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Abstract

We introduce a new diffusion-based approach for shape completion on 3D range
scans. Compared with prior deterministic and probabilistic methods, we strike a
balance between realism, multi-modality, and high fidelity. We propose DiffCom-
plete by casting shape completion as a generative task conditioned on the incom-
plete shape. Our key designs are two-fold. First, we devise a hierarchical feature
aggregation mechanism to inject conditional features in a spatially-consistent man-
ner. So, we can capture both local details and broader contexts of the conditional
inputs to control the shape completion. Second, we propose an occupancy-aware
fusion strategy in our model to enable the completion of multiple partial shapes and
introduce higher flexibility on the input conditions. DiffComplete sets a new SOTA
performance (e.g., 40% decrease on l1 error) on two large-scale 3D shape comple-
tion benchmarks. Our completed shapes not only have a realistic outlook compared
with the deterministic methods but also exhibit high similarity to the ground truths
compared with the probabilistic alternatives. Further, DiffComplete has strong
generalizability on objects of entirely unseen classes for both synthetic and real
data, eliminating the need for model re-training in various applications.
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Figure 1: Our method is able to (a) produce realistic completed shapes from partial scans, (b)
incorporate multiple incomplete scans (denoted by the plus symbol) to improve the completion
accuracy, and (c) directly generalize to work on real objects of unseen classes without finetuning.

1 Introduction

The advent of affordable range sensors, such as the Microsoft Kinect and Intel RealSense, has
spurred remarkable progress in 3D reconstruction [1], facilitating applications in content creation,
mixed reality, robot navigation, and more. Despite the improved reconstruction quality [2–5], typical
scanning sessions cannot cover every aspect of the scene objects. Hence, the reconstructed 3D models
often have incomplete geometry, thereby limiting their practical usage in downstream applications.
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To fully unlock the potential of 3D reconstruction for supporting assorted applications, it is essential
to address the challenges of completing incomplete shapes.

Effectively, a shape completion should produce shapes that are realistic, probabilistic, and high-
fidelity. First, the produced shapes should look plausible without visual artifacts. Second, considering
the under-determined nature of completion, it is desirable for the model to generate diverse, multi-
modal outputs when filling in the missing regions, to improve the likelihood of obtaining a superior
shape and enable creative use. Third, while multiple outputs encourage the model’s generative ability,
maintaining effective control over the completion results is crucial to ensure coherent reconstructions
that closely resemble the ground-truth shapes.

Current approaches to 3D shape completion fall into deterministic and probabilistic paradigms. The
former class excels at aligning predictions with ground truths, owing to their determined mapping
functions and full supervision. However, this can expose the models to a higher risk of over-fitting,
leading to undesirable artifacts, such as rugged surfaces, especially on unseen objects. On the
other hand, probabilistic approaches formulate the shape completion as a conditional generation
task to produce plausible results, paired with techniques like autoregressive model [6], adversarial
training [7–9], or diffusion models [10–13]. These approaches mainly focus on cases that prioritize
completion diversity, for instance, filling in large missing regions cropped out by 3D boxes, where
the algorithm has more freedom to explore various plausible shapes. However, when completing
shapes obtained from range scans/reconstructions, whose geometries are often contaminated with
noise, having varying degrees of incompleteness (see row 1 in Fig. 1), a promising goal is to recover
the ground-truth scanned objects as accurately as possible. Therefore, relying solely on previous
probabilistic approaches may compromise the completion accuracy and leads to low-fidelity results.

In this work, we focus on completing shapes acquired from range scans, aiming to produce realistic
and high-fidelity completed shapes, while considering also the probabilistic uncertainty. We approach
this task as a conditional generation with the proposed diffusion model named DiffComplete. To
address the accuracy challenge typically in probabilistic models, we introduce a key design that
incorporates range scan features in a hierarchical and spatially-consistent manner to facilitate effective
controls. Additionally, we propose a novel occupancy-aware fusion strategy that allows taking
multiple partial shapes as input for more precise and controllable completions.

Specifically, we formulate the diffusion process on a truncated distance field in a volumetric space.
This representation allows us to encode both complete and incomplete shapes into multi-resolution
structured feature volumes, thereby enabling their interactions at various network levels. At each level,
features are aggregated based on voxel-to-voxel correspondence, enabling precise correlation of the
difference in partialness between the shapes. By leveraging multi-level aggregation, the completion
process can be controlled by both local details and broader contexts of the conditional inputs. It
effectively improves the completion accuracy and network generalizability, as illusrated in Sec. 4.5.

To condition the completion on multiple partial shapes, our occupancy-aware fusion strategy adopts
the occupancy mask as a weight to adaptively fuse all observed geometry features from various
incomplete shapes, and then employ the fused features to control the completion process. For
robustness, such an operation is performed in a multi-scale feature space. With our novel design,
switching between single and multiple conditions can be efficiently achieved by finetuning an MLP
layer. As Fig. 1(b) and 6 show, using multiple conditions for completion progressively refines the
final shapes towards the ground truths.

DiffComplete sets a new state-of-the-art performance on two large-scale shape completion bench-
marks [14, 15] in terms of completion accuracy and visual quality. Compared to prior deterministic
and probabilistic approaches, we not only generate multimodal plausible shapes with minimal artifacts
but also present high shape fidelity relative to the ground truths. Further, DiffComplete can directly
generalize to work on unseen object categories. Without specific zero-shot designs, it surpasses all
existing approaches for both synthetic and real-world data, allowing us to eliminate the need for
model re-training in various applications. To sum up, our contributions are listed as follows:

• We introduce a diffusion model to complete 3D shapes on range scans, enabling realistic,
probabilistic, and high-fidelity 3D geometry.

• We enhance the completion accuracy with two designs. For a single condition, we propose a
hierarchical feature aggregation strategy to control the outputs. For multiple conditions, we
introduce an occupancy-aware fusion strategy to incorporate more shape details.
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• We show SOTA performance on shape completion on both novel instances and entirely
unseen object categories, along with an in-depth analysis on a range of model characteristics.

