopy [40,41], these methods achieve reasonable results in their
original fields, but the large equipment and restrictions on specific
materials limit their comprehensive application in WAAM.

2.2. Defect detection using CNNs

Convolutional neural networks (CNNs) have fuelled great strides
in the domain of computer vision and made significant breakthroughs
in many areas, such as image classification (e.g., [42,43]) and object
detection (e.g., [44,45]). In addition to doing theoretical work, re-
searchers are trying to apply CNNs to the industrial inspection system
to increase their practical value, especially in defect detection.

To obtain the locations and types of defects directly, researchers
have begun to combine industrial production with object detection
algorithms. Tao et al. [46] designed a novel cascaded autoencoder
architecture to segment and localize defects on a metallic surface.
However, this method cannot distinguish between different individuals
of the same type, and the background of the objects being detected
is not as complicated as in WAAM. Lin et al. [47] adopted the faster
region-based convolutional neural network (Faster-RCNN) [48] for de-
fect detection on a steel surface. Since Faster-RCNN is a two-stage
model, the speed of processing images is only 5 FPS, which greatly
limits its application in real-time industrial inspection. Vigneashwara
et al. [49] segmented weld bead images at the pixel level by using an
encoder–decoder architecture based on VGG-16. However, it cannot be
applied to defect detection in WAAM because the conclusion is obtained
on the premise of only one object being detected in each image.

One-stage object detection is an algorithm that classifies and re-
gresses data only once, which is time saving at the expense of a slight
amount of accuracy compared to the two-stage method. However, to
perform real-time (at least 30 FPS) defect detection, the one-stage
algorithm is usually the only choice. YOLO is a classic one-stage object
detection algorithm, and YOLOv4 achieves state-of-the-art accuracy
and efficiency. In the academic area, Huang et al. [50] applied dense
connections and the SPP to the architecture of YOLOv2 [51], increasing
the accuracy of the original model by 2.25%. For industrial applica-
tions, S. Yanan et al. [17] used YOLOv3 [52] to detect defects in rail
surfaces and achieved a 97% recognition rate. However, these methods
did not optimize YOLO for the small defects in WAAM specifically. To
adapt it to the defect detection tasks of WAAM based on state-of-the-art
performance, we carry out specific optimizations for minor defects on
YOLOv4.
3

Fig. 3. Schematic diagram of the visual sensor system.

3. System overview

Fig. 3 shows the diagrammatic layout of the passive visual sensor
system and the subsequent processing flow. As shown in Fig. 3, the
vision sensor consists of a CMOS camera and an optical filter. The
manufacturing coordinate is set as follows: the 𝑋-axis is the deposition
width direction, the 𝑌 -axis is opposite to the travel direction, and
the 𝑍-axis is the deposition height direction. The MIROEX4-4096MM
digital CMOS camera is competent in acquiring 8-bit RGB images at
a resolution of 1920 × 1080 pixels with a sampling frequency of 60
FPS. To eliminate the radiation of arc light, in addition to limiting the
distance between the sensor and the molten pool, we place an optical
filter acting as a hard light barrier in front of the CMOS camera.

In our system, we define four kinds of targets to be detected: welds,
surface pores, grooves, and slag inclusions. As shown in Fig. 3, the
data obtained from the vision sensor are subsequently transmitted to
the CNN model, which consists of the backbone network, FPN, and
detection layer. The backbone network and FPN are responsible for
the extraction and fusion, respectively, of the features of the input
images. The detection layer synthesizes the features to output specific
information and customizes the generated anchors to fit objects.

4. Method

This section describes the four primary components of our model
structure: the backbone network, FPN, multiple SPPs, and detection
layer. In particular, the backbone network and detection layer are the
core parts of the model, while the FPN and SPPs are added to the
model to enhance its ability to detect small targets. The features of the
input image are extracted by the backbone network and fused in the
FPN. This information is used to mesh the original image and generate
anchors and adjustment parameters for each mesh to fit targets.

