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ABSTRACT

Despite its great success, deep learning severely suffers from robustness; that is,
deep neural networks are very vulnerable to adversarial attacks, even the simplest
ones. Inspired by recent advances in brain science, we propose the Denoised In-
ternal Models (DIM), a novel generative autoencoder-based model to tackle this
challenge. Simulating the pipeline in the human brain for visual signal processing,
DIM adopts a two-stage approach. In the first stage, DIM uses a denoiser to reduce
the noise and the dimensions of inputs, reflecting the information pre-processing
in the thalamus. Inspired from the sparse coding of memory-related traces in the
primary visual cortex, the second stage produces a set of internal models, one for
each category. We evaluate DIM over 42 adversarial attacks, showing that DIM ef-
fectively defenses against all the attacks and outperforms the SOTA on the overall
robustness.

1 INTRODUCTION

The great advances in deep learning (DL) techniques bring us a large number of sophisticated mod-
els that approach human-level performance in a broad spectrum of tasks, such as image classifi-
cation (LeCun et al., 1989; He et al., 2016; Krizhevsky et al., 2012; Szegedy et al., 2016), speech
recognition (Amodei et al., 2016; Xiong et al., 2016), and natural language processing (Vaswani
et al., 2017; Devlin et al., 2019; Yang et al., 2019b; Gu et al., 2018). Despite its success, deep
neural network (DNN) models are vulnerable to adversarial attacks (Szegedy et al., 2014; Biggio
et al., 2013; Goodfellow et al., 2014a). Even with adding human-unrecognizable perturbations, the
predictions of the underlying network model could be completely altered (Biggio & Roli, 2018;
Goodfellow et al., 2014b; Moosavi-Dezfooli et al., 2016; Athalye & Carlini, 2018). On the other
hand, the human brain, treated as an information processing system, enjoys remarkably high ro-
bustness (Xu & Vaziri-Pashkam, 2021; Athalye et al., 2018b). A question naturally arises whether
knowledge about the working mechanism of the human brain can help us improve the adversarial
robustness of DNN models (Casamassima et al., 2021; Huang et al., 2019).

Biological systems keep being an illuminating source of human engineering design. Two famous
relevant examples are the perceptron model (Rosenblatt, 1958) and the Rectified Linear Unit
(ReLU) (Agarap, 2019) activation function. Further, the recurrent neural network (RNN) (Elman,
1990) architecture also has its origin in the study of how to process time-series data, like natural lan-
guage. In this work, we draw inspiration from the visual signal processing paradigm of the human
brain and propose a novel model to address the robustness issue in the image classification task.

With the recent progress in neuroscience, we now better understand the information processing
pipeline in the human brain’s visual system. Two brain areas are involved in this pipeline: the tha-
lamus and the primary visual cortex (Cudeiro & Sillito, 2006). Visual signals from the retina will
travel to the Lateral Ganglion Nucleus (LGN) of the thalamus before reaching the primary visual
cortex (Derrington et al., 1984). The LGN is specialized in handling visual information, helping to
process different kinds of stimuli. In addition, some vertebrates, like zebrafish, have no visual cor-
tex but still have some neural structure similar to the hypothalamus to receive and process visual
signals (O’Connor et al., 2002). This fact highlights the importance of such an information pre-
processing module in the biological visual signal processing system. The primary visual cortex is
one of the best-studied brain areas, which displays a complex 6-layers structure and provides excel-
lent pattern recognition capacities. An important finding (Xie et al., 2014) reveals that Layer 2/3 of
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Figure 1: From the visual signal processing in human brain (A) to the Denoised Internal Models (B).

the primary visual cortex contains the so-called engram cells (Tonegawa et al., 2015), which only
activate for specific stimuli and related ones, such as Jennifer Aniston’s pictures (Quiroga et al.,
2005). In other words, the concepts corresponding to those stimuli are encoded sparsely through the
engram cells (McGaugh, 2000; Guan et al., 2016). Furthermore, artificial activation of the engram
cells induces corresponding memory retrieval (Liu et al., 2012; 2014). Those discoveries suggest
there could be internal generative models for different kinds of concepts in the human brain.