2 Related Work

RGB-D reconstruction. Traditional methods rely on geometric approaches for 3D reconstruction [16–
20]. A pioneering method [21] proposes a volumetric fusion strategy to integrate multiple range
images into a unified 3D model on truncated signed distance fields (TSDF), forming the basis for
many modern techniques like KinectFusion [22, 23], VoxelHashing [24], and BundleFusion [2].
Recent learning-based approaches further improve the reconstruction quality with fewer artifacts [25–
28, 3], yet the intrinsic occlusions and measurement noise of 3D scans constrain the completeness of
3D reconstructions, making them still less refined than manually-created assets.

3D shape completion is a common post-processing step to fill in missing parts in the reconstructed
shapes. Classic methods mainly handle small holes and geometry primitives via Laplacian hole
filling [29–31] or Poisson surface reconstruction [32, 33]. Another line exploits the structural
regularities of 3D shapes, such as the symmetries, to predict the unobserved data [34–38].

The availability of large 3D data has sparked retrieval-based methods [39–42] and learning-based
fitting methods [43, 44, 14, 45–49]. The former retrieves the shapes from a database that best match
the incomplete inputs, whereas the latter minimizes the difference between the network-predicted
shapes and ground truths. 3D-EPN [14], for instance, proposes a 3D encoder-decoder architecture to
predict the complete shape from partial volumetric data. Scan2Mesh [50] converts range scans into
3D meshes with a direct optimization on the mesh surface. PatchComplete [15] further leverages
local structural priors for completing shapes of unseen categories.

Generative methods, e.g., GANs [51, 9, 52, 7, 8] and AutoEncoders [53], offer an alternative to
shape completion. While some generative models can generate diverse global shapes given a partial
input, they potentially allow for a high generation freedom and overlook the completion accuracy.
IMLE [54], for instance, adopts an Implicit Maximum Likelihood Estimation technique to specially
enhance structural variance among the generated shapes. Distinctively, we formulate a diffusion
model for shape completion. Our method mainly prioritizes fidelity relative to ground truths while
preserving output diversity. Compared to both generative and fitting-based paradigms, our method
also effectively reduces surface artifacts, producing more realistic and natural 3D shapes. In addition,
we show superior generalization ability on completing objects of novel classes over SOTAs.

Diffusion models for 3D generation. Diffusion models [55–62] have shown superior performance
in various generation tasks, outperforming GANs’ sample quality while preserving the likelihood
evaluation property of VAEs. When adopted in 3D domain, a range of works [12, 63–65] focus on
point cloud generation. For more complex surface generation, some works [66, 13, 10, 67, 68, 11]
adopt latent diffusion models to learn implicit neural representations and form final shapes via
a decoder. For conditional shape completion, both DiffRF [10] and Diffusion-SDF [69] adopt a
masked diffusion strategy to fill in missing regions cropped out by 3D boxes. However, their training
processes do not leverage a paired incomplete-to-complete ground truth, which may prevent them
from accurately learning the completion rules. Contrarily, our method explicitly uses the scan pairs
for conditional training, yielding outputs closely resembling the actual objects scanned. Also, we
apply the diffusion process in explicit volumetric TSDFs, preserving more geometrical structures
during the completing process.

3 Method

3.1 Formulation

To prepare the training data, we generate an incomplete 3D scan from depth frames using volumetric
fusion [21] and represent the scan as a truncated signed distance field (TSDF) in a volumetric grid.
Yet, to accurately represent a ground-truth shape, we choose to use a volumetric truncated unsigned
distance field (TUDF) instead. This is because retrieving the sign bit from arbitrary 3D CAD models
(e.g., some are not closed) is non-trivial. By using TUDF, we can robustly capture the geometric
features of different objects without being limited by the topology.
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Given such a volume pair, i.e., the incomplete scan c and complete 3D shape x0, we formulate the
shape completion as a generation task that produces x0 conditioned on c. We employ the probabilistic
diffusion model as our generative model. In particular, it contains (i) a forward process (denoted
as q(x0:T )) that gradually adds Gaussian noise to corrupt the ground-truth shape x0 into a random
noise volume xT , where T is the total number of time steps; and (ii) a backward process that employs
a shape completion network, with learned parameters θ, to iteratively remove the noise from xT
conditioned on the partial scan c and produce the final shape, denoted as pθ(x0:T , c). As both the
forward and backward processes are governed by a discrete-time Markov chain with time steps
{0, ..., T}, their Gaussian transition probabilities can be formulated as

q(x0:T ) = q(x0)

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (
√

1− βtxt−1, βtI) (1)

and pθ(x0:T , c) = p(xT )

T∏
t=1

pθ(xt−1|xt, c), pθ(xt−1|xt) := N (µθ(xt, t, c), σ
2
t I). (2)

In the forward process (Eq. (1)), the scalars βt ∈ [0, 1] control a variance schedule that defines the
amount of noise added in each step t. In the backward process (Eq. (2)), p(xT ) is a Gaussian prior in
time step t, µθ represents the mean predicted from our network and σ2

t is the variance. As suggested
in DDPM [60], predicting µθ(xt, t, c) can be simplified to alternatively predicting ϵθ(xt, t, c), which
should approximate the noise used to corrupt xt−1 in the forward process, and σt can be replaced by
the pre-defined βt. With these modifications, we can optimize the network parameter θ with a mean
squared error loss to maximize the generation probability pθ(x0). The training objective is

argmin
θ

Et,x0,ϵ,c[||ϵ− ϵθ(xt, t, c)||2], ϵ ∈ N (0, I) (3)

where ϵ is the applied noise to corrupt x0 into xt and N (0, I) denotes a unit Gaussian distribution.
We define all the diffusion processes in a volume space of a resolution S3, i.e., x0:T , c, ϵ ∈ RS×S×S ,
where each voxel stores a scalar TSDF/TUDF value; S=32 in our experiments. Compared to previous
latent diffusion models [11, 13, 66, 10] that require shape embedding first, we directly manipulate the
shape with a better preservation of geometric features. Doing so naturally enables our hierarchical
feature aggregation strategy (see Sec. 3.2). Next, we will introduce how to predict ϵθ(xt, t, c).