4.1. Backbone

A backbone network plays the role of extracting features from
input images in a detection model, which directly determines the
performance of the final model. DarkNet53 is the backbone network
in YOLOv3, and some changes are made based on it in YOLOv4.
However, in WAAM defect detection task, we find that these changes
not only do not improve the effect adequately but also increase the
computational burden. To improve the performance of detection, we
propose DarkNet53-attention, wherein a channel-wise attention struc-
ture (Fig. 5) is added to the residual blocks based on DarkNet53. Fur-
thermore, the activation functions and batch normalization (BN) layer
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Fig. 4. The architecture of DarkNet53-attention (assuming the size of the input image is 416).
Fig. 5. A block of res-attention network.

momentum are modified. The architecture of DarkNet53-attention is
shown in Fig. 4.

It can be observed that DarkNet53-attention consists of Conv layers
and res-attention blocks. Each Conv layer is composed of convolution,
BN, and an activation function. The res-attention block is a residual
attention structure. As shown in Fig. 5, we adopt the structure of
residual blocks. The architecture of a residual block creates a shortcut
structure to add the original feature maps to the output. Subsequently,
ignoring the activation function, BN layer, and attention branch, we
obtain the relationship between the output and input as

𝑦𝑖 =  (𝑥𝑖, {𝑊𝑖}) + 𝑥𝑖, (1)

where  (𝑥𝑖, {𝑊𝑖}) convolves 𝑥𝑖 with a weight of 𝑊𝑖. With the shortcut
structure, our CNN model is capable of extracting information of more
diverse forms from the input images without reaching saturation. This
is fundamental for accurately locating defects.

In the res-attention block, we assign an evolutionary weight to the
different channels in the feature maps since we consider the infor-
mation in each channel to be unequally valuable. In WAAM defect
detection tasks, we need to emphasize the details in the image. Specif-
ically, the attention branch contains a global pooling layer, two full
connection (FC) layers, and a sigmoid activation function (Fig. 5).
For the operation process, the first two change the dimension of the
feature maps to 𝑛 × 1 × 1, and the sigmoid function outputs 𝑛 numbers
between 0 and 1 as the weight of each channel, where 𝑛 is the number
of channels in the feature maps. In the final stage, we multiply the
𝑛 output numbers by the 𝑛 channels of the original feature map to
4

emphasize the information in a particular channel. By training with
a large number of small targets, the model can use self-learning to
enhance the channels with small target information.

During training, we modify the input image size by a linear interpo-
lation algorithm. Our experiments demonstrate that the input size will
affect the balance between accuracy and efficiency. We illustrate this
in the data augmentation Section 5.2.

We modify the BN layer and activation function. The BN layer is
a technique to normalize the feature map and standardize the data
distribution. There are two evolutionary parameters 𝛾 and 𝛽 in the
BN layer. To weaken the interference of unstable factors for a certain
batch of images, we add a momentum parameter and set it to 0.03.
The momentum keeps the evolving trend of the parameters to make
the update curve smoother and prevent significant fluctuation due to
interference. In addition, the rectified linear unit (ReLU) and Leaky
ReLU activation functions cause partial information loss when the
weight is less than 0, which is not suitable for us to detect small targets.
Consequently, we change the activation function to the parametric
ReLU (PReLU) [53]:

𝑃𝑅𝑒𝐿𝑈 (𝑥𝑖) =

{

𝑥𝑖 if 𝑥 > 0
𝑝𝑖𝑥𝑖 if 𝑥 ≤ 0

(2)

As shown in Eq. (2), PReLU is an advanced form of Leaky ReLU
because the coefficient of 𝑥 is evolutionary when 𝑥 is less than 0. In
Eq. (2), 𝑝𝑖 is a coefficient that is set separately so that each channel in
the feature map retains more information on essential channels.

4.2. Feature pyramid networks

The receptive field of the network increases after multiple convolu-
tions, which obliterates detailed information. To address this problem,
we reserve multiple feature maps to carry out a series of feature fusions.
Assuming the input image size is 416 × 416, after being preprocessed
by the backbone network, the input corresponds to outputs of three
different sizes, 52 × 52, 26 × 26, and 13 × 13 (the original size divided
by 8, 16, and 32), which are named FeatureMap1, FeatureMap2, and
FeatureMap3, respectively. Feature maps of different sizes contain
information of different depths. These three feature maps will be sub-
sequently introduced into the FPN for further feature fusion to enhance
the necessary information.

