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Abstract

How do large language models (LLMs) encode the state of the world, including the
status of entities and their relations, as described by a text? While existing work
directly probes for a complete state of the world, our research explores whether and
how LLMs abstract this world state in their internal representations. We propose
a new framework for probing for world representations through the lens of state
abstraction theory from reinforcement learning, which emphasizes different levels
of abstraction, distinguishing between general abstractions that facilitate predicting
future states and goal-oriented abstractions that guide the subsequent actions to
accomplish tasks. To instantiate this framework, we design a text-based planning
task, where an LLM acts as an agent in an environment and interacts with objects
in containers to achieve a specified goal state. Our experiments reveal that fine-
tuning as well as advanced pre-training strengthens LLM-built representations’
tendency of maintaining goal-oriented abstractions during decoding, prioritizing
task completion over recovery of the world’s state and dynamics.1

1 Introduction

Drawing inspiration from human mental models [9, 12, 22], AI researchers have introduced the con-
cept of world models for sample-efficient and robust machine learning systems [13, 25]. Specifically,
a world model is defined to fulfill a dual role: (1) it estimates information about the world state
that may not be directly observable from the input signals, and (2) it distills essential information to
predict future states, thereby informing subsequent actions based on these predictions.

Recently, there has been growing interest in investigating whether pre-trained Transformer mod-
els [36], especially large language models (LLMs) [32], construct implicit world models. These
investigations aim to determine whether the state of the world as described in the text, either implic-
itly or explicitly, can be recovered from the internal representations built by Transformer models.
However, the field has produced studies with conflicting conclusions when examining different tasks.
For example, [27] shows that it is possible to accurately probe the status of entities and their semantic
relations encoded in the representations of LLMs within a discourse. Conversely, [24] report negative
results when attempting a similar yet more challenging setting. In addition, [28] successfully extracts
the board state of a partially played Othello game from the internal representation of a small-scale
GPT model [7] trained to complete game scripts.

∗Work was done during a Mitacs internship at Borealis AI.
1Code and dataset: https://github.com/BorealisAI/llm-world-abs

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: A discourse and two possible abstractions
of the world state described by it (top half of figure).
A general abstraction (termed as world-irrelevant ab-
straction later) enables one to answer a wide range of
questions. On the other hand, a count-oriented abstrac-
tion is only applicable to the counting task.

We argue that these contradictions stem
from the fact that recovering the complete
world state is not always necessary for
solving every tasks, which previous stud-
ies have not systematically controlled for.
Rather, an abstract representation of the
world state may sometimes be sufficient,
and the necessary level of abstraction can
also vary.

Some tasks may require the complete re-
covery of world dynamics in order to pre-
dict future states, while others may get by
on one that omits this information as it is
unnecessary for task completion. For in-
stance, consider Figure 1. When parsing a
discourse into a representation of the world
state, one can either record the location
of each object or simply note the number
of objects in each box. The former offers
the possibility to answer diverse questions,
including future state predictions after op-
erations, e.g., Move the key to Box C. The latter, however, is restricted to a counting task, unable
to foresee future states. Neglecting this nuance could lead to a mismatch between evidence and
conclusion, causing undue pessimism about LLMs lacking awareness of the world or excessive
optimism regarding their ability to develop general world representations. For example, fine-tuning
on all types of questions in Figure 1 might push LLMs to capture world dynamics, this does not
guarantee the same outcome when fine-tuning solely on counting tasks.

We formalize this intuition through the application of state abstraction theory, originally proposed in
reinforcement learning (RL) [29, 3] to simplify the state space by aggregating similar states to abstract
ones without modifying the core aspects of the task or underlying world. The level of abstraction is a
spectrum, from more general world-irrelevant abstraction, that allows recovery of world dynamics
to more goal-oriented abstractions, guiding task completion while giving up on predicting future
states. These include Q∗-irrelevant and π∗-irrelevant abstraction; the former preserves the long-term
impact of actions, while the latter preserves the optimal policy.

Through this lens of state abstraction, we propose a new framework for examining the world
representations constructed by LLMs. This framework investigates the various types of abstractions
that may be encoded by LLM-built representations. To demonstrate its utility, we present a concrete
application. First, we design a text-based planning task, REPLACE, which requires altering the state
of a simplistic world with a collection of containers and objects. We intentionally craft the task’s
state space to be highly structured and modular, enabling a precise yet simple derivation of world
state abstractions at different levels. Despite its simplicity, the abstract states at different levels are
distinct and identifiable. Subsequently, we prompt pre-trained and fine-tuned LLMs to complete this
planning task and extract their representation during decoding. Finally, we probe different abstract
states within the representations. We conduct experiments on a wide range of Transformer models
and LLMs, namely Pythia [6], Llama2 [35], Llama3 [1], Mistral [20] and Phi3 [2]. Our experiments
show that LLMs achieving reasonable performance on REPLACE, whether through fine-tuning or
advanced pre-training, tend to maintain goal-oriented abstractions rather than more general world
representations during decoding. Additionally, pre-trained models with near-random performance
fail to efficiently preserve any type of abstractions.

Our contributions are as follows: 1) We propose a new framework to probe world abstraction from
LLM-built representations that can be adapted for other NLP tasks. 2) We release a new synthetic task,
REPLACE, and accompanying datasets that are modular and extendable. 3) Experiments using our
framework and task yield novel findings: LLM representations prioritize goal-oriented abstractions
that preserve the effect of actions in terms of task completion while abstracting out the world state
and dynamics during decoding. 4) Our findings also reconcile conflicting conclusions in prior work.
For instance, [21, 28] successfully probe state variables like disc color and obstacle position, which

2



pertains to goal-oriented abstraction for the task that the models are optimized to solve, while [24]
struggles to recover entity status, which lies outside these abstractions.

2 Related Work

2.1 World models

The concept of world models in machine learning has deep connections with the concept of human
internal models [9] in cognitive science, most often referred to as mental models [12, 22]. As
originally defined, mental models can build abstract and symbolic representations of entities and their
relations in the real world or environment around them [12]. One of the most important characteristics
of such mental models is their optimal balance between representation complexity and utility for
accomplishing a specific task [18]. In a similar vein, AI researchers have developed symbolic [33] or
neural world models [13, 14] to compress vast amounts of input information and extract a simplified
and essential representation to predict future states. Our work is related to both domains and applies
state abstraction theory [29, 3] from reinforcement learning to assess the representations of the
underlying world and the task, if any, encoded by LLMs.

2.2 Probing LLM Representations

There is a growing interest in probing for interpretable features in LLMs, most of which are linguistic
in nature, such as morphology [30], syntax [17] and word-level semantics [5]. Recently, researchers
have moved beyond the exploration of shallow linguistic features, investigating whether and how
LLMs’ hidden representations on the fly encode entities and their relations, as described in the text.
More specifically, [27] trains a shallow neural classifier on top of LLMs’ representations of discourse
to recover the ground-truth situations as depicted in the text. This approach is further modified and
formulated as a next-sentence prediction task by [24]. Similarly, [28, 21, 37] probes the internal
representation of world state in Transformer models reading (semi-)structured input, such as game
scripts and embodied sequences.

However, existing work primarily focuses on probing for a comprehensive description of the underly-
ing world, defined as a set of state variables. This approach has two main limitations. First, it fails to
distinguish the function of a specific state variable: Is it intended to maintain a general representation
of the world, or is it crucial only for specific tasks, or both? Without this distinction, we cannot
accurately interpret the positive outcomes of probing. Second, existing studies do not account for the
potential abstraction of the world that LLM might build in its representation. Our work overcomes
these limitations by introducing a general framework that examines the world abstraction encoded
within LLM representations.

In contrast to [28, 21, 37], the input in our task is text data instead of a game script or environment
layout. Therefore, the conclusions drawn from our experiments are more applicable to LLMs and
Transformer models for NLP tasks.