3.2 Shape Completion Pipeline

Overview. To enhance the completion accuracy, we encourage the incomplete scans to control
completion behaviors. Inspired from the recent ControlNet [70], which shows great control ability
given 2D conditions, we adopt a similar principle to train an additional control branch. To predict
the noise ϵθ(xt, t, c) in Eq. (3), we encode the corrupted ground-truth shape xt by a main branch
and the partial shape c by a control branch, where two branches have the same network structure
without parameter sharing. Owing to the compact shape representation in 3D volume space, both
complete and incomplete shapes are encoded into multi-resolution feature volumes with preserved
spatial structures. Then, we hierarchically aggregate their features at each network level, as the sizes
of two feature volumes are always aligned. In this work, we simply add up the two feature volumes
to allow for a spatially-consistent feature aggregation, i.e., only features at the same 3D location
are combined. Compared with frequently-used cross-attention technique [11, 13, 57], doing so can
significantly reduce computation costs. By multi-scale feature interaction, the network can effectively
correlate the difference in partialness between two shapes, both locally and globally, to learn the
completion regularities. The final integrated features are then used to predict the noise volume ϵθ.

Network architecture. Fig. 2 provides an overview of our network architecture, which has a main
branch and a control branch to respectively handle complete and incomplete shapes. The main branch
(upper) is a 3D U-Net modified from a 2D version [59]. It takes as input an corrupted complete
shape xt, including (i) a pre-processing block εx(·) of two convolution layers to project xt into a
high-dimension space, (ii) N subsequent encoder blocks, denoted as {F i

x(·)}Ni=1, to progressively
encode and downsample the corrupted shape xt into a collection of multi-scale features, (iii) a
middle block Mx(·) with a self-attention layer to incorporate non-local information into the encoded
feature volume, and (iv) N decoder blocks {Di

x(·)}Ni=1 that sequentially upsample features through
an inversion convolution to produce a feature volume of the same size as the input xt. The term
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Figure 2: Given a corrupted complete shape xt (diffused from x0) and an incomplete scan c, we first
process them into εx(xt) and εc(c) to align the distributions. We employ a main branch to forward
εx(xt), and a control branch to propagate their fused features f into deep layers. Multi-level features
of f are aggregated into the main branch for hierarchical control in predicting the diffusion noise. To
support multiple partial scans as condition, e.g., two scans {c1, c2}, we switch on occupancy-aware
fusion (Sec. 3.3). This strategy utilizes the occupancy masks to enable a weighted feature fusion for
c1 and c2 by considering their geometry reliability before feeding them into the main branch.

“e(d)ncoder/middle block” denotes a group of neural layers commonly adopted as a unit in neural
networks, e.g., a “resnet+downsample” block.

We use a control branch (bottom) to extract the features of incomplete scan(s). Likewise, we employ
a pre-processing block, N encoder blocks, and a middle block to extract multi-scale features from the
conditional input, denoted as εc(·), {F i

c(·)}Ni=1, and Mc, respectively. They mirror the architecture of
the corresponding blocks in the upper branch, yet operating with non-shared parameters, considering
the different input data regularities (e.g., complete and sparse). Unlike the upper branch, there are no
decoders for computation efficiency. Instead, we append a projection layer after each encoder/middle
block F i

c/Mc to forward multi-scale features and feed them into the decoder blocks of the main
branch. As diffusion models are time-conditioned, we also convert the time step t into an embedding
via two MLPs and add it to the volume features in each network block (the blue box in Fig. 2).

Hierarchical feature aggregation. To integrate the features of the complete and incomplete shapes
for conditional control, we fuse them across multiple network levels. In this process, we first consider
a single incomplete shape (denoted as c) as the condition. Given the significant disparity between c
and xt (incomplete v.s. complete, TSDF v.s. TUDF), we employ the pre-processing layers (εx(·) and
εc(·)) to first empirically project the two different fields into more compatible feature space. Then we
fuse them into feature volume f , i.e., f = εx(xt) + εc(c). After that, f is passed through the control
branch to better propagate the useful information to the deeper layers. In turn, we use multi-scale
condition features from the control branch to guide each level of decoder blocks {Di

x(·)}Ni=1 in the
main branch. The features that enter the i-th decoder block are denoted as

di = [Di−1
x (xt), F

i
x(xt) + ϕi(F i

c(f))], f = εx(xt) + εc(c) (4)

where [·, ·] is the concatenation operation and ϕi is one 1× 1 convolution layer for feature projection.
For simplicity, we use F i

x(x0) to denote the features of the x0 after the i-th encoder block F i
x(·), as

x0 is not directly processed by F i
x(·); the same notation is used for F i

c(f) and Di−1
x (xt). The feature

after the final decoder block is the network output ϵθ(xt, t, c).

By such a design, we can hierarchically incorporate conditional features, leveraging both their local
and broader contexts to optimize the network outputs. Interestingly, we observe that adjusting the
network level for feature aggregation can alter a trade-off between completion accuracy and diversity.
Specifically, if we only aggregate features at the low-resolution network layers, we might miss finer
geometry details present in the higher-resolution layers. This could reduce completion accuracy, as
the model has less contextual information to work with. In contrast, if aggregating features at all
levels, the effective control might make completion results closely resemble the ground truths, yet
lowering the diversity. Further ablation study is provided in Sec. 4.5.

5



3.3 Occupancy-aware Fusion

Our framework can also take multiple incomplete scans as inputs. This option not only provides
richer information to constrain the completed shape geometry but also enhances the approach’s
practicality, particularly in scenarios that a single-pass scan may not fully capture the entire object.
Our critical design is to effectively fuse multiple partial shape features. As averaging the original
TSDF volumes is sensitive to registration noise, we first register multiple partial shapes (e.g., using
Fast-Robust-ICP [71]) and propose an occupancy-aware approach to fuse them in the feature space.