Simulating the pipeline mentioned above, we proposed the Denoised Internal Models (DIM) (see
Figure 1 B), which consists of a global denoising network (a.k.a. denoiser) and a set of generative
autoencoders, one for each category. The denoiser helps pre-process the input data, similar to what
LGN does. The autoencoders can be regarded as internal models for specific concepts mimicking the
function of engram cells in the primary visual cortex. In order to have a comprehensive evaluation of
DIM’s robustness, we conduct our experiments on MNIST (Lecun et al., 1998), using DIM against
42 attacks in the foolbox v3.2.1 package (Rauber et al., 2017) and comparing its performance to
SOTA models. The results show that DIM outperforms the SOTA models on the overall robustness
and has the most stable performance across the 42 attacks.

2 RELATED WORKS

2.1 ADVERSARIAL ATTACKS

A large number of adversarial attacks have been proposed recently (Tramèr et al., 2018; Rony et al.,
2019; Rauber & Bethge, 2020; Hosseini et al., 2017; Carlini & Wagner, 2017; Moosavi-Dezfooli
et al., 2016; Brendel et al., 2020). From the viewpoint of the attacker’s knowledge about the models,
these attacks can be divided into white-box ones and black-box ones. The former (Rony et al., 2019;
Rauber & Bethge, 2020; Moosavi-Dezfooli et al., 2016; Brendel et al., 2020) knows all model infor-
mation, including the network architecture, parameters, and learning mechanisms. The latter (Bren-
del et al., 2018) only knows limited or zero knowledge about the models, but it can interact with the
model through inputs and outputs. Typically, white-box attacks are harder for defense.

Viewing from the norm types, i.e., the distance measure of the adversarial perturbations, major exist-
ing adversarial attacks fall into four categories: L0 attacks (Schott et al., 2019), L1 attacks (Hosseini
et al., 2017; Brendel et al., 2020), L2 attacks (Rony et al., 2019; Rauber & Bethge, 2020; Carlini
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Figure 2: The training phase (A) and the inference phase (B) of DIM.

& Wagner, 2017; Moosavi-Dezfooli et al., 2016), and L∞ attacks (Moosavi-Dezfooli et al., 2016;
Brendel et al., 2020).

2.2 DEFENSE METHODS

Many defense approaches have been proposed to tackle the robustness challenge in deep learn-
ing (Yin et al., 2019; Pang et al., 2019b; Hu et al., 2019; Verma & Swami, 2019; Bafna et al., 2018;
Pang et al., 2019a). Roughly, there are four major types.

2.2.1 ADVERSARIAL TRAINING

Proposed by Madry et al. (2018), it is one of the most popular defense methods that can withstand
strong attacks. It follows the simple idea of training the model on the generated adversarial samples.

2.2.2 RANDOMIZATION

This approach (Vaishnavi et al., 2020; Vincent et al., 2010) randomizes the input layer or some
intermediate layers to neutralize the adversarial perturbations and help to protect the underlying
model.

2.2.3 GRADIENT MASKING

This approach mainly defends against gradient-based attacks by building a model with no useful
gradient (Xiao et al., 2019); that is, the gradients of the model outputs with respect to its inputs are
almost zero. However, it turns out such a method fails to work in practice (Athalye et al., 2018a).

2.2.4 GENERATIVE MODELS

This approach exploits a generative model, normally GAN (Samangouei et al., 2018) or autoen-
coder (Cintas et al., 2020; Meng & Chen, 2017), to project the high-dimensional inputs into a low-
dimensional manifold. It is generally believed that such a way can reduce the risk of overfitting and
improve the adversarial robustness (Jang et al., 2019).

Among this type, we would like to mention the ABS (Schott et al., 2019) model. From a different
starting point, it also arrived at the design that uses an individual generative model for each category
in the dataset.
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3 MODEL

3.1 BIOLOGICAL INSPIRTION

In this subsection, we give a closer look at the visual signals processing pipeline in the human brain.
As depicted in Figure 1 (A), visual perceptual information streams are firstly received and processed
by the LGN in the thalamus before projecting to the primary visual cortex (O’Connor et al., 2002).

The cell bodies in the LGN arrange to form a 6-layer structure, where the inner two layers are
called the magnocellular layers, while the outer four are called parvocellular layers (Brodal, 2004).
Previous studies (White et al., 2009) reveal that parvocellular layers are sensitive to color and per-
ceive a high level of detail. On the other hand, magnocellular layers are highly sensitive to motion
while insensitive to color and detail. In this way, the LGN pre-processes different kinds of visual
information.

