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ABSTRACT

Federated continual learning (FCL) is an emerging learning paradigm with the
potential to augment the scalability of federated learning by facilitating contin-
ual learning among multiple learners. However, FCL is beset by the significant
challenges of local overfitting and catastrophic forgetting. To address both simul-
taneously, we propose Variational Federated Continual Learning (VFCL), a novel
Bayesian neural network-based FCL framework that consists of two cores. First,
we propose variational inference with mixture prior that merges global and local
historical knowledge, which addresses local overfitting caused by the absence of
global knowledge and catastrophic forgetting caused by the absence of historical
knowledge simultaneously. Furthermore, to minimize the error in global knowl-
edge acquisition, we present an effective global posterior aggregation method.
Additionally, we provide a theoretical analysis on the upper bound of the general-
ization error of VFCL, which further helps to select the optimal hyperparameters.
Empirical evaluations are conducted on VFCL, which outperforms other state-of-
the-art methods on the widely used CIFAR100 and TinyImageNet datasets.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017; Bonawitz et al., 2019; Li et al., 2021; Kairouz et al.,
2021) is a distributed learning paradigm that allows multiple learners to learn jointly while preserv-
ing data privacy. Its utility is demonstrated by its application in diverse domains such as finance,
healthcare, and the Internet of Things. However, the typical FL paradigm is hindered by its static na-
ture, which impedes the acquisition of new knowledge in dynamic environments, thereby seriously
constraining the scalability of the model. Federated continual learning (FCL) (Yoon et al., 2021;
Dong et al., 2022) was proposed to improve the ability of FL to maintain and expand knowledge
among multiple learners in a collaborative manner. In FCL, each client performs continual learning
(CL) on its own private task sequence while acquiring knowledge learned by other clients through
FL. The data distribution of each client tends to be non-independent and identically distributed
(non-i.i.d.) and changes over time. The client local training is prone to local overfitting (Zhang
et al., 2022) because of the non-i.i.d. nature of the data distribution and limited data. Moreover,
catastrophic forgetting (Kirkpatrick et al., 2017) during CL can also undermine model performance,
leading to historical knowledge being forgotten. Addressing both local overfitting and catastrophic
forgetting is a challenging problem.

Several recent studies have attempted to address these challenges in FCL. Regularization-based
approaches (Yoon et al., 2021; Dong et al., 2022) exploit global and historical knowledge to mitigate
catastrophic forgetting, but they neglect the client local overfitting problem. Knowledge distillation-
based approaches (Ma et al., 2022; Usmanova et al., 2022) transfer knowledge from global and
historical models to training model to retain learned knowledge, but they neglect local overfitting
and lack explicit means of preventing overfitting. In addition, new network structures, such as
prototypical networks (Hendryx et al., 2021), have been introduced to reduce communication and
computational overheads. However, the neglect of local overfitting in existing work leads to the
divergence of the client’s local model from the global model, which reduces the generalization
performance and convergence rate. Existing studies do not considered both local overfitting caused
by the absence of global knowledge, and catastrophic forgetting caused by the absence of historical
knowledge, which hinders them from addressing the challenges in FCL.

In this paper, we propose a novel Variational Federated Continual Learning (VFCL) framework
based on Bayesian neural networks (BNNs) to address local overfitting and catastrophic forgetting
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simultaneously. The VFCL framework consists of two cores, i.e., variational inference with mixture
prior and global posterior aggregation. In variational inference with mixture prior, we merge global
and local historical knowledge into a mixture prior that utilizes global knowledge to mitigate local
overfitting while using local historical knowledge to address catastrophic forgetting. We represent
global and local historical knowledge in the same knowledge space, balancing the two to better
address local overfitting and catastrophic forgetting simultaneously. A BNN estimates the poste-
rior distribution of parameters using only double the number of parameters, but learns an infinite
ensemble, which makes the BNN more robust but also difficult to solve. Thus, we introduce vari-
ational inference to train the BNN efficiently. Second, to minimize the error in global knowledge
acquisition, we introduce a novel aggregation method, which is proved to have minimal Shannon
information loss compared to the original distributions. Additionally, We provide a theoretical anal-
ysis on the generalization error upper bound of VFCL, which can give the guidance for selecting
optimal hyperparameters. The effectiveness of our VFCL is empirically evaluated on the CIFAR100
and TinyImageNet datasets. The evaluation results demonstrate that our VFCL outperforms other
state-of-the-art methods. The main contributions of this study are summarized as follows:

• To our best knowledge, we are among the first to present a BNN-based FCL framework for
addressing local overfitting and catastrophic forgetting simultaneously, which consists of a novel
variational inference with mixture prior and an effective global posterior aggregation.

• Furthermore, we provide a theoretical analysis on the upper bound of the generalization error of
our VFCL, which supports the design of our VFCL and the selection of hyperparameters.

• The extensive experiments are conducted by comparing VFCL with other methods on CIFAR100
and TinyImageNet and the results clearly demonstrate the superiority of our proposed VFCL.

2 RELATED WORK

2.1 FEDERATED CONTINUAL LEARNING

FCL (Yoon et al., 2021; Dong et al., 2022) is a distributed learning paradigm that allows mul-
tiple learners to collaborate while learning continuously on their own. However, it faces vari-
ous challenges, such as privacy, communication efficiency, heterogeneity and local overfitting in
FL (McMahan et al., 2017), and catastrophic forgetting in CL (Li & Hoiem, 2017). To address
these issues, FedWeIT (Yoon et al., 2021) distinguishes between generic and task-specific parame-
ters, uses parameter masks for selective knowledge migration, and applies regular terms to mitigate
catastrophic forgetting. GLFC (Dong et al., 2022) uses weighted cross-entropy and distillation losses
to solve class imbalances and catastrophic forgetting. In addition, many other regularization-based
approaches(Zhang et al., 2023b; Luopan et al., 2023; Chaudhary et al., 2022; Wang et al., 2023; Qi
et al., 2022) also attempt to mitigate catastrophic forgetting. CFeD (Ma et al., 2022) uses knowledge
distillation on both the clients and server to transfer knowledge and mitigate catastrophic forgetting.
Other knowledge distillation-based approaches (Usmanova et al., 2022; Zhang et al., 2023a) also
focus on catastrophic forgetting. FedRecon (Hendryx et al., 2021) uses a prototypical network to
transfer knowledge through category prototypes. However, existing studies have mainly focused on
solving catastrophic forgetting while neglecting the relationship between global and local historical
knowledge, which hinders the balanced treatment of local overfitting and catastrophic forgetting.

2.2 BAYESIAN NEURAL NETWORKS

In deep learning, Bayesian neural networks (MacKay, 1992) offer several advantages over traditional
feedforward neural networks. Specifically, BNNs provide a means of regularization using the prior,
and their structure naturally captures the uncertainty of weights (Blundell et al., 2015). However,
performing exact Bayesian inferences on neural networks is infeasible owing to high computational
overhead. In practice, the posterior is approximated using methods such as Markov Chain Monte
Carlo (Gamerman & Lopes, 2006) and variational inference (Graves, 2011).

BNNs have been successfully applied to address local overfitting in FL. For example, FedPA (Al-
Shedivat et al., 2020) employed a posterior estimation approach by averaging the local posterior
distributions to obtain the global posterior distribution. FedEP (Guo et al., 2023) introduced ex-
pectation propagation in FL, obtained the global posterior through iteratively probabilistic message-
passing between server and clients. In pFedGP (Achituve et al., 2021), a shared deep kernel function
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is learned across clients, and each client trains a personalized Gaussian process classifier using a lo-
cally trained BNN. Similarly, in pFedBayes (Zhang et al., 2022), each client locally trains a BNN
and uses the global posterior as a prior distribution to mitigate local overfitting.