The FPN [54] is an architecture for fusing feature maps of various
sizes. Some classical object detection models, such as the single-shot
detector (SSD), do not employ FPNs in their network architecture,
resulting in a high efficiency but inferior detection effect for tiny
targets. However, WAAM requires a satisfactory criterion for detecting
extremely small defects. The FPN of YOLOv4 is a lightweight network
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Fig. 6. The structure of the FPN.
ith reasonable performance. To further improve the detection effect
f small targets based on YOLOv4, we attach a multiple-SPP structure
o the FPN and modify the BN layer and activation functions. The
rchitecture adopted for the FPN is shown in Fig. 6.

The inputs of the FPN are FeatureMap1-3. Assuming the size of
he backbone input image is 416 × 416, the three feature maps we
btain have sizes of 52 × 52, 26 × 26, and 13 × 13. In the FPN,
eatureMap3 will first carry out the SPP operation and a series of
onvolutions to acquire Out3 (13 × 13), which is equivalent to dividing
he input image into 13 × 13 grids, where each grid corresponds to
value of Out3. Since multiple convolutions obliterate the details of

he original image, Out3 is only appropriate for extracting information
rom large objects. Next, we upsample FeatureMap3 to fit the size of
eatureMap2 and concatenate them. In this way, we combine deep
nformation with shallow information. After that, we obtain Out2 by
nother SPP operation and a series of convolutions. By repeating the
bove manipulations, the FPN exports three outputs named Out1-3.
n contrast to Out1, Out3 is more appropriate for extracting details to
etect small targets. In addition, we modify the BN layers in this part
o add a momentum of 0.03, and the activation function adopted is still
ReLU.

This kind of FPN is not the most accurate approach for fusing fea-
ures. For example, in EfficientDet [55], the author uses a bi-directional
PN (BiFPN), a much more sophisticated structure than FPN, leading
o a higher upper bound than our method. Correspondingly, it is time
onsuming and takes up many more GPU resources, so it is not capable
f being used in WAAM applications. We carry out relevant experiments
nd demonstrate the results in Section 6.4.

.3. Spatial pyramid pooling

To enhance the adaptability of the model to different scale features,
he original YOLOv4 appends an SPP [56] structure to the FPN. How-
ver, our experiment proves that one SPP structure has a limited effect
n the model, so we use multiple SPPs to add an SPP structure for each
f the three branches of the FPN. The architecture of the SPP network is
hown in Fig. 7. In simple terms, SPP is a combination of maxpooling
perations and concatenation. In short, the three maxpooling opera-
ions are set to execute with the same stride but different sizes. Due to
aving the same strides and the same padding, the size of the output
eature maps is equal to the original, which ensures that the outputs
5

an be concatenated to the input.
Fig. 7. Visualization of spatial pyramid pooling.

According to the original author’s point of view, various sizes of
maxpooling can be adopted. However, based on the results of our
experiments, we conclude that the best maxpooling performance is
achieved with sizes 5, 9, and 13. After that, we concatenate three
outputs to the original feature map to obtain a feature map with four
times the number of channels as in the input.

4.4. Detection layer

The detection layer is a section that further processes Out1-3 to
generate the prediction bounding boxes. For each grid in the three
feature maps, we generate three kinds of anchors of different sizes. By
adjusting the centre coordinates, length, and width, the detection layer
modifies the anchors to the final prediction bounding boxes.

In detail, the detection layer adjusts the number of channels in the
last dimension of Out1-3 to 3 × (4 + 1 + 𝑛), where 3 is the number
of anchors per grid, 4 is the number of adjustment parameters of
one anchor, 1 is the confidence, and 𝑛 is the number of classification
categories. In our experiment, 𝑛 is equal to 4. Fig. 8 shows an example
of the three anchors for one grid. By setting a threshold, we filter
out the targets with low confidence. In addition, we also eliminate
the redundant prediction boxes through the non-maximum suppres-

sion (NMS) method. With these two screenings, we eliminate all the
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Fig. 8. Visualization of the anchors for one point.

unnecessary bounding boxes and preserve the locations and sizes of
targets.

