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Figure 1. Novel views synthesized by our model and three state-of-the-art baselines. Our implicit point cloud optimization excels at capturing
fine detail leading to a higher visual fidelity compared to baselines. While outperformed by explicit point-based methods [17, 28] in terms of
inference frame rates, our model renders 17× faster than Zip-NeRF [5]. Per-patch PSNR and per-scene fps values are inset.

Abstract

We introduce a new approach for reconstruction and
novel view synthesis of unbounded real-world scenes. In
contrast to previous methods using either volumetric fields,
grid-based models, or discrete point cloud proxies, we pro-
pose a hybrid scene representation, which implicitly encodes
the geometry in a continuous octree-based probability field
and view-dependent appearance in a multi-resolution hash
grid. This allows for extraction of arbitrary explicit point
clouds, which can be rendered using rasterization. In doing
so, we combine the benefits of both worlds and retain favor-
able behavior during optimization: Our novel implicit point
cloud representation and differentiable bilinear rasterizer
enable fast rendering while preserving the fine geometric de-
tail captured by volumetric neural fields. Furthermore, this
representation does not depend on priors like structure-from-
motion point clouds. Our method achieves state-of-the-art
image quality on common benchmarks. Furthermore, we
achieve fast inference at interactive frame rates, and can
convert our trained model into a large, explicit point cloud
to further enhance performance.

1. Introduction
Novel view synthesis describes the task of rendering novel
inter- or extrapolated views from a set of input images, which

is an inherently difficult problem. Recent methods com-
monly address this by reconstructing the scene either vol-
umetrically as dense implicit radiance fields [38] or use
explicit geometric representations [49] such as point clouds
or meshes. Leveraging advances in optimization-based neu-
ral rendering techniques, volumetric approaches achieve an
impressive increase in quality by optimizing geometric infor-
mation (i.e., density and appearance) into Multi-Layer Per-
ceptrons (MLPs) [35], voxel grids [18], or hash maps [36]. In
contrast, explicit point-based methods optimize appearance
at discrete 3D scene points, where color is being represented
via 3D Gaussians [28] or per-point features [1]. While both
directions provide unique advantages, they also entail severe
drawbacks such as volumetric methods relying on computa-
tionally intensive ray-marching or explicit methods requiring
a-priori point proxies.

In this work, we aim at creating a novel, efficient, and
robust scene representation which combines the benefits of
both worlds while bypassing the need for expensive ray-
casting or explicit priors. To this end, we introduce Implicit
Neural Point Cloud (INPC), an implicit scene representa-
tion that enables accurate scene reconstruction by sampling
and subsequent rendering of explicit point clouds using fast
differentiable rasterization. More specifically, we take inspi-
ration from current state-of-the-art approaches 3D Gaussian
Splatting [28] and Zip-NeRF [5]: We decompose and opti-
mize a scene into two parts, which constitutes a concept that



we dub implicit point clouds. Here, the geometric structure is
represented as an octree-based point probability field, while
appearance features are embedded in an implicit coordinate-
based multi-resolution hash grid. The octree is progressively
subdivided to ensure similar probability distribution across
all leaf nodes, which enables the reconstruction of fine ar-
ticulated geometry while maximizing the capacity of our
appearance hash grid. During rendering, we use the proba-
bility octree as an estimator for point positions and use either
random positions in each leaf or fixed sampling patterns,
while per-point appearance features are queried from the
hash grid. The resulting explicit point cloud is then rendered
via fast bilinear splatting, where gradients are backpropa-
gated through our differentiable end-to-end pipeline to the
implicit representation.

Notably, our formulation makes use of the favorable op-
timization properties of volumetric methods by implicitly
modeling geometry and appearance. Simultaneously, it el-
egantly replaces interval-based sampling of per-pixel rays
with a unified sampling step for the whole frustum of a given
viewpoint. This subsequently allows for forward rendering
with a rasterizer, i.e., the driving factor for real-time frame
rates of point-based methods. By combining the benefits
of both families of approaches, our method achieves robust
radiance field reconstruction alongside rendering with state-
of-the-art quality on benchmark datasets. In summary, our
contributions are:
• The introduction of implicit neural point clouds as a data

structure to effectively reconstruct unbounded 3D scenes.
• An algorithm for extracting view-specific point clouds as

well as global point clouds from this model.
• A fast and differentiable rendering formulation for this

data structure using bilinearly splatted points.

