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ABSTRACT

Predicting the change in binding free energy (∆∆G) is crucial for understanding
and modulating protein-protein interactions, which are critical in drug design. Due
to the scarcity of experimental ∆∆G data, existing methods focus on pre-training,
while neglecting the importance of alignment. In this work, we propose Boltzmann
Alignment technique to transfer knowledge from pre-trained inverse folding models
to prediction of ∆∆G. We begin by analyzing the thermodynamic definition of
∆∆G and introducing the Boltzmann distribution to connect energy to the protein
conformational distribution. However, the protein conformational distribution is
intractable. Therefore, we employ Bayes’ theorem to circumvent direct estimation
and instead utilize the log-likelihood provided by protein inverse folding models
for the estimation of ∆∆G.
Compared to previous methods based on inverse folding, our method explicitly
accounts for the unbound state of the protein complex in the ∆∆G thermodynamic
cycle, introducing a physical inductive bias and achieving supervised and unsuper-
vised state-of-the-art (SoTA) performance. Experimental results on SKEMPI v2
indicate that our method achieves Spearman coefficients of 0.3201 (unsupervised)
and 0.5134 (supervised) on SKEMPI v2, significantly surpassing the previously
reported SoTA results of 0.2632 and 0.4324, respectively. Furthermore, we demon-
strate the capability of our method in binding energy prediction, protein-protein
docking, and antibody optimization tasks.
Code is available at https://github.com/aim-uofa/BA-DDG

Figure 1: Overview of the Boltzmann Alignment technique. Left: inference with a protein inverse
folding model. Right: illustration of thermodynamic cycle in the modulation of protein-protein
interactions.
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1 INTRODUCTION

Protein–protein interactions (PPIs) are fundamental to the execution of diverse and essential biological
functions across all organisms. High-fidelity computational modeling of protein-protein interac-
tions is indispensable. The interaction properties of protein-protein binding can be quantitatively
characterized by binding free energy (∆G), the difference in Gibbs free energy between the bound
state and the unbound state. Predicting the change in binding free energy (∆∆G), also known as
the mutational effect, is crucial to modulating protein-protein interactions. Accurate prediction of
∆∆G facilitates the identification of mutations that enhance or decrease the binding strength informs
the efficient design of proteins, thus accelerating the development of therapeutic interventions and
deepening our understanding of biological mechanisms.

Deep learning has demonstrated significant potential in protein modeling (Lin et al., 2022; Abramson
et al., 2024), inspiring a paradigm shift in computational methods for predicting ∆∆G. Traditional
biophysics-based and statistics-based approaches (Park et al., 2016; Alford et al., 2017; Delgado
et al., 2019) are increasingly being replaced by deep learning techniques (Shan et al., 2022a; Liu
et al., 2023). Despite advancements, ∆∆G prediction is still hindered by the scarcity of annotated
experimental data. Consequently, pre-training on extensive unlabeled data has emerged as a prevalent
strategy for ∆∆G prediction (Luo et al., 2023; Wu et al., 2024). Recent studies observe that structure
prediction models and inverse folding models implicitly capture the energy landscape (Bennett et al.,
2023; Widatalla et al., 2024; Lu et al., 2024). Although effective, these pre-training-based approaches
simply employ supervised fine-tuning (SFT) and neglect the importance of alignment. Since SFT may
result in catastrophic forgetting of the general knowledge gained during unsupervised pre-training,
there remains an opportunity for better knowledge transfer.

In other biological tasks, recent studies have adapted alignment techniques from large language
models, such as direct preference optimization (DPO) (Rafailov et al., 2023), to integrate experimental
fitness information into biological generative models (Zhou et al., 2024; Widatalla et al., 2024;
Chennakesavalu et al., 2024; Liu et al., 2024). However, directly adopting these alignment techniques
for ∆∆G prediction is inadequate, as they lack the physical inductive bias required for energy-related
biological tasks.

In this work, we propose a technique named Boltzmann Alignment to transfer knowledge from pre-
trained inverse folding models to ∆∆G prediction. We first analyze the thermodynamic definition
of ∆∆G and introduce the Boltzmann distribution to connect energy with protein conformational
distribution, thereby highlighting the potential of pre-trained probabilistic models. However, the
protein conformational distribution is intractable. To address this, we employ Bayes’ theorem to
circumvent direct estimation and instead leverage the log-likelihood provided by protein inverse
folding models for ∆∆G estimation. Our derivation provides a rational perspective on the previously
observed high correlation between binding energy and log-likelihood from inverse folding models
(Bennett et al., 2023; Widatalla et al., 2024; Shanker et al., 2024). Compared to previous inverse
folding-based methods, our method explicitly considers the unbound state of the protein complex,
enabling fine-tuning of inverse folding models in a manner consistent with statistical thermodynamics.
Our contributions can be summarized as follows:

• We propose Boltzmann Alignment, which introduces physical inductive bias through Boltz-
mann distribution and thermodynamic cycle to transfer knowledge from pre-trained inverse
folding models to ∆∆G prediction. We not only provide an alignment technique, but also
offer insight into the high correlation previously observed between binding energy and
log-likelihood in inverse folding models.