3 Framework

In this section, we introduce a new probing framework to investigate the world state abstraction
encoded by large language models (LLMs) when prompted to perform a decision-making task. We
start with a reinforcement learning (RL) formulation, which is general enough to encompass a wide
range of NLP tasks and other tasks adopted by previous work, e.g. completing an Othello game
script [28]. An RL problem is characterized by a 4-tuple: (S,A, T,R), where s ∈ S represents
the world state, a ∈ A denotes possible actions the model can take, transition function T (s′|s, a)
measures the probability of transitioning to state s′ induced by a from s, and R(s, a) is the reward.

3.1 Definition and Derivation of World State Abstraction

Our framework builds upon a rigorous definition of world abstraction. In particular, we follow RL
literature [29], deriving state abstraction function ϕ : S → Sϕ that maps each state s into an abstract
state ϕ(s) (|Sϕ| ≤ |S|). In addition to the raw state S , we consider three types of abstraction:

3



World-irrelevant abstraction ϕw
2 ensures that ∀s1, s2 where ϕw(s1) = ϕw(s2) implies that

∀a, x′ ∈ Sϕw , R(s1, a) = R(s2, a), and
∑

s′∈ϕ−1
w (x′) T (s

′|s1, a) =
∑

s′∈ϕ−1
w (x′) T (s

′|s2, a) . Intu-
itively speaking, it preserves the transition dynamic of the underlying world and the reward function,
thereby enabling the prediction of future states induced by subsequent actions. Recalling the definition
of world models in Section 1, this type of abstraction enables precise recovery of the world model.

Q∗-irrelevant abstraction ϕQ ensures that ∀s1, s2, if ϕQ(s1) = ϕQ(s2), then ∀a, Q∗(s1, a) =
Q∗(s2, a), where Q∗(s, a) = maxπ Qπ(s, a). This form of abstraction preserves the effect of all
actions a ∈ A in terms of their optimal Q-value, which is the maximal expected future rewards.
However, it discards the world dynamics, making future state predictions infeasible. LLMs can
leverage this abstraction to be cost-sensitive, minimizing action counts and avoiding penalties for
violating world constraints.

π∗-irrelevant abstraction ϕπ guarantees that the optimal action, and hence the optimal policy, can
be recovered. Formally, ∀s1, s2 ∈ S , ϕπ(s1) = ϕπ(s2) implies that π∗(s1) = π∗(s2). Therefore,
this is the coarsest abstraction that one can recover the optimal policy. Therefore, we expect that at
least this type of abstraction can be accurately probed from an LLM that excels in the given task.

In practice, one may use learning [23, 4] or heuristics [10, 11] to derive the abstractions at each level.

3.2 Probing World Abstraction from LLM-built Representations

We aim to assess which types of state abstraction are encoded in LLM representations. To do so,
we first prompt a pre-trained or fine-tuned LLM with τ(s0, A1:t−1, z), which is a textual description
of the initial state s0, previously executed actions A1:t−1, and optionally, feedback z received from
the world. The feedback could be the opponent’s moves in an Othello game or users’ utterances
in a dialogue system. Next, we extract the hidden states H(m) from the m-th layer of the LLM,
considering m as a hyperparameter. Following [28], we select the last hidden states h(m)

t
3, which is

used by the LLM to predict subsequent actions. After collecting (st, ht) pairs, where st is the world
state induced by s0, A1:t−1 and z, we detect the existence of abstraction of st in LLM representations
by assessing if ϕ(st) can be probed from ht with accuracy surpassing a random baseline, potentially
achieving near-perfect performance. Previous work [16, 17] on probing presents a challenge in
differentiating whether a representation encodes a linguistic property or if the probe itself learns the
task. While these works focus on low-level syntax features [16, 30], our focus is on the recoverability
of world states and their abstractions from LLM representations, questioning whether these are
maintained or discarded during decoding. Therefore, we train probes to classify raw and abstract
states, following previous work [27, 28], which essentially estimates the mutual information between
abstractions and representations [34]. As we will show in Section 6, probing either raw or abstract
states from LLM representations is not always successful.

Remark: To draw faithful conclusions from probing experiments, it is crucial to carefully design
or select the tasks in a way that ensures the spaces of abstract states at different levels differ
(Sϕw

̸= SϕQ
̸= Sϕπ

). Otherwise, one cannot determine whether the success of probing stems from
the LLM’s preference for learning a general world model or from the necessity to recover the world
state while learning the optimal policy. For instance, in the game of Othello, it is feasible to recover
most of the current board state from all possible legal moves. As such, the raw state space is almost
identical to the coarsest π∗-irrelevant abstraction for predicting legal moves. Therefore, a plausible
interpretation for the success of probing in [28] could be that the Transformer model learns the
π∗-irrelevant abstraction rather than deliberately learning a general world model.

In the next section, we design a planning task within an RL framework and synthesize a dataset
accordingly. In Section 5, we prompt LLMs to perform this task and probe different types of
abstractions from their internal representations.

4 REPLACE: A Text-based Planning Task
To instantiate our framework, we draw inspiration from recent work on probing discourse repre-
sentation in LLMs [27, 24] and design a text-based planning task named REPLACE. In REPLACE,

2It is originally referred to as model-irrelevant abstraction [29]. Here, we rename it to avoid confusion
between world models and large language models.

3We will omit the layer index in the following sections for simplicity.
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{{Task Instruction}}
A sequence of containers are ordered from left to right as follows: Bucket A, Basket A, Basket B,
Crate A, Basket C. You are at the Basket B.
Initial situation: Bucket A is occupied by a car, a key. Basket A contains a creature, a letter. Basket B
has a beer. Crate A holds a coat. Basket C holds a crown.
Desired situation: Bucket A contains a car. Basket A is occupied by a creature. Basket B is empty.
Crate A holds a beer, a coat. Basket C has a crown.
Operations applied: You Move left.
What are the operations to achieve the desired state?

Figure 2: An example of task input in REPLACE.

Figure 3: Derivation of abstract predicates
and action from raw predicates. Better viewed
in color. Predicates represented by multicol-
ored squares indicate association with multi-
ple abstraction levels. Grey squares represent
intermediate predicates, not associated with
any abstraction, used to derive abstract predi-
cates.

boxName [Bucket A,Basket A,Basket B,
Crate A,Basket C]

agentLoc 2

storeu [{car, key}, {creature, letter},
{beer}, {coat}, {crown}]

storeg [{car}, {creature},
{}, {coat, beer}, {crown} ]

distantu [{car, key}−1, {beer}+1,
{coat}+2, {crown}+3]

distantg [{car}−1, {}+1,
{coat, beer}+2, {crown}+3 ]

nearbyu {creature, letter}

nearbyg {creature}

heldu {}
heldg {key, letter}
subgoal [0, −1, +1, +2]
nextObj letter

nextObjDirect nearby-container

Figure 4: The raw and abstract predicates of the state
described in Figure 2. u, g: current and target situa-
tions.

an LLM acts as an agent within a simple world consisting of a set of containers and objects. The
objective of the LLM is to predict actions that alter the situation of the objects to match a described
target situation. We design this task for three reasons. First, in its symbolic form, the task possesses
a simple and modular state structure, making it easier to analyze and derive abstract state spaces.
Second, it is closely related to the gripper problem [31] and the entity tracking task [24], which
are widely adopted in planning and NLP interpretability research. Third, as we will demonstrate,
each type of abstraction has a unique state space, enabling the assessment of whether LLM-built
representations encode specific abstractions.

In this section, we start with formulating the planning task within the RL framework, then introduce
the textual realization of the RL elements, and finally the method of curating prompts.

4.1 Specification within RL Formulation

Formally, the specific design of the elements within the RL framework is described as follows:

1. State s = [u, g] ∈ S: the current situation u and target situation g of the world, each of which
is factorized as the Cartesian product of a set of assignments over predicates applied to entities e,
including objects o and containers b. The predicates are:

• store(i, o): the object o is stored in the i-th container from left to right.
• held(o): the agent has the object o.
• agentLoc(i): the agent is at the i-th container.
• boxName(i, b): the name of the i-th container from left to right is b.