2. Related Work
Traditionally, novel view synthesis was based on light
fields [19], however image-based rendering became a popu-
lar alternative [49]. It commonly works by warping source
views onto geometric proxies [6, 12]. This proxy may con-
tain artifacts, especially near object edges, either due to
limited input coverage or misaligned cameras. With image-
based rendering, these artifacts result in blurred and inac-
curate images, with subsequent methods lessening these
artifacts [6, 15]. The geometric proxy can also be a full
3D reconstruction, which with the introduction of Structure-
from-Motion (SfM) [46] and Multi-View Stereo (MVS) [48]
gained popularity. Furthermore, the advent of deep learning-
based techniques in this field further improved results [51]
through learned blending operators [24] and textures [52],
lessening failure cases introduced by artifacts in the recon-
struction. In the following, we discuss related works in
volume- and point-based novel view synthesis, the two di-
rections we combine in our work.

Neural Radiance Fields. Recently, implicitly representing
3D scenes within volumetric fields became popular, enabling
novel view synthesis via volume rendering and without the
need for proxy geometry. Mildenhall et al. [35] showed
exceptional results by compressing a complete 3D scene
into a large coordinate-based MLP, a concept called Neural
Radiance Field (NeRF). To render images, pixel-wise ray-
marching is used with the volume rendering formulation for
each pixel color C:

C =

N∑
i=1

Tiαici and Ti =

i−1∏
j=1

(1− αj), (1)

with αi = 1 − e−σiδi . Here, density σi and color ci are
the outputs of the MLP at each ray interval δi. Several suc-
cessive works aim to resolve challenges bound to this con-
cept by addressing input view distributions [11, 31, 58, 65]
and computation times [3, 7, 11, 36, 37, 50, 53]. For the
latter, discretizing the scene space using voxel grids [18],
octrees [45, 64], tensor decomposition [8, 14, 41], or even
distilling a faster model for inference with neurally textured
triangle meshes [9] or mesh baking [42, 62] proved effective.
In terms of training and rendering speed, Instant-NGP [36]
presented exceptional results with a hash grid-based space
partitioning scheme, allowing training within minutes and
frame rates of up to 10 fps. Furthermore, close to our ap-
proach are hybrids of conventional and optimized ideas:
Point-NeRF [60] uses an explicit point cloud with neural fea-
tures, however, images are rendered with slow ray-marching
and are restricted to reconstruct bounded scenes. Regarding
quality, Barron et al. [3] propose anti-aliasing through con-
ical frustum sampling and enable extension to unbounded
scenes via space contraction [4]. The current state of the
art in this field, Zip-NeRF [5], combines ideas from both
quality and efficiency directions. It augments the underlying
grid-based data structure with anti-aliasing through conical
sampling, addition of scaling information, and refined empty
space skipping. While Zip-NeRF is comparably fast in train-
ing (taking about 5 hours), the rendering speed for novel
views is limited to ∼0.2 fps on consumer-grade hardware.
This approach is close to our method, as we also recombine
grid-based appearance information with implicit density for-
mulation for scene reconstruction. In contrast to Zip-NeRF,
however, our method enables rasterization-based rendering,
making it faster in inference.

Point Rendering. Orthogonal to NeRFs, neurally render-
ing radiance fields via explicit points is an established and
efficient methodology for novel view synthesis. Early work
builds on established techniques [25] and associates point
clouds obtained through MVS with optimizable colors or
features [1]. Points are rendered as splats of varying sizes
and a convolutional neural network (CNN) is used to in-



Figure 2. Overview of our method: We introduce the implicit point cloud, a combination of a point probability field stored in an octree and
implicitly stored appearance features. To render an image for a given viewpoint, we sample the representation by estimating point positions
and querying the multi-resolution hash grid for per-point features. This explicit point cloud – together with a small background MLP – is
then rendered with a bilinear point splatting module and post-processed by a CNN. During optimization, the neural networks as well as the
implicit point cloud are optimized, efficiently reconstructing the scene.