The primary visual cortex has a complex hierarchical structure of six layers. Roughly speaking,
Layer 4 handles the input signals from the LGN, and Layer 5 sends outputs to other regions in
the brain. Upon receiving inputs, Layer 4 sent strong signals directly to Layer 2/3 for process-
ing (Markram et al., 2015). Recent advances in neuroscience surprisingly find that contextual infor-
mation and memory components are sparsely encoded in Layer 2, namely, only a distinct population
of neurons in Layer 2 respond to a specific kind of context, and these populations are spatially sepa-
rated (Xie et al., 2014). Such spatial sparsity reflects typical engram-cell behavior. As mentioned in
the introduction, artificial activation of the engram cells induces memory retrieval, suggesting that
internal models operate inside the primary visual cortex.

It is worth emphasizing that we only consider the functional level analogy to the brain’s visual signal
processing system rather than repeating its precise connections and structure. We recognize the LGN
as a pre-processor that distills inputs signals, separating different kinds of information. On the other
hand, the primary visual cortex corresponds to a set of internal generative models. In this way, we
abstract the human visual signal processing system as a two-stage model and will lay our model
design based on it.

3.2 DENOISED INTERNAL MODELS

Based on the above abstraction, we proposed a two-stage model Denoised Internal Models (DIM).
The corresponding schematic diagram is shown in Figure 1 (B). In the first stage, we seek a global
denoiser that helps filter the ”true” signals out of the input images, which is analogous to the function
of LGN in the thalamus. The basic idea is that adversarial perturbations are generally semantically
meaningless and can be effectively treated as noise in the raw images. The second stage consists
of a set of internal generative models, which operate in a dichotomous sense. Each internal model
only accepts images from a distinct category and will reject images from other categories. Upon
acceptance, the internal model will output a reconstructed image, while it returns a black image if
the input is rejected. In this way, our model reflects the engram-cell behavior in the primary visual
cortex.

One of the main targets of this paper is to evaluate whether a functional level analogy to the brain’s
visual signal processing system helps improve the adversarial robustness rather than focusing on
specific algorithms. Hence, we have kept our network architecture simple to avoid complexities
during evaluation. Details about the architecture and parameter settings can be found in the appendix.

3.2.1 DENOISER

There exist different methods to filter the raw image out of a noisy one (Yang et al., 2019a; Candès
& Recht, 2009; Chatterjee, 2015; Chen & Chi, 2018). We adopt a simple autoencoder as the denoise
network model. In the training phase, we add noise to the images in the training dataset. Those noisy
images serve as the inputs to the denoiser and the original ones as the learning targets. The model is
trained on the mean-square error (MSE) loss to minimize the mean reconstruction error.

LD = E
[
‖x−D(x+ ε)‖22

]
, (1)

where D(·) refers to the function of the denoiser, and ε indicates the added noise. ‖ · ‖p denotes the
Lp, p = 0, 1, 2,∞ norm.
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3.2.2 INTERNAL MODELS

We train an autoencoder as the internal generative model for each category in the dataset. Ideally,
the input, the bottleneck, and the output of the autoencoders are analogous to the roles of neurons
in Layer 4, Layer 2/3, and Layer 5, respectively, in the primary visual cortex. The internal models
receive inputs from the outputs of the denoiser. Then we add noise to the inputs to reflect the ran-
domness in the brain’s neural activities. The i-th autoencoder in the internal models is trained on the
following loss

LIM,i = E
[
‖Fi(x+ ε)− x ∗ Ii(x)‖22

]
, (2)

where indicator Ii(x) = 0 if x belongs to category i, and 0 otherwise. Fi(·) denotes the function that
corresponds to the i-th autoencoder, and ε indicates the added noise. We choose this loss function to
encourage the engram-cell behavior of the autoencoders. As a result of this behavior, it is natural to
perform inference based on the relative output intensities from different autoencoders. Specifically,
for each input image x, we estimate its relative intensity from the i-th autoencoder for as

P̃ (x|i) = ‖Fi(D(x))‖1/‖D(x)‖1. (3)

The prediction on x by DIM will be

p(x) = argmax
i∈[K]

P̃ (x|i), (4)

where [K] := {0, 1, . . . ,K − 1} and K is the number of categories.

Finally, we also consider a variation of the DIM model in the inference phase, which includes two
binarization operations, one applied to the input images and the other applied to the outputs of the
denoiser. We refer to this variation as biDIM hereafter.

