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Abstract

As large language models advance toward su-001
perhuman performance, ensuring their align-002
ment with human values and abilities grows003
increasingly complex. Weak-to-strong general-004
ization offers a promising approach by leverag-005
ing predictions from weaker models to guide006
stronger systems, but its effectiveness could be007
constrained by the inherent noise and inaccura-008
cies in these weak predictions. To address this,009
we propose a theoretically grounded approach010
that replaces forward KL divergence—whose011
mass-covering behavior risks overfitting to im-012
perfect weak signals—with reverse KL diver-013
gence. Reverse KL divergence’s zero-forcing014
effect prioritizes high-confidence predictions,015
effectively mitigating the influence of unreli-016
able weak supervision. Theoretically, we ex-017
tend existing bounds and derive tighter lower018
bounds for both forward and reverse KL diver-019
gence, establishing that reverse KL achieves020
at least comparable guarantees to forward KL.021
Notably, when a sufficiently pre-trained strong022
model is fine-tuned on the last layer, reverse023
KL uniquely guarantees that it outperforms its024
weak supervisor by the magnitude of their dis-025
agreement—a guarantee that forward KL can-026
not provide. Empirically, we demonstrate that027
reverse KL and reverse cross-entropy enable028
strong models to successfully outperform those029
trained with forward KL and standard cross-030
entropy across most settings, highlighting the031
practical advantages of these reverse losses.032

1 Introduction033

Human supervision is indispensable to align Large034

Language Models (LLMs) with human values (Bai035

et al., 2022a; OpenAI, 2023a). However, as LLMs036

approach superhuman capabilities, their behaviors037

may exceed human ability to reliably manage (Ope-038

nAI, 2023b). To address this challenge, Weak-039

to-Strong Generalization (WTSG) (Burns et al.,040

2023) emerges as a promising approach, leveraging041

weaker models to guide and control more advanced042

systems, thereby bridging the gap between human 043

oversight and superhuman AI capabilities. 044

In particular, WTSG demonstrates that strong 045

pre-trained LLMs, when fine-tuned under weak 046

model supervision, can achieve performance sur- 047

passing that of their weak supervisors. However, 048

this approach is fundamentally constrained by the 049

inherent imperfections of weak model supervision, 050

which may introduce inaccuracies and noise (Burns 051

et al., 2023). Blindly fitting the strong model to 052

these imperfect signals can lead to a significant dis- 053

crepancy between the ground truth and the model’s 054

predictions, ultimately undermining the effective- 055

ness of WTSG (Yao et al., 2025). This raises a 056

critical question: How to effectively leverage weak 057

supervision to guide strong models while mitigat- 058

ing the impact of noisy or inaccurate signals? 059

To answer this question, we propose a theo- 060

retically principled approach, supported by fine- 061

grained analysis and a simple yet effective solution. 062

Our motivation stems from an insightful compar- 063

ison with Knowledge Distillation (KD) (Hinton, 064

2015) in classification, where strong teachers pro- 065

vide informative soft labels to guide weak students. 066

In KD, the forward KL divergence loss plays a cru- 067

cial role as it encourages students to learn not only 068

the target class probabilities but also the relative 069

relationships among non-target classes encoded in 070

the teacher’s soft labels. For instance, in the im- 071

age classification scenario, a strong teacher might 072

assign higher probabilities to “tiger” than to “dog” 073

when the input image is a “cat”, reflecting the se- 074

mantic similarity between cats and tigers in the 075

feature space. However, this advantageous prop- 076

erty of forward KL in KD becomes a limitation 077

in the WTSG paradigm. The fundamental distinc- 078

tion lies in the quality of supervision: while strong 079

teachers in KD provide reliable and informative 080

soft labels, weak teachers in WTSG often generate 081

noisy and potentially misleading signals for non- 082

target classes (Burns et al., 2023). Thus, the mass- 083
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(a) Knowledge Distillation
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(b) Weak-to-Strong Generalization

Figure 1: Illustration of the mass-covering behavior of forward KL divergence and the mode-seeking behavior of
reverse KL divergence, highlighting their roles in KD and WTSG. A Gaussian mixture distribution, representing
the teacher’s supervision in KD and WTSG, is approximated by fitting a single Gaussian distribution using both
forward and reverse KL divergence as loss functions.

covering nature of forward KL (Jerfel et al., 2021;084

Sun and van der Schaar, 2024), which forces the085

student to match the entire probability distribution086

of the teacher’s predictions, becomes detrimental in087

WTSG as it may lead the strong model to overfit to088

the weak teacher’s unreliable supervision. This ob-089

servation motivates our investigation of reverse KL090

divergence as a more suitable alternative for WTSG.091

As shown in Figure 1, the key advantage of re-092

verse KL lies in its mode-seeking behavior (Minka093

et al., 2005; Ji et al., 2024a), which enables the094

strong model to focus on the weak teacher’s high-095

confidence predictions while being less sensitive096

to potentially noisy low-probability regions. This097

property aligns better with the WTSG setting, as098

it allows the strong model to extract reliable pat-099

terns from weak supervision without being overly100

constrained by its imperfections.101

Building on the intuitive motivation above, we102

first conduct a theoretical analysis to compare for-103

ward losses and reverse losses in the context of104

WTSG. Inspired by the lower and upper bounds es-105

tablished for the strong model in WTSG (Yao et al.,106

2025), we extend these results and derive tighter107

lower bounds for both forward and reverse losses,108

demonstrating that reverse losses achieves at least109

equivalent theoretical guarantees to forward losses.110

Furthermore, we identify a unique advantage of111

reverse KL: when an adequately pre-trained strong112

model undergoes last-layer fine-tuning, reverse KL113

guarantees that the strong student will outperform114

its weak teacher by at least the magnitude of their115

disagreement. Notably, this performance guarantee116

fails to hold for forward KL without additional as- 117

sumptions, underscoring the theoretical advantage 118

of reverse losses. In our experiments, we empiri- 119

cally demonstrate that employing reverse KL diver- 120

gence and reverse Cross-Entropy (CE) as loss func- 121

tions enables the strong model to achieve superior 122

performance compared to using forward KL diver- 123

gence and standard CE. We also extend the analysis 124

to an improved algorithm discussed in Burns et al. 125

(2023), where the optimization objective incorpo- 126

rates an additional regularization term. It further 127

demonstrates the practical advantages of reverse 128

CE over standard CE in the context of WTSG. 129

2 Related Work 130

Weak-to-Strong Generalization. The weak-to- 131

strong paradigm (Burns et al., 2023) emerges as 132

a promising framework to address the challenges 133

of AI alignment, particularly in the context of su- 134

peralignment (OpenAI, 2023b)—where future AI 135

systems may surpass human capabilities, render- 136

ing human supervision weak or insufficient. It 137

leverages weaker models to guide stronger models, 138

potentially unlocking their full capabilities while 139

maintaining alignment with human values. It has 140

been extensively studied through algorithms (Zhu 141

et al., 2024; Agrawal et al., 2024; Sang et al., 2024; 142

Guo and Yang, 2024), empirical analyses (Yang 143

et al., 2024; Ye et al., 2024), and theoretical frame- 144

works (Lang et al., 2024; Somerstep et al., 2024; 145

Wu and Sahai, 2024; Charikar et al., 2024; Yao 146

et al., 2025), these works primarily focus on WTSG 147

with forward KL divergence and CE losses. How- 148
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ever, to the best of our knowledge, the potential of149

reverse KL and reverse CE losses in classification150

under the WTSG framework remains unexplored.151

Forward KL and Reverse KL. Forward KL152

and Reverse KL are employed in distinct appli-153

cations, each offering unique advantages. For-154

ward KL is widely utilized in standard classification155

tasks (Goodfellow, 2016), often appearing in the156

form of CE loss to align predicted and true label157

distributions. Its mass-covering behavior (Jerfel158

et al., 2021; Sun and van der Schaar, 2024) en-159

sures that the model comprehensively captures all160

high-probability regions of the target distribution,161

making it particularly effective in knowledge dis-162

tillation (Hinton, 2015) for classification tasks. In163

such tasks, the teacher model’s soft labels provide164

informative guidance, enabling the student model165

to learn a representative distribution (Yang et al.,166

2025). In contrast, reverse KL is frequently adopted167

in variational inference (Kingma and Welling,168

2014; Pinheiro Cinelli et al., 2021), where it ex-169

hibits zero-forcing behavior (Minka et al., 2005).170

By focusing on high-confidence predictions while171

disregarding low-probability regions, reverse KL172

prioritizes precision over diversity. In the context173

of WTSG, the choice of divergence is especially174

significant. Weak teachers in WTSG provide imper-175

fect supervision signals (Burns et al., 2023; Yang176

et al., 2024; Yao et al., 2025), and using forward177

KL divergence as the loss function may lead to178

overfitting to these noisy or incomplete guidance.179

Reverse KL, on the other hand, allows the strong180

model to extract reliable patterns from weak su-181

pervision without being overly constrained by its182

imperfections. This property aligns well with the183

goal of WTSG, where the focus is on leveraging184

weak supervision while avoiding its pitfalls.185

Furthermore, reverse KL divergence has recently186

gained increasing attention in related fields such187

as domain adaptation (Nguyen et al., 2022) and188

KL-regularized reinforcement learning (Rafailov189

et al., 2024; Wang et al., 2024; Ji et al., 2024b).190

These applications share a conceptual similarity191

with WTSG, as they all involve transferring knowl-192

edge across domains or models under imperfect193

or constrained conditions. Moreover, beyond clas-194

sification tasks, reverse KL divergence has been195

increasingly utilized in generation tasks within196

knowledge distillation (Gu et al., 2024; Agarwal197

et al., 2024; Wu et al., 2025), owing to its mode-198

seeking properties. Given these developments, it is199

natural to investigate the role of reverse KL within 200

the WTSG framework. To the best of our knowl- 201

edge, no prior work has systematically explored 202

this direction, leaving a significant gap in under- 203

standing its potential applications and implications. 204

3 Preliminaries 205

3.1 Classification 206

We consider k-classification tasks. Given the data 207

domain X ⊆ Rd and output domain Y ⊆ Rk, let 208

the model space be F : X → Y . Consider the 209

model equipped with a softmax module, which en- 210

sures that its outputs form a valid probability distri- 211

bution, i.e., ∀y = (y1, · · · , yk)T ∈ Y , there holds 212∑k
i=1 yi = 1 and 0 < yi ≤ 1. The forward and 213