terpret features. Due to the unstructured and disconnected
nature of point clouds, holes in image space where no point
was projected to can appear, which the neural network can
also resolve. Several follow-up works have been proposed
eliminating training time [23, 40], adding per-view feature
optimization [32], reflection warp-fields [33], or differen-
tiable tone mapping [44]. Furthermore, differentiability with
respect to point positions and camera parameters – via ap-
proximate [44] or linear gradients [17] – has been introduced,
retaining rendering performance for large point clouds com-
pared to other point representations [34, 57, 63]. Recent
point-based radiance field renderers [16, 17, 28, 32, 33, 63]
also adapt NeRFs rendering technique to α-blending of
points. Instead of taking N samples along a ray as in Eq. (1),
they blend together N sorted points with associated colors c
and opacities α instead of computing α based on density. For
approaches keeping true to MVS reconstructions, Trilinear
Point Splatting (TRIPS) [17] is closest to our point rendering,
as it also uses bilinear point splatting followed by a neural
network for feature decoding. However its reconstruction
quality is limited by the quality of the MVS reconstruction,
as no point cloud augmentations are performed.

Overcoming the reliance on point cloud priors has
been proposed in several ways. Recent improvements to
MVS algorithms via CNNs [54, 61] as well as leveraging
NeRFs [56] or transformers [13, 55] lessened the problem,
while recent approaches also included the point cloud op-
timization process directly into the radiance field render-
ing pipeline. This is done either with additional points
via error propagation [67], 3D error volumes [16], point
growing via density estimation [60], or gradient-based den-
sification [28]. Especially important here is 3D Gaussian
Splatting (3DGS) [28], which extends point rendering with
anisotropic 3D Gaussians as a radiance field rendering
paradigm. Since its publication, it has become the basis for a
multitude of follow-up works [20, 26, 29, 39, 59, 66]. Apart
from removing the need for a CNN to fill holes, the 3DGS
formulation allows starting with a sparser point cloud that is

densified by repeatedly splitting large Gaussians during the
optimization. In contrast, our approach captures more fine
details, as we are able to optimize and render more detailed
geometric and appearance information in our implicit point
cloud. Furthermore, we are independent from an initial point
cloud, thus increasing robustness.

3. Method

A minimal point cloud capable of novel view synthesis, is
described by multiple data points consisting of a 3D position
vector as well as color information, either though explicit
RGB colors or decodable neural features. In our method,
instead of storing these spatial and photometric properties
in the same data structure, we split them and optimize both
implicitly: Positions as an octree-based probability field P
and appearance, i.e., colors/features and opacity, as a neural
field A. These two parts combined constitute what we call
an implicit neural point cloud.

Input to our method is a collection of RGB images with
poses and an estimated bounding box. From this, we ini-
tialize P as a voxel-based structure, which our algorithm
iteratively refines into an octree to store probabilities for ge-
ometry (Sec. 3.1). This structure is then used as an estimator
for point positions (Sec. 3.2). These positions are fed into
A, for which we use a multi-resolution hash grid [36], to
retrieve opacity and spherical harmonics (SH) appearance
features (Sec. 3.3). These parts are core to our proposed
implicit point cloud structure, allowing us to optimize a ra-
diance field efficiently, with fine geometric granularity, and
great detail.

An overview of our method is depicted in Fig. 2. For a
given viewpoint, we first obtain a set of point positions using
P and query A to retrieve per-point appearance features.
The resulting explicit point cloud is then rendered by first
rasterizing with bilinear point splatting (Sec. 3.4) into a
2D feature image, then α-composited with the output of
a background model, and post-processed by a rendering



network with a U-Net architecture [43] (Sec. 3.5). During
training, our model is optimized end-to-end with losses and
regularizers carefully selected for our method (Sec. 3.6). We
proceed by describing all components in detail.

3.1. Sparse Point Probability Octree

Existing NeRF methods do not require explicit geometry as
they place point samples along per-pixel camera rays [35].
While prior work demonstrated that this sampling scheme
leads to aliasing artifacts [3], NeRF-based methods can lever-
age the favorable optimization properties of implicit volu-
metric models to achieve state-of-the-art image quality [5].
In contrast, point-based methods require a persistent set of
explicit point positions during the optimization. Through
optimization of point positions with approximated gradi-
ents [44] as well as handcrafted splitting, merging, and prun-
ing operations [16, 28], these methods aim to refine an initial
point cloud that is provided, e.g., as a byproduct of SfM al-
gorithms. Importantly, the approximated position gradients
as well as heuristics used for refining the point cloud, lead
to a less robust optimization compared to that of implicit
models.