2. The possible actions a ∈ A include:
• move(d): Move along a direction d, left or right, for one step.
• grab(o): Grab an object o from the nearby container.
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• put(o): Put an object from the agent to the nearby container.
3. Transition function T : Following previous work [27], we consider a static environment. That
means T (s′|s, a) ∈ {0, 1}. Moreover, the transition impacts only the current situation ut in st
by taking the effect of a. For example, if agentLoc(2) is True in ut−1, executing the action
move(left) results in agentLoc(1) becoming True in ut.

4. Reward function R(s, a) checks whether the new situation of o, induced by executing a, matches
the target situation: R(s, a) = r if Po(u

′) = Po(g); or −(r + r′) if a /∈ C(s); or −r otherwise.
Here u′ denotes the new situation, Po(u

′) the set of assignments on predicates involving objects o
(store and held) in the new situation u′, and C : S → A, the constraint function mapping states
to permissible actions. We incorporate three spatial constraints: (1) the agent cannot move left and
right at the leftmost and rightmost locations, respectively; (2) grab is only possible if the target
object o is in a nearby container; (3) put is allowed only for objects currently held by the agent.
Given the LLM’s insensitivity to exact numerical values in prompts, we do not set concrete values for
r and r′ but simply assume r > 0 and r′ > 0. Notably, both Q∗ and π∗, as well as the abstract states,
are invariant to the actual magnitudes of r and r′.

We map the situation (u or g), previous actions (A1:t = {a1, .., at}) to their respective natural
language descriptions τs(u), τs(g), τa(A1:t), and using a set of textual templates: τs(·) and τa(·). As
such, the input text to the model comprises two main components: (1) a general task instruction (see
Appendix C) specifying the actions the agent can take, {τa(a)|a ∈ A}, and the constraints it must
adhere to, τ(C), and (2) textual descriptions of the world’s initial and target situations, as well as
previous actions [τs(u); τs(g); τa(A1:t)]. An example is presented in Figure 2. Conditioned on this,
the LLM generates textual descriptions Ŷ of subsequent actions, which are parsed back into their
symbolic form Ât+1:T by a rule-based parser τ−1

a (Ŷ ).

4.2 Datasets
We synthesize two English datasets for REPLACE: GRIPPER and COOK. For each instance in
GRIPPER, we first sample a set of o from a list of container names and b from a list of frequent
nouns in British National Corpus (BNC) [26]. Subsequently, we generate pairs of initial and target
situations, [u0, g], by randomly assigning values to the predicates in u0 and g, such that it requires
the execution of 2 to 6 actions to transition from u0 to g. Towards a more realistic setting, we
introduce the following dataset variants: (1) Lexical variants, which includes rare nouns collected
from BNC for b, adding color and size modifiers to describe the objects, and use diverse textual
templates for translating predicates; (2) Partial τ(g), which omits explicit information about held
in the target situation, requiring logical inference by LLMs; (3) Partial [τ(ut), τ(g)], an extension of
(2) that includes previous operations performed by the agent, thus requiring inferring ut. Appendix C
provides concrete examples for each variant. The final dataset is a uniform mixture of these four
variants and segmented into training, validation, and test sets, with [u0, g] splits, allocating 50k, 1k,
and 1k instances to each set, respectively.

COOK generalizes the setting of GRIPPER to a grid world of containers and is generated with
TextWorld [8]. Similarly, we sample and transform the initial and goal situations into textual
descriptions. The main differences between COOK and GRIPPER are: (1) the constants of direction
d are different: the agent in COOK can move north, south, east or west; (2) COOK uses a
different set of textual templates adopted from the cook domain in TextWorld. See Appendix D for
more details about COOK. Notably, both datasets share the same world abstractions at all levels.

5 Probing World Abstractions in LLM Representations using REPLACE

For each LLM prompted to solve REPLACE, we assess which types of abstractions of state st are
preserved in its representation ht during decoding after the collection of {(st, ht)} pairs as described
in Section 3.

The modular state structure in REPLACE allows us to analytically derive a set of predicates for each
type of world state abstraction. To begin with, we introduce a set of abstract predicates crucial for
devising the optimal plan for task completion:

• nearby(o): the object o is located within the container nearby to the agent. Similarly, we
have distant(l, o), where l is the relative distance to the agent’s current location, e.g.,
distant(−1, o) being True indicates that the container one step to the left contains o.
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• subgoal(l, j): the agent needs to visit a series of containers to manipulate objects, and
the j-th container to be visited is at the relative distance l to the agent’s current location.

• nextObjDirect(v): the relative direction of the next object to be manipulated, where v
could be left or right to the agent, in a nearby container, or with the agent.

• nextObj(o): the object o to be manipulated at the next step, if applicable.

Appendix E provides a detailed explanation of the definition and derivation of these predicates. Finally,
we can infer the optimal action for the next step by incorporating nextObj and nextObjDirect.
Figure 3 demonstrates how to derive abstract predicates and actions based on the raw predicates.
Figure 4 provides concrete examples of predicates.

Now, we derive each type of world abstraction, using both raw and abstract predicates:

Raw state The complete world state S includes store, held, agentLoc in both the current and
target situations, u and g, and boxName.

World-irrelevant abstraction To preserve the world dynamics, we have to track all raw predicates
of the current situation, excluding boxName, as actions do not affect it. In addition, we include all
predicates in target situation g to preserve the reward function. Therefore, Sϕw includes the predicates
store, held and agentLoc in both u and g.

Q∗-irrelevant abstraction To construct SϕQ
, we include agentLoc, heldu and nearbyu to

distinguish between the effects of legal and illegal execution of actions. Also, we include subgoal,
where subgoal(l, j = 1) differentiates the effect between optimal and non-optimal actions, and
subgoal(l, j > 1) quantifies the effect of executing each action. Further, we include nextObj to
distinguish the effect between optimal and non-optimal put or grab actions.

π∗-irrelevant abstraction Sϕπ
is factorized by predicates nextObjDirect and nextObj.

nextObjDirect specifies the action type (move or manipulate objects) and moving direction (left
or right) at the next step. nextObj identifies the particular o for grab or put operations.

Appendix G provides a more formal proof.

We probe the predicates in LLM representations by training two-layer neural models, following
[28]. For single-variable predicates (e.g., nearby(o)), we train an individual probe for each. For
two-variable predicates where one variable denotes a positional index (e.g., boxName(i, b)), we train
a separate probe for each i-th position. For some predicates, e.g., store(i, o), involving variables
o with domains that differ across the dataset, the input to probes is a concatenation of [ht, φ(o)],
where φ(o) is the embedding of o. Following the conditional probing principle [15], we treat the
embedding method for each predicate as a hyper-parameter, selecting the method with the largest
performance margin between using [ht, φ(o)] and using only φ(o) as the input. Specifically, we
explore two embedding methods: (1) averaging the word embedding for all the tokens in o and (2)
selecting and averaging the hidden states H across all mentions of o. For other predicates, such as
agentLoc and subgoal, probes take as input ht. Appendix H provides more details about the
formulation of probing tasks as well as the design (e.g. layer number) and optimization of probes.

Evaluation metric We evaluate the performance of probing models for each predicate using the
F1-score. To account for variations in candidate numbers across different predicates, we normalize
the scores xp for predicate p by max(xp−βp,0)

1−βp
× 100%, where βp is the score of a RANDOM baseline.

It predicts outcomes by proportional sampling from label candidates of p based on their frequencies.
We refer to this normalized score as the recovery rate.

6 Experiments

6.1 Target Models for Probing Experiments

GRIPPER COOK
Models %Legal %Succ %Optim %Legal %Succ %Optim
Llama213b

ICL 62.41 3.07 0.19 35.41 1.70 0.36
MistralICL 41.12 2.12 0.65 44.41 1.95 0.22
Llama213b

SFT 96.54 88.30 84.02 95.71 85.11 69.17
MistralSFT 97.07 92.15 87.36 95.04 85.91 61.47

Table 1: Planning performance of Llama2-13b and Mis-
tral on GRIPPER and COOK.