reverse KL divergence losses are defined below. 214

Definition 1 (KL divergence losses). Given the 215

data distribution P and two models g, h ∈ F , the 216

forward KL divergence loss is defined as: 217

KL(g, h) ≜ Ex∼P [DKL(g(x)∥h(x))] , 218

= Ex∼P

[
k∑

i=1

[g(x)]i log
[g(x)]i
[h(x)]i

]
, 219

where [g(x)]i, [h(x)]i represent the i-th elements 220

of g(x), h(x), respectively. Thus, the reverse KL 221

divergence loss is KL(h, g). 222

As illustrated in Figure 1, forward KL promotes 223

full coverage of the target distribution, whereas 224

reverse KL focuses on capturing the dominant 225

mode. Additionally, the difference between KL 226

divergence and CE is an entropy term: 227

Definition 2 (Cross-entropy losses). Given the data 228

distribution P and two models g, h ∈ F , define the 229

forward cross-entropy divergence loss: 230

CE(g, h) ≜ −Ex∼P

[
k∑

i=1

[g(x)]i log[h(x)]i

]
231

= KL(g, h) + Ex∼P H(g(x)), 232

where H(·) is the Shannon entropy. Thus, the re- 233

verse cross-entropy loss is CE(h, g). 234

Consequently, note that when minimizing for- 235

ward losses, the model g is fixed to provide su- 236

pervision signals. Thus, minimizing forward KL 237

divergence loss is equivalent to minimizing stan- 238

dard CE loss as Ex∼P H(g(x)) is a constant. 239
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3.2 Weak-to-Strong Generalization240

Consider WTSG in the context of k-classification241

tasks. We focus on the fine-tuning phase after pre-242

training. The labeling function F ⋆ maps data x to243

its label F ⋆(x). The strong model aims to learn244

Fsw = f ◦ hs, where hs is a fixed strong model245

representation and f ∈ Fs is a task-specific func-246

tion from a hypothesis class Fs. In the convention247

setting of AI alignment (Ouyang et al., 2022), the248

model is fine-tuned through ground truth data:249

fs = argminf∈Fs
L(F ⋆, f ◦ hs), (1)250

where the loss L(·, ·) can be KL(·, ·) or CE(·, ·).251

However, it is humans who provide weak su-252

pervision in the super-alignment scenario (Ope-253

nAI, 2023b). To explore this, the WTSG frame-254

work (Burns et al., 2023) leverages a weak model’s255

predictions to supervise the strong model:256

fsw = argminf∈Fs
L(Fw, f ◦ hs), (2)257

where Fw is a given weak model, and L(·, ·) is orig-258

inally the standard CE loss. If we employ reverse259

losses, the objective transforms into260

f r
sw = argminf∈Fs

L(f ◦ hs, Fw). (3)261

Regardless of the choice of loss function, the262

core objective is replacing ground truth data with263

weak supervision. Thus, while minimizing forward264

losses L(Fw, Fsw) or reverse losses L(Fsw, Fw),265

we simultaneously strive to achieve an Fsw with a266

small generalization error L(F ⋆, Fsw).267

4 Theoretical Analysis: Justifying268

Reverse KL in WTSG269

In Sections 4.1, we establish that both reverse270

and forward losses offer comparable generalization271

guarantees for the strong model, indicating that272

reverse losses is at least as favorable as forward273

losses in terms of theoretical properties. However,274

our analysis in Section 4.2 uncovers a key distinc-275

tion: with reverse KL divergence loss employed in276

WTSG, the strong model is theoretically guaran-277

teed to outperform the weak model by at least the278

magnitude of their disagreement under reasonable279

assumptions. Notably, this performance guaran-280

tee does not hold for forward KL, highlighting the281

theoretical advantage of reverse losses in WTSG.282

4.1 Generalization Analysis of Both Losses 283

We establish that both reverse and forward losses 284

yield comparable generalization guarantees by de- 285

riving upper and lower bounds for their respective 286

generalization errors. We begin with a universal 287

result for both forward and reverse losses. 288

Upper and lower bounds. We extend Yao et al. 289

(2025) and establish bounds of strong model’s per- 290

formance. Unlike previous work that focuses only 291

on forward KL loss, we comprehensively exam- 292

ine all four loss variants: forward KL, reverse KL, 293

forward CE, and reverse CE. 294

Lemma 1 (Proved in Appendix A.1). Let L(·, ·) 295

be KL(·, ·) or CE(·, ·). Given the data domain X , 296

output domain Y and models Fw, F
⋆ defined above. 297

For any strong model Fsw, there holds 298

L(F ⋆, Fw)− C1d(Fw, Fsw) 299

≤ L(F ⋆, Fsw) ≤ 300

L(F ⋆, Fw) + C1d(Fw, Fsw), 301

where C1 is a positive constant, d(Fw, Fsw) 302

can be
√
KL(Fw, Fsw) or

√
KL(Fsw, Fw), and 303

L(F ⋆, Fsw) and L(F ⋆, Fw) represent the error of 304

strong model and weak model, respectively. 305

Note that d(Fw, Fsw) captures the disagreement 306

between the strong and weak models, which serves 307

as the minimization objective in WTSG. Lemma 1 308

quantifies the difference between the weak and 309

strong models’ performance from two perspectives: 310

a lower bound and an upper bound, which is similar 311

to Yao et al. (2025). The lower bound indicates 312

that strong model’s performance cannot be arbi- 313

trarily improved using weak supervision. Improv- 314

ing the strong model depends critically on ensur- 315

ing L (F ⋆, Fw) is small, underscoring the impor- 316

tance of weak model’s performance. Also, whether 317

we choose forward or reverse loss, the student- 318

supervisor disagreement d(Fw, Fsw) is minimized. 319

While reducing L (F ⋆, Fsw) requires increasing 320

d(Fw, Fsw), the lower bound also implies that 321

strong model’s performance gain may be inherently 322

constrained by WTSG’s own optimization objec- 323

tive (Yao et al., 2025). In other words, achieving 324

the minimal optimization objective limits the strong 325

model’s ability to significantly outperform its weak 326

supervisor. The upper bound ensures that strong 327

model’s error L(F ⋆, Fsw) remains bounded and do 328

not be arbitrarily large. It shows that a better weak 329

model is also crucial to improve strong model’s 330
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performance. Building on these universal results331