One goal of this work is removing the need for a per-
sistent set of point positions within a typical point-based
neural rendering pipeline. In prior work, regular occupancy
grids have proven to be a useful tool for skipping empty
space [18, 36]. Notably, the tracked occupancy is closely
related to the volume density used to represent scene geome-
try in volumetric NeRF-based models. Our key observation
is that this value can be normalized across the whole scene
and interpret as a probability for geometry. However, as the
fixed voxel size of regular occupancy grids makes it difficult
to accurately model complex geometry, we propose using
a sparse octree to store a point probability pi for each leaf
node. During the optimization, nodes are updated, subdi-
vided, or pruned, which allows for accurate reconstruction
of fine geometric structures. By sampling the multinomial
distribution represented by this octree, we can extract point
clouds on demand (Sec. 3.2).

Initialization. We initialize the probability field with a
uniform 3D voxel grid as the initial leaf nodes of the sparse
octree with probabilities set to a uniform value to achieve
equal sampling probability. Optionally, we incorporate a
point cloud as a prior, which slightly improves initial conver-
gence of the optimization (see supplement for details).

Probability Updates. Theoretically, the probability of
each leaf node should represent how much of its volume
is occupied by geometry relative to other leaf nodes. To this
end, we employ an updating strategy inspired by occupancy
grid updates in Instant-NGP [36] that combines exponential
decay and knowledge from the current 3D model. During

optimization, we update the probabilities of all leaf nodes
(pi) after each optimization step using the following formula:

pi = max (λu · pi,max ({b0, ..., bn})), (2)

where {b0, ..., bn} is the set of α-blending weights of all
n points extracted from the i-th leaf node. Note that we
use the transmitted blending weight bj = αjTj (Eq. (1))
computed by our rasterizer for the updates. This imposes
a visibility prior on the probabilities, as occluded points
receive less transmittance. For the exponential decay, we
found λu = 0.9968 to work well in practice and use it in
all experiments. We also skip updates during the first 100
iterations for increased robustness, as A does not contain
reliable information yet.

Subdivision. To refine the represented geometry, we want
to iteratively subdivide and prune empty space in leaf nodes.
Intuitively, we achieve this by identifying partially unoc-
cupied voxels, which we locate by tracking the difference
between the largest and smallest blending weight of all n
points extracted from the i-th leaf node in each iteration:

qi = max (λu · qi,max ({b0, ..., bn})−min ({b0, ..., bn})),
(3)

where λu and {b0, ..., bn} are the same as in Eq. (2). In all
experiments, we subdivide leaves every 500 iterations during
the optimization if qi is above a threshold τs = 0.5. Created
leaves inherit their parents’ probability and the initial value
of qi is set to 0. Note that, due to limitations of efficient
multinomial sampling (see Sec. 3.2) with respect to numeri-
cal precision, we only subdivide if the resulting number of
leaves is less than 2563.

Pruning. By repeatedly applying Eq. (2), the probability
of leaf nodes whose volume is empty will exponentially
decay towards zero. As such we remove leaf nodes whose
probability is less than τp = 0.01 every 100 iterations. For
stability, we only start pruning after the first 500 iterations.

3.2. Point Sampling Strategies

Fundamental to this work is the idea of sampling high-quality
point clouds using the implicit octree-based point position
estimator introduced in Sec. 3.1. Especially during optimiza-
tion, we face the common issue of being limited in terms of
GPU memory and are therefore restricted to a fixed budget
for the number of sampled points.

This leads us to design two sampling strategies: A
viewpoint-specific and a viewpoint-independent sampling
scheme. For training, we want to generate a point cloud to
render a specific viewpoint with which we can then com-
pute the loss function in each iteration. In contrast, a global,
viewpoint-independent point cloud increases temporal stabil-
ity as well as rendering performance during inference, as no



per-frame sampling of the implicit point cloud is required.
In the following, we detail the considerations that went into
designing both sampling strategies.