• Experimental results on SKEMPI v2 indicate that our method achieves Spearman coefficients
of 0.3201 (unsupervised) and 0.5134 (supervised) on SKEMPI v2, significantly exceeding
the previously reported SoTA values of 0.2632 and 0.4324, respectively. Further ablations
demonstrate that our approach outperforms previous inverse folding-based methods and
other alignment techniques. Additionally, we showcase the broader applicability of our
method in binding energy prediction, protein-protein docking, and antibody optimization.
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2 RELATED WORK

2.1 ALIGNMENT OF GENERATIVE MODELS

The prevailing pre-training approach for generative models, which focuses on maximizing the
likelihood of training data, often falls short in aligning with specific user preferences. Consequently,
there is growing interest in integrating task-specific information while maintaining the generative
capabilities, especially in large language models (LLM). A commonly used alignment method is
supervised fine-tuning (SFT), where models undergo additional training on curated datasets with
specific annotations, utilizing a straightforward loss function. However, SFT poses the risk of
overfitting to the fine-tuning dataset, which may result in catastrophic forgetting of the general
knowledge gained during unsupervised pre-training. Much of the current alignment paradigm
relies on reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022). Within this
framework, human preferences provided as pairwise rankings are used to train a reward model, which
can then optimize a policy using proximal policy optimization (PPO) (Schulman et al., 2017). An
alternative approach, known as direct preference optimization (DPO) (Rafailov et al., 2023), serves
as a plug-and-play method that maximizes the likelihood of preferences. Numerous recent studies
have expanded on the concepts of RLHF and DPO (An et al., 2023; Azar et al., 2023; Meng et al.,
2024; Zhang et al., 2024).

Despite these advancements in LLM, developing effective methods to integrate experimental fitness
information into biological generative models remains a crucial open question. Park et al. (2023)
and Chennakesavalu et al. (2024) explore alignment in the context of inverse molecular design,
enhancing the desired properties of generated compounds against a drug target. Liu et al. (2024)
fine-tunes retrosynthetic planning models with a preference-based loss to improve the quality of
generated synthetic routes. AbDPO (Zhou et al., 2024) introduces direct energy-based preference
optimization to structure-sequence antibody co-design diffusion model, producing antibodies with
low energy and high binding affinity. Mistani & Mysore (2024) incorporates DPO into protein
language models to generate peptides with desirable physicochemical properties that bind to a given
target protein. ProteinDPO (Widatalla et al., 2024) imbues structure-informed protein language model
with biophysical information through DPO, enabling it to score stability and generate stable protein
sequences. These efforts collectively underscore the potential of alignment techniques in advancing
the performance of biological generative models.

2.2 PROTEIN-PROTEIN INTERACTION MODELING

Protein-protein interaction modeling has been extensively studied for decades, primarily concentrating
on two key questions: where proteins interact, known as binding site prediction (Tubiana et al., 2022;
Fang et al., 2023), and how they interact, addressed by protein-protein docking (Yan et al., 2020;
Ketata et al., 2023). Recently, AlphaFold3 (Abramson et al., 2024) reaches almost 80% success rate
of predicting general protein complex structures, effectively tackling both the "where" and "how"
of protein-protein interactions. However, structure is not everything (Lowe, 2023); biomolecular
interactions cannot be fully captured by static structures alone. A comprehensive understanding
requires appreciating the dynamic processes of association and dissociation between protein partners
(Lu et al., 2024), which are quantified by measures such as the binding affinity (Kd) or binding free
energy (∆G). Predicting the change in binding free energy (∆∆G) is thus crucial for modulating
protein-protein interactions; it enables the identification of mutations that enhance or diminish binding
strength, which is essential for efficient protein design. For example, in antibody discovery, accurately
predicting ∆∆G is fundamental to antibody maturation.

A variety of methods have been developed to predict ∆∆G. Traditional approaches can be categorized
into two main types: biophysical and statistical methods. Biophysical methods (Park et al., 2016;
Alford et al., 2017; Delgado et al., 2019) use energy calculations to model how proteins interact
at the atomic level, but they often struggle with balancing speed and accuracy. Statistical methods
(Geng et al., 2019; Zhang et al., 2020) depend on feature engineering, utilizing descriptors that
capture geometric, physical, and evolutionary characteristics of proteins. Traditional approaches
depend heavily on human expertise and struggle to accurately capture complex interactions between
proteins. Recently, deep learning-based approaches have emerged. Despite advancements in end-to-
end learning approaches (Shan et al., 2022a), ∆∆G prediction is still limited by the lack of annotated
experimental data. As a result, pre-training on extensive unlabeled data has become a common
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strategy for improving predictions, involving various pre-training proxy tasks such as protein inverse
folding (Yang et al., 2020), side-chain modeling (Luo et al., 2023; Liu et al., 2023; Mo et al., 2024),
and masked modeling (Wu et al., 2024). These in-depth explorations of pre-training proxy tasks
not only establish a solid foundation but also highlight the urgent need for transferring acquired
knowledge to accurately predict ∆∆G.

3 METHOD

Based on the Boltzmann distribution and thermodynamic cycles, as illustrated on the right side of
Figure 1, we first establish the connection between ∆∆G and protein sequence likelihoods, which
we call Boltzmann Alignment (Sec. 3.1). Next, we present a method (Sec. 3.2) that integrates the
inverse folding model into Boltzmann alignment. This method is named BA-Cycle and uses the
inverse folding model to evaluate ∆∆G by predicting the likelihoods of protein sequences, as shown
on the left side of Figure 1. Upon BA-Cycle, we introduce a method named BA-DDG (Sec. 3.3)
to fine-tune the inverse folding model using ∆∆G-labeled data, introducing an inductive bias from
statistical thermodynamics.