for both forward and reverse losses, we further con-332

duct a fine-grained analysis to investigate how to333

achieve tighter lower and upper bounds.334

Tighter lower bound. Consider the lower bound335

in Lemma 1, we employ alternative proof tech-336

niques rooted in information-theoretic inequalities337

to derive a tighter lower bound.338

Theorem 1 (Proved in Appendix A.2). Let L(·, ·)339

be KL(·, ·) or CE(·, ·). Given Fsw, Fw, F
⋆, then340

L(F ⋆, Fsw) ≥ L (F ⋆, Fw)− C2d(Fw, Fsw),341

where C2 is a positive constant, and d(Fw, Fsw)342

can be
√

KL(Fw, Fsw) or
√

KL(Fsw, Fw).343

Remark. C2 is generally smaller than C1, leading344

to a tighter lower bound than Lemma 1.345

Similar to Lemma 1, it also highlights the impor-346

tance of selecting a well-generalizing weak model347

and cautious optimization of the strong model348

to prevent overfitting to weak supervision. Note349

that Theorem 1 applies to both forward and reverse350

losses, which share the same theoretical properties.351

Tighter upper bound. In Lemma 1, there is no352

theoretical guarantee that the strong model will nec-353

essarily surpass the performance of its weak super-354

visor in WTSG, such as L(F ⋆, Fsw) ≤ L (F ⋆, Fw).355

This raises the question of whether a tighter upper356

bound can be derived. Therefore, we first explore357

how to achieve this goal.358

Proposition 1 (Proved in Appendix A.3). Let359

L(·, ·) be KL(·, ·) or CE(·, ·). Given Fsw, Fw, F
⋆,360

then there holds361

L(F ⋆, Fsw) = L(F ⋆, Fw)−
〈
F ⋆, log

Fsw

Fw

〉
E︸ ︷︷ ︸

R

,362

where the expectation inner product is defined as363

⟨f, g⟩E ≜ Ex∼P [f(x)
T g(x)].364

Remark. It can also be extended to reverse KL365

and squared loss, as detailed in Appendix A.3.366

Therefore, L(F ⋆, Fsw) ≤ L (F ⋆, Fw) satisfies367

if and only if R ≥ 0. To achieve it, we aim to368

establish a clear relationship between model ca-369

pacity and model confidence across all data points370

and all k classes. Specifically, for any x ∈ X and371

i ∈ {1, · · · , k}, a positive [F ⋆(x)]i log
[Fsw(x)]i
[Fw(x)]i

en-372

sures a positive R. Therefore, we expect the model373

predictions to satisfy either of the two inequalities:374

[F ⋆(x)]i ≥ [Fsw(x)]i ≥ [Fw(x)]i, (4)375

[F ⋆(x)]i ≤ [Fsw(x)]i ≤ [Fw(x)]i. (5) 376

In other words, the predicted probabilities of Fsw 377

reflect the true outcome better than Fw. Intuitively, 378

because the weak model is pre-trained and fine- 379

tuned on ground truth data, we can trust its de- 380

cisions for major classes. As shown in Figure 1, 381

reverse KL’s mode-seeking behavior encourages 382

the strong model to focus on the weak model’s 383

high-confidence predictions, while disregarding 384

low-probability, potentially noisy regions. This 385

behavior facilitates the fulfillment of Inequality (4)- 386

(5). In contrast, forward KL, with its mass-covering 387

nature, forces the strong model to match the en- 388

tire probability distribution, including unreliable 389

signals from the weak model’s lower-probability 390

classes, thereby hindering the fulfillment of the 391

above inequalities. In the context of WTSG, where 392

weak supervision is imperfect, reverse KL’s fo- 393

cus on high-confidence decisions provides stronger 394

guarantees for strong model’s performance. In par- 395

ticular, the theoretical analysis in the following 396

section further supports this, demonstrating that 397

reverse KL can theoretically ensure superior per- 398

formance for the strong model in certain settings. 399

4.2 Unique Advantage of Reverse Losses 400

To achieve a tighter upper bound, our theoreti- 401

cal analysis below yields an intriguing insight: 402

when using reverse KL in WTSG, an adequate pre- 403

training and subsequent last layer fine-tuning guar- 404

antees that the strong student can outperform its 405

weak teacher by at least the magnitude of their 406

disagreement (i.e., R ≥ 0 in Proposition 1). 407

Theorem 2 (Proved in Appendix A.4). Consider 408

WTSG using reverse KL divergence loss: 409

fsw = argminf∈Fs
KL(f ◦ hs, Fw). 410

Denote Fsw = fsw ◦ hs. Assume that the function 411

class Fs is a convex set and ∃fs ∈ Fs such that 412

fs ◦ hs = F ⋆. Then: 413

KL (F ⋆, Fsw) ≤ KL (F ⋆, Fw)−KL (Fsw, Fw) . 414

Remark. Similar result can be naturally extended 415

to reverse CE loss. Furthermore, note that our 416

proof leverages Bregman divergence, a general- 417

ization of both squared loss and KL divergence. 418

This approach not only broadens the applicabil- 419

ity of our results but also demonstrates how our 420

framework naturally recovers the regression anal- 421

ysis of Charikar et al. (2024). On the contrary, 422

5



under this proof framework, employing forward KL423

or CE losses does not inherently offer such theo-424

retical guarantees unless we introduce additional425

assumptions. The above extension and discussion426

are detailed in Appendix A.4.427

The assumptions are consistent with previous428

theory (Charikar et al., 2024; Yao et al., 2025).429

Firstly, the convex set assumption includes the430

case that Fs is the class of all linear functions.431

This aligns with previous insights (Howard and432

Ruder, 2018; Kumar et al., 2022; Mao et al., 2023;433

Kirichenko et al., 2023) on fine-tuning the last lin-434

ear layer. Secondly, we consider the case where435

∃fs ∈ Fs such that fs ◦ hs = F ⋆. It shows the436

remarkable capability of pre-training. It assumes437

that the representation hs has already captured a438

wealth of information during pre-training, a phe-439

nomenon well-demonstrated by modern pre-trained440

LLMs (Touvron et al., 2023; OpenAI, 2023a).441

Theorem 2 establishes that in WTSG, using the442

reverse KL divergence loss guarantees that the443

strong model, trained with weak supervision, sur-444

passes the weak model by at least their disagree-445

ment, KL(Fsw, Fw). This upper bound is tighter446

than Lemma 1, as Lemma 1 does not ensure that447

the strong model surpasses the weak model. The-448

orem 2 highlights the superior theoretical benefits449

of reverse losses compared to forward losses.450

Now we draw n i.i.d. samples to perform WTSG451

and relax the assumption, where for any fs ∈ Fs,452

∃fs ◦ hs = F ⋆ may not be satisfied. The unique453

result for reverse KL below further emphasizes its454

advantageous theoretical properties in WTSG.455

Theorem 3 (Proved in Appendix A.5). Given Fsw456

defined in Theorem 2. Assume that Fs is a convex457

set. Consider WTSG using reverse KL divergence458

loss with n i.i.d. samples:459

f̂sw = argminf∈Fs
K̂L(f ◦ hs, Fw),460

where K̂L(·, ·) is the empirical version of KL(·, ·).461

Denote F̂sw = f̂sw ◦ hs and strong ceiling model’s462

generalization error ε = KL(F ⋆, Fs). With proba-463

bility at least 1− δ, there holds464

KL(F ⋆, F̂sw) ≤ KL(F ⋆, Fw)−KL(F̂sw, Fw)465

+O(
√
ε) +O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,466

where CFs is a constant capturing the complexity467

of the function class Fs. The asymptotic notation468

is for ε → 0, n → ∞.469

Compared to Theorem 2, this bound introduces 470

two additional error terms: the first term O(
√
ε) 471

is small due to the capability of the strong ceiling 472

model Fs. The remaining two error terms, which 473

are of the order O (1/
√
n), stem from the strong 474

model F̂sw being trained on a finite weakly-labeled 475

dataset. These terms also diminish asymptotically 476

as the sample size n increases. Overall, by using a 477

sufficiently large dataset and a strong model with 478

enough capacity, we achieve a large n and a very 479

small ε, rendering the remainders in Theorem 3 480

negligible and increasing the likelihood that the 481

theoretical guarantee in Theorem 2 holds. Theo- 482

rem 3 aligns with previous wisdom (Charikar et al., 483

2024; Yao et al., 2025). However, whereas their 484

corresponding bounds are specifically designed for 485

regression tasks, our result offers new insights into 486

applying reverse KL loss in classification tasks. 487

5 Empirical Validation 488

In this section, we empirically compare reverse KL, 489

forward KL, reverse CE, and standard CE losses 490

in the context of WTSG. Our experiments directly 491

support the claim that reverse losses outperform 492

forward losses in most experimental settings. 493

5.1 Experimental Settings 494

Datasets. We follow previous studies (Burns 495

et al., 2023; Yang et al., 2024) to conduct experi- 496

ments mainly in the reward modeling task in two 497

settings: enabling a weak model to effectively 498

guide a strong model in achieving either harm- 499

lessness or helpfulness. To achieve harmlessness, 500

we follow (Yang et al., 2024) to leverage CAI- 501

Harmless (Bai et al., 2022b), a widely adopted 502

benchmark for single-turn harmless dialogue tasks. 503

To achieve helpfulness, we utilize HH-RLHF (Bai 504

et al., 2022a), a benchmark designed to guide mod- 505

els toward producing responses that are helpful, 506

informative, and contextually relevant. We use a 507

subset of single-turn helpful data of HH-RLHF. 508

Each dataset includes three subsets: (1) Ground 509

truth set: 4K samples with ground truth labels, 510

used to fine-tune the base models to create strong 511

ceiling models. (2) Weak supervision set: 4K 512

held-out samples, where the weak model gen- 513

erates predicted labels to guide the training of 514

the strong model. (3) Test set: The extra 4K 515

samples, reserved for evaluating the generaliza- 516

tion performance of all strong ceiling and weak- 517

to-strong models. Each sample is formatted as 518

6
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Figure 2: Results of GPT-2-series. “SC” denotes the strong ceiling model, and “A to B” indicates the use of weak
teacher “A” to supervise strong student “B”. The terms CE, RCE, KL, and RKL refer to CE loss, reverse CE
loss, forward KL divergence loss, and reverse KL divergence loss, respectively. Error bars represent the standard
deviation across three runs of the experiment.

x̃ = (x; yc, yr), where x is the user input, yc and519

yr represent human-chosen and human-rejected re-520

sponses separately.521

Models. We conduct experiments on two types
of model families: (1) GPT-2-series (Radford et al.,
2019), including GPT-2-Base, GPT-2-Medium,
GPT-2-Large, and GPT-2-XL; (2) Pythia-series (Bi-
derman et al., 2023), specifically, Pythia-70M,
Pythia-160M, Pythia-410M, and Pythia-1B. Each
model is trained to generate a soft value between 0
to 1 for each sample:

F (x̃) = Sigmoid(F (yc)− F (yr)).

When implementing forward and reverse losses, the522

single predicted logit is transformed into a logits523

distribution represented as (1− F (x̃), F (x̃)).524

Training and Evaluation. The strong ceiling 525

models are trained using the standard CE loss. We 526

apply four loss functions in WTSG: forward KL, 527

reverse KL, CE and reverse CE. To ensure the reli- 528

ability and consistency of our results, each experi- 529

ment is repeated across three random seeds. We set 530

the training batch size to 16, learning rate to 10−5, 531

and max_seq_len to 512. Following the approach 532

of Burns et al. (2023), we train each model for a 533

single epoch to reduce overfitting. Finally, we re- 534

port the average accuracy on the test set across the 535

three random seeds for each model for comparison. 536

5.2 Main Results 537

The experimental results of the GPT-2 series on 538

the CAI-Harmless and HH-RLHF datasets are pre- 539

sented in Figure 2. Due to space limitation, we 540

put the detailed results for the Pythia series in Ap- 541

7



pendix B.1, but the similar trends can be observed.542

We can draw several conclusions from the re-543

sults in Figure 2: (1) The accuracy demonstrates544

a consistent upward trend from left to right. It545

indicates that the generalization capability of the546

strong model improves when a more capable weak547

model is employed as the supervisor. This find-548

ing is in line with Lemma 1 and aligns with prior549

research (Burns et al., 2023; Yao et al., 2025),550

which suggests that utilizing a higher-capacity551

weak model enhances the strong model’s perfor-552

mance. Furthermore, with a fixed weak model,553

leveraging a stronger model also yield improved554

strong model’s performance, consistent with es-555

tablished research (Burns et al., 2023; Yang et al.,556

2024). (2) We observe that reverse KL and re-557

verse CE losses enable strong models to outper-558

form those trained with forward KL and CE559

losses across most experimental settings. In par-560

ticular, in all settings (12 out of 12), the use of561

reverse KL yields a stronger model compared to562

standard KL. Similarly, reverse CE outperforms563

or parallels forward CE in nearly all experimental564

settings (10 out of 12). These empirical results, sup-565

ported by our theoretical framework, underscore566

the superiority of reverse losses over forward losses.567

(3) In the majority of settings (10 out of 12), the568

strong model surpasses or meets the performance of569

its weak supervisor when trained with reverse KL570

or reverse CE loss. This observation supports The-571

orem 2 and Theorem 3. However, the theoretical572

guarantees may not always hold in practice, par-573

ticularly in scenarios involving extremely complex574

LLMs with limited training set in WTSG, where575

the underlying assumptions may be violated.576

5.3 Ablation Study577

We notice that Burns et al. (2023) investigates578

an improved strategy: incorporating an additional579

regularization term aimed at boosting the strong580

model’s confidence in its predictions, while uti-581

lizing the standard CE loss as the primary objec-582

tive. This naturally raises the question of whether583

combining reverse CE loss with such regulariza-584

tion can further improve the strong model’s per-585

formance compared to standard CE loss with reg-586

ularization. To explore this question, we conduct587

experiments using the GPT-2 series on the CAI-588

Harmless dataset as a representative case. Due to589

space limitation, we only put the results when GPT-590

2-Base acts as the weak model to supervise GPT-2-591

Medium, GPT-2-Large, and GPT-2-XL here in Fig-592

GPT-2-Medium GPT-2-Large GPT-2-XL
Strong Model

92

93
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Weak-to-Strong Loss
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Figure 3: Results of GPT-2 series on CAI-Harmless.
“SC” denotes the strong ceiling model. The terms “Conf.
CE” and “Reve. Conf. CE” refer to the auxiliary con-
fidence loss with vanilla CE loss and reverse CE loss,
respectively. Error bars represent the standard deviation
across three runs of the experiment.