Viewpoint-Specific Sampling. We identify three key prop-
erties of an effective re-weighting scheme for a specific view-
point: (1) No samples should be placed outside of the view
frustum, (2) regions further away from the camera require
less samples, and (3) leaves with a higher subdivision level
l, i.e., those representing a smaller volume, should be sam-
pled less. Specifically, we compute the viewpoint-specific
probability p̂i as follows:

p̂i = 1visible ·
pi

di · 2li·λl
, (4)

where 1visible is an indicator function returning one for vis-
ible leaves and zero otherwise, λl controls how much less
a smaller voxel should be sampled, and di represents the
distance between leaf center and the image plane. Empiri-
cally, we found λl = 0.5, i.e., a small bias towards sampling
smaller voxels more often, to work well as it allows the
model to more accurately reconstruct regions that are well-
captured in training images.

Using multinomial sampling with replacement, we con-
vert the re-scaled probabilities to a list of leaf indices. For
each element in this list, we uniformly sample the selected
leaf’s spatial extent to obtain the final 3D position. This
improves quality, as appearance features (see Sec. 3.3) are
regularized across a larger volume and not overwritten by
hash-collisions.

For inference, we extend this scheme by sampling mul-
tiple point clouds, rasterizing them into 2D feature images
(see Sec. 3.4), and averaging the features for each pixel. Em-
pirically, we find this to be superior to simply increasing the
number of points for inference, which can be explained by
the transmittance-based rendering formulation used by our
rasterizer.

Viewpoint-Independent Sampling. Motivated by the ob-
servation that sampling an implicit point cloud takes up a
large chunk of the rendering time during inference, we pre-
extract a global point cloud for all viewpoints. For this, we
use Eq. (4) but omit the factors 1visible and di. Again, using
multinomial sampling with replacement, we extract the num-
ber of samples for each leaf. To increase stability, we then
use the 3D Halton sequence [22] for determining the final
position of each sample. We consider this as an advantage of
our method: Our implicit formulation can be used to extract
large point clouds without having to store them on disk.

3.3. Appearance Representation

After sampling, we retrieve M +1 appearance features from
a multi-resolution hash grid [36] for each point. Before

querying with each point’s position, we apply the spher-
ical contraction by Barron et al. [4] to increase the rela-
tive capacity of our model near the center of the scene, i.e.,
the best-observed region during optimization. Of the re-
trieved per-point features, the first one is converted to a valid
opacity value αh ∈ [0, 1] using a Sigmoid-like activation:
αh = 1− e−ex [36]. The remaining M features are used as
coefficients for SH evaluations to produce a view-dependent
feature for each point. In practice, we use SH of degree 2 and
4D view-dependent output features, resulting in M = 36 SH
coefficients per point. As our background model, we employ
a small MLP that computes a 4D feature for each pixel using
the corresponding SH-encoded viewing direction as input.

3.4. Differentiable Bilinear Point Splatting

Prior work on point rasterization demonstrated that point
rendering for radiance fields can be very fast and yield great
results [17, 28, 44]. However, using one-pixel point render-
ing (projecting and discretizing points to one pixel) leads to
aliasing as well as the need for approximate gradients [44].
To avoid this, we opt to use a bilinear formulation, that is we
splat each point to the closest 2× 2 pixels after projection.
Thus, for a point pw = (x, y, z)T , we project it to the image
coordinates p = (u, v, d)T with

p = P · V · pw, (5)

where P and V are the intrinsic and extrinsic camera matri-
ces respectively. For the 2× 2 closest pixels’ center points
pi∈{0..3} = (ui, vi)

T we then compute the respective opaci-
ties with

α = αh · (1− |u− ui|) · (1− |v − vi|). (6)

This causes the point’s contributions to be weighted correctly
based on its projected position. We then use this while
blending (see Eq. (1)) all points N in depth order to render
the image.