In addition to NMS, we also tested soft NMS [57]. Soft NMS is a
method that can improve the detection effect when two targets overlap
considerably. The results demonstrate that soft NMS does not have a
positive effect on the performance. There are almost no overlapping
defects in the process of WAAM, so the more computationally intensive
soft NMS does not need to be applied.

5. Training

This section introduces our strategies and tricks during training.
We used the EMA to optimize the weight updating curve, which sig-
nificantly improves the performance of the final model with a small
computational burden increase. In addition, we adopted an appropriate
learning rate schedule to accelerate the training process and modify the
anchor size to promote the fitting degree of the prediction bounding
box with the ground truth. We also used data augmentation and trans-
fer learning to address the problem of insufficient datasets in industrial
applications. Finally, we introduced loss functions and emphasized the
complete intersection over union (CIoU) function.

5.1. Exponential moving average

Based on the backpropagation principle, the GPU calculates the
variations of weights according to their gradients and the loss function
value of a batch of images. The optimization process deviates readily
from the prospective track due to the potential interference in a batch
of images, which is most evident at the initialization and termination
of the training process. Furthermore, in the later stage of training, the
model oscillates near the optimal solution and is unable to reach it.

To address the problems above, we decided to apply the EMA to
training to relate each step of weight optimization to the previous steps.
Assuming that the weights of the convolutional layer 𝑤 are denoted as
𝑤𝑡 at time 𝑡, 𝜃𝑡 is the value of 𝑤 at time 𝑡. If the EMA is not used, 𝑤𝑡 = 𝜃𝑡.
If the EMA is adopted, the formula for 𝑤𝑡 is updated to:

𝑤𝑡 = 𝛽 ⋅𝑤𝑡−1 + (1 − 𝛽)𝜃𝑡 (3)

where 𝛽 ∈ [0, 1). 𝛽 = 0 means there is no use of EMA. Eq. (3) shows
that the value of 𝑤 at time 𝑡 is approximately equal to the average of 𝜃
at the past 1∕(1 − 𝛽) times. In our experiment, we obtained a relatively
stable result when 𝛽 is set to 0.9999. This step is performed after each
backpropagation, and all parameters with a gradient are involved.

5.2. Data augmentation

Datasets in industrial manufacturing contain relatively few images,
which means that they require more effective data augmentation mea-
sures. In addition, the model performance is closely related to the
batch size during training. A larger batch size means that the BN layer
6

Fig. 9. Examples of mosaic data augmentation.

Table 1
Experiments with mosaic data augmentation.
Training mAP@0.5

With mosaic 94.5
Without mosaic 90.1

Table 2
MAP for different input sizes.

Type Size mAP@0.5 GPU memory

One-scale

320 82.2 3.63 Gb
384 85.3 4.28 Gb
448 87.3 5.19 Gb
512 87.8 6.56 Gb
576 89.5 7.77 Gb
640 90.9 10.71 Gb

Multi-scale 320–640 94.5 9.62 Gb

calculates more images at a time, thus avoiding the interference of
random disturbances. However, a large batch size also means high GPU
occupation, which is counter to the standards of industrial application.

To solve these problems, we adopt the mosaic data augmentation
method. Mosaic data augmentation cuts and splices four randomly
selected images stochastically into one image, retaining the visible
targets and deleting the invisible targets. Four examples of mosaic
data augmentation are exhibited in Fig. 9. By combining four pictures
into one, we pass four images into the model at one time, which is
equivalent to increasing the batch size. In this way, we avoid using a
large batch size and reduce the hardware requirements in a disguised
way.

In addition, mosaic data augmentation greatly enriches the back-
ground of the detected target and enhances the robustness of the model.
Table 1 shows the effect of mosaic data enhancement.