Bayesian methods are also useful in CL, in which priors can be exploited to mitigate catastrophic
forgetting. For example, VCL (Nguyen et al., 2017) partitions the posterior distribution across tasks
into the posterior distribution of the old task and the likelihood of the current task, thereby enabling
CL through recursive probability distribution computations. UCL (Ahn et al., 2019) evaluates the
parameter uncertainty using a BNN and performs uncertainty-based adaptive parameter regulariza-
tion. UCB (Ebrahimi et al., 2019), however, controls the learning rate of parameters based on the
level of uncertainty captured by the BNN and constrains the variation of important parameters. Bui
et al. (2018) proposed a partitioned variational inference framework that can be applied to FL and
CL, but they do not consider the more challenging FCL problem. To the best of our knowledge, our
proposed VFCL framework is the first BNN-based FCL approach.

3 METHODOLOGY

In this section, we first provide the problem definition in Sec. 3.1. Then, our proposed Variational
Federated Continual Learning (VFCL) framework involves variational inference with mixture prior
and global posterior aggregation, which are described in Secs. 3.2 and 3.3, respectively.

3.1 PROBLEM SETTING

FCL is a distributed learning paradigm with C clients. A central server may exist to coordinate
client training. Each client learns from its private task sequence Dc = {Dc,t}Tc

t=1, where Tc denotes
the number of tasks of client c. An arbitrary task Dc,t = {(xi

c,t, y
i
c,t)}

Sc,t

i=1 , contains Sc,t pairs of
samples xc,t and the corresponding labels yc,t. Notably, the task sequences of different clients are
independent, meaning that the number and content of their tasks can vary. To preserve client privacy,
the raw data of Dc,t cannot be exchanged between clients. Considering the overhead of data storage
and model retraining, the learner has access to data from the current task, and only a small amount
of memory can be used to store the exemplars of the previous tasks.

The goal of FCL is to enable all clients to achieve better performance for their own personalized
models by making use of the knowledge of other clients. In addition, clients should learn new tasks
while maintaining their performance on the old tasks. The objective function can be written as

min
{θc}C

c=1

C∑
c=1

Lc(Dc;θc), (1)

where Lc and θc refer to the loss function and parameters of client c. As discussed above, the core
challenge of FCL is how clients can better utilize global and historical knowledge for addressing
issues of local overfitting and catastrophic forgetting. Therefore, as illustrated in Fig. 1, we pro-
pose a novel VFCL method involving variational inference with mixture prior and global posterior
aggregation, whose details are given as follows.

3.2 VARIATIONAL INFERENCE WITH MIXTURE PRIOR

In VFCL, client c trains a local BNN by variational inference to learn Dc, which uses the approx-
imate distribution q(wc|θc) parameterized by θc to estimate the posterior distribution p(wc|Dc) of
the model weight wc. This can be described as the following optimization problem

θ∗
c = argmin

θc

DKL[q(wc|θc)∥p(wc|Dc))]. (2)

Bayes by Backprop (Blundell et al., 2015) can be introduced to solve this problem, which assumes
that q(wc|θc) has a Gaussian probability density function with parameters θc = (µc,ρc), where
µc is the mean of the Gaussian distribution, and the standard deviation is parameterized as σc =
log(1 + exp(ρc)) to ensure positivity. The model weight wc can be sampled by wc = µc + σc · ϵ,
where · denotes pointwise multiplication and ϵ is a noise following standard normal distribution.
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Global Posterior AggregationVariational Inference with Mixture Prior

Figure 1: Overview of VFCL. The objective function of client c includes the Kull-
back–Leibler divergence of q(wc|θc) and the mixture prior p̃(wc) as well as the likelihood cost
−Eq(wc|θc)[log p(Dc,t|wc)]. Our main idea is to combine the previous posterior and the global
posterior into a mixture prior p̃(wc) that solves both the catastrophic forgetting and overfitting en-
countered in FCL. In addition, we propose a global posterior aggregation method to obtain a more
accurate N (µ̄, σ̄) from the most recent local posteriors {p(wc|Dc)}Cc=1.

The objective function is defined as

Lc = DKL[q(wc|θc)∥p(wc)]︸ ︷︷ ︸
KL-to-prior

−Eq(wc|θc)[log p(Dc|wc)]︸ ︷︷ ︸
likelihood cost

, (3)

which consists of two parts: the Kullback-Leibler divergence between the approximate distribution
q(wc|θc) and the prior p(wc), and the likelihood cost −Eq(wc|θc)[log p(Dc|wc)].

In FCL, client c performs CL on its local private task sequence Dc. The client’s CL process can be
expressed perfectly as a recursive posterior update process using the following equation

p(wc|Dc) ∝ p(Dc,t|wc)p(wc|Dc,1:t−1), (4)

where the prior p(wc|Dc,1:t−1) is the posterior distribution of the old task, and the likelihood
p(Dc,t|wc) is for the task t being learned. We consider N (µ̌c, σ̌c) to be an approximate Gaus-
sian distribution of p(wc|Dc,1:t−1) with parameters θ̌c = (µ̌c, ρ̌c).

Clients use global knowledge to overcome local overfitting. The global posterior can be considered
as a finite mixture (McLachlan et al., 2019) of the local posteriors, which can be written as

p(w|{Dc}Cc=1) =

C∑
c=1

πcp(wc|Dc), (5)

where
∑C

c=1 πc = 1, πc ≥ 0 and p(wc|Dc) is the most recent local posterior of client c. We consider
N (µ̄, σ̄) to be an approximate Gaussian distribution of p(w|{Dc}Cc=1) with parameters θ̄ = (µ̄, ρ̄).

To address catastrophic forgetting and local overfitting simultaneously, we combine the historical
knowledge N (µ̌c, σ̌c) and global knowledge N (µ̄, σ̄) to formulate the mixture prior as

p̃(wc) =

N∏
j

p̃(wj) =

N∏
j

[
λk · N (wj |µ̄j , σ̄j) + (1− λk) · N (wj |µ̌j , σ̌j)

]
, (6)

whereN (x|µ, σ) is the Gaussian density evaluated at x with mean µ and variance σ2, N denotes the
number of parameters, and λk is a hyperparameter. To conduct a more in-depth study of the mixture
prior to FCL, we expand the mixture prior for a single parameter wj as

p̃(wj) =
λk√
2πσ̄j

exp
{
− (wj − µ̄j)

2

2σ̄2
j

}
+

1− λk√
2πσ̌j

exp
{
− (wj − µ̌j)

2

2σ̌2
j

}
. (7)

We note that (wj − µ̄j)
2 mitigates local overfitting by penalizing the inconsistency between the

local and global models, and using the uncertainty σ̄j as a weight. By contrast, (wj− µ̌j)
2 mitigates
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catastrophic forgetting by constraining the dissimilarity between the current and old models, and the
importance of the parameter is measured by the uncertainty σ̌j .

Taking advantage of p̃(wc), we rewrite Eq. 3 to obtain the final objective function as follows

Lc = DKL[q(wc|θc)∥p̃(wc)]− Eq(wc|θc)[log p(Dc,t|wc)]. (8)

As p̃(wc) is a complex mixture distribution, there is no closed-form solution to Eq. 8. Therefore,
we approximate the solution using Monte Carlo sampling with the following objective function

Lc ≈
n∑

k=1

λp

(
log q(wc,k|θc)− log p̃(wc,k)

)
− log p(Dc,t|wc,k), (9)

where n is the number of samplings, and λp is a hyperparameter that controls the effect of the prior.

Figure 2: Graphical
model of VFCL.