We experiment with two groups of LLMs
to investigate how fine-tuning and pre-
training impact the world abstractions en-
coded in their representations, respectively.
The details follow below.

Effect of fine-tuning We adapt Llama2-
7b/13b [35], Mistral-7b [20], and LLama3-
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8b [1] on both datasets, using in-context learning (ICL) and supervised fine-tuning (SFT) with LoRA
adapters [19]. Appendix F provides more details.

Effect of pre-training Since the LLMs above perform near-random without fine-tuning, we also
experiment with a more recent state-of-the-art LLM, Phi3-17b [2], which achieves much higher
performance than other pre-trained LLMs on GRIPPER4. For comparative analysis, we also include
Phi3-3.8b, Pythia-70m [6] and a fine-tuned Phi3-17b.

In addition, we train a 6-layer decoder-only Transformer from scratch, probing for abstractions from
its internal representations as a baseline.

Figure 5: Average recovery rate of each world abstraction across different LLMs on GRIPPER.

(a) From Llama2 and Mistral. (b) From Pythia and Phi3.

Figure 6: Recovery rate of all predicates from different LLMs on GRIPPER. Predicates are grouped according
to the coarsest abstractions they pertain to. Better viewed in color. The color indicates all abstraction levels the
predicates are associated with.

Before the probing experiments, we first verify that the fine-tuned LLMs and Phi3-17bICL can achieve
reasonable performance on REPLACE, and thus, we can draw informative conclusions. We adopt
three evaluation metrics for REPLACE: legal rate (the proportion of predictions that comply with
constraints), success rate (the proportion of predictions that achieve the target situations), and optimal
rate (the proportion of cases where the target situation are achieved with the minimum number of
actions). The Llama2-13b and Mistral results are reported in Table 1, with comprehensive results for
all LLMs provided in Appendix I. As shown in Table 1, both LLMs initially fail in nearly all cases
when relying solely on in-context demonstrations. Once fine-tuned, however, they can accomplish
the task with reasonable success and optimal rate, and most of the predicted actions adhere to the
constraints. Next, we conduct probing experiments on each variant of the LLMs on the same datasets.

4We do not conduct probing experiment with the pre-trained Phi3-17 on COOK as it does not outperform the
random baseline significantly.
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(a) Average recovery rate of each world abstraction.
(b) Recovery rate of all predicates from
Llama2-13b and Mistral.

Figure 7: Recovery rate of predicates within different world abstractions across different LLMs on COOK.

6.2 Probing Results and Analysis
We measure probes for all the LLM variants adapted to REPLACE (ICL or SFT) as well as the
train-from-scratch Transformer. Figure 5 and Figure 7(a) report the average recovery rate (RR) of
predicates within each type of world abstractions from different LLMs. Figure 6 and Figure 7(b) take
a closer look at the RR of each predicate from seven LLM variants to analyze the effect of fine-tuning
and pre-training. The complete results are reported in Appendix J. Next, we present four key findings
from the results.
Finding 1. Reasonably performing LLMs tend to maintain goal-oriented world abstractions rather
than a more general one during decoding.

All LLMsSFT and Phi3-17bICL, which outperform the random baseline by a substantial margin,
primarily preserve Q∗- and π∗-irrelevant abstractions. Comparing LLMsSFT and LLMsICL in Figure 5
and Figure 7(a), Q∗- and π∗-irrelevant abstractions are probed from LLMsSFT with drastically
higher RR than raw and world-irrelevant abstraction. Focusing on the RR of individual predicates,
Figure 6(a) and Figure 7(b) reveal that the predicates for π∗-irrelevant abstraction, nextObj and
nextObjDirect have been mostly recovered from LLMsSFT. This result aligns with the high
task success rate achieved by these LLMs. Similarly, the predicates for Q∗-irrelevant abstraction
are effectively probed from the LLMsSFT, although with larger variance across different predicates.
This suggests that LLM representations do not merely encode the most coarsest world abstraction
for deriving the very next action. Instead, they preserve sufficient information to estimate each
action’s long-term effect with respect to altering the world situation to match the target, facilitating
efficient planning. The successful recovery of nearby, heldu and agentLoc indicates that LLM
representations capture the world constraints to inform legal actions, as evidenced by the near-perfect
legal rate of LLMsSFT.

Nevertheless, Figure 5 shows that although the RR margin between goal-oriented abstractions and
more general ones is smaller for Phi3-17bICL, it remains significant. Figure 6(b) explains this by
revealing that the RR for nextObj, nextObjDirect, and subgoal from Phi3-17bICL is much
lower than that of LLMsSFT, which is unsurprising as Phi3-17bICL achieve a much lower success rate
on REPLACE than LLMsSFT.

Conversely, more general world abstractions are mostly absent in all LLM representations. Predicates
uniquely tied to the raw state and the world-irrelevant abstraction cannot be accurately recovered. The
low RR for boxName suggests that LLMs discard world details that are not pertinent to the task’s
completion. Similarly, the minimal RR on storet, a key predicate for reconstructing the world
model, implies that the information to derive world dynamics is mostly omitted during decoding.

We create two other variants of GRIPPER to further consolidate this finding. The first one is a
counterfactual setting where a predicate originally irrelevant to the goal becomes pertinent to goal-
oriented abstraction. Our results show that it is accordingly encoded in the LLMSFT representations.
Under the other setting, the LLMs are fine-tuned on sub-optimal action sequences, and the results
suggest that random exploration does not necessarily improve the encoding of world dynamics.
Details of these experiment can be found in Appendix K and Appendix L, respectively.
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Finding 2. Supervised fine-tuning and advanced pre-training mainly enhance goal-oriented world
abstractions.

Figure 6 and Figure 7(b) demonstrate significant differences in the recoverability of goal-oriented
abstractions from representations of LLMs, comparing models with and without supervised fine-
tuning. Specifically, the performance gap in terms of predicates nextObjDirect, agentLoc, and
subgoal is notable, approximately 40− 70 recovery rate. In contrast, for boxName and store,
the difference is much more negligible, less than 5. This disparity implies that when fine-tuned with
teacher forcing, LLMs evolve to develop a more goal-oriented world abstraction during decoding.
This finding also provides a novel perspective on [21, 28] that successfully probe the world state in
Transformer models: the state information is an integral part of the goal-oriented abstraction in their
task, which is enhanced as the models are optimized to solve the task.

Interestingly, advanced pre-training has a similar effect. Figure 5 and Figure 7(a) show that the
key distinction between train-from-scratch Transformer and LLMsSFT lies in their retention of Q∗-
and π∗-irrelevant abstractions. Nonetheless, as LLMs increase in scale and capability (Pythia<Phi3-
3.8b<Phi3-17b), they are more likely to maintain goal-oriented abstractions over a more general one.
This is apparent from Figure 6(b), where the RR of predicates does not increase with Phi3-17b unless
the predicates pertains to the goal-oriented abstractions. In contrast, the RR of store and heldg,
essential for world-irrelevant abstraction, are almost identical across all pre-trained LLMs. It implies
that advanced pre-training does not necessarily lead to better encoding of the world dynamics.
Finding 3. Raw state and world-irrelevant abstractions are mostly suppressed during decoding.

Predicates Abstraction Type [ht;Ctxt(e)] Ctxt(e)
boxName Raw 100.00 100.00
storeu Raw, World-irrelevant 93.32 95.71
storeg Raw, World-irrelevant 93.01 95.18
nearbyu Q∗-irrelevant 92.11 42.46

Table 2: Recovery rate with different encoding
methods of label candidates.