Given a set of incomplete shapes of the same object, denoted as {c1, ..., cM}, we individually feed
them into the control branch to produce feature volumes {F i

c(f1), ..., F
i
c(fM )} after the i-th encoder

block. Before feeding them into the decoder Di
x, we refer to their occupancy masks to perform a

weighted feature average. Concretely, we first compute the original occupancy mask for each partial
shape based on the TSDF values, i.e., wj = (abs(cj) < τ) ∈ BS×S×S for the j-th partial shape. τ
is a pre-defined threshold that assigns the volumes near the object surface as occupied and the rest as
unoccupied; B is a binary tensor. Then, we perform a pooling operation to resize wj into wi

j to align
the resolution with feature volume F i

c(fj) and normalize wi
j by wi

j = wi
j/(w

i
0 + ..+ wi

M ). For the
voxels with zero values across all occupancy masks, we uniformly assign them a 1e-2 value to avoid
the division-by-zero issue. We rewrite Eq. (4), which is for single partial shape condition, as

di = [Di−1
x (xt), F

i
x(xt) + ψ(

∑
j

wi
jϕ

i(F i
c(fj)))], fj = εx(xt) + εc(cj) (5)

where ψ is an MLP layer to refine the fused condition features, aiming to mitigate the discrepancies
among different partial shape features, as validated in Sec. 4.4. The right part of Fig. 2 illustrates the
above process with two incomplete scans as the inputs.

3.4 Training and Inference

We first train the network with a single incomplete shape as the conditional input. In this phase,
all the network parameters, except the MLP layer ψ for occupancy-aware fusion (in Eq. (5)), are
trained with the objective in Eq. (3). When the network converges, we lock the optimized network
parameters and efficiently finetune the MLP layer ψ with multiple incomplete shapes as input.

At the inference stage, we randomize a 3D noise volume as xT from the standard Gaussian distribu-
tion. The trained completion networks are then employed for T iterations to produce x0 from xT
conditioned on partial shape(s) c. The occupancy-aware fusion is activated only for multi-condition
completion. To accelerate the inference process, we adopt a technique from [61] to sub-sample a set
of time steps from [1,...,T /10] during inference. After obtaining the generated shape volume x0, we
extract an explicit 3D mesh using the marching cube algorithm [72].

4 Experiment

4.1 Experimental Setup

Benchmarks. We evaluate on two large-scale shape completion benchmarks: 3D-EPN [14] and
PatchComplete [15]. 3D-EPN comprises 25,590 object instances of eight classes in ShapeNet [73].
For each instance, six partial scans of varying completeness are created in the 323 TSDF volumes by
virtual scanning; the ground-truth counterpart, represented by 323 TUDF, is obtained by a distance
field transform on a 3D scanline method [74]. While using a similar data generation pipeline,
PatchComplete emphasizes completing objects of unseen categories. It includes both the synthetic
data from ShapeNet [73] and the challenging real data from ScanNet [75]. For a fair comparison, we
follow their data splits and evaluation metrics, i.e., mean l1 error on the TUDF predictions across all
voxels on 3D-EPN, and l1 Chamfer Distance (CD) and Intersection over Union (IoU) between the
predicted and ground-truth shapes on PatchComplete. As these metrics only measure the completion
accuracy, we introduce other metrics in Sec. 4.3 to compare multimodal completion characteristics.

Implementation details. We first train our network using a single partial scan as input by 200k
iterations on four RTX3090 GPUs, taking around two days. If multiple conditions are needed, we
finetune project layers ψ for additional 50k iterations. Adam optimizer [76] is employed with a
learning rate of 1e−4 and the batch size is 32. On the 3D-EPN benchmark, we train a specific
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Table 1: Quantitative shape completion results on objects of known categories [14].
l1-err. (↓) Avg. (↓) Chair Table Sofa Lamp Plane Car Dresser Boat

3D-EPN [14] 0.374 0.418 0.377 0.392 0.388 0.421 0.259 0.381 0.356
SDF-StyleGAN [51] 0.278 0.321 0.256 0.289 0.280 0.295 0.224 0.273 0.282
RePaint-3D [78] 0.266 0.289 0.264 0.266 0.268 0.302 0.214 0.285 0.243
ConvONet [26] 0.220 0.210 0.247 0.254 0.234 0.185 0.195 0.250 0.184
AutoSDF [6] 0.217 0.201 0.258 0.226 0.275 0.184 0.187 0.248 0.157
cGCA [79] 0.185 0.174 0.212 0.179 0.239 0.170 0.161 0.204 0.143
ShapeFormer [80] 0.141 0.104 0.175 0.133 0.176 0.136 0.127 0.157 0.119
PVD [12] 0.114 0.097 0.122 0.154 0.128 0.093 0.087 0.127 0.107
PatchComplete [15] 0.088 0.134 0.095 0.084 0.087 0.061 0.053 0.134 0.058

DiffComplete (Ours) 0.053 0.070 0.073 0.061 0.059 0.015 0.025 0.086 0.031

Table 2: Shape completion results on synthetic objects [73] of unseen categories. ·/· means CD/IoU.
CD(↓)/IoU(↑) 3D-EPN [14] Few-Shot [81] IF-Nets [49] Auto-SDF [6] ConvONet [26] PatchComplete [15] Ours

Bag 5.01 / 73.8 8.00 / 56.1 4.77 / 69.8 5.81 / 56.3 5.10 / 70.8 3.94 / 77.6 3.86 / 78.3
Lamp 8.07 / 47.2 15.1 / 25.4 5.70 / 50.8 6.57 / 39.1 5.42 / 52.6 4.68 / 56.4 4.80 / 57.9
Bathtub 4.21 / 57.9 7.05 / 45.7 4.72 / 55.0 5.17 / 41.0 4.96 / 60.4 3.78 / 66.3 3.52 / 68.9
Bed 5.84 / 58.4 10.0 / 39.6 5.34 / 60.7 6.01 / 44.6 5.42 / 63.2 4.49 / 66.8 4.16 / 67.1
Basket 7.90 / 54.0 8.72 / 40.6 4.44 / 50.2 6.70 / 39.8 6.16 / 54.6 5.15 / 61.0 4.94 / 65.5
Printer 5.15 / 73.6 9.26 / 56.7 5.83 / 70.5 7.52 / 49.9 5.56 / 72.1 4.63 / 77.6 4.40 / 76.8
Laptop 3.90 / 62.0 10.4 / 31.3 6.47 / 58.3 4.81 / 51.1 4.78 / 57.3 3.77 / 63.8 3.52 / 67.4
Bench 4.54 / 48.3 8.11 / 27.2 5.03 / 49.7 4.31 / 39.5 4.69 / 49.6 3.70 / 53.9 3.56 / 58.2
Avg. 5.58 / 59.4 9.58 / 40.3 5.29 / 58.1 5.86 / 45.2 5.26 / 60.1 4.27 / 65.4 4.10 / 67.5