In addition, we aim to resize the input images to a fixed value of a
multiple of 32 between 320 and 640 (since the backbone halves the size
of the images five times, the sizes of the input images must be multiples
of 32). Experiments (see Table 2) demonstrate that the model becomes
more effective as the image size increases. However, it will put a great
deal of pressure on the hardware if the input image size is over 640
(the total GPU memory of GTX 1080Ti is 11 Gb). We adopt a multi-
scale strategy to randomly select a multiple of 32 between 320 and
640 as the size of the input image. Compared with one-scale training,
multi-scale training reduces the hardware requirements, and it not only
strengthens the robustness of the model to images of different sizes but
also improves the mAP index of the model.

For traditional methods, we use augmentations in the HSV do-
main to randomly change the hue, saturation, and value. In addition,
we append normalization, random flips, and Gaussian noise to the
augmentation method list.
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Fig. 10. Visualization of cosine decay with a warm-up.

.3. Learning rate schedule

The learning rate (Lr) is one of the most critical parameters because
t directly determines the speed and accuracy of training. A large Lr
peeds up the training process and helps the model cross the local
inimum, but it is difficult for it to reach the optimal global value.

n contrast, a small Lr slows down the training and makes it very easy
or the model to be trapped in a local minimum, but it is capable of
ltimately reaching the optimal global value.

Step decay is the most commonly employed Lr schedule in general
raining; it uses a larger Lr for the first decades of epochs and reduces
he Lr whenever the loss does not decrease. However, it is difficult
o determine whether the final Lr is small enough to reach the global
ptimum. For our training strategies, we adopt cosine decay [58] with
warm-up.

Fig. 10 shows that, according to the warm-up, the Lr increases
inearly from 0 to the established initial Lr value and then begins to

decline according to the rule of the cosine function: first, it drops
slowly, then approximately linearly, and finally, it drops slowly close
to 0. Assuming that the total batch number to be cycled is 𝑇 and that
t batch 𝑡, the current Lr can be expressed as Eq. (4) (ignoring the
arm-up phase):

𝑡 =
1
2

(

1 + cos
( 𝑡𝜋
𝑇

))

𝜂 (4)

where 𝜂 is the initial learning rate.
By following cosine decay, the Lr maintains a slow decline rate

ompared to step decay, which could speed up the training process
n the initial phase and fine-tune the value of the weights at the end.
oreover, the model approaches the optimal global solution simply

ue to having a sufficiently small Lr at the later stage of training. The
arm-up phase is designed to avoid initial oscillations.

.4. Loss function

The value of the loss function represents the gap between the cur-
ent model and the ideal state and indicates the direction for training.
n applicable loss function accelerates the convergence process of

he training. We define three loss functions based on the objective of
ocating and distinguishing different kinds of defects: CIoU loss [59],
bjectness loss, and classification loss.

The CIoU loss function indicates how far the prediction bounding
oxes are from the ground truth (GT). The classical IoU loss function
epresents only the intersection area of the prediction bounding boxes
nd the GT. Thus, we add the distance of the centre point and the ratio
f the side lengths into the loss function by using the CIoU.

As shown in Fig. 11, assuming that one prediction bounding box
s 𝐴, the corresponding GT is 𝐵, and 𝑐 is the diagonal length of the

minimum enclosing rectangle of 𝐴 and 𝐵, the formulas for 𝐿𝑜𝑠𝑠𝐶𝐼𝑜𝑈
an be expressed as:

𝑜𝑠𝑠𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 + 𝑅𝐶𝐼𝑜𝑈 (5)

𝑜𝑈 =
|𝐴

⋂

𝐵|
⋃ (6)
7

|𝐴 𝐵| t
Fig. 11. CIoU.

𝑅𝐶𝐼𝑜𝑈 =
𝜌2(𝑏, 𝑏𝐺𝑇 )

𝑐2
+ 𝛼𝑣 (7)

𝛼 = 𝑣
(1 − 𝐼𝑜𝑈 ) + 𝑣

(8)

𝑣 = 4
𝜋2

(

𝑎𝑟𝑐𝑡𝑎𝑛𝑤
𝐺𝑇

ℎ𝐺𝑇 − 𝑎𝑟𝑐𝑡𝑎𝑛𝑤
ℎ

)2
(9)

where 𝜌(⋅) is the Euclidean distance between two points and 𝑅𝐶𝐼𝑜𝑈 is
the compensation factor for the position and shape.