3.1 BOLTZMANN ALIGNMENT

To simplify the explanation, we introduce the case where the complex consists of two chains, chain A
and chain B; however, the following content can be extended to cases with more chains. The binding
free energy (∆G) of the complex is the difference between the Gibbs free energy of the bound state,
denoted as Gbnd, and the Gibbs free energy of the unbound state, denoted as Gunbnd. Furthermore,
using the Boltzmann distribution (Atkins et al., 2023), we can express the binding free energy (∆G)
in terms of the probabilities of the two chains being in the bound state, pbnd, and in the unbound state,
punbnd, with the partition function eliminated by the two-state comparison:

∆G = Gbnd −Gunbnd = −kBT · (log pbnd − log punbnd) (1)

where kB is the Boltzmann constant and T is the thermodynamic temperature. Specifically, the
probabilities pbnd and punbnd represent the probabilities of the protein complex structure being in
the bound conformation Xbnd and the unbound conformation Xunbnd, respectively, when the protein
complex sequence SAB is given. Therefore, pbnd and punbnd can be expressed as the conditional
probabilities p(Xbnd | SAB) and p(Xunbnd | SAB), where we simplify and approximate Xbnd and Xunbnd
as the backbone structure of the protein complex. Substituting these conditional probabilities into
Eq. 1 gives:

∆G = −kBT · (log p(Xbnd | SAB)− log p(Xunbnd | SAB)) (2)

Estimating p(X | S) poses several challenges. First, most current protein structure prediction models
typically predict a single conformation and are not inherently probabilistic. Although these models
provide uncertainty metrics such as pLDDT, pAE, and pTM (Abramson et al., 2024), and while
these metrics have been observed to correlate with binding free energy (Lu et al., 2024), they do
not offer a true probabilistic interpretation. Second, although recent efforts (Jing et al., 2023; 2024;
Abramson et al., 2024) aim to introduce probabilistic models, specifically diffusion models, these
neural networks learn to estimate the score ∇X log p(X | S) rather than p(X | S). Moreover, due
to the relatively low sample efficiency of diffusion models, directly estimating p(X | S) remains
intractable. Therefore, we use Bayes’ theorem to circumvent direct estimation:

p(X | S) = p(S | X) · p(X)
p(S)

(3)

Substituting this Bayes’ theorem equation into Eq. 2 and eliminating the protein complex sequence
probability p(SAB) gives:

∆G = −kBT ·
(
log

p(SAB | Xbnd) · p(Xbnd)

p(SAB)
− log

p(SAB | Xunbnd) · p(Xunbnd)

p(SAB)

)
(4)

= −kBT · log p(SAB | Xbnd) · p(Xbnd)

p(SAB | Xunbnd) · p(Xunbnd)
(5)
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At this point, we have established the connection between the conditional probability of the protein
sequence p(S | X) and ∆G. Next, based on this, we further analyze the connection between the
conditional probability of the protein sequence p(S | X) and ∆∆G. Specifically, ∆∆G represents
the difference between the ∆G of the wild type and the ∆G of the mutant type. The wild type and
mutant type refer to the unmutated and mutated protein complexes, respectively. To distinguish
between these two types, we denote them by adding “mut” and “wt” in the upper right corner of
the notation; for example, ∆Gmut represents the ∆G of the mutant type. With this notation, we can
express ∆∆G based on Eq. 5 as follows:

∆∆G = ∆Gmut −∆Gwt (6)

= −kBT ·
(
log

p(Smut
AB | Xmut

bnd) · p(Xmut
bnd)

p(Smut
AB | Xmut

unbnd) · p(Xmut
unbnd)

− log
p(Swt

AB | Xwt
bnd) · p(Xwt

bnd)

p(Swt
AB | Xwt

unbnd) · p(Xwt
unbnd)

)
(7)

The backbone structure of the mutant type, Xmut, is actually unknown. To address this issue, we
introduce the assumption used in previous methods that the protein backbone structure remains
unchanged before and after mutation. Therefore, we can approximate Xwt

unbnd to be equal to Xmut
unbnd and

Xwt
bnd to be equal to Xmut

bnd . Based on this assumption, we can eliminate the probability terms in Eq. 7:

∆∆G = −kBT ·
(
log

p(Smut
AB | Xmut

bnd)

p(Smut
AB | Xmut

unbnd)
− log

p(Swt
AB | Xwt

bnd)

p(Swt
AB | Xwt

unbnd)

)
(8)

3.2 PROBABILITY ESTIMATION

Eq. 8 transforms ∆∆G into the likelihoods of protein sequences p(SAB | X). Here, we demonstrate
the method of estimating the sequence probabilities of the bound state, p(SAB | Xbnd), and the
unbound state, p(SAB | Xunbnd), using the inverse folding model. Since we assume that the backbone
structure remains unchanged before and after mutation, i.e., Xwt = Xmut, the evaluation method for
both the wild type and mutant type is identical, and no additional discussion is required.

The bound state. In our task, the backbone structure Xbnd of the bound state is usually known.
Therefore, the inverse folding model can directly evaluate the probability p(SAB | Xbnd). We denote
the probability predicted by the inverse folding model as pθ(SAB | Xbnd), where θ is the model
parameter.

The unbound state. The unbound state is typically not explicitly provided in known backbone
structure; therefore, we propose an alternative probability estimation method. The unbound state
approximately represents the scenario where chains A and B of the complex are relatively far apart,
with minimal interactions between them. Thus, a reasonable estimation approach is to independently
evaluate these two chains using the inverse folding model. We denote the structure and sequence of
chain A as XA and SA, and those of chain B as XB and SB. The estimation method for p(SAB | Xunbnd)
can be expressed as:

p(SAB | Xunbnd) ≈ pθ(SA | XA) · pθ(SB | XB) (9)

where pθ(SA | XA) and pθ(SB | XB) are the probabilities predicted by the inverse folding model.