To provide a clearer explanation, a graphical model of VFCL is pre-
sented in Fig. 2, which demonstrates the relationship between the priors
and other components. The external plate denotes the repetitions of C
clients, whereas the internal plate denotes the repetitions of the number
of samples for task t for client c. The gray nodes indicate observed vari-
ables, whereas the white nodes indicate latent variables. The client local
discriminant model is p(yic,t|xi

c,t,θc), whereas the client hidden variable
θc inherits the knowledge of global posterior θ̄ and local previous poste-
rior θ̌c. In VFCL, global and local historical knowledge are aggregated
into a mixture prior to balances their contributions.

3.3 GLOBAL POSTERIOR AGGREGATION

The local posterior distributions of the clients are aggregated to obtain a more comprehensive global
posterior distribution to mitigate local overfitting. A straightforward way to obtain the global poste-
rior distribution is to minimize Kullback-Leibler divergence between the approximate global poste-
rior q(w|θ̄) and local mixture posterior q(wc|θc), which can be defined as

θ̄∗ = argmin
θ̄

DKL

[
q(w|θ̄)∥

C∑
c=1

πcq(wc|θc)
]
. (10)

However, in FL, the data distributions are often non-i.i.d. across clients, which complicates the
mixture distribution, and the solution of Eq. 10 becomes infeasible. Therefore, we introduce con-
flation (Hill, 2011) to fuse multiple distributions to a aggregated distribution, which is with density
proportional to the product of the densities of input distribution. Conflation has the advantage of
minimal information loss and high computational efficiency, with more details provided in Ap-
pendix E. We use conflation to obtain q(w|θ̄), and each parameter in θ̄ is computed as follows

µ̄j =

∑C
c=1

µc,j

σ2
c,j∑C

c=1
1

σ2
c,j

, σ̄2
j =

1∑C
c=1

1
σ2
c,j

, (11)

where µc,j , σ2
c,j are the mean and variance of parameter j on client c.
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Ours

Figure 3: Comparison between our pro-
posed aggregation method and FedAvg.

The differences between the proposed aggregation
method and FedAvg (McMahan et al., 2017) are shown
in Fig. 3. We consider p(θ|D1) and p(θ|D2) as the local
posterior distributions of clients 1 and 2, respectively.
The sum π1p(θ|D1) + π2p(θ|D2) represents a mixture
of the local posterior distributions of the clients, where
π1 = π2 = 0.5. Ours and FedAvg denote the posterior
distributions obtained using the two aggregation meth-
ods. The vertical dashed line denotes the highest proba-
bility in the distribution. By analyzing the shapes of the
curves, we observe that our method tends to reduce the
variance of the aggregated distribution, and the mean
value of our method is closer to the location of highest
probability of π1p(θ|D1)+π2p(θ|D2) than FedAvg. Our findings demonstrate that our method out-
performs FedAvg and provides a more accurate approximation of the global posterior distribution.
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4 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis on the upper bound of the generalization error of
VFCL, which can further help to select the optimal hyperparameters. Particularly, we focus on the
generalization error of the posterior distribution acquired through variational inference of any task
on any client, therefore we omit the subscripts c and t.

Definition of generalization error. Generalization error is defined in Eq. 12, where the distance
between the likelihood p(D|w) and data distribution p(D) is denoted by d2H(, ), and is used as an
indicator of the error; d2H(, ) is the Hellinger distance defined in Eq. 13, as used in (Achituve et al.,
2021; Bai et al., 2020). The optimal variational solution is q(w|θ∗), and Θ represents the parameter
space. The following equation represents the expectation or mean value of the generalization error∫

Θ

d2H
(
p(D), p(D|w)

)
q(w|θ∗)dθ. (12)

Hellinger distance measures the distance between two probability distributions, with a value such
that 0 ≤ d2H(, ) ≤ 1. Notably, the Hellinger distance is a symmetric distance metric between two
probability distributions.

d2H(P,Q) =
1

2
∥
√
P −

√
Q∥2. (13)

Assumptions. 1. The BNNs for all clients share the same architecture and contain L hidden layers,
all network layers are of width M , and the number of parameters is N . 2. The activation function
ϕ(·) is 1-Lipschitz continuous. 3. Constants B exists such that ∥θ∥∞ ≤ B.

Remark. We define the variational error r, approximation error ξ and estimation error ε as
r =

(
N(L+ 1) logM +N log(I

√
S/N)

)
/S, (14)

ξ = inf
∥θ∥∞≤B

∥fθ − f0∥2∞, (15)

ε =
√
r logSδ, (16)

where S is the number of samples contained in D, δ > 1, and I is the dimension of the input data.
We aim to approximate the ideal model f0 using model fθ, with fθ∗ being the best approximation.

The optimization process for the local client is as follows

θ∗ = arg inf
q(w|θ)∈Q

{
λpDKL[q(w|θ)∥p̃(w)] +

∫
Θ

L
(
p(D), p(D|w)

)
q(w|θ)dθ

}
, (17)

where L is defined as

L
(
p(D), p(D|w)

)
= log

p(D)
p(D|w)

. (18)

Lemma 1. Suppose that assumptions 1-2 are true, then the following inequality holds∫
Θ

d2H
(
p(D), p(D|w)

)
q(w|θ∗)dθ

≤ 1

S

[ 1

λp

∫
Θ

L
(
p(D), p(D|w)

)
q(w|θ∗)dθ +DKL[q(w|θ∗)∥p̃(w)]

]
+ C

′
ε2,

(19)

where C
′

is a positive constant.

Lemma 2. Suppose that assumptions 1-3 are true, then the following inequality holds∫
Θ

L
(
p(D), p(D|w)

)
q(w|θ∗)dθ + λpDKL[q(w|θ∗)∥p̃(w)] ≤ S

(
C

′′
λpr + C

′′′
ξ
)
, (20)

where C
′′
, C

′′′
are any diverging sequences.

Theorem. Combining Lemmas 1 and 2, we obtain the following upper bound for the generalization
error ∫

Θ

d2H
(
p(D), p(D|w)

)
q(w|θ∗)dθ ≤ C

′
ε2 + C

′′
r +

C
′′′

λp
ξ, (21)

which is determined by the estimated error ε, variational error r, approximation error ξ, and hyper-
parameter λp. All of C

′
, C

′′
and C

′′′
are constants. Here, ε is affected by the sampling variability

and stochastic nature of the data. r is determined by variational approximation of the true posterior
distribution, and ξ measures the discrepancy between the approximate representation fθ and the
ideal solution fθ∗ . Therefore, we make the following observations
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• As the sample size S increases, both ε and r decrease, and overall error decreases.
• As the model capacity (i.e., the number of parameters N ) increases, r increases and ξ decreases.
• As the weight of the mixture prior λp increases, ξ/λp decreases, and overall error decreases.

Based on these observations, we can develop our method by choosing appropriate N to balance r
and ξ. In addition, more importantly, we theoretically show that the mixture prior can reduce the
upper bound of generalization error, which is beneficial to the model performance. Further, we also
experimentally verified the effectiveness of the mixture prior in Tab. 4. Moreover, we found that a
large λp, while reducing catastrophic forgetting, also reduces the model’s adaptability to new tasks.
Therefore, an appropriate λp needs to be chosen to strike a balance between model stability and
adaptability to new tasks.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

VFCL was evaluated on two benchmark datasets: CIFAR100 (Krizhevsky et al., 2009) and TinyIm-
ageNet (Le & Yang, 2015). CIFAR100 comprises 100 categories with 60,000 images, and TinyIma-
geNet contains 200 categories with 110,000 images. To set up the incremental task, we adopted the
same strategy as in (Dong et al., 2022) by dividing the dataset into 10 tasks. Each task contained an
equal number of categories, with no intersection between them. The number of clients for each task
was determined randomly. To simulate a non-i.i.d. scenario, clients were instructed to select 50% of
the classes in the current task, and the samples were then randomly selected from these classes. In
addition, no overlap was observed in the samples between individual clients.