4 EXPERIMENTS

To evaluate the adversarial robustness of our model, we compare DIM and biDIM against two SOTA
methods: the adversarial training (Madry et al., 2018), a SOTA L∞ defense method, and the analy-
sis by synthesis (ABS) model as well as its variation with binarization inputs (biABS) (Schott et al.,
2019). We also include a vanilla convolutional neural network (CNN) model and its variation with
input binarization (biCNN) as the baseline models. The DIM models are implemented using rela-
tively simple neural networks. Consequently, their clean accuracies are 96%, while the other models
reach 99%. Despite this disadvantage, biDIM still beats the SOTA on the overall robustness. We will
discuss more details in the next section.

In our experiments, we applied almost all attacks available in foolbox v3.2.1 against all models.
Those attacks consist of 22 L2 attacks, 12 L∞ attacks, 6 L1 attacks and 2 L0 attacks 1. The most
effective ones are those based on model gradients and those based on the prediction boundary. More
specifically, the gradient-based attacks include the DeepFool Attack (Moosavi-Dezfooli et al., 2016),
Basic Iterative Method (BIM) Attack (Kurakin et al., 2016), and the Carlini&Wagner Attack (Carlini
& Wagner, 2017). They exploit the gradients at the raw input images to find directions leading to
wrong predictions. The boundary attacks rely on the model decision. Starting from adversarial sam-
ples with relative large perturbation size, these attacks search towards the corresponding raw input
images along the boundary between the adversarial and non-adversarial regions. Within this type,
there are white-box attacks L2 Boundary Attack (Brendel et al., 2018) and L0 BrendelBethge At-
tack as well as black-box attacks L1, L2, and L∞ BrendelBethge Attack (Brendel et al., 2020). Our
experiments also cover other types of attacks, such as the additive random noise attacks, including
the Gaussian Noise Attack and the Uniform Noise Attack and their variations.

In practice, the overall robustness is more important than the robustness under a single attack, since
the adversaries will not restrict themselves to any specific attack. To reflect the overall robustness,
we summarize the experimental results within each Lp, p = 0, 1, 2,∞ norm and leave the full results
for individual attacks in the appendix. More concretely, we count a sample as successfully attacked
as long as one attack finds the adversarial image. Furthermore, the corresponding perturbation size
on the sample is computed by minimizing across all successful attacks.

1We use foolbox v2.4.0 for the Pointwise attack since it is not available in foolbox v3.2.1.
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Table 1: Results for different kinds of models under defferent adversarial attacks, arranged accord-
ing to distance metrics. Each entry shows the accuracy of the model for the threshold of εL0

= 12,
εL1 = 8, εL2 = 1.5, and εL∞ = 0.3. For each Lp, p = 0, 1, 2,∞ norm, we also summarize all
attacks in the type, calculating both the median adversarial distance (left value) between all sam-
ples and the overall accuracy (right value). The last row shows the minimal accuracy of each model
across all the attacks. The best results for the overall performance are shown in bold. Due to the
space limit, we only display 15 important attacks out of the total 42 in this table and leave the full
results in the appendix.

CNN biCNN Madry biABS ABS biDIM DIM

L2-metric (ε = 1.5)
L2 DDNAttack 15% 71% 94% 85% 84% 92% 93%
L2 PGD 30% 76% 96% 86% 88% 93% 94%
L2 BasicIterativeAttack 17% 67% 95% 83% 83% 93% 94%
L2 FastGradientAttack (FGM) 55% 92% 97% 94% 86% 94% 95%
L2 DeepFoolAttack 21% 21% 95% 49% 83% 75% 89%
L2 CarliniWagnerAttack 13% 10% 83% 45% 84% 51% 74%
L2 BrendelBethgeAttack 12% 8% 50% 48% 93% 57% 71%
L2 BoundaryAttack 19% 62% 54% 93% 90% 80% 80%

All L2 attacks 1.1/9% 0.9/7% 1.4/41% 1.3/41% 2.2/83% 1.4/45% 1.9/66%

L∞-metric (ε = 0.3)
L∞ PGD 0% 73% 95% 88% 11% 89% 85%
L∞ BasicIterativeAttack 0% 70% 96% 83% 8% 89% 82%
L∞ FastGradientAttack (FGSM) 7% 78% 96% 86% 38% 90% 89%
L∞ DeepFoolAttack 0% 83% 95% 86% 7% 91% 78%
L∞ BrendelBethgeAttack 2% 81% 94% 89% 11% 88% 9%