Unsupervised estimation of ∆∆G. Based on the estimation method described above, we can utilize
a pretrained inverse folding model, ProteinMPNN (Dauparas et al., 2022), to achieve unsupervised
evaluation of ∆∆G. We name this approach BA-Cycle, which can be expressed as:

∆̂∆G = −kBT ·
(
log

pθ(S
mut
AB | Xmut

bnd)

pθ(Smut
A | Xmut

A ) · pθ(Smut
B | Xmut

B )
− log

pθ(S
wt
AB | Xwt

bnd)

pθ(Swt
A | Xwt

A ) · pθ(Swt
B | Xwt

B )

)
(10)

Comparison with previous work. Previous work (Bennett et al., 2023; Cagiada et al., 2024;
Widatalla et al., 2024; Shanker et al., 2024) attempts to use protein inverse folding models to
predict ∆∆G. However, these studies do not explicitly account for the unbound state punbnd in the
thermodynamic cycle. We denote these methods as ∆̂∆GPrev, summarized as:

∆̂∆GPrev = −kBT ·
(
log pθ(S

mut
AB | Xmut

bnd)− log pθ(S
wt
AB | Xwt

bnd)
)

(11)
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3.3 SUPERVISION

We propose BA-DDG, a method that leverages ∆∆G-labeled data to fine-tune BA-Cycle through
Boltzmann Alignment. BA-DDG employs a forward process identical to that of BA-Cycle. During
training, the parameters θ of the inverse folding model and kBT in Eq. 10 are treated as learnable
parameters that undergo optimization. The objective of BA-DDG is to minimize the discrepancy
between the ground truth ∆∆G and the predicted ∆̂∆G, while maintaining the distribution of the
original pre-trained model, denoted as the reference model distribution pref(S | X). The corresponding
loss LBoltzmann can be expressed as:

LBoltzmann = ∥∆∆G− ∆̂∆G∥︸ ︷︷ ︸
minimize predicted error

−βDKL(pθ(S | X)∥pref (S | X))︸ ︷︷ ︸
distributional penalty

(12)

where β is a hyperparameter that controls the strength of the distributional penalty.

4 EXPERIMENTS

In this section, we investigate three key questions through a series of experiments: (1) whether the
physics-informed alignment technique we propose can achieve state-of-the-art (SoTA) accuracy on
the SKEMPI v2 dataset under both unsupervised and supervised settings (Sec. 4.2); (2) whether the
introduced thermodynamic cycle is indeed effective and has advantages over traditional SFT and
DPO methods; (3) whether predicted structures can effectively replace crystal structures as inputs
in our method (Sec. 4.3). Before addressing these questions, we first introduce the benchmarks and
baselines (Sec. 4.1). Additionally, we explore potential applications of our method, taking binding
energy prediction, protein-protein docking and antibody optimization as examples (Sec. 4.4).

4.1 BENCHMARK

Dataset. The SKEMPI v2 dataset (Jankauskaitė et al., 2019), the extensive annotated mutation
dataset for 348 protein complexes, includes 7,085 amino acid mutations along with changes in
thermodynamic parameters and kinetic rate constants. Despite lacking structures of the mutated
complexes, it serves as the most well-established benchmark for ∆∆G prediction. To prevent data
leakage, we follow Luo et al. (2023) and Wu et al. (2024), first dividing the dataset into 3 folds by
structure, ensuring each fold contains unique protein complexes. This division forms the basis of our
3-fold cross-validation process, where two folds are used for training and validation, and the third
fold is reserved for testing. This approach yields 3 different sets of parameters and ensures that every
data point in SKEMPI v2 is tested once.

Evaluation metrics. To thoroughly assess the performance of ∆∆G prediction, we utilize a total
of 7 metrics. This includes 5 overall metrics: (1) Pearson correlation coefficient, (2) Spearman’s
rank correlation coefficient, (3) minimized RMSE (root mean squared error), (4) minimized MAE
(mean absolute error), and (5) AUROC (area under the receiver operating characteristic). To calculate
AUROC, binary classification labels are assigned to mutations based on the sign of the ∆∆G
predictions. In practical settings, the correlation for individual protein complexes tends to be of
greater importance. Consequently, we group mutations by their structural characteristics, calculate
the Pearson and Spearman correlation coefficients for each group, and then report the average of
these per-structure correlations as 2 additional metrics.

Baselines. We compare our ∆∆G predictors, BA-Cycle and BA-DDG, with state-of-the-art unsu-
pervised and supervised methods, respectively. Unsupervised methods are categorized into three
groups: (1) traditional empirical energy functions such as Rosetta Cartesian ∆∆G (Alford et al.,
2017) and FoldX (Delgado et al., 2019); (2) sequence/evolution-based approaches, exemplified by
ESM-1v (Meier et al., 2021), Position-Specific Scoring Matrix (PSSM), MSA Transformer (Rao
et al., 2021), and Tranception (Notin et al., 2022); (3) structure-informed pre-training-based methods
not trained on ∆∆G labels, such as ESM-IF (Hsu et al., 2022), MIF-∆logits (Yang et al., 2020),
RDE-Linear (Luo et al., 2023), and a model pre-trained to predict residue B-factors that are then used
to predict ∆∆G. Supervised methods can be divided into 2 categories: (1) end-to-end learning mod-
els, including DDGPred (Shan et al., 2022a) and a model that utilizes a self-attention-based network
(Jumper et al., 2021) as the encoder but employs an MLP to directly predict ∆∆G (End-to-End); (2)
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Table 1: Mean results of 3-fold cross-validation on the SKEMPI v2 dataset. Bold and underline
indicate the best metrics for methods trained and not trained on the ∆∆G labels, respectively.