Table 3: Shape completion results on real-world objects [75] of unseen categories. ·/· means CD/IoU.
CD(↓)/IoU(↑) 3D-EPN [14] Few-Shot [81] IF-Nets [49] Auto-SDF [6] ConvONet [26] PatchComplete [15] Ours

Bag 8.83 / 53.7 9.10 / 44.9 8.96 / 44.2 9.30 / 48.7 9.12 / 52.5 8.23 / 58.3 7.05 / 48.5
Lamp 14.3 / 20.7 11.9 / 19.6 10.2 / 24.9 11.2 / 24.4 9.83 / 20.3 9.42 / 28.4 6.84 / 30.5
Bathtub 7.56 / 41.0 7.77 / 38.2 7.19 / 39.5 7.84 / 36.6 7.93 / 41.2 6.77 / 48.0 8.22 / 48.5
Bed 7.76 / 47.8 9.07 / 34.9 8.24 / 44.9 7.91 / 38.0 8.14 / 41.6 7.24 / 48.4 7.20 / 46.6
Basket 7.74 / 36.5 8.02 / 34.3 6.74 / 42.7 7.54 / 36.1 7.39 / 37.0 6.60 / 45.5 7.42 / 59.2
Printer 8.36 / 63.0 8.30 / 62.2 8.28 / 60.7 9.66 / 49.9 7.62 / 64.9 6.84 / 70.5 6.36 / 74.5
Avg. 9.09 / 44.0 9.02 / 38.6 8.26 / 42.6 8.90 / 38.9 8.34 / 42.9 7.52 / 49.8 7.18 / 51.3

model for completing shapes of each known category; while on PatchComplete, we merge all object
categories to optimize one model for promoting general completion learning. Due to the unknown
class IDs at test time, no classifier-guided [56] or classifier-free [77] sampling techniques are used in
our diffusion model. On both two benchmarks, all training data are the same across the compared
methods for fairness. The truncation distance in TSDF/TUDFs is set as 3 voxel units. More details
about network architecture and experiments are available in the supplementary file. Unless otherwise
specified, we report the results on single partial shape completion.

4.2 Main Results

Completion on known object categories. On the 3D-EPN benchmark, we compare DiffCom-
plete against SOTA deterministic [14, 15, 51] and probabilistic [6, 78] methods in terms of completion
accuracy (i.e., l1 errors). For probabilistic methods, we use the average results from five inferences,
each with random initialization, to account for multimodal outcomes. As shown in Table 1 and
Fig. 3, DiffComplete improves over state of the arts by 40% on l1 error (0.053 v.s. 0.088), as well
as producing more realistic and high-fidelity shapes. Deterministic methods include 3D-EPN [14],
ConvONet [26], and PatchComplete [15]. Unlike these learning a one-step map function for shape
completion, we iteratively refine the generated shape, thus significantly mitigating the surface ar-
tifacts; see visualization comparisons in Fig. 3. Compared to GAN-based SDF-StyleGAN [51]
and Autoregressive-based AutoSDF [6], our diffusion-based generative model offers superior mode
coverage and sampling quality.
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Figure 3: Shape Completion on various known object classes. We achieve the best completion quality.
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Figure 4: Shape completion on synthetic (blue) and real (yellow) objects of entirely unseen classes.
Our method produces the completed shapes in superior quality given both synthetic and real data.

Regarding diffusion-based approaches, RePaint-3D is adapted from Repaint [78], a 2D diffusion-
based inpainting method that only involves partial shape conditions during the inference process.
In contrast, our DiffComplete explicitly matches each partial shape with a complete counterpart at
the training stage, thereby improving the output consistency with the ground truths. PVD [12] is
originally a point cloud diffusion model. Here, we adapt it to perform TSDF (TUDF) diffusion. A
limitation of PVD is that it retains noises of the partial input. Hence, when it is mixed with the
generated missing part, noise severely affects the final completion quality. Instead, we design two
branches to separately process the partial and complete shapes. By doing so, the model can learn a
diffusion process from noise to clean shapes.

Completion on unseen object categories. In two datasets of the PatchComplete benchmark, we
compare the generalizability of DiffComplete against the state of the arts, including approaches partic-
ularly designed for unseen-class completion [81, 15]. As summarized in Table 2, our method exhibits
the best completion quality on average for eight unseen object categories in the synthetic ShapeNet
data, despite lacking zero-shot designs. The previous SOTA PatchComplete, mainly leverages the
multi-scale structural information to improve the completion robustness. Our method inherently
embraces this concept within the diffusion models. With our hierarchical feature aggregation, the
network learns multi-scale local completion patterns, which could generalize to various object classes,
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Input Multi-modal outputs

Figure 5: Our method produces multimodal plau-
sible results given the same partial shape.
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Figure 6: Our method incorporates multiple par-
tial shapes to refine completion results (l1-err. ↓).

Table 4: Multimodal capacity.
Method MMD ↓ TMD ↑ UHD ↓
AutoSDF [6] 0.008 0.028 0.061
ShapeFormer [80] 0.007 0.024 0.055
PVD [12] 0.007 0.027 0.042
RePaint-3D [78] 0.007 0.029 0.053
Ours 0.002 0.025 0.032

Figure 7: TMD curve.
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Table 5: Multi-condition results.
Cond. Num. l1-err. ↓ MMD ↓ TMD ↑
one 0.07 0.002 0.025
two 0.05 0.001 0.021
three 0.04 0.001 0.019

Table 6: Effects of fusion choices
for multiple conditional inputs.