ure 5, while put the full results in Appendix B.2. 593

First, by integrating the insights from Figure 2 594

and Figure 5, we can see that incorporating the con- 595

fidence regularization leads to a modest improve- 596

ment in the strong model’s performance, aligning 597

with the observations of Burns et al. (2023). Sec- 598

ond, the strong model trained using reverse CE 599

loss with regularization consistently surpasses its 600

counterpart trained with standard CE loss. This 601

result, together with our previous results in Sec- 602

tion 5.2, underscores the clear advantage of reverse 603

losses over forward losses in enhancing model per- 604

formance in diverse settings. 605

6 Conclusion 606

In this work, we propose a theoretically principled 607

approach by rethinking the loss function in WTSG. 608

Unlike the mass-covering nature of forward KL, 609

reverse KL exhibits a mode-seeking behavior that 610

focuses on high-confidence predictions from the 611

weak supervisor, thereby reducing the influence of 612

noisy signals. Theoretically, we derive both upper 613

and lower bounds for forward and reverse losses, 614

demonstrating that reverse losses provide at least 615

comparable guarantees to forward losses. Notably, 616

when fine-tuning a pre-trained strong model on its 617

last layer, reverse KL theoretically ensures that the 618

strong model outperforms its weak supervisor by 619

the magnitude of their disagreement—a guarantee 620

forward KL cannot provide. Empirically, we show 621

that reverse losses successfully outperform forward 622

losses in most settings, highlighting the practical 623

benefits of reverse KL and CE losses in WTSG. 624
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Limitations625

While our study provides theoretical insights and626

empirical validation for the advantages of reverse627

losses in WTSG, several limitations remain. First,628

our analysis mainly assumes relatively reliable629

weak supervision from pre-trained and fine-tuned630

models. However, real-world applications often631

involve noisy weak supervision, and reverse KL’s632

mode-seeking nature may amplify extreme noise.633

Further research is needed to assess its suitability in634

such cases. Second, while the theoretical results in635

Section 4.1 provide broad insights, the assumptions636

in Section 4.2 may not hold for complex LLMs.637

This limitation is shared by all related work on638

theoretical understanding of WTSG, which relies639

on simplifying assumptions. Nonetheless, these640

foundations offer valuable guidance and a starting641

point for future research on advancing WTSG the-642

ory in LLMs. Third, our experiments are conducted643

on two well-known alignment-focused binary clas-644

sification datasets with relatively smaller model645

sizes. While these results offer valuable insights, it646

remains an open question whether they can be gen-647

eralized to more diverse datasets and larger-scale648

models. Exploring this aspect in future work will649

help further validate the broader applicability of650

our approach.651

Ethics Statement652

Our intention is to highlight the positive impact of653

reverse losses in improving weak-to-strong gener-654

alization, ensuring more robust and reliable model655

performance while minimizing the influence of po-656

tentially imperfect weak supervision. However, the657

potential amplification of biases from weak models658

remains a concern, particularly in sensitive appli-659

cations where fairness is a critical issue. While660

reverse KL mitigates overfitting to unreliable super-661

vision, its mode-seeking nature may amplify the662

biases present in the weak model’s predictions. Ad-663

ditionally, stronger AI models trained using WTSG664

could be misused if deployed without appropriate665

safeguards, emphasizing the need for responsible666

development and oversight.667
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Appendix 872

A Main Proof 873

A.1 Proof of Lemma 1 874

We first state some preliminaries for the proof. 875

Lemma 2 (Donsker and Varadhan’s variational formula (Donsker and Varadhan, 1983)). Let Q,P be
probability measures on X , for any bounded measurable function f : X → R, we have

DKL(Q∥P ) = sup
f

Ex∼Q[f(x)]− logEx∼P [exp f(x)].

Lemma 3 (Hoeffding’s lemma). Let X ∈ R such that a ≤ X ≤ b. Then, for all λ ∈ R,

E
[
eλ(X−E[X])

]
≤ exp

(
λ2(b− a)2

8

)
.

Definition 3 (Subgaussian random variable). A random variable X ∈ R is σ-subgaussian if for any ρ,

logE exp(ρ(X − EX)) ≤ ρ2σ2/2.

We define the corresponding probability distributions for prediction of Fsw and Fw. ∀x ∈ X , we know 876

that
∑k

j=1[Fw(x)]j = 1. Therefore, given the class space Ck = {1, · · · , k}, we define a probability 877

distribution Pw(x) with the probability density function pw, where j ∈ Ck and 878

pw(j) = [Fw(x)]j . (6) 879

Using this method, we also define the probability distribution Psw(x) for Fw(x). 880

Lemma 4 (Yao et al. (2025)). Given the probability distributions Pw(x) and Psw(x) above. For any
x ∈ X , j ∈ Ck, g : Ck → R and assume that g is σ-subgaussian. Let f = t · g for any t ∈ R, then

DKL (Fw(x)∥Fsw(x)) ≥ sup
t

t
(
Ej′∼Pw(x)

[
g
(
j′
)]

− Ej∼Psw(x)[g(j)]
)
− t2σ2/2.

Now we start the proof. 881

Proof. By taking expectations of x on both sides of the inequality in Lemma 4, we obtain 882

KL(Fw, Fsw) = ExDKL (Fw(x)∥Fsw(x)) 883

≥ sup
t

t
(
ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
)
− t2σ2/2︸ ︷︷ ︸

ϕ(t)

. 884

Note that ϕ(t) is a quadratic function of t. Therefore, by AM–GM inequality, we find the maximum of 885

this quadratic function: 886

ϕ(t) ≤ 1

2σ2

(
ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
)2

= sup
t

ϕ(t) ≤ KL(Fw, Fsw). 887

Subsequently, there holds 888∣∣ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
∣∣ ≤√2σ2KL(Fw, Fsw). (7) 889

Likewise, according to Lemma 4, we have 890

DKL (Fsw(x)∥Fw(x)) ≥ sup
t

t
(
Ej∼Psw(x)

[
g
(
j′
)]

− Ej′∼Pw(x)[g(j)]
)
− t2σ2/2. (8) 891
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We apply the same proof technique to (8) and obtain:892 ∣∣ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
∣∣ ≤√2σ2KL(Fsw, Fw). (9)893

Now we construct g to associate the above results with L(F ⋆, Fsw) and L (F ⋆, Fw). Specifically, given
a probability distribution Pg with the density function pg, we define function g : Ck → (0, 1] associated
with Pg:

g(j) ≜
[F ⋆(x)]j
pg(j)

log
[F ⋆(x)]j
pg(j)

, for j ∈ Ck.

We have894

ExEj∼Pg [g(j)] = ExEj∼Pg

[
[F ⋆(x)]j
pg(j)

log
[F ⋆(x)]j
pg(j)

]
895

= Ex

∑
j∈Ck

pg(j) ·
[F ⋆(x)]j
pg(j)

· log [F ⋆(x)]j
pg(j)

896

= Ex

∑
j∈Ck

[F ⋆(x)]j · log
[F ⋆(x)]j
pg(j)

897

Recall the definition of Psw and Pw in (6), we replace Pg with Psw and Pw in the above equation:898

ExEj′∼Psw

[
g
(
j′
)]

= Ex

∑
j=1

[F ⋆(x)]j log
[F ⋆(x)]j
[Fsw(x)]j

 = KL(F ⋆, Fsw),899

ExEj∼Pw [g(j)] = Ex

∑
j=1

[F ⋆(x)]j log
[F ⋆(x)]j
[Fw(x)]j

 = KL(F ⋆, Fw).900

Substitute the above into (7):901

|L(F ⋆, Fsw)− L(F ⋆, Fw)| ≤
√
2σ2KL(Fw, Fsw), (10)902

The above inequality is because whether L is KL or CE, we have

L(F ⋆, Fsw)− L(F ⋆, Fw) = KL(F ⋆, Fsw)−KL(F ⋆, Fw).

Likewise, we apply the same proof technique to (9) and obtain:903

|L(F ⋆, Fsw)− L(F ⋆, Fw)| ≤
√
2σ2KL(Fsw, Fw). (11)904

Finally, we obtain the subgaussian factor σ of function g by using the fact that g is bounded. Recall that
the output domain Y ⊆ Rk, where ∀y = (y1, · · · , yk)T ∈ Y , there holds

∑k
i=1 yi = 1 and 0 < yi ≤ 1.

In other words, ∃γ > 0 such that 0 < γ ≤ yi ≤ 1. It means that g(j) ∈ [− 1
γ log 1

γ ,
1
γ log 1

γ ]. According
to Lemma 3, ∀λ ∈ R, we have

E
[
eλ(g(j)−E[g(j)])

]
≤ exp

λ2
(

1
γ log 1

γ

)2
2

 .

In other words, g(j) is σ-subgaussian, where σ = 1
γ log 1

γ . Substitute it into (10) and (11), we prove the905

final results:906

|L(F ⋆, Fsw)− L (F ⋆, Fw)| ≤ C1

√
KL(Fw, Fsw),907

|L(F ⋆, Fsw)− L (F ⋆, Fw)| ≤ C1

√
KL(Fsw, Fw),908

where the constant C1 =
√
2
γ log 1

γ .909

910
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A.2 Proof of Theorem 1 911

Total variation distance is introduced for our proof. 912

Definition 4 (Total Variation Distance). Given two probability distributions P and Q, the Total Variation
(TV) distance between P and Q is

DTV(P∥Q) =
1

2

∫
x∈X

|P (x)−Q(x)| dx.