Supervision Method Per-Structure Overall
Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑

✗

Rosetta 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
FoldX 0.3789 0.3693 0.3120 0.4071 1.9080 1.3089 0.6582

ESM-1v 0.0073 -0.0118 0.1921 0.1572 1.9609 1.3683 0.5414
PSSM 0.0826 0.0822 0.0159 0.0666 1.9978 1.3895 0.5260
MSA Transformer 0.1031 0.0868 0.1173 0.1313 1.9835 1.3816 0.5768
Tranception 0.1348 0.1236 0.1141 0.1402 2.0382 1.3883 0.5885

B-factor 0.2042 0.1686 0.2390 0.2625 2.0411 1.4402 0.6044
ESM-IF 0.2241 0.2019 0.3194 0.2806 1.8860 1.2857 0.5899
MIF-∆logit 0.1585 0.1166 0.2918 0.2192 1.9092 1.3301 0.5749
RDE-Linear 0.2903 0.2632 0.4185 0.3514 1.7832 1.2159 0.6059
BA-Cycle 0.3722 0.3201 0.4552 0.4097 1.8402 1.3026 0.6657

✓

DDGPred 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821 0.6992
End-to-End 0.3873 0.3587 0.6373 0.4882 1.6198 1.1761 0.7172

MIF-Network 0.3965 0.3509 0.6523 0.5134 1.5932 1.1469 0.7329
RDE-Network 0.4448 0.4010 0.6447 0.5584 1.5799 1.1123 0.7454
DiffAffinity 0.4220 0.3970 0.6609 0.5560 1.5350 1.0930 0.7440
Prompt-DDG 0.4712 0.4257 0.6772 0.5910 1.5207 1.0770 0.7568
ProMIM 0.4640 0.4310 0.6720 0.5730 1.5160 1.0890 0.7600
Surface-VQMAE 0.4694 0.4324 0.6482 0.5611 1.5876 1.1271 0.7469
BA-DDG 0.5453 0.5134 0.7118 0.6346 1.4516 1.0151 0.7726

structure-informed pre-training-based methods fine-tuned on ∆∆G labels, including MIF-Network
(Yang et al., 2020), RDE-Network (Luo et al., 2023), DiffAffinity (Liu et al., 2023), Prompt-DDG
(Wu et al., 2024), ProMIM (Mo et al., 2024), and Surface-VQMAE (Wu & Li, 2024).

4.2 MAIN RESULTS

Comparison with baselines. According to Table 1, our BA-DDG outperforms all the baselines
across all evaluation metrics. Notably, it demonstrates a significant improvement in per-structure
correlations, highlighting its greater reliability for practical applications. BA-Cycle achieves compa-
rable performance to empirical energy functions and surpasses all unsupervised learning baselines.
Detailed results for single-point, multi-point, and all-point mutations are available in Table 6.

Visualization for correlation analysis. We present scatter plots of experimental and predicted ∆∆G
for three representative methods in Fig. 2, along with their overall Pearson and Spearman correlation
scores. Additionally, Fig. 3 shows the distribution of per-structure Pearson and Spearman correlation
scores, as well as the average results across all structures. It is evident that BA-DDG outperforms
other methods in both qualitative visualization and quantitative metrics.
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Figure 2: Comparison of correlations between experimental ∆∆G and ∆∆G predicted by three
representative methods.
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Figure 3: Distributions of per-structure Pearson correlation scores and Spearman correlation scores
for six representative methods.

4.3 ABLATION STUDY

Ablation study on thermodynamic cycle. As shown in Table 2, we evaluate the impact of thermody-
namic cycle using 3-fold cross-validation on the SKEMPI v2 dataset. We compare our training-free
version BA-Cycle to the basic usage of protein inverse folding models, as demonstrated in previous
studies (Bennett et al., 2023; Cagiada et al., 2024; Widatalla et al., 2024). As described in Eq.
11, these studies do not account for thermodynamic cycle, as they consider only pbnd and neglect
punbnd. Disregarding thermodynamics significantly harms performance, as BA-Cycle outperforms
ESM-IF and the original ProteinMPNN.

Table 2: Ablation study on thermodynamic cycle. We report the mean results of 3-fold cross-validation
on the SKEMPI v2 dataset. Bold indicate the best metrics.

Method Per-Structure Overall
Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑

ESM-IF 0.2241 0.2019 0.3194 0.2806 1.8860 1.2857 0.5899
ProteinMPNN 0.2825 0.2741 0.2753 0.3112 1.9869 1.4048 0.6191
BA-Cycle 0.3722 0.3201 0.4552 0.4097 1.8402 1.3026 0.6657

Ablation study on supervision methods. As presented in Table 3, we evaluate the impact of various
supervision methods. The training and inference settings are the same as in the main results. The
implementation details of other alignment techniques can be found in Appendix A.1. Boltzmann
supervision yields the best performance across all evaluation metrics, compared to other alignment
techniques like SFT and DPO. These results clearly demonstrate the effectiveness of our proposed
methods.

Table 3: Ablation study on supervision methods. We report the mean results of 3-fold cross-validation
on the SKEMPI v2 dataset. Bold indicate the best metrics.