Strategy l1-err. ↓ CD ↓ IoU ↑
simple average 0.13 4.56 63.3
w/o MLP ψ 0.23 5.88 57.4
occ-aware (Ours) 0.05 3.97 68.3

Table 7: Feat. aggregation levels.
1/8 1/4 1/2 1 MMD ↓ TMD ↑ CD ↓

! 0.005 0.031 4.8
! ! 0.004 0.028 4.4
! ! ! 0.003 0.026 4.2
! ! ! ! 0.002 0.025 4.1

Table 8: Ablation on different fea-
ture aggregation mechanisms.
Operation l1-err. ↓ MMD ↓ TMD ↑
cross-attn. 0.12 0.005 0.027
concat. 0.07 0.002 0.024
addition (Ours) 0.07 0.002 0.025

as their local structures are often shared. Our ablation study in Sec. 4.5 further validates this benefit.
Table 3 demonstrates our method’s superior performance with real-world scans, which are often
cluttered and noisy. As showcased in Fig. 4, the 3D shapes produced by DiffComplete stand out for
their impressive global coherence and local details.

4.3 Multimodal Completion Characteristics

Quantitative evaluations. Probabilistic methods have the intriguing ability to produce multiple
plausible completions on the same partial shape, known as multimodal completion. For the 3D-EPN
chair class, we generate ten results per partial shape with randomized initial noise xT , and employ
metrics from prior works [7, 6], i.e., (i) MMD measures the completion accuracy against the ground
truths, (ii) TMD for completion diversity, and (iii) UHD for completion fidelity to a partial input.
Table 4 shows that our method attains much better completion accuracy and fidelity, while exhibiting
moderate diversity. This aligns with our design choice of leveraging the control mechanism to
prioritize completion accuracy over diversity. Yet, we can adjust this trade-off to improve shape
diversity, as discussed in Sec. 4.5. Fig. 5 presents our multimodal outputs, all showing great realism.

Effects of input completeness degree. To verify the influence of input completeness degree on
diversity, we select ten chair instances from ShapeNet, due to chair’s large structural variation. For
each instance, we create six virtual scans of varying completeness, and for each scan, we generate ten
diverse completions to compute their TMD. Fig. 7 presents a negative correlation between the shape
diversity (reflected by TMD) and input completeness degree, which is measured by the occupied
voxel’s ratio between the partial and complete GT shapes.

4.4 Multiple Conditional Inputs

Quantitative evaluations. As indicated in Table 5, DiffComplete consistently improves completion
accuracy (lower l1 error) and reduces diversity (lower TMD) when more conditional inputs are added.
Fig. 1(b) and 6 showcase the progression of completion results when we gradually introduce more
partial shapes of the same object (denoted by the plus symbol). Our model incorporates the local
structures of all partial inputs and harmonizes them into a coherent final shape with the lower l1 error.

Effects of occupancy-aware fusion. In Table 6, we compare our design with alternatives on the
3D-EPN chair class and PatchComplete benchmark using two conditional inputs. Averaging fea-
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tures without occupancy masks largely lowers the completion accuracy due to disturbances from
non-informative free-space features. Removing the learnable MLP layer ψ hinders the network’s
adaptation from single to multiple conditions, also worsening the results. Instead, we adaptively
aggregate multi-condition features and refine them to mitigate their discrepancy for reliable com-
pletions. Note that directly fusing original scans in TSDF (TUDF) space might be vulnerable to
registration errors, as compared with our strategy in the supplementary file.

4.5 Ablation Study

Effects of hierarchical feature aggregation. Table 7 shows the effects of aggregating features
of the complete and incomplete shapes at different decoder levels (see Eq. (4)). First, increasing
feature aggregation layers (from single to hierarchical) consistently boosts the completion accuracy
(lower MMD), while decreasing it yields better diversity (higher TMD). If connecting features only
at the network layer with 1/8 resolution, we achieve the best TMD that surpasses other methods
(see Table 4). Thus, the accuracy-diversity trade-off can be adjusted by altering the level of feature
aggregation. Second, hierarchical feature aggregation facilitates unseen-class completion (lower
CD, tested on PatchComplete benchmark). This improvement suggests that leveraging multi-scale
structural information from partial inputs enhances the completion robustness.

Effects of feature aggregation mechanism. We ablate on the way to aggregate F i
x(xt) and ϕi(F i

c(f)
in Eq. (4). As Table 8 shows, direct addition achieves the best completion accuracy (the lowest
l1-err and MMD), as it only combines features at the same 3D location to precisely correlate their
difference for completion. Cross-attention disrupts this spatial consistency and yields less accurate
results. Concatenation has a similar performance with addition, while the latter is more efficient.

5 Conclusion and Discussion

We presented DiffComplete, a new diffusion-based approach to enable multimodal, realistic, and
high-fidelity 3D shape completion, surpassing prior approaches on completion accuracy and quality.
This success is attributed to two key designs: a hierarchical feature aggregation mechanism for
effective conditional control and an occupancy-aware fusion strategy to seamlessly incorporate
additional inputs for geometry refinement. Also, DiffComplete exhibits robust generalization to
unseen object classes for both synthetic and real data, and allows an adjustable balance between
completion diversity and accuracy to suit specific needs. These features position DiffComplete as
a powerful tool in various applications in 3D perception and content creation. Yet, as with most
diffusion models, DiffComplete requires additional computation due to its multi-step inference. A
comprehensive discussion on the limitation and broader impact is provided in the supplementary file.
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[3] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, and Justus Thies.
Neural rgb-d surface reconstruction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6290–6301, 2022. 3

[4] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pages 165–174,
2019.

[5] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and Yaron
Lipman. Multiview neural surface reconstruction by disentangling geometry and appearance.
Advances in Neural Information Processing Systems, 33:2492–2502, 2020. 1

[6] Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. Autosdf: Shape priors
for 3d completion, reconstruction and generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 306–315, 2022. 2, 7, 9

[7] Rundi Wu, Xuelin Chen, Yixin Zhuang, and Baoquan Chen. Multimodal shape completion via
conditional generative adversarial networks. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16, pages 281–296.
Springer, 2020. 2, 3, 9

[8] Edward J Smith and David Meger. Improved adversarial systems for 3d object generation and
reconstruction. In Conference on Robot Learning, pages 87–96. PMLR, 2017. 3

[9] Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo,
Bo Dai, and Chen Change Loy. Unsupervised 3d shape completion through gan inversion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1768–1777, 2021. 2, 3