In addition, the confidence loss 𝐿𝑜𝑠𝑠𝑜𝑏𝑗 indicates whether there is
an object. The classification loss 𝐿𝑜𝑠𝑠𝑐𝑙𝑠 indicates whether the type
of target detected is correct. The total loss function is expressed as
Eqs. (10) (11) (12):

𝐿𝑜𝑠𝑠 = 𝜆𝐶𝐼𝑜𝑈𝐿𝑜𝑠𝑠𝐶𝐼𝑜𝑈 + 𝜆𝑜𝑏𝑗𝐿𝑜𝑠𝑠𝑜𝑏𝑗 + 𝜆𝑐𝑙𝑠𝐿𝑜𝑠𝑠𝑐𝑙𝑠 (10)

𝐿𝑜𝑠𝑠𝑜𝑏𝑗 = −
𝑆2
∑

𝑖=0

𝐵
∑

𝑗=0
𝐼𝑜𝑏𝑗𝑖𝑗

[

𝐶𝑗
𝑖 log(𝐶

𝑗
𝑖 ) + (1 − 𝐶𝑗

𝑖 ) log(1 − 𝐶𝑗
𝑖 )
]

−𝜆𝑛𝑜𝑜𝑏𝑗
𝑆2
∑

𝑖=0

𝐵
∑

𝑗=0
𝐼𝑛𝑜𝑜𝑏𝑗𝑖𝑗

[

𝐶𝑗
𝑖 log(𝐶

𝑗
𝑖 ) + (1 − 𝐶𝑗

𝑖 ) log(1 − 𝐶𝑗
𝑖 )
]

(11)

𝑜𝑠𝑠𝑐𝑙𝑠 = −
𝑆2
∑

𝑖=0
𝐼𝑜𝑏𝑗
𝑖𝑗

∑

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

([

𝑃 𝑗
𝑖 log(𝑃

𝑗
𝑖 ) + (1 − 𝑃 𝑗

𝑖 ) log(1 − 𝑃 𝑗
𝑖 )
])

(12)

When each epoch ends, we test our model on the validation dataset
o calculate the mAP index and the values of the various loss functions.
y observing the indicators, we determine the training situation and
hether there is overfitting or underfitting.

.5. Anchors

As mentioned above, the prediction bounding boxes strictly corre-
pond to anchors. Anchors of the appropriate size speed up the training
nd improve the fitness of the objectives. To make the size of the
nchors consistent with our custom dataset, we abandon YOLOv4’s
riginal anchors and generate new ones through the K-means method.

.6. Transfer learning

Due to the high cost of obtaining defect sample images in WAAM,
e only have 680 training set images and 80 verification set images. An

nsufficient dataset easily results in overfitting or underfitting during
he training of a deep learning network. To solve this problem, we
dopt the approach of transfer learning.

The COCO [15] dataset, which has over 300,000 tagged images with
ver 1.5 million targets, is sufficient for training an object detection
odel. We first train our model based on the COCO dataset to obtain
retrained weights and then continue the training process with our
ustom dataset. The comparison between training from scratch and

ransfer learning is shown in Fig. 12.
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Fig. 12. Transfer learning.

Table 3
Dataset details.
Type Num

Images 760

Weld 1975
Surface pore 4420
Groove 327
Slag inclusion 1861

It is evident that transfer learning accelerates the training process
ignificantly and improves the performance of the final model. Specif-
cally, the mAP reaches 94.5 with transfer learning for 126 epochs but
nly 90.7 when training from scratch for 236 epochs.

. Experiments

This section primarily introduces and summarizes the experimental
onclusions. First, we illustrate our computer environments and major
yperparameters. Second, we exhibit the training results of our model
nd its comparison with other models to verify the innovation of our
pproach.