Supervison Per-Structure Overall
Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑

SFT 0.5167 0.4769 0.7048 0.6240 1.4661 1.0346 0.7725
DPO 0.4212 0.3913 0.5397 0.4870 1.7399 1.2422 0.7036
Boltzmann 0.5453 0.5134 0.7118 0.6346 1.4516 1.0151 0.7726

Inference with predicted structures. The SKEMPI v2 benchmark includes wild-type crystal
structures, which are also used by previous state-of-the-art methods such as Prompt-DDG (Wu et al.,
2024) and RDE (Luo et al., 2023). However, crystal structures of mutants are often unknown, and
using wild-type structures for mutants can introduce errors, especially with multiple mutation sites. In
practical applications, such as antibody design, only sequence information may be available without
a template crystal structure. To assess the usability of ∆∆G prediction models in various practical
scenarios, we investigate whether our fine-tuned ProteinMPNN relies on crystal structures as inputs
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to predict ∆∆G, as presented in Table 4. While the performance with AlphaFold3 predicted
structures is slightly lower, the differences are minimal, indicating that our method does not
strictly require crystal structures when a reasonably accurate predicted structure is available.

Table 4: Comparison of inference with AlphaFold3 (Abramson et al., 2024) predicted structures and
crystal structures. We report the mean results of 3-fold cross-validation on the common subset of Test
Set 1 from SKEMPI as defined in SSIPe (Huang et al., 2019) and the SKEMPI dataset as employed
in DSMBind (Jin et al., 2023). During the 3-fold cross-validation, models are trained on the SKEMPI
v2 dataset using crystal structures as inputs and validated on the subset using AlphaFold3 predicted
structures. Both the AlphaFold3 predicted structures and the dataset are provided by Lu et al. (2024).

Structure Per-Structure Overall
Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑

Crystal 0.8057 0.7322 0.8584 0.7946 1.3948 0.9713 0.8437
AlphaFold3 0.8017 0.7459 0.8545 0.7821 1.4122 0.9817 0.8314

4.4 APPLICATION

4.4.1 BINDING ENERGY PREDICTION

Antibody design is vital for treating diseases such as cancer and infections. Although we lack a com-
prehensive explanation for canceling out p(Xbnd) and p(Xunbnd) in Eq. 5, BA-DDG can approximate
∆G using only inverse folding:

∆̂G ≈ −kBT · (log pθ(SAB | XAB)− (log pθ(SA | XA) + log pθ(SB | XB))) (13)

We benchmark antibody-antigen binding energy predictors, with the experimental setup proposed
in DSMBind (Jin et al., 2023). DSMBind is an unsupervised method trained on 3,416 antibody-
antigen complexes from SAbDab (Schneider et al., 2021). SAbDab has over 3,500 non-redundant
antibody-antigen complex structures, but only 566 of them have binding energy labels. Other methods
involve pre-training on the entire binding energy dataset from SKEMPI, followed by fine-tuning
on antibody-antigen data from SKEMPI. We evaluate these methods on a SAbDab subset of 566
complexes with binding energy labels. As depicted in Fig. 4 (left), BA-DDG achieves a Spearman
correlation of 0.385, outperforming other methods.

4.4.2 RIGID PROTEIN-PROTEIN DOCKING

DiffDock-PP (Ketata et al., 2023) is a diffusion generative model specifically designed for rigid
protein-protein docking. It learns to translate and rotate unbound protein structures into their bound
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Figure 4: Left: The Spearman correlation between predicted and true binding free energy (∆G) on
the SAbDab test set. Right: Performance of selection methods for rigid protein-protein docking as
the number of generative samples increases. “Perfect Selection” shows the best possible performance
with an ideal selection method. “Diffdock-PP” refers to the confidence model proposed by Diffdock-
PP (Ketata et al., 2023). “BA-DDG” involves using our method to estimate ∆G for selection.
Performance is assessed by calculating the fraction of 13 antibody complex generation tasks on the
DIPS test set (Townshend et al., 2019) that achieve a C-RMSD of less than 5Å.
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conformations. The docking process comprises two primary steps. First, the diffusion model generates
samples. Then, a pre-trained confidence model evaluates these samples to identify the one with
the highest confidence score, which is used as the final docking result. BA-DDG can serve as an
approximate binding free energy (∆G) estimator and can be employed as a selection method in
diffusion-based docking process. A lower ∆G indicates a more spontaneous and favorable transition
from the unbound to the bound state, corresponding to a higher confidence score for the generative
docking sample. By integrating BA-DDG into the diffusion-based docking process, we provide a
robust method for selecting the most plausible docking conformation, as presented in Fig. 4 (right).

4.4.3 ANTIBODY OPTIMIZATION

Antibody optimization against SARS-CoV-2. Beyond serving as an energy scoring function,
BA-DDG also acts as a structure-based protein designer, similar to ProteinMPNN. Consequently,
we are curious whether the ProteinMPNN fine-tuned for ∆∆G prediction tends to generate
sequences with higher affinity. Shan et al. (2022b) identify five single-point mutations in a human
antibody targeting SARS-CoV-2 that significantly enhance its neutralization effectiveness. These
mutations are selected from a pool of 494 possible single-point mutations within the heavy chain
CDR region of the antibody. We calculate the perplexity differences and preference probabilities of
these 494 possible single-point mutations relative to the wild-type sequence. Specifically, normalized
per-amino acid perplexity is obtained by subtracting the average per-amino acid perplexity of all
possible sequences from that of the mutant sequence. Preference probabilities are derived using the
Bradley-Terry model (Bradley & Terry, 1952) applied to the predicted probabilities of wild-type
and mutant sequences. The results, as presented in the Table 5, show that the fine-tuned BA-DDG
generally achieves lower normalized perplexity and higher preference probabilities compared to the
original ProteinMPNN, indicating a tendency to generate sequences with potentially higher binding
affinity and improved neutralization effectiveness. Results on multi-point mutations, provided in the
Table 7, further support this conclusion. This suggests that fine-tuning for ∆∆G prediction can
enhance the design of more effective antibody sequences.

