
Distributed Specialization: How Transformers Process Rare Tokens Through Parameter Differentiation 

Large language models (LLMs) often underperform on rare token prediction, even though such tokens carry 
critical information in specialized domains [1]. Prior work has identified frequency-sensitive neurons that 
modulate token logits [2], but the organizational principles underlying these neurons’ functional roles remain poorly 
understood. In this work, we analyze how transformers self-organize computation for rare versus common tokens, 
conducting a systematic neuron-level study across GPT-2 and Pythia model families. Our approach 
combines neuron ablation, activation-space analysis, and weight-space spectral characterization to reveal how 
functional specialization emerges dynamically during training. 

Neuron Influence Analysis and Training Dynamics. We measure each neuron’s contribution via the loss increase 
after ablation for the MLP layer before the unembedding layer and uncover a three-regime structure in influence 
distributions for rare token prediction: (1) a specialist plateau of highly influential neurons, (2) a power-law 
regime of moderately contributing neurons, and (3) a rapid-decay regime of minimally relevant neurons. In 
contrast, common tokens exhibit only the power-law and decay regimes, demonstrating that rare tokens recruit 
additional high-influence neurons. Tracking model states during training shows that these plateau neurons emerge 
progressively, suggesting spontaneous functional differentiation rather than pre-defined specialization. 

Distributed Specialization vs. Modularity. We next ask whether specialist neurons form modular clusters or 
operate within a distributed computation framework. Using graph-based community detection [3] in activation 
space, we find that these neurons are spatially dispersed across the last MLP layer, with modularity scores close 
to random baselines (Q = 0.05–0.11 vs. control Q = 0.04–0.09, p > 0.4). Attention-head ablation further shows that 
rare token processing does not depend on specialized routing: removing individual heads yields minimal 
performance impact (~7–8%), whereas full-layer ablation causes large drops (~42–45%). Despite their spatial 
distribution, specialist neurons exhibit structured co-activation and reduced effective dimensionality, revealing 
coordinated computation without topological modularity. 

Weight Space Analysis. To understand how specialization emerges, we analyze neuron weight spectra 
using Heavy-Tailed Self-Regularization theory [4]. Rare token neurons develop heavier-tailed weight 
distributions than controls (Hill α = 1.57–4.30 vs. 6.37–9.33), indicating stronger functional specialization. This 
spectral separation grows throughout training, suggesting that implicit regularization mechanisms drive the 
observed differentiation. 

Our findings reveal that transformers achieve rare token specialization through distributed parameter 
differentiation rather than modular organization. By recruiting additional high-influence neurons that are spatially 
dispersed yet functionally coordinated, models preserve context-sensitive flexibility while allocating adaptive 
capacity for rare token processing. These results challenge modular views of neural computation and provide 
insights for interpretable model editing and efficiency optimization. 

 

Figure Neuron influence distributions in the Pythia-410M model 
illustrating a three-regime structure for rare token prediction: a 
specialist plateau of high-impact neurons, a power-law regime of 
moderately contributing neurons, and a rapid-decay regime of 
minimal influence. 
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