Note that DTV(P∥Q) ∈ [0, 1]. Also, DTV(P∥Q) = 0 if and only if P and Q coincides, and 913

DTV(P∥Q) = 1 if and only if P and Q are disjoint. 914

Proof. We have 915

L(F ⋆, Fw) = Ex

[
k∑

i=1

[F ⋆(x)]i log
[F ⋆(x)]i
[Fw(x)]i

]
916

= Ex

[
k∑

i=1

[F ⋆(x)]i log

(
[F ⋆(x)]i
[Fsw(x)]i

· [Fsw(x)]i
[Fw(x)]i

)]
917

= Ex

[
k∑

i=1

[F ⋆(x)]i log
[F ⋆(x)]i
[Fsw(x)]i

]
+ Ex

[
k∑

i=1

[F ⋆(x)]i log
[Fsw(x)]i
[Fw(x)]i

]
918

= L(F ⋆, Fsw) +

〈
F ⋆, log

Fsw

Fw

〉
E

. (12) 919

Rearranging terms and we know that: 920

L(F ⋆, Fsw) = L(F ⋆, Fw)−
〈
F ⋆, log

Fsw

Fw

〉
E

. (13) 921

Recall that the output domain Y ⊆ Rk, where ∀y = (y1, · · · , yk)T ∈ Y , there holds
∑k

i=1 yi = 1 922

and 0 < yi ≤ 1. In other words, ∃γ > 0 such that 0 < γ ≤ yi ≤ 1. Firstly, we know that F ⋆(x) 923

is element-wise non-negative. Denote 1⃗ = (1, 1, · · · , 1)T . We know that there is a positive constant 924
1
γ ≥ (mini[Fw(x)]i)

−1. We use element-wise addition, subtraction, multiplication, division and absolute 925

value in the proof. Note that 926〈
F ⋆, log

Fsw

Fw

〉
E

≤
〈
F ⋆,

Fsw

Fw
− 1⃗

〉
E

(log x ≤ x− 1) 927

≤
〈
F ⋆,

1

γ
· Fw

∣∣∣∣Fsw

Fw
− 1⃗

∣∣∣∣〉
E

( 1γ · Fw ≥ 1⃗ (element-wise)) 928

=
1

γ
· ⟨F ⋆, |Fsw − Fw|⟩E , 929

and 930

⟨F ⋆, |Fsw − Fw|⟩E = Ex

[
(F ⋆(x))T (|Fsw(x)− Fw(x)|)

]
931

≤ Ex [∥F ⋆(x)∥∞ · ∥Fsw(x)− Fw(x)∥1]
(Holder’s inequality for vector-valued functions)

932

≤ Ex [∥Fsw(x)− Fw(x)∥1] ([F ⋆(x)]i ≤ 1) 933

= 2ExDTV (Fw(x), Fsw(x)) (Definition of TV distance) 934

≤ 2
√

ExD2
TV (Fw(x), Fsw(x)) (Jensen’s inequality) 935

≤ 2

√
1

2
ExDKL (Fw(x), Fsw(x)) (Pinsker’s inequality) 936
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=
√

2KL(Fw, Fsw). (Definition of KL(·, ·))937

Therefore, 〈
F ⋆, log

Fsw

Fw

〉
E

≤
√
2

γ
·
√
KL(Fw, Fsw).

Since the TV distance is symmetric, we also have〈
F ⋆, log

Fsw

Fw

〉
E

≤
√
2

γ
·
√
KL(Fsw, Fw).

Substitute them into Equation (13) and we can prove that:938

L(F ⋆, Fsw) ≥ L (F ⋆, Fw)−
√
2

γ︸︷︷︸
C2

√
KL(Fw, Fsw),939

L(F ⋆, Fsw) ≥ L (F ⋆, Fw)−
√
2

γ︸︷︷︸
C2

√
KL(Fsw, Fw).940

The above inequalities also applies to L(·, ·) = CE(·, ·) because whether L is KL or CE, we have

L(F ⋆, Fsw)−KL(F ⋆, Fsw) = L(F ⋆, Fw)−KL(F ⋆, Fw).

941

Discussion of the constant. Recall that C1 =
√
2
γ log 1

γ and C2 =
√
2
γ . In other words, γ < 1

e942

leads to C2 ≤ C1. While γ is the minimal value of softmax output, it is generally a very small value943

(γ = 10−3 ≪ 1
e in our experiments), i.e., C2 ≤ C1. Therefore, the lower bound in Theorem 1 is tighter944

than that in Lemma 1.945

Further Discussion. We show that adding an additional assumption leads to L(F ⋆, Fsw) ≥946

L (F ⋆, Fw)− L(Fw, Fsw). Particularly, if L(Fw, Fsw) can be improved to some extent, the constant C947

and square root in Theorem 1 can be eliminated, contributing to a more elegant version:948

Corollary 1. Let L to be KL or CE. Let R ≥ 0 and consider the same constant C in Theorem 1. If949

L(Fw, Fsw) ≥
√
2C is satisfied, then:950

L(F ⋆, Fsw) ≥ L (F ⋆, Fw)−KL(Fw, Fsw).951

Corollary 1 removes the constant coefficient and square root from Theorem 1. Notably, if R ≥ 0, the952

results above reinforce that the key bottleneck for performance improvement over Fw arises from the953

optimization objective’s inherent nature (Yao et al., 2025): If L(Fw, Fsw) can be large, the performance954

improvement cannot exceed L(Fw, Fsw), which is exactly the minimum of Equation (2).955

Proof. We adopt an alternative proof technique in the proof of Theorem 1:956

|⟨F ⋆, |Fsw − Fw|⟩E | ≤ 2ExDTV (Fw(x), Fsw(x)) (The derivations in Appendix A.2)957

≤ 2Ex

√
1− exp [−DKL (Fw(x), Fsw(x))] (Bretagnolle–Huber inequality)958

≤ 2
√
1− exp [−ExDKL (Fw(x), Fsw(x))] (Jensen’s inequality)959

= 2
√
1− exp (−KL(Fw, Fsw)). (Definition of KL)960

Let u(t) = e−t+ γ2

4 t
2−1, t ≥ 0. Taking the first-order and second-order derivative: u′(t) = −e−t+ γ2

2 t,961

and u′′(t) = e−t + γ2

2 > 0. While u′(0) = −1 < 0, u′( 2
γ2 ) > 0, we know that there only exists a962

t0 ∈ (0, 2
γ2 ) such that u′(t0) = 0. And u(t) decreases at [0, t0], increases at (t0,+∞) and u(0) = 0.963
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Denote u(t⋆) = 0. Notice that u( 2γ ) = e
− 2

γ > 0, which means that t⋆ < 2
γ . In other words, t > 2

γ leads 964

to u(t) > 0, i.e.,
√
1− e−t ≤ γ

2 t. 965

Using the above results, if
〈
F ⋆, log Fsw

Fw

〉
E
≥ 0 and KL(Fw, Fsw) ≥ 2

γ , then 966∣∣∣∣〈F ⋆, log
Fsw

Fw

〉
E

∣∣∣∣ ≤ ∣∣∣∣1γ · ⟨F ⋆, |Fsw − Fw|⟩E

∣∣∣∣ (The derivations in Appendix A.2) 967

≤ 2

γ

√
1− exp (−KL(Fw, Fsw)) 968

≤ 2

γ
· γ
2
KL(Fw, Fsw) 969

= KL(Fw, Fsw). 970

The proof is complete. 971

972

A.3 Proof of Proposition 1 973

Proof. We have 974

L(F ⋆, Fw) = Ex

[
k∑

i=1

[F ⋆(x)]i log
[F ⋆(x)]i
[Fw(x)]i

]
975

= Ex

[
k∑

i=1

[F ⋆(x)]i log

(
[F ⋆(x)]i
[Fsw(x)]i

· [Fsw(x)]i
[Fw(x)]i

)]
976

= Ex

[
k∑

i=1

[F ⋆(x)]i log
[F ⋆(x)]i
[Fsw(x)]i

]
+ Ex

[
k∑

i=1

[F ⋆(x)]i log
[Fsw(x)]i
[Fw(x)]i

]
977

= L(F ⋆, Fsw) +

〈
F ⋆, log

Fsw

Fw

〉
E

. 978

Rearranging terms and we can prove the result. 979

The above also applies to L(·, ·) = CE(·, ·) because whether L is KL or CE, we have

L(F ⋆, Fsw)−KL(F ⋆, Fsw) = L(F ⋆, Fw)−KL(F ⋆, Fw).

980

Insights for reverse KL loss. Using similar decomposition technique, we obtain 981

L(Fw, F
⋆) = L(Fsw, F

⋆) +

〈
Fw − Fsw, log

Fw

F ⋆

〉
E

− L(Fsw, Fw)︸ ︷︷ ︸
R1

. 982

Therefore, L(Fsw, F
⋆) ≤ L (Fw, F

⋆) satisfies if and only if R1 ≥ 0. While the teacher-student 983

disagreement is minimized in WTSG, we expect a small value of L(Fsw, Fw). Therefore, we want to 984

obtain a large
〈
Fw − Fsw, log

Fw
F ⋆

〉
E

. Intuitively, for any x ∈ X and i ∈ {1, · · · , k}, we expect the model 985

predictions to satisfy either of the two inequalities: 986

[Fw(x)]i ≥ max([Fsw(x)]i, [F
⋆(x)]i), (14) 987

[Fw(x)]i ≤ min([Fsw(x)]i, [F
⋆(x)]i). (15) 988

In other words, the predicted probabilities of Fsw reflect the true outcome better than Fw. The confidence 989

level of Fsw should be better aligned with F ⋆ than that of Fw. 990
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Insights for squared loss. Charikar et al. (2024) consider the squared loss:

L(f, g) = Ex∼P(f(x)− g(x))2.