Comparative experiments were conducted using the following prominent methods in the FCL
field: FedWeIT (Yoon et al., 2021), GLFC (Dong et al., 2022), CFeD (Ma et al., 2022), and Fe-
dRecon (Hendryx et al., 2021). In addition, we set up ablation experiments for the prior, including
methods Ours w/o θ̄, Ours w/o θ̌, Ours w/o θ̄ + θ̌, and a compared method named Ours-FedAvg
that replaces global posterior aggregation with simple parameter averaging.

To ensure experimental fairness, models with the same number of parameters were used for the
different methods. ResNet-34 (He et al., 2016) served as the backbone network for GLFC, CFeD
and FedRecon, whereas FedWeIT and Our method used ResNet-18. In addition, the number of
Monte Carlo samplings n was set to 1 to ensure a fair computational overhead. All methods employ
the same multi-head classifier as that in (Castro et al., 2018). Model training employed the SGD
optimizer with a learning rate of 0.01 for all methods. The number of global iterations (R) for each
task was set to 10, and the number of local iterations (E) was set to 5 for all methods. The exemplar
management strategy followed (Rebuffi et al., 2017), in which 20 representative samples are stored
for each category in the exemplar memory. The hyperparameters λp and λk were set to 1 and 0.5.

5.2 EXPERIMENTAL RESULTS

Comparison experiments. The results of the comparative experiments are presented in Tabs. 1
and 2, where the best results are in bold and the second-best results are underlined. All comparison
experiments were run 3 times and averaged for final results. We observe that Ours outperformed
the other methods (Yoon et al., 2021; Dong et al., 2022; Ma et al., 2022; Hendryx et al., 2021) by
1.6%–8.2% in terms of average accuracy, which validates the effectiveness of Ours. In addition,
Ours performed best on all subsequent tasks beyond the first two warm-up tasks. Furthermore, the
performance of Ours decreased more slowly than other methods, which indicates that Ours addresses
the catastrophic forgetting more effectively.

Comparison of convergence rates. As shown in Fig. 4a, we compared the convergence rates of
the different methods. FedRecon could not be compared because it is a non-iterative method. The
figure shows the change in accuracy from Tasks 2 to 6, where each task contained 10 rounds of
global communication. Ours exhibited a faster convergence rate in new task learning, and the upper
bound reached by convergence was higher than those of the compared methods.
Comparison of catastrophic forgetting. As shown in Fig. 4b, we compared the catastrophic forget-
ting of the different methods. The accuracy rate gradually increases during the task-learning stage.
However, the performance drops sharply once clients start learning the next task. Ours performs bet-

7



Under review as a conference paper at ICLR 2024

Table 1: Comparison of different methods in terms of accuracy (%) on CIFAR100 with 10 tasks.

Task 1 2 3 4 5 6 7 8 9 10 Avg. ∆
FedWeIT 73.3 60.0 53.5 48.8 44.1 42.1 41.2 39.0 36.3 34.9 47.3 ± 1.7 ⇓ 7.1
GLFC 77.6 64.2 56.6 52.1 47.0 45.7 45.8 43.9 40.5 39.9 51.3 ± 1.9 ⇓ 3.1
CFeD 74.5 64.8 57.0 53.0 49.5 46.4 44.8 41.5 40.4 38.8 51.1 ± 1.8 ⇓ 3.3
FedRecon 76.7 61.8 52.3 47.7 44.2 39.9 37.5 35.6 33.5 32.5 46.2 ± 1.8 ⇓ 8.2
Ours-FedAvg 77.0 63.6 57.7 54.5 50.4 49.1 48.5 46.5 43.0 42.3 53.3 ± 1.1 ⇓ 1.1
Ours w/o θ̄ + θ̌ 74.1 61.7 53.2 49.3 44.6 43.6 41.0 39.5 36.2 36.0 47.9 ± 0.7 ⇓ 6.5
Ours w/o θ̄ 73.8 60.3 54.1 51.2 47.8 45.4 44.0 42.2 40.3 39.4 49.9 ± 0.9 ⇓ 4.5
Ours w/o θ̌ 73.5 57.4 49.6 46.9 43.0 41.2 39.5 37.9 35.7 34.7 46.0 ± 0.6 ⇓ 8.4
Ours 76.3 64.5 60.0 55.8 52.2 50.0 49.9 47.5 44.3 43.8 54.4 ± 1.1 -

Table 2: Comparison of different methods in terms of accuracy (%) on TinyImageNet with 10 tasks.

Task 1 2 3 4 5 6 7 8 9 10 Avg. ∆
FedWeIT 70.5 48.7 41.9 38.4 37.5 34.5 32.6 31.0 30.3 29.3 39.5 ± 1.1 ⇓5.6
GLFC 76.0 51.7 46.8 41.2 36.2 37.9 33.6 32.1 25.6 26.6 40.8 ± 2.0 ⇓4.3
CFeD 75.1 53.0 46.1 41.9 39.4 36.0 34.6 31.2 30.8 27.8 41.6 ± 0.9 ⇓3.5
FedRecon 62.9 51.7 47.1 43.3 42.8 40.4 38.6 36.9 36.4 35.0 43.5 ± 2.0 ⇓1.6
Ours-FedAvg 64.2 48.0 42.3 39.1 38.3 36.0 34.7 32.8 32.9 32.2 40.1 ± 0.5 ⇓5.0
Ours w/o θ̄ + θ̌ 59.8 43.7 37.1 34.6 32.4 31.4 29.5 29.2 28.2 27.0 35.3 ± 1.1 ⇓9.8
Ours w/o θ̄ 62.4 46.9 40.1 37.2 36.1 34.1 32.3 30.9 30.4 29.7 38.0 ± 1.3 ⇓7.1
Ours w/o θ̌ 62.2 46.3 39.9 37.0 35.4 34.0 32.4 30.5 30.2 29.4 37.7 ± 0.8 ⇓7.4
Ours 63.9 51.6 47.7 45.6 44.6 41.5 42.0 39.0 37.9 37.5 45.1 ± 1.1 -

ter on the old task and remains stable as new tasks are added, indicating that Ours is more effective
in addressing catastrophic forgetting.

Comparison of global posterior aggregation. We conducted comparative experiments between
FedAvg and our aggregation method, the results are shown in Tabs. 1 and 2, where Ours-FedAvg
indicates the aggregation using parameters averaging. The experimental results show that the per-
formance of Ours-FedAvg was 1.1%–5.0% lower than Ours on CIFAR100 and TinyImageNet, indi-
cating that our aggregation method is more suitable for the aggregation of posterior distributions.

Comparison of communication and computation overheads. We compared the models used
by the different methods listed in Tab. 3, where the number of floating point operations (FLOPs)
were obtained for inputs of size (1,3,224,224). Because both FedWeIT and Ours double the model
parameters, ResNet-18 was used as the backbone network architecture, whereas GLFC, CFeD and
FedRecon used ResNet-34. There are only minor differences in the number of parameters between
the different models; therefore, the communication overheads are similar. However, the number of
FLOPs for forward propagation in ResNet-34 is twice as high as ResNet-18 (Ours), which means
that the clients require more computational resources.

Table 3: Comparison of different models in terms of computation complexity, including number of
parameters (Params) and floating point operations (FLOPs).

ResNet-18 ResNet-34 ResNet-18 (FedWeIT) ResNet-18 (Ours)
Params 11.69M 21.8M 23.37M 23.37M
FLOPs 3.64G 7.36G 3.71G 3.74G

Ablation studies on the mixture prior. We investigated the contribution of the prior by conducting
ablation studies. The results are listed in Tabs. 1 and 2, where Ours w/o θ̄ indicates that θ̄ is not
considered as a prior, i.e., λk = 0, Ours w/o θ̌ indicates that θ̌ is not taken as a prior, i.e., λk = 1,
and Ours w/o θ̄ + θ̌ indicates that the mixture prior is disabled, i.e., λp = 0. The results show that
removing the prior causes a performance degradation of 4.5%–9.8%, which demonstrates that the
prior has a positive effect on performance.
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(b) Comparison of catastrophic forgetting.