Motivated by our initial two findings, we explore
whether and how boxName and store are en-
coded within the contextualized representation
by Llama213b

SFT . To do so, we use the contex-
tualized embedding Ctxt(·) of the label candi-
date, comparing the use of only the embedding
Ctxt(e) against a concatenation [ht;Ctxt(e)], in-
spired by [15]. We also examine nearby for comparative analysis. The results in Table 2 show
that the objects’ location can be probed from the contextualized representation with near-perfect
performance while incorporating ht may decrease the performance instead. As for more goal-oriented
predicates, nearby cannot be probed from the contextualized representation with high accuracy,
and the concatenation with ht boosts the performance vastly, suggesting that LLMs discard the
information of store and integrate it with agentLoc to derive nearby.
Finding 4. LLMs are limited in building world representations, whether general or goal-oriented.

While LLMs tend to preserve a goal-oriented abstraction, they do not totally discard boxName
(15-20 RR from LLMsSFT and even 43 from Phi3-17b), which is irrelevant to either task completion
or transition dynamics. Also, the probing performance for some goal-oriented predicates, e.g.,
subgoal, has ample room to improve. Moreover, the information for world dynamics, e.g., store,
is mostly discarded.
Remark. The interpretation of probing performance for a predicate should depend on the specific
type of abstraction it belongs to.

Focusing solely on raw world states might lead to a superficial conclusion that the LLM only partially
captures the world. In contrast, our framework offers a more thorough and systematic interpretation,
demonstrating that well-performing LLMs maintain a goal-oriented world representation during
decoding. This underlines the core rationale of our probing framework: the necessity of probing
different world abstractions rather than just the raw state.

7 Conclusion
We propose a new framework to probe the abstract world state in LLM representations through the
lens of state abstraction. Experiments with a synthesized task using our framework demonstrate
that LLMs tend to preserve a goal-oriented world abstraction instead of a more general one during
decoding, abstracting away the world’s transition dynamics. Overall, our experiment findings
highlight the importance of probing different types of abstraction encoded in LLM representations to
draw comprehensive and nuanced conclusions. Nevertheless, our work is not without limitations,
which are discussed in Appendix A.
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A Limitations

Limitations of our framework Our framework primarily investigates the presence of different
abstraction types in LLMs, without delving into the mechanisms through which LLMs generate or
link these specific abstractions. We leave these topics for future research. Additionally, as with many
probing methods [34, 16], we cannot ensure that LLMs accurately and effectively make use of the
identified abstraction. Our research instead focuses on whether it is possible to recover certain types
of abstractions from LLM representations.

Limitations of our designed task While the task we designed in this work allows for precise and
analytical derivation of world abstractions and involves fundamental skills essential for other NLP
and reasoning tasks, it is important to note that it remains relatively simple and artificial compared to
real-world NLP tasks. Consequently, future work can extend this task to more realistic and complex
settings.

Limitations of our datasets Following previous works in this line of research [24, 28], we synthe-
size datasets for our task. Although synthetic datasets offer precise control over their properties and
the characteristics of the underlying world, there may be discrepancies between our datasets and those
used in real-world NLP applications. Unfortunately, realistic NLP datasets paired with a “world sim-
ulator”—vital for tracking state updates triggered by predicted actions in probing experiments—are
lacking. We leave the development of such datasets for future work.

Limitations of our experiments In this work, we have run experiments under our proposed
framework with two datasets and four state-of-the-art open-sourced LLMs. Despite the extensive
experiments we have done, the findings with our experiments and framework are still specific to the
LLMs and the particular task we have investigated, and should not considered universally applicable
across other tasks and models. Nevertheless, the findings are important since they are new and
complementary to existing literature. Further investigations could also examine how factors like
fine-tuning methods, model scale, linguistic characteristics and training data distribution influence
the abstractions in LLM representations.

B Broader Impact

Our work introduces a probing framework designed to identify the types of essential information
about the underlying world that can be retrieved from LLM representations. Our experiments show
that without this detailed analysis, discrepancies can arise between evidence and conclusions. Such
discrepancies may lead to undue pessimism about LLMs’ lack of world awareness or excessive
optimism about their ability to develop general world representations. Consequently, we expect
that our work could be potentially helpful to other researchers and LLM users, enabling them to
draw more nuanced and comprehensive conclusions from analyzing LLMs regarding their ability to
construct world representations. This in-depth understanding is crucial for developing responsible AI
systems.

C Task Instructions and Input Examples in GRIPPER

Table 9 shows examples of each dataset variant in GRIPPER. Table 10 provides the full task instruction
included in the prompt.

D Details and Examples of COOK Dataset

We generate the COOK dataset with TextWorld [8]. Concretely, we adopt the cook domain in
TextWorld, where the agent navigates in a grid world with multiple rooms and manipulate the food
ingredients to make a meal. Whereas TextWorld primarily focuses on evaluating RL with respect
to react to the feedback from the environment, where the updated state information is included in
the feedback, it makes the task of world modeling somehow trivial at a surface level. Therefore, we
modify its setting to the one similar to GRIPPER, where only the initial and desired state are given
in the prompt, and the models have to infer the intermediate world state induced by predicted or
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ground-truth actions. Nonetheless, there are two main differences between COOK and GRIPPER.
First, the containers (rooms) in COOK are placed in a 2× 3 grid world, where the agent can move
south, north, east or west, and therefore have a larger action space. In contrast, the agent
move either left or right in GRIPPER. Second, COOK uses a different set of textual templates
adopted from TextWorld, which are listed in Table 3. Table 11 shows the instruction for COOK and
Table 12 provides an input example. COOK has the same size with GRIPPER.

GRIPPER COOK

store container contains object,
container holds object,
container has object,
container is occupied by object
container is empty
...

container contains object,
In container, you can see object,
container has object in it
In container, you can find object,
container has nothing
...

boxName A sequence of containers are ordered from left to
right as follows: Box A, Box B, ...

Room A in the northwest connects east to Room
B and south to Room C.
Room A links further east to Room B and south
to Room C.
Room A connects south to Room B.
Room A leads east to Room B.
Room A connects east to Room B.

grab Grab the object from nearby container Take object from the room

put Put object in the nearby container. drop object in the room.

move go direction walk to direction

Examples of o (objects) book, car, paper, letter, game... onion, tomato, potato, mushroom, carrot...

Table 3: Textual templates used in GRIPPER and COOK.

E Detailed Introduction of Abstract Predicates

We derive following abstract predicates using raw predicates, namely boxName, store,
agentLoc and held:

• nearby(o): the object o is located within the container nearby to the agent. It is derived
by incorporating agentLoc with store. Similarly, distant(l, o), where l denotes
the relative distance to the agent’s current location, can be derived. That means l ∈
[−L+1, L− 1], where L denotes the number of containers. For instance, distant(−1, o)
being True indicates that the container one step to the left of the agent contains o.

• subgoal(l, j): the agent needs to visit a series of containers to manipulate objects, and
the j-th container to be visited is at the relative position l to the agent’s current location.
Furthermore, for subgoal(j, l), the label for l is in the set {−L + 1, . . . , L − 1} ∪
{put,stop}, where put indicates the j-th subgoal is to put an object at the current nearby
container, which is particularly useful for the first subgoal, as it allows for deterministic
derivation of nextObjDirect. Also, stop implies that there are fewer than j subgoals.
subgoal is derived by comparing distant, nearby and held across the current and
target situation.

• nextObjDirect(v): the relative direction of the object to be grabbed or put at the next
step, where v could be left or right to the agent, in a nearby container, or with the agent.
This is derived from the value of first subgoal, i.e., subgoal(·, 1).

• nextObj(o): the object o to be manipulated at the next step, if applicable. This is derived
by comparing nearby and held between u and g.
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F Adapting LLMs to REPLACE

We use Llama2-7b5, Llama2-13b6, Mistral-7b7, Llama3-8b8, Phi3-17b9, Phi3-3.8b10, and Pythia-
70m11 as the base models for experiments. Additionally, we train another Pythia-70m model from
scratch on REPLACE datasets as a Transformer baseline.