In this setting, L(f, g) = L(g, f) and we have991

L (Fw, F
⋆) = Ex∼P (F ⋆(x)− Fw(x))

2
992

= Ex∼P (F ⋆(x)− Fsw(x) + Fsw(x)− Fw(x))
2

993

= Ex∼P (F ⋆(x)− Fsw(x))
2 + Ex∼P (Fsw(x)− Fw(x))

2
994

+ 2 · Ex∼P [(F ⋆(x)− Fsw(x)) (Fsw(x)− Fw(x))]995

= L (Fsw, F
⋆) + L (Fsw, Fw) + 2 · Ex∼P [(F ⋆(x)− Fsw(x)) (Fsw(x)− Fw(x))] .996

If we define
⟨f, g⟩S = 2 · Ex∼P [f(x) · g(x)] ,

then we have997

L (Fw, F
⋆) = L (Fsw, F

⋆) + L (Fsw, Fw) + ⟨F ⋆ − Fsw, Fsw − Fw⟩S .998

Rearranging terms and we have999

L (Fsw, F
⋆) = L (Fw, F

⋆)− L (Fsw, Fw)− ⟨F ⋆ − Fsw, Fsw − Fw⟩S . (16)1000

Therefore, ⟨F ⋆ − Fsw, Fsw − Fw⟩S > 0 is the sufficient and necessary condition for the inequality

L(Fsw, F
⋆) ≤ L(Fw, F

⋆)− L(Fw, Fsw),

when L is the squared loss. Therefore, we should make the confidence level of Fsw better aligned with F ⋆.1001

Despite the difficulty to attain this objective, Charikar et al. (2024) demonstrate that, within an elegant1002

proof framework using convexity assumption, this condition is guaranteed to hold.1003

A.4 Proof of Theorem 21004

Proof sketch. We define KL(·, ·) in a Bregman-divergence manner. To derive the desired properties, we1005

construct a convex combination of the form Fsw(x) + t(F ⋆(x)− Fsw(x)), where t → 0+. By analyzing1006

this construction, we show that the sum of the first-order term O(t) and the second-order term O(t2)1007

is non-negative. This implies that the first-order term itself must also be non-negative. Leveraging this1008

principle and the associated derivations, we establish the proof of our results.1009

Our proof technique is general and unifying, covering both squared loss and KL divergence loss. While1010

Theorem 1-2 from Charikar et al. (2024) focus exclusively on squared loss in regression, and Theorem1011

3-4 from Yao et al. (2025) restrict the analysis to KL divergence-like loss in regression, our work extends1012

the scope to classification problems, encompassing both squared loss and KL divergence loss in a single1013

framework. This broader applicability highlights the versatility of our proof and its potential to bridge1014

gaps between regression and classification settings.1015

We first restate a lemma for our proof. Let the strong model learns from Fs : Rds → R (which1016

is a convex set) of fine-tuning tasks. Recall that we denote the strong model representation map by1017

hs : Rd → Rds . Let Vs = {f ◦ hs : f ∈ Fs} be the set of all tasks in Fs composed with the strong model1018

representation. Then Vs is also a convex set.1019

Lemma 5 (Charikar et al. (2024)). Vs is a convex set.1020

Proof. Fix f, g ∈ Fs, and consider f ◦ hs, g ◦ hs ∈ Vs. Fix any λ ∈ [0, 1]. Since Fs is the linear function1021

class so that it is a convex set, there exists p ∈ Fs such that for all y ∈ Rds , p(y) = λf(y) + (1− λ)g(y).1022

Now, fix any x ∈ Rd. Then, we have that1023

λ(f ◦ hs)(x) + (1− λ)(g ◦ hs)(x) = λf(hs(x)) + (1− λ)g(hs(x)) = p(hs(x)) = (p ◦ hs)(x),1024

and hence λ(f ◦ hs) + (1− λ)(g ◦ hs) = p ◦ hs ∈ Vs, which means that Vs is also a convex set.1025

18



We then present our theoretical results. 1026

Proof. Fix f, g ∈ Fs, and consider f ◦ hs, g ◦ hs ∈ Vs. Fix any λ ∈ [0, 1]. Since Fs is the linear function 1027

class so that it is a convex set, there exists p ∈ Fs such that for all y ∈ Rds , p(y) = λf(y) + (1− λ)g(y). 1028

Now, fix any x ∈ Rd. Then, we have that 1029

λ(f ◦ hs)(x) + (1− λ)(g ◦ hs)(x) = λf(hs(x)) + (1− λ)g(hs(x)) = p(hs(x)) = (p ◦ hs)(x), 1030

and hence λ(f ◦ hs) + (1− λ)(g ◦ hs) = p ◦ hs ∈ Vs. 1031

Motivated by the definition of Bregman divergence, we consider L as: 1032

L(F1, F2) = Ex [ϕ(F1(x))− ϕ(F2(x))− ⟨∇ϕ(F2(x)), F1(x)− F2(x)⟩] , (17) 1033

where F1, F2 ∈ F , and ϕ : Rk → R is a strictly convex and differentiable function. Note that squared 1034

loss and KL divergence loss are special cases of the definition of L above: 1035

Squared loss: L(F1, F2) = Ex∥F1(x)− F2(x)∥22, ϕ(x) = xTx, 1036

KL divergence loss: L(F1, F2) = Ex

k∑
i=1

[F1(x)]i log
[F1(x)]i
[F2(x)]i

, ϕ(x) =

k∑
i=1

xi log xi. 1037

Now we start our proof of Theorem 2. 1038

Proof. We observe that 1039

L(g, Fw) = Ex [ϕ(g)− ϕ(Fw)− ⟨∇ϕ(Fw), g − Fw⟩] , 1040

L(g, Fsw) = Ex [ϕ(g)− ϕ(Fsw)− ⟨∇ϕ(Fsw), g − Fsw⟩] , 1041

L(Fsw, Fw) = Ex [ϕ(Fsw)− ϕ(Fw)− ⟨∇ϕ(Fw), Fsw − Fw⟩] , 1042

which means that 1043

L(g, Fw) = L(g, Fsw) + L(Fsw, Fw) + Ex ⟨g(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩︸ ︷︷ ︸
R1

. (18) 1044

Now our goal is to prove that R1 ≥ 0. We use reverse KL as the loss function in WTSG: fsw = 1045

argminf∈F L(f ◦ hs, Fw). In other words, Fsw is the projection of Fw onto the convex set Vs, i.e., 1046

L(g, Fw) ≥ L(Fsw, Fw). Substitute it into Equation (18) and we have 1047

R1 + L(g, Fsw) ≥ 0. (19) 1048

Case 1: squared loss. Let g = Fsw + t(F ⋆ − Fsw), t ∈ (0, 1), t → 0+. Consider ϕ(x) = xTx, so 1049

∇ϕ(x) = 2x. There holds 1050

R1 = 2t · Ex ⟨Fsw(x)− Fw(x), F
⋆(x)− Fsw(x)⟩ = O(t), 1051

L(g, Fsw) = t2Ex∥F ⋆(x)− Fsw(x)∥22 = O(t2). 1052

Recall Equation (18) that O(t) +O(t2) ≥ 0, which means that O(t) ≥ 0. Therefore, there holds R1 ≥ 0,
which means

Ex ⟨F ⋆(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩ ≥ 0.

Let g = F ⋆ in Equation (18) and we can prove the result L(F ⋆, Fsw) ≤ L(F ⋆, Fw)−L(Fsw, Fw). While 1053

our proof is different from Charikar et al. (2024), we obtain the same conclusion for squared loss. 1054
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Case 2: reverse KL divergence. We consider L(·, ·) = KL(·, ·). Let g = Fsw+t(F ⋆−Fsw), t ∈ (0, 1),1055

t → 0+. Consider ϕ(x) =
∑k

i=1 xi log xi, so ∇ϕ(x) = [log x1 + 1, · · · , log xk + 1]T . Firstly,1056

R1 = t · Ex(F
⋆(x)− Fw(x))

T


log [Fsw(x)]1

[Fw(x)]1
...

log [Fsw(x)]k
[Fw(x)]k

 = O(t).1057

Secondly,1058

L(g, Fsw) = Ex

k∑
i=1

[g(x)]i log
[g(x)]i

[Fsw(x)]i
1059

= Ex

k∑
i=1

[Fsw(x) + t(F ⋆(x)− Fsw(x))]i log

(
1 + t · [F

⋆(x)− Fsw(x)]i
[Fsw(x)]i

)
1060

= Ex

k∑
i=1

[Fsw(x) + t(F ⋆(x)− Fsw(x))]i

(
t · [F

⋆(x)− Fsw(x)]i
[Fsw(x)]i

+O(t2)

)
(Taylor expansion)

1061

= Ex

k∑
i=1

[Fsw(x)]i

(
t · [F

⋆(x)− Fsw(x)]i
[Fsw(x)]i

+O(t2)

)
+O(t2)1062

= t · Ex

k∑
i=1

[F ⋆(x)− Fsw(x)]i +O(t2)1063

= O(t2),1064

where the last equation is because Ex
∑k

i=1[F
⋆(x)]i = Ex

∑k
i=1[Fsw(x)]i = 1. Therefore,

R1︸︷︷︸
O(t)

+L(g, Fsw)︸ ︷︷ ︸
O(t2)

≥ 0,

which means R1 ≥ 0, i.e.,

Ex ⟨F ⋆(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩ ≥ 0.

Let g = F ⋆ in Equation (18) and we can prove the result L(F ⋆, Fsw) ≤ L(F ⋆, Fw)− L(Fsw, Fw).1065

Discussion of forward KL divergence. It is natural to ask, whether can the above proof technique1066

be extended to forward KL? Our answer is that, we may need an additional assumption. In our proof,1067

since reverse KL yields a linear term, the proof can be carried through. However, forward KL introduces1068

a logarithmic term. While the Taylor expansions of the log function and a linear term differ only by a1069

remainder term, proving the result requires assuming this remainder is non-negative, and that is why we1070

need an additional assumption like Theorem 3 in (Yao et al., 2025). Here are the detailed explanations.1071

Note that1072

L(Fw, g) = L(Fsw, g) + L(Fw, Fsw) + Ex ⟨Fw(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(g(x))⟩︸ ︷︷ ︸
R2

. (20)1073

Our goal is to prove that R2 ≥ 0. Now we use forward KL as the loss function in WTSG: fsw =1074

argminf∈F L(Fw, f ◦ hs). In other words, Fsw is the projection of Fw onto the convex set Vs, i.e.,1075

L(Fw, g) ≥ L(Fw, Fsw). Substitute it into Equation (20) and we have1076

R2 + L(Fsw, g) ≥ 0. (21)1077
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Again, let g = Fsw + t(F ⋆ − Fsw), t ∈ (0, 1), t → 0+. Consider ϕ(x) =
∑k

i=1 xi log xi, so
∇ϕ(x) = [log x1 + 1, · · · , log xk + 1]T . Using a similar proof technique, we can obtain R2 = O(t) and
L(Fsw, g) = O(t2). Therefore, we know that R2 ≥ 0, i.e.,

R2 = Ex

〈
Fw(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fsw + t(F ⋆ − Fsw)(x))︸ ︷︷ ︸

̸=∇ϕ(Fsw(x))−∇ϕ(F ⋆(x))

〉
≥ 0.