This bilinear splatting approach has three advantages:
(1) We obtain more robust gradients, (2) improve temporal
stability of the rendering pipeline, and (3) the rasterized
images contain less holes which simplifies the task of the
hole-filling CNN. In TRIPS, Franke et al. [17] use a similar
splatting approach but instead interpolate trilinearly into an
image pyramid based on a learned per-point radius. Our
implicit point cloud enables us to render high-quality feature
images without the need for interpolation with respect to a
third dimension.

3.5. Post-Processing

For decoding, we use a standard three-layer U-Net archi-
tecture with a single residual block based on Fast Fourier
Convolution (FFC) [10]. We find that this enhances recon-
struction regarding high-frequency details. For challenging,



Mip-NeRF360 Tanks&Temples Train Render Size
Method LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ hrs↓ fps↑ GB↓

Instant-NGP [36] 0.380 0.698 25.61 0.438 0.737 21.82 0.08 5.7 0.1
ADOP [44] 0.259 0.723 23.54 0.236 0.802 21.69 7.00 67.6 0.53
TRIPS [17] 0.213 0.778 25.94 0.229 0.831 22.62 4.00 90.0 0.76
3DGS [28] 0.254 0.814 27.20 0.276 0.866 25.27 0.50 194.2 0.58
Zip-NeRF [5] 0.219 0.828 28.56 0.233 0.878 26.75 5.00 0.2 0.9
Ours 0.164 0.847 28.56 0.189 0.878 25.93 9.58 2.9 1.1

Ours (16M) 0.173 0.841 28.36 0.220 0.862 25.12 6.15 5.5 1.1
Ours (8M) 0.188 0.830 27.83 0.252 0.846 24.54 4.25 9.4 1.1
Ours (pre-ex.) 0.207 0.802 26.85 0.261 0.833 23.71 4.25 27.7 1.1

Table 1. Quantitative comparisons on the Mip-NeRF360 [4] and Tanks and Temples [30] datasets. The three best results are highlighted in
green in descending order of saturation. Alongside our default configuration that uses 33M samples (Ours) we also provide metrics for
our method when trained with less samples (16M and 8M). Furthermore, we report inference results using 67M points extracted with our
view-independent sampling algorithm (pre-ex.).

e.g., auto-exposed outdoor scenes, we append the differen-
tiable tone mapping module proposed by Rückert et al. [44]
to our pipeline.

3.6. Optimization Loss

Inspired by prior works [21, 28], we combine a per-pixel
loss and two established image-space loss functions:

L = LR + LD-SSIM + λvgg · LVGG + λdecay · LReg. (7)

Specifically, we use the robust loss LR [2] with α = 0
and c = 0.2 as our per-pixel loss as well as D-SSIM and
VGG [27] losses which are commonly attributed with a
closer resemblance of human perception. For regularization
we follow Barron et al. [5] and impose a normalized weight
decay on the parameters of the multi-resolution hash grid.
We use λvgg = 0.075 and λdecay = 0.1.

4. Experiments
We conduct multiple experiments to evaluate our method.

4.1. Datasets and Baselines

For evaluation, we use a total of 17 real scenes featuring a
broad spectrum of challenges regarding both geometric and
photometric aspects. The Mip-NeRF360 dataset [4] contains
five outdoor and four indoor scenes captured with fixed
exposure and white balance settings. We further use all eight
scenes from the intermediate set of the Tanks and Temples
dataset [30]. It was captured without fixed camera settings
and presents challenges regarding photometric variation that
complicate reconstruction, providing relevant insights for in-
the-wild performance. We use the established 7:1 train/test
split [4] for all scenes. We optimize for 50, 000 iterations
and render an image for a single viewpoint in each of those.
For further details regarding our implementation, we refer
the reader to our supplemental document.

We compare our method against Instant-NGP [36],
ADOP [44], TRIPS [17], 3D Gaussian Splatting [28], and

the current state of the art in terms of image quality Zip-
NeRF [5]. We use the images kindly provided by the authors
of the respective publications when available – otherwise we
use the official implementation to generate the images – and
compute all image quality metrics under identical conditions.
All methods use a RTX 4090 when memory was sufficient,
otherwise an A100 was used.