Figure 4: Comparison of convergence rates and forgetting rates on CIFAR100.
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Figure 5: Results on CIFAR100 with different number of incremental tasks.

Analytical experiments on the number of tasks. We conducted comparative experiments by vary-
ing the number of tasks to further evaluate the efficacy of Ours, with results as presented in Fig. 5.
The curves show that Ours achieved superior performance on average compared with the other
methods. In addition, the slope of the Ours curve decreased less with an increasing number of tasks
than was the case for the other methods, indicating that Ours exhibits less catastrophic forgetting of
previously learned tasks.

Table 4: Accuracy (%) and Forgetting
(%) comparisons with different λp.

λp Accuracy Forgetting
1e-4 47.1 43.6
1e-2 50.7 36.0

1 53.8 28.6
1e2 44.7 26.7
1e4 41.2 23.2

Analytical experiments on λp. λp controls the level
of the prior constraint, and we investigated the perfor-
mance changes under different values of λp. The results
are shown in Tab. 4, where forgetting is calculated in the
same manner as in (Yoon et al., 2021). A larger λp causes
the model to forget less about old knowledge, but at the
same time, a large λp also prevents the model from learn-
ing new knowledge. Thus, the setting of λp must be a
trade-off between adapting to new knowledge and avoid-
ing forgetting old knowledge.

6 CONCLUSION

In this paper, we proposed a new Bayesian neural network-based FCL method named VFCL. Specif-
ically, we propose variational inference with mixture prior to address overfitting and catastrophic
forgetting. Then, a novel global posterior aggregation method is presented to reduce errors in pos-
terior distribution aggregation. Additionally, we provide theoretical analysis and experimental com-
parisons on our VFCL method. Particularly, we show the upper bound of the generalization error
of VFCL, and extensive experimental comparisons demonstrate the effectiveness of our proposed
method for FCL task.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Idan Achituve, Aviv Shamsian, Aviv Navon, and et al. Personalized federated learning with gaussian
processes. In Proceedings of the Advances in Neural Information Processing Systems, pp. 8392–
8406, 2021.

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and et al. Uncertainty-based continual learning with
adaptive regularization. In Proceedings of the Advances in Neural Information Processing Sys-
tems, 2019.

Maruan Al-Shedivat, Jennifer Gillenwater, Eric Xing, and et al. Federated learning via posterior
averaging: A new perspective and practical algorithms. arXiv preprint arXiv:2010.05273, 2020.

Jincheng Bai, Qifan Song, and Guang Cheng. Efficient variational inference for sparse deep learning
with theoretical guarantee. In Proceedings of the Advances in Neural Information Processing
Systems, pp. 466–476, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and et al. Weight uncertainty in neural
network. In Proceedings of the International Conference on Machine Learning, pp. 1613–1622,
2015.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, and et al. Towards federated learning at
scale: System design. In Proceedings of Machine Learning and Systems, pp. 374–388, 2019.
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A EXPERIMENTAL DETAILS

A.1 DATASET

Label

Index [0,1,2,3,4,5,6,7,8]

(1) Original Dataset (2) Split Tasks (3) Client Task Sequences

[0,1,2] [3,4,5] [6,7,8] [3,4,5][1,2]

[7,9][4,5]

[a,b,c] denotes the data shard contains classes a, b and c.

[8,9][3,5][0,1,2]

Figure 6: Construction flow of client private task sequences. First, the original dataset is split into
several tasks that contain no overlapping classes. Second, the split tasks are randomly selected as the
client’s task and and the classes of tasks included are also randomly selected. Private task sequences
from different clients may have similar (i.e., overlapping classes), unrelated, or interfering tasks.

The datasets CIFAR100 and TinyImageNet used in this paper are first split into a training set and a
test set. Then the training set is partitioned in the manner of Fig. 6, and each client has a different
sequence of tasks, their number of tasks, and the content of the tasks (i.e., the classes contained)
are different. Such a dataset partitioning method is designed to simulate a real FCL scenario as
much as possible, where each client learns on its own private sequence of tasks, and the local data
distributions of the clients are non-i.i.d., the tasks between clients may be similar, unrelated, or
interfering. Clients utilize the knowledge of other clients in the learning process to improve the
performance of the local model while preventing interference from the knowledge of other clients.
For the test set, each client is tested only on the classes it has learned, due to the fact that the tasks
are personalized on each client.

A.2 NETWORK ARCHITECTURE

0

1

2

Model of Client 

Backbone 3

5

Head 1

Head 2

8

9
Head 3

3

4

5

Model of Client 

Backbone

1

2

Head 2

Head 1

Figure 7: Client model architecture. The client’s local model consists of two parts: the backbone
network and the multi-head classifier. Backbone can adopt models like ResNet or DenseNet that
have already been designed. The classifiers are dynamically constructed based on the tasks, where
each head is a linear layer.

The architecture of the client local model is shown in Fig. 7. It is worth noting that the client
model of VFCL is personalized, which is reflected in 2 aspects: (1) the weights of the backbone are
personalized (2) the architecture and weights of the classifier are personalized. VFCL requires the
backbone to be the same architecture across clients for knowledge exchange (i.e., global knowledge
as a prior), however, the weights of the backbone are personalized to cope with the non-i.i.d. data
of clients. In addition, since each client’s task sequence is different, the multi-head classifier for
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each client is also different, including the architecture and weights. The reasons for not sharing
the knowledge of the classifier include: (1) it is heavily dependent on the client’s local task, and is
dynamically constructed based on the local task, and (2) the parameters of this part are very few and
can be learned quickly at the client.

A.3 METRICS

In the experiment, we followed (Yoon et al., 2021) to adopt accuracy and forgetting for evaluation.
The accuracy after learning the t-th task is defined as follows:

At =
1

t

t∑
i=1

at,i, (22)

where at,i denotes the accuracy of the i-th task after learning the t-th task. Incremental learning
contains two evaluation metrics, task-IL and class-IL (Masana et al., 2022). Task-IL has access to
the task-ID of the test sample during evaluation, and task-IL only needs to make predictions in the
classes contained in the task to which the sample belongs. However, class-IL is unable to obtain the
task-id, and needs to make predictions in all classes that have been learned. Generally, class-IL is
more challenging than task-IL. In real FCL scenarios, the task-id of a sample can hardly be obtained,
so we adopt class-IL to compute at,i.

The forgetting after learning the t-th task is defined as follows:

Ft =
1

t− 1

t−1∑
i=1

max
j∈1,...,t−1

(aj,i − at,i), (23)

which represents the average performance degradation of all old tasks.

B OVERALL PIPELINE OF THE VFCL FRAMEWORK

The complete pipeline of VFCL comprises two parts: the server and client sides. On the server
side, for each continual learning task t, the server first performs client selection and then performs
R global communications. In each global communication, the client trains the local BNN inde-
pendently, and the server aggregates all updated BNN model parameters using Eq. 11. The client
initializes with the latest global model and constructs θ̄ and θ̌c as a mixture prior according to Eq. 6.
The client then performs E rounds of local iterations using stochastic gradient descent. The client
first samples the parameter posterior distribution to obtain the model parameters in each batch, and
calculates the loss according to Eq. 9, and then updates the parameters of the approximate posterior
distribution q(w|θ). In the last global iteration of each task, the client’s local posterior distribution
is retained as part of the prior when the new task is learned.