All L∞ attacks 0.08/0% 0.36/69% 0.34/93% 0.42/82% 0.22/3% 0.49/78% 0.2/8%

L0-metric (ε = 12)
Pointwise ×10 25% 43% 2% 82% 76% 53% 59%

All L0 attacks 8/25% 11/43% 4/2% 26/82% 19/76% 13/53% 14/59%

L1-metric (ε = 8)
L1 BrendelBethgeAttack 11% 4% 16% 48% 89% 65% 65%

All L1 attacks 5/11% 3/4% 4/16% 8/47% 19/89% 13/65% 11/65%

Minimal Accuracy 0% 4% 2% 41% 3% 45% 8%

Table 1 reports the model’s accuracy within given bounds of perturbations, i.e., εL0
= 0.3, εL1

= 8.,
εL2

= 1.5, and εL∞ = 12.. It has been recognized that the model’s accuracy on bounded adversarial
perturbations is often biased (Schott et al., 2019); nonetheless, we reported it for completeness. On
the other hand, the median adversarial perturbation size reflects the perturbation with which the
model achieves 50% accuracy. It is hardly affected by the outliers; hence, it can help summarize the
distribution of adversarial perturbations better. We also report the median perturbation size for each
model in all four Lp, p = 0, 1, 2,∞ norm cases (values before the slash). Note that clean samples
that are already misclassified are counted as adversarial samples with a perturbation size of 0, and
failed attacks are assigned a perturbation size of∞.

For a better understanding of how each component in DIM affects the adversarial robustness, we
further carry out an ablation study as well as investigate the latent representations of autoencoders
in the internal models.

The ablation study involves six models. Starting from the vanilla CNN as the baseline, we first
consider two ablations of DIM: the stand-alone Internal Models (IM) without the denoiser and the
single-head internal model (single-IM). The single-head internal model combines a single encoder
with a set of decoders, each of which corresponds to a category in the dataset. Then, we extend the
single-head internal model by adding the denoiser to it. At last, we compare the performance of
those ablations to DIM and biDIM. The results are summarized in Table 2.
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Table 2: Results for ablation study, including six models: the vanilla CNN, the single-head Inter-
nal Model (single-IM), the Internal Model without denoiser, the single-head Internal Model with
denoiser (Dn-singleIM), the DIM, and the biDIM. The rest settings are the same as those in Table 1.

CNN singleIM Internal Models Dn-singleIM DIM biDIM

L2-metric (ε = 1.5)
L2 DDNAttack 15% 83% 91% 87% 93% 92%
L2 PGDAttack 30% 89% 95% 89% 94% 93%
L2 BasicIterativeAttack 17% 88% 94% 90% 94% 93%
L2 FastGradientAttack (FGM) 55% 89% 95% 90% 95% 94%
L2 DeepFoolAttack 21% 71% 83% 82% 89% 75%
L2 CarliniWagnerAttack 13% 54% 66% 68% 74% 51%
L2 BrendelBethgeAttack 12% 61% 58% 70% 71% 57%
L2 BoundaryAttack 19% 65% 67% 75% 80% 80%

All L2 attacks 9% 52% 51% 65% 66% 45%

L∞-metric (ε = 0.3)
L∞ PGDAttack 0% 49% 70% 72% 85% 89%
L∞ BasicIterativeAttack 0% 54% 61% 72% 82% 89%
L∞ FastGradientAttack (FGSM) 7% 64% 78% 79% 89% 90%
L∞ DeepFoolAttack 0% 44% 61% 66% 78% 91%
L∞ BrendelBethgeAttack 2% 2% 1% 6% 9% 88%

All L∞ Attacks 0% 2% 0% 6% 8% 78%

L0-metric (ε = 12)
Pointwise ×10 25% 54% 50% 58% 59% 53%

All L0 attacks 25% 54% 50% 58% 59% 53%

L1-metric (ε = 8)
L1 BrendelBethgeAttack 11% 61% 57% 65% 65% 65%

All L1 attacks 11% 61% 57% 65% 65% 65%

In Figure 3, we visualize the clustering of latent representations in all the ten latent spaces by apply-
ing the tSNE method to reduce the dimension of the latent representations.

5 REUSLTS AND DISCUSSION

The last row of Table 1 shows the minimal accuracy of a model against all the 42 attacks. Higher
minimal accuracy indicates more stable performance in robustness under different types of adver-
sarial attacks. From the table, we find biDIM achieves the highest minimal accuracy.

Our model closely simulates the brain’s visual signal processing pipeline while been implemented
with relatively simple neural networks in the denoiser and internal models. Its stable robustness
suggests that drawing inspiration from bio-systems could be a promising direction to explore when
tackling the robustness issue in deep learning.