For ICL, we randomly sample two demonstrations from the training set and append them to the
prompt. For SFT, we train LoRA adapters [19] with 8-bit quantization on top of LLMs with the
learning rate of 1e− 4, the batch size of 8, the scaling factor of α = 64, the dropout rate of 0.05, the
rank of 32 for 1 epoch. To avoid significantly altering the LLM’s representational traits, we use only a
subset of 10k training samples for SFT. We use 8-bit quantization for decoding. During decoding, we
parse the generated textual description Ŷ of subsequent actions to its symbolic form with a rule-based
parser. In our preliminary experiments, we have found using hard-crafted regular expression rules for
the parser is good enough, since the the in-context demonstrations and the fine-tuning enforce well
LLMs to generate in the same format as the data in Gripper and Cook.

G Proof of World State Abstraction for REPLACE

Recall that the raw state S in REPLACE is factorized by boxName, store, agentLoc and held.

Lemma G.1. Sϕw
is a world-irrelevant abstraction of S if it is factorized by store, agentLoc

and held, excluding boxName.

Proof. Assume ϕw(s1) = ϕw(s2). This implies that ∀a ∈ A, Tϕw
(s′|s1, a) = Tϕw

(s′|s2, a), given
that boxName in S always remains unchanged after the execution of any action, we have:

∀x′ ∈ Sϕw
,∑

s′∈ϕ−1
w (x′)

T (s′|s1, a)

=
∑

s′∈ϕ−1
w (x′)

T ([ϕw(s
′);bs′ ]|[ϕw(s1);bs1 ], a)

=
∑

s′∈ϕ−1
w (x′)

Tϕw
(ϕw(s

′)|ϕw(s1), a)

=
∑

s′∈ϕ−1
w (x′)

Tϕw
(ϕw(s

′)|ϕw(s2), a)

=
∑

s′∈ϕ−1
w (x′)

T ([ϕw(s
′);bs′ ]|[ϕw(s2);bs2 ], a)

=
∑

s′∈ϕ−1
w (x′)

T (s′|s2, a),

(1)

where bs′ denotes the assignment over boxName at s′. Similarly, it follows that ϕw(s1) = ϕw(s2) ⇒
R(s1, a) = R(s2, a), since R(·, ·) is invariant with respect to changes in boxName within a state
s.

5https://huggingface.co/meta-llama/Llama-2-7b-chat-hf (We accept their Meta li-
cense before requesting the model.)

6https://huggingface.co/meta-llama/Llama-2-13b-chat-hf (We accept their Meta li-
cense before requesting the model.)

7https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 (licensed by
Apache-2.0)

8https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct (We accept their
Meta license before requesting the model.)

9https://huggingface.co/microsoft/Phi-3-medium-4k-instruct (licensed by MIT)
10https://huggingface.co/microsoft/Phi-3-mini-4k-instruct (licensed by MIT)
11https://huggingface.co/EleutherAI/pythia-70m (licensed by Apache-2.0)
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Lemma G.2. Sϕπ is an π∗-irrelevant abstraction of S if Sϕπ is factorized by nextObj and
nextObjDirect.

Proof. To demonstrate that Sϕπ
is a π∗-irrelevant abstraction, we show that the optimal action a∗ in

any state can be uniquely identified using nextObj and nextObjDirect. This is formalized as
follows:

a∗ =


grab(O∗), if nOD = container

put(O∗), if nOD = with-agent

move(left), if nOD = left

move(right), if nOD = right

(2)

, where nOD denotes the value returned by nextObjDirect and O∗ denotes the object identified
by nextObj. This ensures that for any two states s1 and s2 where ϕπ(s1) = ϕπ(s2), it follows that
π∗(a|s1) = π∗(a|s2),

Lemma G.3. SϕQ
is an Q∗-irrelevant abstraction of S if SϕQ

is factorized by agentLoc, heldu,
nearby, subgoal and nextObj.

Proof. We start by deterministically extracting a sequence of containers, to be visited, represented by
their relative distances to the agent’s current location g. This sequence is denoted as g = [g1, ...,gj ],
where for each i, subgoal(i,gj) = True. nextObjDirect is inferred from g1. Consider the
optimal action a∗ derived from nextObj and nextObjDirect, as discussed in Theorem G.2.
The value of Q∗(s, a∗) is given by:

−r ·
j∑

i=1

|gi+1 − gi| − r · j + r,

where the first term represents the cost of traveling between containers, the second term accounts
for the cost of executing actions, and the third term is a positive reward for achieving the desired
situation. It follows that Q∗(s, a) for all actions can be measured as below:

Q∗(s, a) =


Q∗(s, a∗), if a = a∗

Q∗(s, a∗)− r′ − r, if a /∈ C(s)

Q∗(s, a∗)− r, else
(3)

. where C(·) is the constraint function defined in Section 4, dependent on nearbyu, heldu and
agentLoc.

Consequently, Q∗(s, a) can be precisely recovered conditioned on the predicates agentLoc,
heldu, nearby, subgoal, and nextObj. This implies that Q∗(ϕQ(s1), a) = Q∗(ϕQ(s2), a) ⇒
Q∗(s1, a) = Q∗(s2, a).

H Details about Design of Probing Tasks and Training of Probing Models

We detail the formulation and evaluation of the probing for each predicate as follows:

boxName: Given an LLM-built representation ht, and a set of candidate container names b, as well
as the embedding φ(b) for each b ∈ b, the probing model Mi

θ for i-position learns to select the
ground-truth container name b∗ by maximizing the probability of boxName(i, b∗) being True:

Jθ = − log
exp

(
Mi

θ([ht;φ(b
∗)])

)∑
b∈b exp

(
Mi

θ([ht;φ(b)])
) .

During testing, we include the container names in the same data instance as candidates and measure
the F1-score using a macro average.

agentLoc and nextObjDir: Both of these predicates are formulated as multi-class classification
tasks. Given ht, the probing model learns to maximize the ground-truth label, i.e. i∗ for agentLoc(i)
and v∗ for nextObj(v):

Jθ = − log
exp (PMθ

(i∗;ht))∑
i exp (PMθ

(i;ht))
.
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We adopt the F1-score as the evaluation metric.

store, held and nearby: These predicates may have multiple labels. For instance, a container
may hold a number of objects. Therefore, we decompose a predicate into multiple independent
decisions. For instance, we let the i-th probing model Mθ for store(i, ·) learns to perform pairwise
binary classification for store(i, o), where o ∈ O:

Jθ = q(i, o)· logPMi
θ
([ht;φ(o)])

+ (1− q(i, o)) · log
(
1− PMi

θ
([ht;φ(o)])

) ,

where q(i, o) = Jstore(i, o)K. During testing, we combine all the predictions for store(i, o) for
all candidates of o. We use the exact-match score method to evaluate the predictions of store(i, ·),
held(·), nearby(·), and we calculate the average score as the final metric.

nextObj: We formulate and train the model in the same way as boxName(i, ·). Again, we adopt
the F1-score as the evaluation metric.

subgoal: As mentioned above, we train a separate probing model for the j-th subgoal. Each
j-th subgoal is formulated, and the probing model is accordingly trained in the same way as
nextObjDirect and agentLoc. We use the F1-score for evaluation.

When we compare probing performance across different predicates, we normalize all the metric score
to the recovery rate, as described in Section 5.

We create probing data with GRIPPER and COOK as well as all variants of LLMs. Following [28],
probing models are built upon two-layer fully-connected neural networks. Consistent with their
observation, we have found that the probing models with only one layer have worse performance on
some predicates. For instance, when tested with Llama2-13b , the probing performance for nearby
and subgoal drops to 80.91 and 55, respectively, whereas performance for other predicates remains
nearly unchanged (with variances of less than 1 score). On the other hand, using more layers (e.g.
three layers) does not lead to improvement for any predicate. We explore two types of embedding
methods φ(·) and select the one with the largest performance margin between using [ht, φ(e)] and
using only φ(e) on the validation set. As a result, we use word embedding for boxName, store,
held, nextObj, and contextualized embedding for nearby. We explore multiple variants of m
for extracting hm

t : the last layer, the last 6th layer, and the last 12th layer. Among these, the last 6th
layer has been found to lead to the best overall performance on the validation set. We also explore
different dimensions of neural probing models: 6600, 7600, 8600, and 9600, selecting 8600 based on
performance on the validation set.