C FURTHER EXPLANATION OF THE MIXTURE PRIOR

In this section, Eq. 7 is further explained, and the relationship between the mixture prior and pre-
existing methods is discussed from the perspectives of FL and CL.

From the perspective of FL, the mixture prior and FedProx (Sahu et al., 2018) share the same idea,
and both are used to alleviate local overfitting by penalizing the discrepancy between the local and
global models. The difference lies in the coefficient σ̄j , which represents the uncertainty of the
parameters. When the uncertainty of the parameter is low, it can be assumed that the parameter is
deterministic in the global posterior distribution and has a high probability of being equally applica-
ble locally; therefore, it is assigned a higher penalty weight. Conversely, parameters are considered
uncertain in the global posterior distribution; therefore, smaller penalty weights are adopted.

From the perspective of CL, a similar idea was introduced in EWC (Kirkpatrick et al., 2017) and
SI (Zenke et al., 2017) to mitigate catastrophic forgetting by protecting parameters that are important
for previous tasks. The difference lies in the importance measure, for which EWC uses the Fisher
information matrix, and SI uses the task-related information accumulated on the synapses. However,
the mixture prior uses the uncertainty σ̌j . Parameters with low uncertainty can vary only within a
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Algorithm 1 VFCL

ServerExecutes({θc}Cc=1):
define a synchronized task sequence containing T tasks
for task t = 1, 2, ..., T do

select clients with task t
for round r = 1, 2, .., R do

for each client c in parallel do
θc ← ClientUpdate(θ̄, c, t, r)

θ̄ ← Aggregation according to Eq. 11
return {θc}Cc=1

ClientUpdate(θ̄, c, t, r):
construct the mixture prior according to Eq. 6
for local epoch e = 1, 2, ..., E do
ϵ ∼ N (0, I)
σ = log(1 + exp(ρ))
w = µ+ σ · ϵ
calculate loss Lc by Eq. 9
θc ← θc − η∇Lc

if r = R then
θ̌c ← θc

return θc

small range and are considered more important. Changes in these parameters can cause a sharp drop
in the performance of previous tasks, therefore, their changes need to be penalized, and vice versa.

D PROOF OF LEMMAS

Detailed proof of the upper bound of the generalization error of VFCL is provided in this section.

D.1 PROOF OF LEMMA 1

Before proving Lemma 1, we first introduce Eq. 24 from (Boucheron et al., 2013), where q and p
are probability distributions and h is any measurable function with eh ∈ L1(q).

log

∫
eh(η)q(dη) = sup

p

[ ∫
h(η)p(dη)−DKL[p∥q]

]
. (24)

Next, we define η
(
p(D), p(D|w)

)
as

η
(
p(D), p(D|w)

)
= exp

{ 1

λp
L
(
p(D), p(D|w)

)
+ Sd2H

(
p(D), p(D|w)

)}
. (25)

We set h(η) = log η
(
p(D), p(D|w)

)
, q = p̃(w), and p = q(w|θ∗), and Eq. 24 will be transformed

into the following equation

log

∫
Θ

η
(
p(D), p(D|w)

)
p̃(w)dθ ≥∫

Θ

[ 1

λp
L
(
p(D), p(D|w)

)
+ Sd2H

(
p(D), p(D|w)

)]
q(w|θ∗)dθ −DKL[q(w|θ∗)∥p̃(w)].

(26)

Then, we obtain Eq. 27 from Eq. 26∫
Θ

d2H
(
p(D), p(D|w)

)
q(w|θ∗)dθ ≤

1

S

[ 1

λp

∫
Θ

L
(
p(D), p(D|w)

)
q(w|θ∗)dθ

+DKL[q(w|θ∗)∥p̃(w)] + log

∫
Θ

η
(
p(D), p(D|w)

)
p̃(w)dθ

]
.

(27)
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From Theorem 3.1 of (Pati et al., 2018), we obtain∫
Θ

η
(
p(D), p(D|w)

)
p̃(w)dθ ≤ eC

′
Sε2 . (28)

By combining Eq. 28 and Eq. 27, we obtain Lemma 1 as∫
Θ

d2H
(
p(D),p(D|w)

)
q(w|θ∗)dθ

≤ 1

S

[ 1

λp

∫
Θ

L
(
p(D), p(D|w)

)
q(w|θ∗)dθ +DKL[q(w|θ∗)∥p̃(w)]

]
+ C

′
ε2.

(29)

D.2 PROOF OF LEMMA 2

The Kullback–Leibler divergence between two Gaussian distributions N (µa, σa) and N (µb, σb) is

DKL[N (µa, σa)∥N (µb, σb)] =
1

2

[
log

(σ2
b

σ2
a

)
+

σ2
a + (µa − µb)

2

σ2
b

− 1
]
. (30)

Assuming that µb and σb are variables, when Eq. 30 obtains the minimum value, the partial deriva-
tives of Eq. 30 with respect to µb and σb are 0, i.e.,

∂DKL[N (µa, σa)∥N (µb, σb)]

∂µb
=

µb − µa

σ2
b

= 0, (31)

∂DKL[N (µa, σa)∥N (µb, σb)]

∂σb
=

1

σb
− σ2

a + (µa − µb)
2

σ3
b

= 0. (32)

Eqs. 33 and 34 can be deduced from Eqs. 31 and 32 as

µb = µa, (33)

σ2
b = σ2

a + (µa − µb)
2. (34)

For any k > 0, the Kullback–Leibler divergence between any two mixture densities is bounded as

DKL

[ K∑
k=1

πkgk∥
K∑

k=1

π̃kg̃k
]
≤

K∑
k=1

πk log
πk

π̃k
+

K∑
k=1

πkDKL[gk∥g̃k]. (35)

Next, we define p̃(w) as

p̃(w) =

N∏
j

[
λk · N (µ̄j , σ̄

2
j ) + (1− λk) · N (µ̌j , σ̌

2
j )
]
. (36)

For convenience, in the subsequent proof, we define q(w|θ∗) as

q(w|θ∗) =

N∏
j

[
λk · N (µ∗

j , σ
∗
j
2) + (1− λk) · N (µ∗

j , σ
∗
j
2)
]
. (37)

To prove Lemma 2, we construct σ∗2 as Eq. 38, which is based on Assumption 3. Because Eq. 38
can be arbitrarily small, σ∗2 ≤ B2 can easily be satisfied.

σ∗2 =
N

8S(2BM)2(L+1)log 3IM
[(
s+ 1 + 1

BM−1

)2
+ 1

(2BM)2−1 + 2
(2BM−1)2

] ≤ B2. (38)
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With Eqs. 36 and 37 into Eq. 35, we obtain

DKL[q(w|θ∗)∥p̃(w)] ≤ λk log
(λk

λk

)
+ (1− λk) log

(1− λk

1− λk

)
+ λkDKL[N (µ∗

j , σ
∗
j
2)∥N (µ̄j , σ̄

2
j )] + (1− λk)DKL[N (µ∗

j , σ
∗
j
2)∥N (µ̌j , σ̌

2
j )]

= 0 +
λk

2

N∑
j=1

[
log

( σ̄2
j

σ∗
j
2

)
+

σ∗
j
2 + (µ∗

j − µ̄j)
2

σ̄2
j

− 1
]

+
1− λk

2

N∑
j=1

[
log

( σ̌2
j

σ∗
j
2

)
+

σ∗
j
2 + (µ∗

j − µ̌j)
2

σ̌2
j

− 1
]
.