4.2. Results

We show quantitative results for the scenes from Mip-
NeRF360 and Tanks and Temples in Tab. 1, as well as qualita-
tive comparisons in Fig. 1 and our supplemental. In terms of
image quality metrics, our method clearly outperforms previ-
ous point-based techniques (TRIPS and 3DGS) and achieves
similar quality as Zip-NeRF on both datasets. Visually, we
observe that our method outperforms all baselines with re-
spect to representing fine details, which is also represented
in its excellent LPIPS scores. We complement our evaluation
by conducting a perceptual experiment in which we com-
pare INPC against Zip-NeRF, as the latter achieves the best
quality metrics among the compared-against methods (see
Tab. 1). We followed a fully randomized, within-participants
experimental design with a 2AFC task. Our 17 participants
saw the results of both methods side-by-side (one pair at a
time, in random order and screen side, with a different order
per participant) and were instructed to select the image they
preferred. The 55 stimuli covered all 17 evaluated scenes and
consisted of a minimum of 3 frames per scene. Our method
was favored by the participants on an average of 69.41% of
the cases, with all participants preferring our results with a
ratio above the chance line. Our supplement contains full
details on the experimental setup, stimuli selection, and eval-
uation.

We further show approximates for the training time, in-
ference frame rate, and resulting model size in Tab. 1. Our
method requires slightly longer training than the recent Zip-
NeRF and TRIPS. Like other NeRF-based methods such as
Zip-NeRF, our model always has the same size (1.1 GB),



Method Sampling Rendering Post-Proc. Total #Points

Ours (8M) 51ms 37ms 26ms 114ms 4×8M
Ours (8M)† 16ms 10ms 26ms 52ms 8M
Ours (pre-ex.) N/a 28ms 26ms 54ms 67M

Table 2. Inference speed breakdown for the Playground
scene [30] rendered on an RTX 4090 GPU (2000×1085 pixels).
The configuration marked with † is the same as in ablation F) shown
in Tab. 3. The bottleneck of our rendering is the sorting step which
requires 27 / 7 / 17 milliseconds (ms) respectively.

whereas point-based methods such as 3DGS require up to 2
GB of storage depending on the scene. Regarding inference
frame rate, our method is roughly an order of magnitude
faster than Zip-NeRF but currently outperformed by the ex-
plicit point-based approaches 3DGS, TRIPS, and ADOP.

In Tab. 2, we break down inference performance for dif-
ferent versions of our model that uses 8M samples during
training. While this work focuses on image quality, the
numbers confirm that even at FHD resolution, our model
maintains its interactivity.

Ablations. In Tab. 3 and Fig. 3, we show ablations of our
8M model computed on the five outdoor scenes from the Mip-
NeRF360 dataset. A) – C) dissect our loss function showing
that each term has a meaningful contribution. For D), we
omit octree subdivision during optimization, which greatly
hinders reconstruction of the scene’s foreground while hav-
ing no visible impact on far away objects. E) and F) validate
the effectiveness of our bilinear splatting approach as well
as the point cloud multisampling during inference. Next, G)
shows that our method does not depend on initial SfM points
for sampling probability initialization to achieve its high
visual fidelity. For H), we observe that leaving out the back-
ground model barely impacts metrics but results in sampling
points in the sky (see alpha images in Fig. 3) which results in
”floaters” upon visual inspection. Furthermore, I) indicates
the residual FFC block in the U-Net enhances performance
for high-frequency details, which is only partly captured

Configuration LPIPS↓ SSIM↑ PSNR↑

A) No D-SSIM Loss 0.204 0.729 25.27
B) No VGG Loss 0.238 0.754 25.29
C) No Weight Decay 0.210 0.744 25.22
D) No Subdivision 0.508 0.406 19.15
E) No Bilinear Splatting 0.243 0.708 24.36
F) No Multisampling 0.201 0.740 25.02
G) No SfM Prior 0.197 0.753 25.29
H) No Background Model 0.197 0.752 25.28
I) No FFC Block 0.207 0.749 25.32
J) No Post-Processing 0.277 0.718 24.32

Ours (8M) 0.192 0.761 25.53

Table 3. Model ablations with respect to image quality metrics
computed on the outdoor scenes from the Mip-NeRF360 dataset.

by metrics. Lastly, we omit our post-processing, i.e., the
U-Net and tone mapping module described in Sec. 3.5, in J).
As this leaves our point-based method with no hole-filling
technique, we double the number of samples during training
to 16M and also disable λvgg due to the absence of the CNN.
Somewhat surprisingly, we observe both quantitatively and
qualitatively (see Fig. 3) that this configuration still provides
good results, which confirms the potential of our implicit
point cloud formulation.