For the probing models takes as input the concatenation [ht, φ(e)], we uses a trick that transforms the
it to [ht + φ(e);ht − φ(e);ht · φ(e)] as the input of neural networks. In our preliminary experiment,
we have found it leads to better probing performance.

All probing models were trained with the learning rate of 1e − 3 and the batch size of 64 for 30
epochs. The main probing experiments were conducted three times, while the others were conducted
once. All experiments were run using a single Nvidia A100 GPU, and each of them was completed
within 24 hours.

I Complete Planning Experiment Results

Table 4 presents the planning performance of both variants of all LLMs for REPLACE.

J Complete Probing Experiment Results

Table 5 and Table 6 present the probing performance for different predicates across all variants of
LLMs on GRIPPER and COOK, respectively. We conduct the probing experiment for each predicate
with each LLM variant three times using different random seeds and report the mean value. We
also report σ, the mean variance across different runs. Specifically, we average the variance across
different LLM variants. The low variance observed indicates that our experimental findings are
robust.
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GRIPPER COOK
Models %Legal %Succ %Optim %Legal %Succ %Optim
Llama27b

ICL 34.89 3.83 0.00 30.29 2.27 0.76
Llama213b

ICL 62.41 3.07 0.19 35.41 1.70 0.36
MistralICL 41.12 2.12 0.65 44.41 1.95 0.22
Llama3ICL 62.19 10.36 2.17 39.11 2.26 0.09
Llama27b

SFT 95.40 87.20 82.18 89.13 64.86 35.59
Llama213b

SFT 96.54 88.30 84.02 95.71 85.11 69.17
MistralSFT 97.07 92.15 87.36 95.04 85.91 61.47
LLama3SFT 96.25 89.14 74.32 95.36 86.61 61.21
Phi317b

ICL 52.88 18.78 8.33 –– –– ––

Table 4: Planning performance of LLMs on GRIPPER and COOK.

Probing predicates Abstraction type Llama27b
SFT Llama27b

ICL Llama213b
SFT Llama213b

ICL MistralSFT MistralICL Llama3SFT Llama3ICL Pythia-70mICL Phi3-3.8bICL Phi3-17bICL Phi3-17bSFT Transformer σ
boxName Raw 23.12 20.13 18.02 21.14 17.56 18.33 17.73 24.33 17.82 31.35 39.61 23.33 16.81 0.87
storeu Raw, World-irrelevant 7.86 1.98 7.84 3.52 8.61 8.09 7.82 8.16 6.15 7.01 8.34 8.69 9.97 0.29
storeg Raw, World-irrelevant 10.55 4.62 10.52 11.13 11.10 12.08 9.83 10.52 6.27 9.57 10.93 11.41 13.19 0.07
heldg Raw, World-irrelevant 6.13 0.99 6.31 6.60 6.06 5.50 6.42 5.61 0.56 5.72 6.38 6.16 6.06 0.21
agentLoc Raw, World-irrelevant, Q∗-irrelevant 95.07 18.21 97.51 16.82 98.90 59.04 98.78 20.35 3.67 57.15 75.73 98.24 93.18 0.27
heldu Raw, World-irrelevant, Q∗-irrelevant 31.86 28.85 29.21 31.97 29.54 31.03 30.49 29.68 28.69 33.12 28.69 30.33 27.38 0.65
nearbyu Q∗-irrelevant 88.97 44.27 90.86 43.95 95.41 54.42 94.18 43.74 15.13 42.68 42.57 72.78 74.28 0.96
subgoal Q∗-irrelevant 45.53 2.45 58.71 0.00 59.45 9.55 57.89 3.43 0.37 0.00 8.45 54.71 13.59 2.75
nextObj Q∗-irrelevant, π∗-irrelevant 77.90 4.49 79.60 11.55 83.12 32.46 84.01 35.58 0.00 30.56 36.91 75.72 3.45 0.78
nextObjDirect π∗-irrelevant 86.63 12.76 91.71 17.51 92.04 46.34 91.70 17.86 15.09 24.77 59.73 89.36 53.87 0.78

Table 5: Probing performance (recovery rate) of all predicates on GRIPPER.

Probing predicates Abstraction type Llama27b
SFT Llama27b

ICL Llama213b
SFT Llama213b

ICL MistralSFT MistralICL Llama3SFT Llama3ICL Transformer σ
boxName Raw 12.52 13.53 12.21 15.57 10.64 14.95 11.97 12.88 24.49 0.30
storeu Raw, World-irrelevant 9.91 7.91 10.06 6.59 9.69 9.34 9.16 10.23 11.15 0.15
storeg Raw, World-irrelevant 12.58 8.96 12.58 8.23 11.95 9.32 11.02 7.85 13.62 0.21
heldg Raw, World-irrelevant 3.72 0.00 3.45 0.00 3.26 1.69 3.45 3.00 3.83 0.15
agentLoc Raw, World-irrelevant, Q∗-irrelevant 99.30 15.00 99.13 16.53 99.69 34.72 99.61 14.84 63.83 0.38
heldu Raw, World-irrelevant, Q∗-irrelevant 42.19 40.16 37.33 34.88 38.47 41.38 40.90 40.78 26.36 0.21
nearbyu Q∗-irrelevant 92.76 44.94 90.03 30.50 96.09 34.95 96.56 45.27 41.72 1.36
subgoal Q∗-irrelevant 47.07 6.57 54.53 9.95 62.92 7.63 64.22 2.87 29.84 0.66
nextObj Q∗-irrelevant, π∗-irrelevant 77.48 0.00 74.51 0.00 69.20 0.00 76.58 0.00 0.56 0.26
nextObjDirect π∗-irrelevant 87.52 6.77 88.39 9.59 91.87 18.01 90.21 12.22 57.41 0.68

Table 6: Probing performance (recovery rate) of all predicates on COOK.

K Probing Experiments with COLORGRIPPER

In the original setting of GRIPPER, the color c of object o, denoted by color(o, c), plays the
role of distracting information that is totally irrelevant to task completion. We create another
setting, COLORGRIPPER, where the color information is necessary to accomplish the task, and
we compare the probing performance with respect to color information under these two settings.
Specifically, COLORGRIPPER includes a new predicate colorg, the color of each object in the
desired situations, and an action paint(o, c), which paints the object o in a nearby container
to color c and c ∈ {red,blue,green,yellow}. Also, we incorporate a new constraint that
the new color must be different from the original one. As such, there is a new abstract state
nearNotColor(o, c), which classifies that the color of a nearby object o is NOT c and it
pertains to Q∗-irrelevant abstraction. We fine-tune two Llama2-13b models on GRIPPER (Llama2org)
and COLORGRIPPER (Llama2color) respectively, and probe the nearNotColor and color from
both fine-tuned LLMs. The results in Table 7 show that the probes fail to recover color, which
do not belongs to goal-oriented abstraction under both settings, from Llama2org and Llama2color.
However, nearNotColor can be probed from Llama2color with reasonable recovery rate. Again,
this confirm our finding 1 that LLMSFT tends to maintain a goal-oriented world abstraction during
decoding.

L Probing from LLMs Fine-tuned with Suboptimal Action Sequences

Can the LLM representations become more general if we enforce greater random exploration within
the environment? To answer this question, we synthesize another variant of GRIPPER, where ground-
truth action sequences are sub-optimal. Concretely, they contain random legal moves that do not
lead to the goal. We compare the average recovery rates (RR) for each abstraction from Llama3-8b
models, fine-tuned on both the original and new datasets. The results are reported in Table 8. With the
new dataset, the RR of goal-oriented abstractions decreases, which is expected as the model imitates
a sub-optimal policy. However, the margin between goal-oriented and general abstractions is still
substantial. More importantly, the RR of world-irrelevant abstraction does not increase at all, which
implies that random exploration does not yield a more general world abstraction.
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Predicates Abstraction Type Llama2org Llama2color
color Raw 0.00 1.92
nearNotColor Q∗-irrelevant 0.00 37.70

Table 7: Comparative experiments of probing color information under GRIPPER and COLORGRIPPER.