(39)

Combining Eqs. 33, 34, and 39, we can derive

σ∗
j
2 + (µ∗

j − µ̌j)
2

σ̌2
j

− 1 = 0, (40)

σ̌2
j = σ∗

j
2 + (µ∗

j − µ̌j)
2 ≤ σ∗

j
2 +B2 ≤ 2B2, (41)

σ∗
j
2 + (µ∗

j − µ̄j)
2

σ̄2
j

− 1 = 0, (42)

σ̄2
j = σ∗

j
2 + (µ∗

j − µ̄j)
2 ≤ σ∗

j
2 +B2 ≤ 2B2. (43)

Then we have

DKL[q(w|θ∗)∥p̃(w)] ≤
(λk

2
+

1− λk

2

)
N log

2B2

σ∗2 =
N

2
log

2B2

σ∗2 .
(44)

Combining Eq. 38 and Eq. 44 yields the following inequality

DKL[q(w|θ∗)∥p̃(w)] ≤

N(L+ 1) log(2BM) +
N

2
log log(3IM) +N log

(
4I

√
S

N
+

N

2
log(2B2)

)
.

(45)

Therefore, we obtain
DKL[q(w|θ∗)∥p̃(w)] ≤ C

′′
Sr. (46)

For an arbitrary sample (x, y), we can reformulate L
(
p(D), p(D|w)

)
as

L
(
p(D), p(D|w)

)
=

(
∥y − fθ(x)∥22 − ∥y − f0(x)∥22

)
/2σ2

ϵ

=
(
∥y − f0(x) + f0(x)− fθ(x)∥22 − ∥y − f0(x)∥22

)
/2σ2

ϵ

=
(
∥fθ(x)− f0(x)∥22 + 2

〈
y − f0(x), f0(x)− fθ(x)

〉)
/2σ2

ϵ .

(47)

Then we denote
R1 =

∫
Θ

∥fθ(x)− f0(x)∥22q(w|θ∗)dθ, (48)

R2 =

∫
Θ

〈
y − f0(x), f0(x)− fθ(x)

〉
q(w|θ∗)dθ. (49)

ForR1, since

∥fθ(x)− f0(x)∥22 ≤ S∥fθ − f0∥2∞ ≤ S
(
∥fθ − fθ∗∥2∞ + ∥fθ∗ − f0∥2∞

)
, (50)

Then we can obtain
R1 ≤ S(r + ∥fθ∗ − f0∥2∞). (51)

ForR2, since y − f0(x) = ϵ ∼ N (0, σ2
ϵ ), then

R2 = ϵT
∫
Θ

(
f0(x)− fθ(x)

)
q(w|θ∗)dθ ∼ N (0, cfσ

2
ϵ ), (52)
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where cf = ∥
∫
Θ

(
f0(x)− fθ(x)

)
q(w|θ∗)dθ∥22 ≤ R1 due to Cauchy-Schwarz inequality, then

R2 ≤ C
′

RR1, (53)

where C
′

R is a positive constant or any diverging sequence.

By combining Eqs. 47, 51 and 53, we obtain∫
Θ

L
(
p(D), p(D|w)

)
q(w|θ∗)dθ = R1/2σ

2
ϵ +R2/σ

2
ϵ

≤ (2C
′

R + 1)S(r + ∥fθ∗ − f0∥2∞)/2σ2
ϵ

≤ C
′′

RS(r + ∥fθ∗ − f0∥2∞),

(54)

where C
′′

R is a positive constant or any diverging sequence.

Finally, we can obtain the following upper bound∫
Θ

L
(
p(D), p(D|w)

)
q(w|θ∗)dθ ≤ C

′′′
S(r + ξ). (55)

By combining Eq. 46 and Eq. 55, we obtain Lemma 2 as∫
Θ

L
(
p(D), p(D|w)

)
q(w|θ∗)dθ + λpDKL[q(w|θ∗)∥p̃(w)] ≤ S(C

′′
λpr + C

′′′
ξ). (56)

E DETAILED EXPLANATION OF GLOBAL POSTERIOR AGGREGATION

To simplify notation, we denote the local posterior distribution of client c by pc. The goal of global
aggregation is to find a distribution T (p1, ..., pC), which is able to integrate the posterior distribu-
tions of all clients. The most straightforward method for combining probability distributions is the
weighted average, as follows

T (p1, ..., pC) =

C∑
c=1

πcpc, (57)

where πc ≥ 0 and
∑C

c=1 πc = 1. However, weighted average does not guarantee that the input
and output distributions are of the same type, e.g., if p1, ..., pC are unimodal Gaussian distributions
and T (p1, ..., pC) is generally a multimodal distribution. The distribution integrated by weighted
average cannot be expressed in terms of the parameters of the input distribution, which prevents it
from being applied to BNNs.

Another approach is to define a distribution qs of the same type as the pc, by minimizing the follow-
ing equation

DKL

[
qs∥

C∑
c=1

πcpc
]
, (58)

we obtain an approximate distribution qs of T (p1, ..., pC). However,
∑C

c=1 πcpc is usually a com-
plex multimode distribution, which makes it infeasible to solve Eq. 58. Although we can approx-
imate the solution of Eq. 58 by Monte Carlo sampling, the huge computational overhead and the
need for a training dataset make it infeasible in practice.

To address the problem of local posterior distributions aggregation across multiple clients, we intro-
duce conflation (Hill, 2011). We denote the conflation of p1, ..., pC by Q(p1, ..., pC). According to
Theorem 3.3 in (Hill, 2011), Q(p1, ..., pC) is with density proportional to the product of the densities
for each distribution, as follows

f(x) =

∏C
c=1 fc(x)dx∫∞

−∞
∏C

c=1 fc(x)dy
(59)

where fc is the probability density function of pc. The distribution of each parameter in the BNN
of our method is assumed to be Gaussian, so the aggregation of the parameter distributions is the
product of the Gaussian distributions, as in Eq. 11.

Finally, we summarize the reasons why we use the conflation Q = Q(p1, ..., pC) as follows:
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• Q of Gaussian distributions are always Gaussian.
• Q has minimal Shannon information loss with the combined information from p1, ..., pC .
• Q has a closed-form solution, which is computationally efficient.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 DIFFERENT BENCHMARK DATASETS

To further validate the effectiveness of VFCL, we conducted experiments on the two benchmarks
proposed by (Yoon et al., 2021), including Overlapped-CIFAR100 and NonIID-50. For the fairness
of the experiment, we follow the same experimental setting as in (Yoon et al., 2021), the backbone
of FedWeIT is set to ResNet-18, and the backbone of other methods are set as in Tab. 3, The number
of clients is set as 5, and each task has 20 rounds of global communication. The difference is
that (Yoon et al., 2021) is evaluated with task-IL, while we adopt class-IL, which is more applicable
to real scenarios and more challenging, as detailed in Sec. A.3. The results are shown in Tabs. 5
and 6, respectively. The best results are in bold and the second-best results are underlined. We
observe that Ours outperformed the other methods (Yoon et al., 2021; Dong et al., 2022; Ma et al.,
2022; Hendryx et al., 2021) by 1.3%–15.3% in terms of average accuracy.

Table 5: Comparison of different methods in terms of accuracy (%) on Overlapped-CIFAR100 with
10 tasks.

Task 1 2 3 4 5 6 7 8 9 10 Avg. ∆
FedWeIT 68.4 50.6 42.0 38.4 34.0 33.7 32.8 31.6 28.2 31.8 39.1 ± 1.5 ⇓9.1
GLFC 72.9 55.6 47.7 44.8 38.0 36.3 32.2 35.0 29.3 31.2 42.3 ± 1.2 ⇓5.9
CFeD 69.3 57.4 52.1 46.0 43.0 40.4 36.4 35.6 33.7 33.6 44.8 ± 1.2 ⇓3.4
FedRecon 71.9 59.2 40.3 34.8 31.8 31.8 28.6 27.9 31.3 30.7 38.8 ± 1.3 ⇓9.4
Ours 74.7 60.0 53.0 50.0 45.2 42.9 41.0 40.9 37.4 37.3 48.2 ± 1.3 -

Table 6: Comparison of different methods in terms of accuracy (%) on NonIID-50 with 10 tasks.