Table 5: Normalized per-amino acid perplexity and preference probabilities of the five favorable
mutations sequence on the antibody against SARS-CoV-2 (Shan et al., 2022b) by original and
fine-tuned ProteinMPNN.

Metric Method TH31W AH53F NH57L RH103M LH104F Average

Perplexity ↓ ProteinMPNN 6.018 0.179 0.401 2.895 2.521 2.403
BA-DDG 1.979 0.429 0.809 2.416 0.992 1.325

Preference ↑ ProteinMPNN 12.61% 62.55% 75.62% 13.93% 36.20% 42.47%
BA-DDG 37.24% 68.65% 56.51% 25.10% 47.63% 47.03%

5 DISCUSSION AND CONCLUSION

We propose Boltzmann Alignment, a method that leverages physical inductive bias through the Boltz-
mann distribution and thermodynamic cycle to enhance ∆∆G prediction by transferring knowledge
from pre-trained inverse folding models. Experiments on SKEMPI v2 yield Spearman coefficients
of 0.3201 (unsupervised) and 0.5134 (supervised), significantly surpassing previous state-of-the-art
values of 0.2632 and 0.4324. Additionally, we demonstrate the broader applicability of our approach
in binding energy prediction, protein-protein docking, and antibody optimization.

Our method has certain limitations that we aim to address in future work. Firstly, our approach
requires crystal structures or reliable predicted structures as input; in cases where mutant protein
structures are unavailable, we assume that the mutant backbone structure is identical to that of the
wild-type protein; we take parts of the complex backbone structure as the backbone structure of single
proteins. This reliance on structural data may limit the applicability and effectiveness of our method.
Moreover, our current model does not consider side-chain conformations, which may be essential for
∆∆G prediction. Incorporating side-chain flexibility could enhance predictive accuracy and provide
deeper insights into protein-protein interactions.

The positive societal impact is that this work can assist in drug design and virtual screening
potentially. No negative societal impact is perceived.
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A IMPLEMENTATION DETAILS

A.1 OTHER ALIGNMENT TECHNIQUES

A.1.1 SFT

The training objective of trivial SFT is as follows:

LSFT = ∥∆∆G− ∆̂∆GPrev∥︸ ︷︷ ︸
minimize predicted error

−βDKL(pθ(S | X)∥pref (S | X))︸ ︷︷ ︸
distributional penalty

(14)

A.1.2 DPO

We utilize weighted DPO algorithm proposed in Widatalla et al. (2024). The weighted DPO objective
is simply minimization of the KL-divergence between the distribution parameterized by the generative
model and numerical scores (∆∆G labels).

A.2 MODEL

In ProteinMPNN, part of the input protein sequence is to be designed, and the rest is fixed; decoding
skips fixed regions but includes them in the context for designing the remaining positions during
autoregressive decoding. When estimating ∆∆G with ProteinMPNN, we designate the mutation sites
SD to be designed while fixing the rest of the sequence S \ SD. Let π = (s1, s2, . . . , sn) represent
a randomly sampled decoding order, a permutation of the mutation sites SD. The joint probability
pθ(S | X) can be expanded step by step into the product of model-predicted probabilities for each
amino acid site using the conditional probability formula:

pθ(S | X) = pθ(SD | X,S \ SD) (15)
= pθ(SD \ {s1} | X,S \ SD ∪ {s1}) · pθ({s1} | X,S \ SD) (16)
= . . .

A.3 TRAINING

A.3.1 HYPER-PARAMETERS

We train the model over 20,000 iterations using the Adam optimizer, with a learning rate set at 0.0001
and a batch size of 2. The small batch size is because we need to include both the wild-type and
mutant complexes along with their respective monomer structures in a single batch for each iteration.
The model is insensitive to the loss weight parameter β, so it is typically set to a low value, such as
0.001, during training.

For the inverse folding model, we utilized the pre-trained ProteinMPNN, which includes 3 MPNN
layers. It considers the 30 nearest neighbors to construct edges and has an embedding dimension of
256.

A.3.2 HARDWARE

All our experiments are conducted on a computing cluster with CPUs of AMD EPYC 7763 64-Core
of 3.52GHz and a single NVIDIA GeForce RTX 4090 24GB GPU.

A.4 ASSUMPTION

Independence approximation in the unbound state.

The unbound state generally refers to a condition where no significant inter-chain interactions exist.
While weak inter-chain interactions (e.g., transient or solvent-mediated interactions) may occasionally
occur in this state, such interactions typically exert minimal influence on free energy calculations.
This supports the common and effective assumption of treating the unbound state as independent prob-
abilities for individual chains, a simplification that substantially reduces computational complexity
while introducing negligible error.
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Conversely, inter-chain interactions dominate in the bound state. To explicitly model these critical
interactions, we calculate the bound state’s probability by inputting the entire complex into Protein-
MPNN. This approach retains all inter-chain interactions through their explicit representation as
edges in the model’s graph structure.