.1. Dataset

In this research, the dataset consists of 760 tagged images and 8583
agged targets. Table 3 gives the details of our dataset. Among the
mages in the shuffled dataset, we select 10% as a test set to perform
ross-validation and demonstrate the feasibility and superiority of our
ethod.

.2. Experimental configurations

The computer environment on which our experiments are based is
hown in Table 4. In the training process, we used the Kaiming normal
o initialize the weights and adopt an optimizer for stochastic gradient
escent (SGD), with momentum and weight decay assigned as 0.937
nd 0.000332, respectively. We set the total number of training epochs
o 300 and the batch size to 6. The initial Lr 𝜂 is set to 0.01, and the

final Lr is set to 0.0005. The momentum for the BN layers is assigned as
0.03. For the loss function, we set 𝜆𝐶𝐼𝑜𝑈 , 𝜆𝑜𝑏𝑗 , and 𝜆𝑐𝑙𝑠 to 2.52, 102, and
.51, respectively. In addition, we fuse the BN layers and convolution
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ayers in the prediction phase to accelerate the prediction process.
Table 4
Computer environment.
Item Value

System Ubuntu 18.04
CPU i7 7700K
GPU Nvidia GeForce GTX 1080Ti
RAM 32 Gb
CUDA 10.2
PyTorch 1.5.0
Torchvision 0.6

Table 5
Comparison between models.

Model Type mAP@0.5 FPS

Ours One-Stage 94.5 42
YOLOv4 One-Stage 72.8 45
SSD300 One-Stage 52.9 42
RetinaNet One-Stage 65.6 10
Faster-RCNN Two-Stage 67.0 5
EfficientDet-D0 One-Stage 71.1 36
EfficientDet-D1 One-Stage 83.6 30
EfficientDet-D2 One-Stage 93.1 26

Table 6
A detailed comparison with YOLOv4 for mAP@0.5.

Category Ours YOLOv4 Improved by

Total 94.5 72.8 29.8%

Weld 99.8 99.7 0.1%
Surface pore 91.7 66.6 37.7%
Groove 93.7 76.0 23.3%
Slag inclusion 92.6 48.8 89.8%

6.3. Experimental results

To verify the improvement of YOLO-attention, various comparison
models were tested during the experiment. A Friedman test was also
performed on the results, which yielded a probability 𝑝 less than 0.01.
Table 5 displays the experimental results of the proposed model on our
test set, where all processes were performed under the same experimen-
tal conditions, such as transfer learning based on the COCO dataset.
As shown in Table 5, compared to the original YOLOv4, our model
improved the mAP by 29.8% with a slight reduction in the FPS. From
the detailed information in Table 6, the effect of our model compared
to YOLOv4 shows little difference in inspecting simple welding beads
but is improved by 37.7%, 23.3%, 78.8% in the other three more
difficult inspections, illustrating that the model can better inspect small
and intensive targets after our optimization. For SSD300, our model
improved by 78.6% while ensuring the same FPS. In addition, our
model also has a 44.1% lead on RetinaNet [60].

Regarding the two-stage detection model, its detection efficiency
does not satisfy the needs of industrial applications due to its com-
plexity. However, we still test the performance of Faster-RCNN on our
dataset. The experimental results indicate that the efficiency of our
model is eight times greater and the mAP improves by 41.0%.

We also experiment on the state-of-the-art model EfficientDet and
list the results. Since the demand for real-time detection is at least
30 FPS, only EfficientDet-D0 and EfficientDet-D1 meet our require-
ments. Our model still has advantages in terms of accuracy and speed.
Only for the lower efficiency requirement does the EfficientDet ap-
proach the accuracy of our model. In addition, our model requires less
time and GPU memory during training; EfficientDet-D1 takes 30 h for
300 epochs, occupying 10.51 Gb GPU memory, while ours takes only
7 h and 9.62 Gb GPU memory.

For practical industrial applications, we select several complex im-
ages with small and intensive defects for testing and display the predic-
tion results in Fig. 13. Our model still has an excellent detection effect
for intensive small targets and correctly excludes confusing samples
that are not on the weld bead.
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Fig. 13. Defect detection results in WAAM.

