Distributed Specialization: How Transformers Process Rare Tokens Through Parameter Differentiation

Large language models (LLMs) often underperform on rare token prediction, even though such tokens carry
critical information in specialized domains [1]. Prior work has identified frequency-sensitive neurons that
modulate token logits [2], but the organizational principles underlying these neurons’ functional roles remain poorly
understood. In this work, we analyze how transformers self-organize computation for rare versus common tokens,
conducting a systematic neuron-level study across GPT-2 and Pythia model families. Our approach
combines neuron ablation, activation-space analysis, and weight-space spectral characterization to reveal how
functional specialization emerges dynamically during training.

Neuron Influence Analysis and Training Dynamics. We measure each neuron’s contribution via the loss increase
after ablation for the MLP layer before the unembedding layer and uncover a three-regime structure in influence
distributions for rare token prediction: (1) a specialist plateau of highly influential neurons, (2) a power-law
regime of moderately contributing neurons, and (3) a rapid-decay regime of minimally relevant neurons. In
contrast, common tokens exhibit only the power-law and decay regimes, demonstrating that rare tokens recruit
additional high-influence neurons. Tracking model states during training shows that these plateau neurons emerge
progressively, suggesting spontaneous functional differentiation rather than pre-defined specialization.

Distributed Specialization vs. Modularity. We next ask whether specialist neurons form modular clusters or
operate within a distributed computation framework. Using graph-based community detection [3] in activation
space, we find that these neurons are spatially dispersed across the last MLP layer, with modularity scores close
to random baselines (Q = 0.05-0.11 vs. control O = 0.04—0.09, p > 0.4). Attention-head ablation further shows that
rare token processing does not depend on specialized routing: removing individual heads yields minimal
performance impact (~7-8%), whereas full-layer ablation causes large drops (~42-45%). Despite their spatial
distribution, specialist neurons exhibit structured co-activation and reduced effective dimensionality, revealing
coordinated computation without topological modularity.

Weight Space Analysis. To understand how specialization emerges, we analyze neuron weight spectra
using Heavy-Tailed Self-Regularization theory [4]. Rare token neurons develop heavier-tailed weight
distributions than controls (Hill o = 1.57—4.30 vs. 6.37-9.33), indicating stronger functional specialization. This
spectral separation grows throughout training, suggesting that implicit regularization mechanisms drive the
observed differentiation.

Our findings reveal that transformers achieve rare token specialization through distributed parameter
differentiation rather than modular organization. By recruiting additional high-influence neurons that are spatially
dispersed yet functionally coordinated, models preserve context-sensitive flexibility while allocating adaptive
capacity for rare token processing. These results challenge modular views of neural computation and provide
insights for interpretable model editing and efficiency optimization.

Figure Neuron influence distributions in the Pythia-410M model
illustrating a three-regime structure for rare token prediction: a -6
specialist plateau of high-impact neurons, a power-law regime of
moderately contributing neurons, and a rapid-decay regime of
minimal influence.
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