For a more detailed comparison with the SOTA methods:

• For L2 attacks, ABS has the highest accuracy while biDIM outperforms biABS in both
accuracy and median perturbations size. Madry achieves good performance except for two
boundary attacks: the L2 boundary attack and L2 BBA, which considerably degrade its
overall robustness.

• For L∞ attacks, Madry has the best accuracy since their adversarial training is based on
the L∞ norm. We find that the overall accuracy of ABS and DIM both decrease rapidly.
The individual accuracy of DIM only drops for the L∞ BBA case, while the performance
of ABS deteriorates on all five listed attacks. On the other hand, both biDIM and biABS
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retain decent robustness underL∞ attacks with the help of the input binarization. It is worth
noting that biDIM has the largest median adversarial perturbation size.

• Under L0 attacks, Madry suffers a significant decrease in accuracy, becoming even worse
than the baseline methods. On the contrary, DIM/biDIM and ABS/biABS still show mod-
erate performance, especially the biABS, which has the highest accuracy.

• For L1 attacks, no model performs particularly poorly. ABS stands out in this case, while
biDIM outperforms biABS and both of them are much better than Madry.

In summary, biDIM has the most stable performance over all kinds of attacks in our experiments,
even though it may be inferior to other SOTA methods under specific circumstances. More impor-
tantly, biDIM achieves the highest minimal accuracy, indicating that it is not only stable but also a
competitive defense method against all types of adversarial attacks.

We would like to also remark that the inference using DIM (biDIM) is much faster than the ABS
(biABS), which may take several seconds for a single forward pass. This heavy time cost highly
restricts the extensibility of the ABS model.

Figure 3: The clustering of the latent representations of the ten autoencoders in the Internal Models.
Different colors corresponds to different categories (digits) in the MNIST dataset.

In Table 2, we first compared our DIM model with its three ablations: the single-head Internal
Model (singleIM), the stand-alone Internal Models, and the singleIM with denoiser (Dn-singleIM).
A vanilla CNN is included as the baseline. We found that extending from the singleIM to the Internal
Models generally increases the accuracy, indicating better robustness. Further, models with the de-
noiser outperform the ones without in almost all cases. More interestingly, we note that the increase
in accuracy is more evident for L∞ attacks. The comparison between DIM and biDIM shows that
input binarization is a very effective method against L∞ attacks. However, our results suggest that
it often degrades the performance under L2 attacks.

At last, we studied the clustering of the latent representations, whose knowledge might provide us
clues about how the internal models work. For the sake of visualization, we apply the tSNE algo-
rithm (van der Maaten & Hinton, 2008) to map the original 10-dimensional latent representations
into 2-dimensional ones. The results are shown in Figure 3.

From Figure 3, we saw that, for the i-th autoencoder, the distribution of the representations in the i-th
category is well centralized and stands distinguished from the others. In addition, the representations
of other categories are scattered over the latent space and show no apparent pattern. This behavior
reflects how we train internal models, i.e., we require each autoencoder to only react to images from
the corresponding category and return a black image otherwise.

6 CONCLUSION

In this work, we proposed the Denoised Internal Models (DIM), a novel two-stage model closely
following the human brain’s visual signal processing paradigm. The model is carefully designed to
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mimic the cooperation between the thalamus and the primary visual cortex. Moreover, instead of
a single complex model, we adopt a set of simple internal generative models to encode different
categories in the dataset. This reflects the sparse coding that is based on the engram cells in Layer
2/3 of the primary visual cortex. Recent progress in neuroscience suggests that the engram-based
generative models may serve as the base of a robust cognitive function in the human brain.

In order to comprehensively evaluate the robustness of our model, we conducted extensive exper-
iments across a broad spectrum of adversarial attacks. The results (see Table 1) demonstrate that
DIM, especially its variation biDIM, achieves a stable and competitive performance over all kinds
of attacks. biDIM beats the SOTA methods adversarial training and ABS on the overall performance
across the 42 attacks in our experiments. Further investigations show that the clusters corresponding
to different categories are well separated in the latent spaces of the internal models, which provides
some clues about the good robustness of DIM. The present work is an initial attempt to integrate the
brain’s working mechanism with the model design in deep learning. We will explore more sophisti-
cated realizations of the internal models and extend our model to real-world datasets in future work.
May the brain guides our way.
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