6.4. Ablation experiments

Our experimental results demonstrate the effectiveness of the
channel-wise attention mechanism in detection, as shown in Table 7.

To validate our modification of activation functions, we tested dif-
ferent activation functions and compared their performance in Table 8.
In particular, we found that the Mish [61] and Swish [62] activation
functions significantly increase the occupation of GPU memory, which
9

Table 7
Performance of different backbones.
Backbone mAP@0.5 FPS

DarkNet53-attention 94.5 42
CSPDarkNet53 87.9 45
DarkNet53 86.7 43

Table 8
Comparison between different activation functions.
Activation function mAP@0.5

PReLU 94.5
Leaky ReLU 93.6
Mish 92.1
Swish 92.0

Table 9
Tests with SPP.
Model mAP@0.5 FPS

with 3 SPPs 94.5 42
with 1 SPP 89.2 43
no SPP 84.0 44

Table 10
Experiments on the EMA.
Training mAP@0.5

With EMA 94.5
Without EMA 86.1

Fig. 14. Visualization of the EMA.

increases the training difficulty and is not suitable for our industrial
application.

The SPP operation is not a necessary step in extracting features and
directly increases the GPU computation time. However, it effectively
improves the mAP of the model because it extracts more sophisticated
features with different receptive fields to improve the sensitivity to
small targets. We carried out ablation experiments, and the results are
shown in Table 9.

After applying the EMA to the training and then tracking the weight,
as shown in Fig. 14, we conclude that the fluctuation range of the
weight updating curve becomes smoother, indicating that the influence
of the various interfering factors decreases. In the later stage of train-
ing, the EMA can also reduce such oscillations and make the model
converge to the optimal global solution, which effectively improves the
inference performance without increasing the computational burden of
the model (Table 10).
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Fig. 15. Defects in multi-pass of different materials.
Fig. 16. Pylon beam of civil aircraft fabricated by additive manufacturing. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Finally, in order to rigorously demonstrate the effectiveness of the
optimization method in this paper, we conducted 10 independent ex-
periments on the model before and after optimization and analysed the
experimental results using ANOVA. The 𝑝 obtained was less than 0.01.
The above statistical analysis proved that the optimization method in
this paper has a very significant effect.

6.5. Validation

In further research, the YOLO-attention method is used to be trained
based on the defect data of multi-pass deposition of different materials
and applied in defect detection. Fig. 15 shows the detection results.
Fig. 16 shows the pylon beam of a civil aircraft fabricated by additive
manufacturing. The green coatings are antioxidation coatings for heat
treatment. The material is 15–5PH stainless steel. To prevent defects,
the detection system detects in real time in the whole additive man-
ufacturing process. Through defect detection of multi-pass deposition
and parts, it is proven that this method has wide application prospects
in the field of additive manufacturing.

7. Conclusion

In this paper, we introduce and propose an improved model based
on YOLOv4 to address the difficult problems of defect detection in
WAAM. First, we describe the whole detection process of the defect
detection system. Second, we present the backbone network, SPP, and
FPN of our model and illustrate the strategies and tricks used in the
training process. Finally, we demonstrate the effect and robustness of
our detection system and compare it with other detection models to
show its advantages.

The three techniques adopted in our model greatly improve the
object detection capability for small and dense defects in WAAM.
First, the channel-wise attention mechanism in the backbone network
effectively improves the detection effect and enhances the model by
7.7 mAP while only reducing the speed by 3 FPS. Second, the multiple-
SPP structure in the FPN extracts additional information with receptive
10
fields of different sizes, which improves the model by 10.4 mAP. Third,
the EMA strategy used in the training process improves the accuracy by
8.4 mAP without increasing the amount of calculation in the inference
stage.

In summary, our model obtained an mAP of 94.5 on the test set,
and the calculation speed reached 42 FPS with an NVIDIA GeForce
GTX 1080Ti, which is sufficient for a real-time defect detection system.
In conclusion, the experiments indicate that our proposed model has a
high enough precision and efficiency to be applied in practical WAAM
industry production.
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