5. Discussion

The experiments confirm our approach’s effectiveness on
common benchmarks, outperforming current state of the art
regarding perceived image quality, while rendering at interac-
tive frame rates. This is also reflected in the per-scene image
quality metrics, which we include in our supplemental.

All our models use 4× multisampling for inference,
which results in up to 528 million blended splats (4×33M
points) per rendered feature image for our default configu-
ration that uses 33M samples in each training iteration. We
would like to highlight the results of our 8M configuration.
It provides excellent quality, while training in just over 4
hours and blending 128 million splats (4×8M points) into
each feature image at interactive frame rates of ∼9 fps – all
on a single RTX 4090 GPU. Albeit at the cost of image
quality, it allows for easy modification towards faster render-
ing by either disabling multisampling or by pre-extracting
a global point cloud. Moreover, our view-independent sam-
pling algorithm causes only a small drop in visual quality

Figure 3. Visual comparisons for ablations H, D, and J in Tab. 3.
Our background model prevents the sampling of points in the sky.
Disabling octree subdivision causes foreground reconstruction to
fail. Omitting post-processing (Sec. 3.5) leads to holes and high-
frequency noise in renderings.



Figure 4. Visual comparison of INPC configurations. Our global pre-extraction slightly reduces visual quality in terms of fine detail,
especially in FHD renderings of Tanks and Temples scenes. Without multisampling images are slightly sharper but our sampling sometimes
misses thin structures. For Mip-NeRF360 scenes, the difference between our 8M and default (33M) configuration is barely visible.

for the Mip-NeRF360 dataset, as evident by the LPIPS met-
ric, where it still outperforms 3DGS. However, we observe
that due to the higher image resolution (roughly 2× more
pixels) of the Tanks and Temples scenes, the budget of 67M
pre-extracted global points is not always sufficient. We show
visual comparisons for our default, 8M, and pre-extracted
configuration in Fig. 4.

Limitations. Regarding limitations of our method, we ob-
serve that it is sometimes unable to reconstruct fine geomet-
ric detail close to the camera, a property shared with existing
methods such as 3DGS and Zip-NeRF (see Fig. 5). Similar
to previous works that used a CNN for post-processing ras-
terizer outputs [16, 44], we identify temporal stability as a
minor issue during inference (see our supplemental video).
While this work is mostly focused on image quality, we
observe that the global sorting used in our implementation
impacts its real-time rendering capability. This is a disad-
vantage compared to the recent 3DGS and TRIPS. However,
we are confident that an optimized implementation can over-
come some of the gap, as specialized rendering methods for
explicit point clouds showed promising results [47].

As extracting a global point cloud greatly boosts frame
rate during inference, the optimization pipeline could be
adjusted to facilitate viewpoint-independent sampling, e.g.,
by encouraging binary opacity values as done by Reiser et al.

3DGS [28] Zip-NeRF [5] Ours Ground Truth

Figure 5. Limitations. Our method and state-of-the-art baselines
sometimes fail to recover fine geometric detail near the camera.

[42]. We also believe the underlying octree-based data struc-
ture could further be improved. Lifting our implementation’s
limitation of 2563 active leaf nodes in the octree, in combi-
nation with improved routines for subdivision, updating, and
pruning, is likely to boost reconstruction quality.

6. Conclusion
In this work, we have introduced Implicit Neural Point
Clouds, a concept fusing NeRF- and point-based radiance
fields, utilizing the advantages of both. Our INPC retains
favorable optimization properties of NeRF by representing
a point cloud inside an octree-based probability field for
point positions and an implicit appearance model. The eval-
uation shows that our method improves upon the previous
state-of-the-art method in terms of perceptual image quality,
while also enabling rendering at interactive frame rates on
consumer-grade hardware. We believe that the implicit point
cloud representation as well as other ideas presented here can
enable future work towards further closing the gap between
best-quality and real-time radiance field approaches.

https://fhahlbohm.github.io/inpc/
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