Consequently, even if we select g = F ⋆ in Equation (20) and obtain

L(Fw, g) = L(Fsw, g) + L(Fw, Fsw) + Ex ⟨Fw(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(F ⋆(x))⟩︸ ︷︷ ︸
R3 ̸=R2

.

Since we do not know whether R3 ≥ 0 is satisfied, we cannot directly prove the desired result. Since the 1078

difference between R2 and R3 can be quantified using exhaustive Taylor expansion, the nature of proof is 1079

similar to the regression analysis of WTSG (Proof of Theorem 3 from Yao et al. (2025), which introduces 1080

an additional assumption for the remainder of Taylor expansion). However, we do not know whether the 1081

remainder is larger than zero. In other words, to prove similar results for forward KL, we may introduce 1082

other assumptions like Theorem 3 in Yao et al. (2025). In contrast, the success of reverse KL and squared 1083

loss is because R3 = t ·R2. In the proof for these reverse losses, if R2 ≥ 0, then there also holds R3 ≥ 0. 1084

Extension to reverse cross entropy loss. To extend the proof to reverse cross entropy, consider the 1085

following theoretical result. 1086

Corollary 2. Consider WTSG using reverse cross entropy loss: 1087

fsw = argminf∈Fs
CE(f ◦ hs, fw ◦ hw). 1088

Assume that the function class Fs is a convex set and ∃fs ∈ Fs such that Fs = F ⋆. Then: 1089

CE(F ⋆, Fsw) ≤
1

2
(CE(F ⋆, Fw)−KL(Fsw, Fw)) + log k. 1090

If we consider binary classification (such as two famous datasets in AI safety: HH-RLHF (Bai et al., 1091

2022a) and CAI-Harmless (Bai et al., 2022b)), then k = 2, making log k negligible due to the nature of 1092

KL divergence KL(·, ·) ∈ [0,+∞) and cross-entropy CE(·, ·) ∈ [0,+∞). It shows that if we use reverse 1093

cross-entropy loss in WTSG, the strong model’s performance is also probably better than weak model’s 1094

performance, which is also validated in our experiments. 1095

Remark. The proof also demonstrates that

CE(F ⋆, Fsw) ≤ CE(F ⋆, Fw)−KL(Fsw, Fw)− ϵ,

where ϵ = CE(F ⋆, Fsw) − log k. Due to the same reason, we expect ϵ ≥ 0, which comes to the same 1096

conclusion. 1097

Proof. Rewrite Equation (18) and we have 1098

CE(g, Fw) = CE(g, Fsw) + CE(Fsw, Fw) 1099

+ Ex (−H(Fsw(x)) + ⟨g(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩)︸ ︷︷ ︸
R′

1

. (22) 1100

If we use reverse cross-entropy as the loss function in WTSG: fsw = argminf∈F CE(f ◦ hs, Fw). In 1101

other words, CE(g, Fw) ≥ CE(Fsw, Fw). Let g = Fsw + t(F ⋆ − Fsw), t ∈ (0, 1), t → 0+. Substitute it 1102

into Equation (18) and we have 1103

R′
1 +CE(g, Fsw) ≥ 0, 1104
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⇒ R1︸︷︷︸
O(t)

+L(g, Fsw)︸ ︷︷ ︸
O(t2)

+Ex (H(g(x))−H(Fsw(x))) ≥ 0. (23)1105

Note that1106

Ex (H(g(x))−H(Fsw(x)))1107

=Ex

k∑
i=1

[g(x)]i log[g(x)]i − [Fsw(x)]i log[Fsw(x)]i1108

=Ex

k∑
i=1

[Fsw(x)]i log[g(x)]i + t[F ⋆(x)− Fsw(x)]i log[g(x)]i − [Fsw(x)]i log[Fsw(x)]i1109

=Ex

k∑
i=1

[Fsw(x)]i log
[g(x)]i

[Fsw(x)]i
+ t[F ⋆(x)− Fsw(x)]i log[g(x)]i1110

=Ex

k∑
i=1

[Fsw(x)]i log

(
1 + t · [F

⋆(x)− Fsw(x)]i
[Fsw(x)]i

)
+ t[F ⋆(x)− Fsw(x)]i log[g(x)]i1111

=Ex

k∑
i=1

[Fsw(x)]i

(
t · [F

⋆(x)− Fsw(x)]i
[Fsw(x)]i

+O(t2)

)
+ t[F ⋆(x)− Fsw(x)]i log[g(x)]i1112

=Ex

k∑
i=1

t · [F ⋆(x)− Fsw(x)]i +O(t2) + t[F ⋆(x)− Fsw(x)]i log[g(x)]i1113

=O(t2) + t · Ex

k∑
i=1

[F ⋆(x)− Fsw(x)]i log[g(x)]i (Ex
∑k

i=1[F
⋆(x)− Fsw(x)]i = 0)1114

=O(t2) + t · [ExH(Fsw(x))− CE(F ⋆, Fsw)], (Definition of entropy and cross entropy)1115

where the last inequality is because as t → 0+, g → Fsw. Consequently, recall Equation (23), we know
that the sum of first-order terms O(t) is non-negative, i.e.,

t · [ExH(Fsw(x))− CE(F ⋆, Fsw)] +R1 ≥ 0,

which means that

ExH(Fsw(x))− CE(F ⋆, Fsw) + Ex ⟨F ⋆(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩ ≥ 0.

Let g = F ⋆ in Equation (22) and we obtain1116

CE(F ⋆, Fw) = CE(F ⋆, Fsw) + CE(Fsw, Fw)− ExH(Fsw(x))1117

+ Ex ⟨F ⋆(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩1118

⇒CE(F ⋆, Fw) ≥ CE(F ⋆, Fsw) + CE(Fsw, Fw)− ExH(Fsw(x))1119

+CE(F ⋆, Fsw)− ExH(Fsw(x))1120

⇒CE(F ⋆, Fw) ≥ CE(F ⋆, Fsw) + KL(Fsw, Fw) + CE(F ⋆, Fsw)− ExH(Fsw(x))1121

⇒CE(F ⋆, Fw) ≥ CE(F ⋆, Fsw) + KL(Fsw, Fw) + CE(F ⋆, Fsw)− log k (H(Fsw(x)) ≤ log k)1122

Therefore, we prove the result

CE(F ⋆, Fsw) ≤
1

2
(CE(F ⋆, Fw)−KL(Fsw, Fw)) + log k.

1123
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A.5 Proof of Theorem 3 1124

Proof sketch. By defining nine variables associated with given models, we substitute key components in 1125

the proof of Theorem 2 to derive a set of inequalities among these variables. Through a series of carefully 1126

designed transformations, we reformulate the triangle-like inequalities involving three remainder terms. 1127

Ultimately, leveraging tools from statistical learning theory, several inequalities in information-theoretic 1128

analysis, and the properties of specific functions, we sequentially demonstrate that these three remainder 1129

terms become infinitesimal as n → ∞ and ϵ → 0. 1130

Let L(·, ·) be KL(·, ·). For a clear presentation, denote 1131

A = L(Fs, Fsw) 1132

B = L(Fsw, Fw) 1133

C = L(Fs, Fw) 1134

D = L(F ⋆, Fs) = ε 1135

E = L(F ⋆, Fsw) 1136

F = L(F ⋆, Fw) 1137

G = L(F ⋆, F̂sw) 1138

H = L(F̂sw, Fsw) 1139

I = L(F̂sw, Fw). 1140

Now we start the proof of Theorem 3. A uniform convergence result and two claims used in the proof 1141

are provided at the end of the proof. The proof is strongly motivated by Theorem 4 in Yao et al. (2025). 1142

While our work primarily focuses on classification, their Theorem 4 is specifically centered on regression. 1143

Proof. Note that by virtue of the range of f⋆, fw and all functions in F being absolutely bounded, and L 1144

is also bounded. 1145

Due to F ⋆ /∈ Vs, we replace F ⋆ with Fs in the final step of proof of Theorem 2, we obtain 1146

C ≥ A+B. (24) 1147

Recall that ⟨f, g⟩E ≜ Ex∼P [f(x)
T g(x)], which is used here for a clear presentation. So we have 1148

E = A+D − Ex

k∑
i=1

([F ⋆(x)]i − [Fs(x)]i) log
[Fsw(x)]i
[Fs(x)]i

1149

= A+D −
〈
F ⋆ − Fs, log

Fsw

Fs

〉
E︸ ︷︷ ︸

t1

. 1150

The log here is element-wise. Using the similar notation, we have the following 1151

E = A+D −
〈
F ⋆ − Fs, log

Fsw

Fs

〉
E︸ ︷︷ ︸

t1

, (25) 1152

F = C +D −
〈
F ⋆ − Fs, log

Fw

Fs

〉
E︸ ︷︷ ︸

t2

, (26) 1153

G = E −H −
〈
F̂sw − F ⋆, log

Fsw

F̂sw

〉
E︸ ︷︷ ︸

t3

. (27) 1154
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Combining (24) and (25), we get1155

E ≤ C +D −B − t1. (28)1156

By a uniform convergence argument (Lemma 6), we have that with probability at least 1− δ over the1157

draw of {(x1, y1), . . . , (xn, yn)} that were used to construct F̂sw,1158

I ≤ B +O

(√
CFs

n

)
︸ ︷︷ ︸

t4

+O

(√
log(1/δ)

n

)
︸ ︷︷ ︸

t5

. (29)1159

Combining (28) with (29) and we have1160

E ≤ C +D − I − t1 + t4 + t5. (30)1161

Combining (26) with (30) and we have1162

E ≤ F − I − t1 + t2 + t4 + t5. (31)1163

Combining (27) with (31) and we have1164

G ≤ F − I −H − t1 + t2 − t3 + t4 + t5. (32)1165

We replace F ⋆ with F̂sw in the final step of proof of Theorem 2 and obtain:1166

I ≥ H +B. (33)1167

Combining (33) with (29) and we have1168

0 ≤ H ≤ t4 + t5 = O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
. (34)1169