[10] Norman Müller, Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulo, Peter Kontschieder, and
Matthias Nießner. Diffrf: Rendering-guided 3d radiance field diffusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4328–4338, 2023.
2, 3, 4

[11] Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander Schwing, and Liangyan Gui.
Sdfusion: Multimodal 3d shape completion, reconstruction, and generation. arXiv preprint
arXiv:2212.04493, 2022. 3, 4

[12] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through point-voxel
diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 5826–5835, 2021. 3, 7, 8, 9

[13] Gene Chou, Yuval Bahat, and Felix Heide. Diffusion-sdf: Conditional generative modeling
of signed distance functions. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2262–2272, 2023. 2, 3, 4

11



[14] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape completion using 3d-encoder-
predictor cnns and shape synthesis. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5868–5877, 2017. 2, 3, 6, 7, 17, 18

[15] Yuchen Rao, Yinyu Nie, and Angela Dai. Patchcomplete: Learning multi-resolution patch
priors for 3d shape completion on unseen categories. arXiv preprint arXiv:2206.04916, 2022.
2, 3, 6, 7, 8, 18, 23, 24

[16] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct monocular
slam. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part II 13, pages 834–849. Springer, 2014. 3

[17] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and
accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163, 2015.

[18] Thomas Whelan, Stefan Leutenegger, Renato F. Salas-Moreno, Ben Glocker, and Andrew J.
Davison. Elasticfusion: Dense SLAM without A pose graph. In Robotics: Science and Systems
XI, Sapienza University of Rome, Rome, Italy, July 13-17, 2015, 2015.

[19] R. Maier, K. Kim, D. Cremers, J. Kautz, and M. Nießner. Intrinsic3d: High-quality 3D
reconstruction by joint appearance and geometry optimization with spatially-varying lighting.
In International Conference on Computer Vision (ICCV), Venice, Italy, October 2017.

[20] Michael Zollhöfer, Angela Dai, Matthias Innmann, Chenglei Wu, Marc Stamminger, Christian
Theobalt, and Matthias Nießner. Shading-based refinement on volumetric signed distance
functions. ACM Transactions on Graphics (TOG), 2015. 3

[21] Brian Curless and Marc Levoy. A volumetric method for building complex models from range
images. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1996, New Orleans, LA, USA, August 4-9, 1996, pages 303–312, 1996.
3

[22] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard A. Newcombe, Push-
meet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew J. Davison, and Andrew W.
Fitzgibbon. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth
camera. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology, Santa Barbara, CA, USA, October 16-19, 2011, pages 559–568, 2011. 3

[23] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, An-
drew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew W. Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and tracking. In 10th IEEE International
Symposium on Mixed and Augmented Reality, ISMAR 2011, Basel, Switzerland, October 26-29,
2011, pages 127–136, 2011. 3

[24] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. Real-time 3d
reconstruction at scale using voxel hashing. ACM Transactions on Graphics (ToG), 32(6):1–11,
2013. 3

[25] Silvan Weder, Johannes Schonberger, Marc Pollefeys, and Martin R Oswald. Routedfusion:
Learning real-time depth map fusion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4887–4897, 2020. 3

[26] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Con-
volutional occupancy networks. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, 2020. 7, 19

[27] Ang Li, Zejian Yuan, Yonggen Ling, Wanchao Chi, Chong Zhang, et al. A multi-scale guided
cascade hourglass network for depth completion. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 32–40, 2020.

[28] Angela Dai, Yawar Siddiqui, Justus Thies, Julien Valentin, and Matthias Nießner. Spsg: Self-
supervised photometric scene generation from rgb-d scans. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1747–1756, 2021. 3

12



[29] Olga Sorkine and Daniel Cohen-Or. Least-squares meshes. In Proceedings Shape Modeling
Applications, 2004., pages 191–199. IEEE, 2004. 3

[30] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian mesh optimization.
In Proceedings of the 4th international conference on Computer graphics and interactive
techniques in Australasia and Southeast Asia, pages 381–389, 2006.

[31] Wei Zhao, Shuming Gao, and Hongwei Lin. A robust hole-filling algorithm for triangular mesh.
The Visual Computer, 23:987–997, 2007. 3

[32] Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction.
In Proceedings of the Fourth Eurographics Symposium on Geometry Processing, Cagliari,
Sardinia, Italy, June 26-28, 2006, pages 61–70, 2006. 3

[33] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Transac-
tions on Graphics (ToG), 32(3):1–13, 2013. 3

[34] Sebastian Thrun and Ben Wegbreit. Shape from symmetry. In Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1, volume 2, pages 1824–1831. IEEE, 2005.
3

[35] Niloy J Mitra, Leonidas J Guibas, and Mark Pauly. Partial and approximate symmetry detection
for 3d geometry. ACM Transactions on Graphics (ToG), 25(3):560–568, 2006.

[36] Mark Pauly, Niloy J Mitra, Johannes Wallner, Helmut Pottmann, and Leonidas J Guibas.
Discovering structural regularity in 3d geometry. In ACM SIGGRAPH 2008 papers. 2008.

[37] Ivan Sipiran, Robert Gregor, and Tobias Schreck. Approximate symmetry detection in partial
3d meshes. In Computer Graphics Forum, 2014.

[38] Pablo Speciale, Martin R Oswald, Andrea Cohen, and Marc Pollefeys. A symmetry prior
for convex variational 3d reconstruction. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14,
pages 313–328. Springer, 2016. 3

[39] Minhyuk Sung, Vladimir G Kim, Roland Angst, and Leonidas Guibas. Data-driven structural
priors for shape completion. ACM Transactions on Graphics (TOG), 34(6):1–11, 2015. 3

[40] Yangyan Li, Angela Dai, Leonidas Guibas, and Matthias Nießner. Database-assisted object
retrieval for real-time 3d reconstruction. In Computer graphics forum, 2015.

[41] Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify approach for cluttered indoor
scene understanding. ACM Transactions on Graphics (TOG), 31(6):1–10, 2012.