B ADDITIONAL RESULTS

B.1 BINDING ENERGY PREDICTION

We compare BA-DDG with several representative methods under single-point, multi-point, and all-
point mutations on SKEMPI v2. The results reported in Table 6 demonstrate that BA-DDG achieves
the best overall performance for single-point mutations and the best per-structure performance for
multi-point mutations. Notably, BA-DDG performs better on single-point mutations compared to
multi-point mutations, which may be related to the autoregressive decoding of ProteinMPNN. In
our BA-DDG, when dealing with multi-point mutations, the probability estimation for a new site
depends on the estimation of the previous site. This coupling might affect performance, presenting an
opportunity for future improvements.

Table 6: Performance comparison under single-, multi- and all-point mutation on SKEMPI v2, where
bold denotes the best metric under each setting.

Method Mutations Per-Structure Overall
Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑

Rosetta
all 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
single 0.3510 0.4180 0.3250 0.3670 1.1830 0.9870 0.6740
multiple 0.1910 0.0830 0.1990 0.2300 2.6580 2.0240 0.6210

FoldX
all 0.3789 0.3693 0.3120 0.4071 1.9080 1.3089 0.6582
single 0.3820 0.3600 0.3150 0.3610 1.6510 1.1460 0.6570
multiple 0.3330 0.3400 0.2560 0.4180 2.6080 1.9260 0.7040

DDGPred
all 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821 0.6992
single 0.3711 0.3427 0.6515 0.4390 1.3285 0.9618 0.6858
multiple 0.3912 0.3896 0.5938 0.5150 2.1813 1.6699 0.7590

End-to-End
all 0.3873 0.3587 0.6373 0.4882 1.6198 1.1761 0.7172
single 0.3818 0.3426 0.6605 0.4594 1.3148 0.9569 0.7019
multiple 0.4178 0.4034 0.5858 0.4942 2.1971 1.7087 0.7532

RDE-Network
all 0.4448 0.4010 0.6447 0.5584 1.5799 1.1123 0.7454
single 0.4687 0.4333 0.6421 0.5271 1.3333 0.9392 0.7367
multiple 0.4233 0.3926 0.6288 0.5900 2.0980 1.5747 0.7749

DiffAffinity
all 0.4220 0.3970 0.6609 0.5560 1.5350 1.0930 0.7440
single 0.4290 0.4090 0.6720 0.5230 1.2880 0.9230 0.7330
multiple 0.4140 0.3870 0.6500 0.6020 2.0510 1.5400 0.7840

Prompt-DDG
all 0.4712 0.4257 0.6772 0.5910 1.5207 1.0770 0.7568
single 0.4736 0.4392 0.6596 0.5450 1.3072 0.9191 0.7355
multiple 0.4448 0.3961 0.6780 0.6433 1.9831 1.4837 0.8187

ProMIM
all 0.4640 0.4310 0.6720 0.5730 1.5160 1.0890 0.7600
single 0.4660 0.4390 0.6680 0.5340 1.2790 0.9240 0.7380
multiple 0.4580 0.4250 0.6660 0.6140 1.9630 1.4910 0.8250

BA-DDG
all 0.5453 0.5134 0.7118 0.6346 1.4516 1.0151 0.7726
single 0.5606 0.5192 0.7321 0.6157 1.1848 0.8409 0.7662
multiple 0.4924 0.4959 0.6650 0.6293 2.0151 1.4944 0.7875

B.2 ANTIBODY OPTIMIZATION

We provide results on multi-point mutations, which further support the conclusion that fine-tuning
ProteinMPNN for ∆∆G prediction enhances the design of more effective antibody sequences. These
findings confirm that the fine-tuned BA-DDG generally generates sequences with lower perplexity
and higher preference probabilities, indicating higher binding affinity and improved neutralization
effectiveness.
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Table 7: Normalized per-amino acid perplexity and preference probabilities for the multi-point
mutation sequences derived from multiple optimization rounds on the antibody against SARS-CoV-2
(Shan et al., 2022b), as predicted by the original and fine-tuned ProteinMPNN.

Mutations Perplexity ↓ Preference ↑
BA-DDG ProteinMPNN BA-DDG ProteinMPNN

RH103M,LH104F 1.556 2.524 32.12% 17.60%
TH30P,RH103M 1.023 1.310 53.22% 45.09%
TH31W,RH103M 1.669 3.894 36.87% 13.63%
AH39F,RH103M 1.658 6.312 31.13% 2.478%
NH55L,RH103M 1.465 2.600 36.04% 15.20%
NH57L,RH103M 1.366 0.936 44.32% 57.68%

TH30P,RH103M,LH104F 1.151 2.181 45.21% 22.29%
TH31W,RH103M,LH104F 1.442 2.941 39.40% 22.71%
TH30P,TH31W,RH103M 1.203 2.606 45.74% 22.44%
AH39F,RH103M,LH104F 1.300 4.621 37.94% 4.705%
AH39F,NH55L,RH103M 1.500 4.929 34.63% 3.416%
NH55L,NH57L,RH103M 1.210 1.403 42.93% 36.75%
AH39F,NH57L,RH103M 1.409 2.329 38.18% 15.82%
TH30P,AH39F,RH103M 1.136 2.841 43.07% 10.82%
TH31W,AH39F,RH103M 1.606 6.742 34.08% 2.438%
TH31W,NH55L,RH103M 1.419 3.302 39.33% 18.19%
TH30P,NH57L,RH103M 1.012 0.948 52.97% 51.40%
TH31W,NH57L,RH103M 1.465 2.556 40.62% 27.91%

AH39F,TH30P,RH103M,LH104F 1.081 3.036 44.56% 7.513%

Average 1.351 3.053 40.65% 20.95%
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