Combining (34) with (32) and we have1170

G ≤ F − I − t1 + t2 − t3 + t4 + t5. (35)1171

While t4 and t5 are known in (29), we analyze t1, t2 and t3 one by one.1172

Deal with t1. We know that1173

t1 =

〈
F ⋆ − Fs, log

Fsw

Fs

〉
E

.1174

Using the fact that Fsw(x)
Fs(x)

≤ 1
γ , we have1175

|t1| ≤
1

γ
Ex

k∑
i=1

|[F ⋆(x)]i − [Fs(x)]i|1176

=
2

γ
ExDTV(F

⋆(x), Fs(x)) (Definition of TV distance)1177

≤ 2

γ
Ex

√
1

2
DKL(F ⋆(x)∥Fs(x)) (Pinsker’s inequality)1178

≤ 2

γ

√
1

2
ExDKL(F ⋆(x)∥Fs(x)) (Jensen’s inequality)1179

=
2

γ

√
1

2
L(F ⋆, Fs) (Definition of L)1180

=
1

γ

√
2ε (36)1181

Therefore,1182

|t1| = O(
√
ε). (37)1183
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Deal with t2. The proof for t2 is similar for t1. In particular, replacing Fsw with Fw in the above and 1184

we can get 1185

|t2| = O(
√
ε). (38) 1186

Deal with t3. We know that

t3 =

〈
F̂sw − F ⋆, log

Fsw

F̂sw

〉
E

= Ex

k∑
i=1

([F̂sw(x)]i − [F ⋆(x)]i) log
[Fsw(x)]i

[F̂sw(x)]i
.

According to Lemma 6, with probability at least 1− δ over the draw of (x1, y1), . . . , (xn, yn), we have 1187

∣∣∣L(F̂sw, Fw)− L(Fsw, Fw)
∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (39) 1188

Notice that 1189

H = L(Fsw, F̂sw) 1190

= L(Fw, Fsw)− L(Fw, F̂sw) +

〈
Fw + Fsw, log

Fsw

F̂sw

〉
E

. (40) 1191

Substitute (34) and (39) into Equation (40) with the triangle inequality for absolute values, we get 1192∣∣∣∣〈Fw + Fsw, log
Fsw

F̂sw

〉
E

∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
1193

Since |Fw(x) + Fsw(x)| is lower bounded, we have∣∣∣∣〈1⃗, log Fsw

F̂sw

〉
E

∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
.

Since |F̂sw(x)− F ⋆(x)| is upper bounded, there holds 1194

|t3| =
∣∣∣∣〈F̂sw − F ⋆, log

Fsw

F̂sw

〉
E

∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (41) 1195

Therefore, combing (37), (38) and (41), we have 1196

|t1|+ |t2|+ |t3| ≤ O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (42) 1197

Finally, combing (29) and (35) with (34) and (42), we get the result: 1198

L(F ⋆, F̂sw) ≤ L(F ⋆, Fw)− L(F̂sw, Fw) +O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
, 1199

where in the last inequality, we instantiate asymptotics with respect to ε → 0 and n → ∞. 1200

1201

Here are some tools used in the above proof. 1202
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Lemma 6 (Uniform convergence). Let (x1, y1), . . . , (xn, yn) be an i.i.d. training sample, where each1203

xi ∼ P and yi = Fw(xi) for a target function Fw. For a fixed strong model representation hs, we employ1204

reverse KL loss in WTSG:1205

fsw = argminf∈Fs
L(f ◦ hs, Fw) = argminf∈Fs

Ex∼P

[
k∑

i=1

[f ◦ hs(x)]i log
[f ◦ hs(x)]i
[Fw(x)]i

]
,1206

f̂sw = argminf∈Fs
L̂(f ◦ hs, Fw) = argminf∈Fs

1

n

n∑
j=1

[
k∑

i=1

[f ◦ hs(xj)]i log
[f ◦ hs(xj)]i
[Fw(xj)]i

]
.1207

Assume that the range of Fw and functions in Fs is absolutely bounded. Then, with probability at least1208

1− δ over the draw of (x1, y1), . . . , (xn, yn), we have1209

∣∣∣L(F̂sw, Fw)− L(Fsw, Fw)
∣∣∣ ≤ O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,1210

where CFs is a constant capturing the complexity of the function class Fs.1211

Proof. The proof follows lemma 4 in Yao et al. (2025). Swap the order of the two elements in L(·, ·) and1212

L̂P(·, ·) in their proof and we can prove the result.1213

Claim 1 (Yao et al. (2025)). Let f(x), g(x) ∈ [γ, 1] where γ > 0. If there exists ξ > 0 such that∫
X |f(x)− g(x)| dx ≤ ξ, then there holds∫

X
|log f(x)− log g(x)| dx ≤ 1

γ
ξ.

Claim 2 (Yao et al. (2025)). Let f(x), g(x) ∈ [γ, 1] where γ > 0. If there exists ξ > 0 such that∫
X |log f(x)− log g(x)| dx ≤ ξ, then there holds∫

X
|f(x)− g(x)| dx ≤ ξ.

B Additional Experimental Details and Results1214

We first provide a detailed explanation of the evaluation metric. To determine the effectiveness of a model1215

F in distinguishing between the selected and rejected completions (yc and yr) for a given prompt x, we1216

require that F ranks the chosen completion higher than the rejected one. This condition is formulated as1217

F (yc)− F (yr) > 0 for each pair x̃ = (x; yc, yr), implying that F (x̃) should exceed 0.5. Consequently,1218

the test accuracy is defined as the fraction of instances where F (x̃) > 0.5.1219

B.1 Results of Pythia1220

The overall trends observed in Figure 4 are similar with those in Figure 2. Our analysis of the results1221

in Figure 4 further highlights those insights: First, the accuracy exhibits a consistent upward trend from1222

left to right, reinforcing the finding that the generalization capability of the strong model improves when1223

a more capable weak model is utilized as the supervisor. Second, the results demonstrate that in the1224

majority of experimental settings (7 out of 12), reverse losses outperform forward losses, leading to1225

stronger model performance. Given the superior capabilities of the Pythia series compared to the GPT-21226

series (Biderman et al., 2023), as well as the fact that Pythia’s strong ceiling model outperforms GPT-2,1227

a key implication emerges. When the Pythia series serves as a weak model, it may generate less noise1228

on non-target labels. As a result, the potential advantages of reverse losses are diminished, leading to1229

only a slight improvement of reverse losses over forward losses. Finally, across almost all of the settings1230

(10 out of 12), the strong model trained with reverse KL and CE losses achieves superior performance1231

compared to its weak supervisor. This observation is in full agreement with our theoretical predictions,1232

further validating the effectiveness of reverse losses in enhancing model performance.1233
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(b) Results of Pythia-series on helpful set of HH-RLHF

Figure 4: Results of Pythia-series. “SC” denotes the strong ceiling model, and “A to B” indicates the use of weak
teacher “A” to supervise strong student “B”. The terms CE, RCE, KL, and RKL refer to cross-entropy loss, reverse
cross-entropy loss, forward KL divergence loss, and reverse KL divergence loss, respectively. Error bars represent
the standard deviation across three runs of the experiment.

B.2 Auxiliary Confidence Loss 1234

As highlighted by Burns et al. (2023), we explore an alternative approach: introducing an additional 1235

regularization term designed to enhance the strong model’s confidence in its predictions using standard 1236

cross-entropy loss, which is called “Auxiliary Confidence Loss” in Burns et al. (2023): 1237

Lconf(f) = (1− α) · CE (Fw, f ◦ hs)︸ ︷︷ ︸
vanilla cross-entropy loss

+ α · CE
(
f̂t ◦ hs, f ◦ hs

)
︸ ︷︷ ︸

R(f)

, (43) 1238

where α is the weight constant, R(f) is the regularization term, and f̂t corresponds to hardened strong 1239

model predictions using a threshold t, i.e., for any x: 1240

f̂t ◦ hs(x) = I(f ◦ hs(x) > t) ∈ {0, 1}, 1241

where I(·) is the indicator function. Rewrite Equation (43) as the minimization objective in WTSG: 1242

fsw = argminf∈Fs
Lconf(f). (44) 1243

As advocated by Burns et al. (2023), this regularization serves to mitigate overfitting to weak supervision, 1244

thereby improving the overall performance of the strong model. Therefore, to further explore the advantage 1245
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Figure 5: Results of GPT-2 series on CAI-Harmless. “SC” denotes the strong ceiling model, and “A to B” indicates
the use of weak teacher “A” to supervise strong student “B”. The terms “Conf. CE” and “Reve. Conf. CE” refer
to the auxiliary confidence loss with vanilla cross-entropy loss (Equation (43)) and reverse cross-entropy loss
(Equation (45)), respectively. Error bars represent the standard deviation across three runs of the experiment.

of reverse cross-entropy loss, we replace the vanilla cross-entropy with reverse cross-entropy in Lconf(f)1246

and conduct WTSG using the following objective:1247

f r
sw = argminf∈Fs

Lr
conf(f)1248

= argminf∈Fs
(1− α) · CE (f ◦ hs, Fw)︸ ︷︷ ︸

reverse cross-entropy loss

+ α ·R(f). (45)1249

We set α = 0.2 to ensure that the reverse/forward CE loss dominates the regularization, because we1250

use a small batch size here and we want to reduce the negative impact of the randomness and instability1251

brought by the auxiliary confidence loss within a single batch. The experimental comparison between fsw1252

and f r
sw is presented in Figure 5. First, by combining the observations from Figure 2 and Figure 5, we1253

observe that the application of auxiliary confidence loss slightly enhances the performance of the strong1254

model, consistent with the findings of Burns et al. (2023). Second, the use of reverse cross-entropy loss1255

consistently enables the strong model to outperform its counterpart trained with standard cross-entropy1256

loss. This finding, combined with previous experimental results in this work, highlights the superior1257

effectiveness of reverse losses compared to forward losses.1258
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