[42] Young Min Kim, Niloy J Mitra, Dong-Ming Yan, and Leonidas Guibas. Acquiring 3d indoor
environments with variability and repetition. ACM Transactions on Graphics (TOG), 31(6):1–11,
2012. 3

[43] Duc Thanh Nguyen, Binh-Son Hua, Khoi Tran, Quang-Hieu Pham, and Sai-Kit Yeung. A field
model for repairing 3d shapes. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5676–5684, 2016. 3

[44] Michael Firman, Oisin Mac Aodha, Simon Julier, and Gabriel J Brostow. Structured prediction
of unobserved voxels from a single depth image. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5431–5440, 2016. 3

[45] Angela Dai, Christian Diller, and Matthias Nießner. Sg-nn: Sparse generative neural net-
works for self-supervised scene completion of rgb-d scans. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 849–858, 2020. 3

[46] Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu, and Jie Zhou. Pointr: Diverse
point cloud completion with geometry-aware transformers. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 12498–12507, 2021.

13



[47] Xiaoguang Han, Zhen Li, Haibin Huang, Evangelos Kalogerakis, and Yizhou Yu. High-
resolution shape completion using deep neural networks for global structure and local geometry
inference. In Proceedings of the IEEE international conference on computer vision, pages
85–93, 2017.

[48] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser.
Semantic scene completion from a single depth image. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1746–1754, 2017.

[49] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in feature space
for 3d shape reconstruction and completion. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6970–6981, 2020. 3, 7

[50] Angela Dai and Matthias Nießner. Scan2mesh: From unstructured range scans to 3d meshes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5574–5583, 2019. 3

[51] X Zheng, Yang Liu, P Wang, and Xin Tong. Sdf-stylegan: Implicit sdf-based stylegan for 3d
shape generation. In Computer Graphics Forum, 2022. 3, 7

[52] Xuelin Chen, Baoquan Chen, and Niloy J Mitra. Unpaired point cloud completion on real scans
using adversarial training. arXiv preprint arXiv:1904.00069, 2019. 3

[53] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning repre-
sentations and generative models for 3d point clouds. In International conference on machine
learning, pages 40–49. PMLR, 2018. 3

[54] Himanshu Arora, Saurabh Mishra, Shichong Peng, Ke Li, and Ali Mahdavi-Amiri. Multimodal
shape completion via implicit maximum likelihood estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2958–2967, 2022. 3

[55] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015. 3

[56] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021. 7

[57] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022. 4

[58] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. ICLR,
2021.

[59] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021. 4,
22

[60] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020. 4, 22

[61] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020. 6, 22

[62] Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano Ermon. D2c: Diffusion-decoding
models for few-shot conditional generation. Advances in Neural Information Processing
Systems, 34:12533–12548, 2021. 3

[63] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and
Karsten Kreis. Lion: Latent point diffusion models for 3d shape generation. arXiv preprint
arXiv:2210.06978, 2022. 3

14



[64] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2837–2845, 2021.

[65] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A
system for generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751,
2022. 3

[66] Gimin Nam, Mariem Khlifi, Andrew Rodriguez, Alberto Tono, Linqi Zhou, and Paul Guerrero.
3d-ldm: Neural implicit 3d shape generation with latent diffusion models. arXiv preprint
arXiv:2212.00842, 2022. 3, 4

[67] Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d
shape representation for neural fields and generative diffusion models. arXiv preprint
arXiv:2301.11445, 2023. 3

[68] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Walter Talbott, Alexander Toshev,
Zhuoyuan Chen, Laurent Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, et al. Gaudi: A
neural architect for immersive 3d scene generation. Advances in Neural Information Processing
Systems, 35:25102–25116, 2022. 3

[69] Muheng Li, Yueqi Duan, Jie Zhou, and Jiwen Lu. Diffusion-sdf: Text-to-shape via voxelized
diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12642–12651, 2023. 3, 22

[70] Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. arXiv preprint arXiv:2302.05543, 2023. 4, 17, 21

[71] Juyong Zhang, Yuxin Yao, and Bailin Deng. Fast and robust iterative closest point. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021. 6

[72] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface
construction algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987. 6

[73] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015. 6, 7, 19

[74] John Amanatides, Andrew Woo, et al. A fast voxel traversal algorithm for ray tracing. In
Eurographics, 1987. 6

[75] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 5828–5839, 2017. 6, 7

[76] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 6

[77] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022. 7

[78] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11461–11471,
2022. 7, 8, 9

[79] Dongsu Zhang, Changwoon Choi, Inbum Park, and Young Min Kim. Probabilistic implicit
scene completion. In International Conference on Learning Representations, 2022. 7

[80] Xingguang Yan, Liqiang Lin, Niloy J Mitra, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
Shapeformer: Transformer-based shape completion via sparse representation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022. 7, 9

15



[81] Bram Wallace and Bharath Hariharan. Few-shot generalization for single-image 3d reconstruc-
tion via priors. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 3818–3827, 2019. 7, 8

[82] Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Zhizhong Han.
Snowflake point deconvolution for point cloud completion and generation with skip-transformer.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. 19

[83] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar.
Fast sampling of diffusion models via operator learning. arXiv preprint arXiv:2211.13449,
2022. 22

[84] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic segmentation
with submanifold sparse convolutional networks. CVPR, 2018. 22

[85] Tao Hu, Xiaogang Xu, Ruihang Chu, and Jiaya Jia. Trivol: Point cloud rendering via triple
volumes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 22

[86] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-cnn: Octree-based
convolutional neural networks for 3d shape analysis. ACM Transactions On Graphics (TOG),
36(4):1–11, 2017. 22

16


	Introduction
	Related Work
	Method
	Formulation
	Shape Completion Pipeline
	Occupancy-aware Fusion
	Training and Inference

	Experiment
	Experimental Setup
	Main Results
	Multimodal Completion Characteristics
	Multiple Conditional Inputs
	Ablation Study

	Conclusion and Discussion
	Detailed Network Architecture
	Additional Experiments
	Choice of Training Strategy
	Choice of Fusion Space for Multiple Conditions
	Choice of Occupancy Threshold
	Impact of Training Iteration
	Data-efficient Finetuning on Unseen Categories
	Comparison with Point Cloud Completion Approaches
	Applications in Semantic Part Editing
	Failure Cases

	Quantitative Visualizations
	Difference from ControlNet zhang2023adding
	Limitations and Future Work
	Broader Impact