Dataset Raw World-irrelevant Q∗-irrelevant π∗-irrelevant
Original 28.5 30.6 73.0 87.8
Suboptimal 25.5 27.4 63.3 72.1

Table 8: Comparative probing experiments with Llama3-8b fine-tuned on original and suboptimal
actions on GRIPPER.

Base A sequence of containers are ordered from left to right as follows: Crate A, Bucket A, Crate B, Basket
A, Box A. You are at the Basket A.
Initial situation: Crate A contains a painting, a shoe. Bucket A contains a block, a disk. Crate
B contains a glass. Basket A contains a rose. Box A contains a paper, a camera. You don’t hold
anything.
Desired situation: Crate A contains a painting, a shoe. Bucket A contains a block, a disk. Crate B
contains a glass. Basket A is empty. Box A contains a camera. You hold rose, paper.

Lexical variants A sequence of containers are ordered from left to right as follows: Box A, Basket A, Box B, Box C,
Basket B. You are at the Box B.
Initial situation: Box A holds a small green petroleum, a big yellow gastropod. Basket A has nothing.
Box B holds a small yellow sabre, a small red tricycle. Box C has a tiny green eggnog, a big yellow
nametag, a small blue lantern, a big yellow biscotti. Basket B holds a tiny blue anaconda. You don’t
hold anything.
Desired situation: Box A is occupied by a petroleum, a gastropod. Basket A has nothing. Box B holds
a sabre. Box C has a eggnog, a nametag, a lantern, a biscotti. Basket B has a anaconda, a tricycle.
You don’t hold anything.

Partial τs(g) A sequence of containers are ordered from left to right as follows: Box A, Box B, Box C, Basket A,
Box D. You are at the Basket A.
Initial situation: Box A contains a jacket. Box B contains a boat, a paper, a ticket. Box C contains a
bag. Basket A contains a engine. Box D contains a phone, a coffee, a ticket.
Desired situation: Box A contains a jacket. Box B contains a boat, a paper, a ticket. Box C contains a
bag. Basket A contains a engine. Box D contains a phone.

Partial [τs(u); τs(g)] A sequence of containers are ordered from left to right as follows: Bucket A, Basket A, Bucket B,
Crate A, Bucket C. You are at the Crate A.
Initial situation: Bucket A contains a bomb, a ring, a medicine. Basket A contains a boat, a map, a
bottle, a fish. Bucket B contains a dish, a fish. Crate A contains a plane, a stone. Bucket C contains a
radio, a book, a map, a fish.
Desired situation: Bucket A contains a bomb, a ring. Basket A contains a boat, a bottle, a fish, a
medicine. Bucket B contains a dish, a fish. Crate A contains a plane, a stone. Bucket C contains a
radio, a book, a map, a fish.
Operations applied: You Move left for 2 steps.

Table 9: Examples of GRIPPER variants.
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You are an intelligent agent in a fictional environment with a sequence of containers arranged in a
straight line.
The environment involves movement, interaction with objects, and strategic planning to reach a
particular state.
Structure of the Environment: There are containers arranged in a line from left to right. You are at
one of them in the beginning.
Goals & Strategies: You start with an initial configuration of objects in containers. Your job is to
reach the desired state, a different configuration, through a sequence of operations. If there is any
object not mentioned in the desired state, that implies you should hold them in the end.
The legal operations include moving and manipulation(grab or put) of objects
1. Moving: You can only walk left or right. Each time you take a step, you’ll be right next to the
container on your left or right side.
2. manipulation: Inside some containers, there are objects. To grab an object or put one inside, you
need to be at that container. If you see an object in a container far away, you can’t grab it. You need
to walk over to that container first.
Constraints: For each step, you can choose only one operation: either move or manipulate one object.
You can hold multiple objects at once.

Table 10: The general task instruction in GRIPPER.

In TextWorld, You are an intelligent agent tasked with arranging food ingredients in a grid of rooms
to match a specific desired configuration.
Structure of the TextWorld: TextWorld consists of a grid-based map with multiple rooms. You start
in one of these rooms. Goals & Strategies: You start with an initial configuration of ingredients in
rooms.
Your job is to reach the desired state, a different configuration, through a sequence of operations.
If there is any ingredient not mentioned in the desired state, that implies you should hold it in the end.
If you think the desired state is reached, terminate the process.
The legal operations include moving and manipulation(take or drop) of ingredients:
1. Moving: You can go north, south, west or east to enter adjoining rooms.
2. manipulation: Interact with ingredients inside the rooms by either taking or dropping them. You
must be physically present in a room to interact with its contents. Constraints: For each step, you
can choose only one operation: either move or manipulate one ingredient. You can hold multiple
ingredients at once.

Table 11: The general task instruction in COOK.

You open the map of TextWorld. bedroom A in the northwest connects east to garden A and south
to pantry A. garden A links further east to backyard A and south to garden B. backyard A connects
south to bedroom B. pantry A leads east to garden B. garden B connects east to bedroom B. You are
in backyard A.
Initial state: In bedroom A, you can see roasted sliced pecan, fried chopped mustard seed. garden A
has grilled chopped nectarine, grilled chopped mango, raw chopped beef in it. backyard A has fried
diced pork in it. pantry A contains raw sliced polenta, grilled diced rice, fried uncut tempeh. garden
B has raw uncut mussels, grilled diced ham, roasted diced squid in it. bedroom B has grilled chopped
nectarine, fried chopped mustard seed, roasted chopped walnut in it.
Desired state: bedroom A has nothing. In garden A, you can find nectarine, mango, beef, mustard
seed. backyard A contains nothing. pantry A contains polenta, rice, tempeh. garden B contains
mussels, ham, squid. In bedroom B, you can see nectarine, mustard seed, walnut.
Operations applied: You take pork from the room. You go west.

Table 12: An input example in COOK.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We list the main contributions at the end of Section 1.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss thoroughly the limitations of our framework, task, experiments in
Appendix A.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have properly cited state abstraction theory, on which our work relies. Due
to the limit of space, we provide the formal proof of the derivation of abstractions for our
REPLACE task in Appendix G.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details of our probing framework, including the
task formulation, probing model design, hyper-parameter search and setting in Appendix F
and Appendix H. To further ensure reproducibility, the reported results are averaged across
multiple runs, and we have found the variance small (detailed in Appendix J). We will
release the synthesized dataset, the fine-tuned LLMs checkpoints and all of the code for
experiments.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the synthesized dataset, the code for generate datasets, fine-
tunining LLMs, and probing. The instruction of our experiments are detailed in Appendix F
and Appendix H.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Data splits is introduced in Section Section 4.2. The setting and impact
of hyper-parameters as well as other training details are elaborated in Appendix F and
Appendix H.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation for the main probing experiments in Table 6
and Table 5. As we discuss in Appendix J, the variance across different runs is very small
and it cannot contribute meaningfully to the plot. Therefore, the error bar is omitted from
the plot.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details of compute resources in Appendix H.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer:[Yes]
Justification: We conform the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Due to the limit of space and we do not see any potential negative societal
impact of our work, we discuss the positive societal impacts of our work in Appendix B.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not see any significant risk that our dataset and probing models could
be misused.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We conduct probing experiments on top of existing LLMs released by other
researchers and organizations. We have cited the resource, such as the paper and website,
introducing the models and include the license information in Appendix F.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release all the code and datasets, which are licensed under CC BY 4.0.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: Our work does not involve crowdsourcing nor research with human subjects.
15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human

Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
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