Task 1 2 3 4 5 6 7 8 9 10 Avg. ∆
FedWeIT 71.0 59.3 54.5 48.9 41.3 43.7 37.6 41.9 39.8 41.0 47.9 ± 0.6 ⇓1.3
GLFC 69.7 41.7 49.7 35.5 26.4 30.6 33.1 35.0 36.6 34.5 39.3 ± 1.2 ⇓9.9
CFeD 74.7 39.6 37.5 37.4 35.1 34.8 33.9 35.9 36.0 36.8 40.2 ± 1.2 ⇓9.0
FedRecon 62.6 40.8 38.7 29.4 25.8 27.9 26.2 29.6 28.9 29.4 33.9 ± 1.5 ⇓15.3
Ours 69.6 51.6 59.3 46.4 38.8 45.0 42.8 46.5 46.0 46.1 49.2 ± 0.7 -

F.2 ANALYTICAL EXPERIMENTS ON λk

λk is designed to control the balance between historical and global knowledge, as shown in Eq. 6.
We have conducted analytical experiments on λk to compare the accuracy and forgetting rate of
different λk. The results are shown in Tab. 7. According to the results, we found that both historical
and global knowledge play important roles in the model performance, and the lack of either is
detrimental to the model performance. In addition, we found that as λk increases, 1− λk decreases,
i.e., the weight of historical knowledge decreases, which causes an increase in forgetting.

Table 7: Accuracy and forgetting comparisons with different λk.

λk 1− λk Accuracy (%) Forgetting (%)
0 1 49.3 32.2
0.25 0.75 51.4 34.7
0.5 0.5 53.8 28.6
0.75 0.25 51.6 35.4
1 0 45.5 40.5
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F.3 ANALYTICAL EXPERIMENTS ON n

n in Eq. 9 denotes the number of Monte Carlo samplings, and we set n = 1 in the comparison
experiments to achieve fairness in terms of computational overhead. In practice, it is a worthwhile
trade-off for better model performance by adding some computational overhead. Therefore, we
conducted further analytical experiments for different n. We compared the model accuracy and
training time for n from 1 to 10, and the results are shown in Fig. 8. It can be seen that when n is
between 1 and 4, the accuracy rises as n increases, whereas when n is greater than 4, larger n does
not provide more performance gains. The training time overhead is linearly correlated with n, and
larger n results in more computational overhead. Based on the results of the analytical experiments,
we recommend setting n to a small number (less than 4).
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Figure 8: Comparison of different number of Monte Carlo samplings, where the time cost is the
training time of a single batch which size is (32,3,224,224).

F.4 COMPARISON OF COMPUTATIONAL EFFICIENCY

We compared the time cost of training and testing of different models, as shown in Tab. 8. It can
be seen that when n = 1, the training and testing time of ResNet-18 (Ours) is similar to that of
ResNet-34 and ResNet-18 (FedWeIT), which shows that there is no drawback of our method in
terms of time cost. When n increases, the training time of ResNet-18 (Ours) increases linearly with
n, while the testing time remains the same. This is because we use the mean of the learned parameter
distributions as the sampling parameter in the test, and do not perform Monte Carlo sampling.

Table 8: Comparison of different models in terms of training and testing time, where the time is
obtained by testing a single batch with size (32,3,224,224).

Method Setting Training (s) Testing (s)
ResNet-18 - 0.029±0.001 0.019±0.001

ResNet-34 - 0.043±0.001 0.026±0.001

ResNet-18 (FedWeIT) - 0.046±0.002 0.025±0.001

ResNet-18 (Ours) n = 1 0.045±0.001 0.026±0.001

ResNet-18 (Ours) n = 2 0.112±0.001 0.027±0.002

F.5 DIFFERENT BACKBONE

To further validate the effectiveness of our VFCL, we conducted experiments on datasets CIFAR100
and TinyImageNet using DenseNet (Huang et al., 2017) as the backbone. The other settings of the
experiment are the same as the experiments in the main text. For experimental fairness, we try
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to make sure that the number of parameters of the backbone is the same for different methods,
therefore, we use DenseNet-121 in FedWeIT and Ours and DenseNet-169 in GLFC, CFeD and
FedRecon. Comparisons of the number of parameters and computational overhead of the models
are shown in Tab. 9.

Table 9: Comparison of different models in terms of computation complexity, including number of
parameters (Params) and floating point operations (FLOPs).

DenseNet-121 DenseNet-169 DenseNet-121 (FedWeIT) DenseNet-121 (Ours)
Params 7.98M 14.15M 15.88M 15.88M
FLOPs 5.76G 6.84G 5.82G 5.82G

The results of the comparative experiments are presented in Tabs. 10 and 11, where the best results
are in bold and the second-best results are underlined. We observe that Ours outperformed the other
methods by 2.0%–11.1% in terms of average accuracy, which validates the effectiveness of Ours.

Table 10: Comparison of different methods in terms of accuracy (%) on CIFAR100 with 10 tasks.

Task 1 2 3 4 5 6 7 8 9 10 Avg. ∆
FedWeIT 81.2 68.3 60.9 54.7 50.6 50.2 49.2 45.9 43.4 41.5 54.6 ⇓2.0
GLFC 80.5 65.4 60.0 51.3 40.3 41.9 46.1 45.1 38.8 39.0 50.8 ⇓5.8
CFeD 80.4 64.9 56.1 53.6 48.3 48.0 45.9 41.9 42.4 41.2 52.3 ⇓4.3
FedRecon 82.3 62.2 51.2 41.7 44.5 37.6 35.2 35.9 30.8 33.7 45.5 ⇓11.1
Ours 76.2 65.2 62.2 57.1 55.5 54.9 51.1 50.3 47.9 45.2 56.6 -

Table 11: Comparison of different methods in terms of accuracy (%) on TinyImageNet with 10
tasks.

Task 1 2 3 4 5 6 7 8 9 10 Avg. ∆
FedWeIT 80.3 61.8 56.9 53.4 52.5 50.3 48.9 45.8 44.5 44.0 53.8 ⇓2.1
GLFC 81.6 59.5 56.9 55.0 54.0 50.0 44.5 44.9 44.8 43.4 53.5 ⇓2.4
CFeD 80.3 63.4 59.1 53.6 51.9 48.7 50.7 46.0 42.0 39.7 53.5 ⇓2.4
FedRecon 72.1 58.2 53.0 50.6 50.0 47.9 45.9 43.8 42.0 41.4 50.5 ⇓5.4
Ours 74.6 61.5 59.2 56.4 54.9 51.8 54.3 49.4 48.3 48.6 55.9 -

F.6 COMPARISONS OF CONVERGENCE RATES AND FORGETTING RATES

Comparisons of convergence rates are shown in Figs. 9 and 10. FedRecon could not be compared
because it is a non-iterative method. The figure shows the change in accuracy from Tasks 1 to 10,
where each task contained 10 rounds of global communication. It can be seen that Ours exhibits
faster convergence rates as well as higher platform accuracy, and this advantage becomes more
significant as the number of CL tasks increases.

Comparisons of forgetting rates are shown in Figs. 11 and 12, which compare the change in accuracy
over the duration of CL for Tasks 1, 2 and 3, respectively. It can be seen that the accuracy of Ours
on the learned task can remain stable in CL and is higher than the other compared methods, which
validates the effectiveness of Ours in mitigating catastrophic forgetting.
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Figure 9: Comparison of convergence rates on CIFAR100.
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Figure 10: Comparison of convergence rates on TinyImageNet.
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Figure 11: Comparison of forgetting rates on CIFAR100.
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Figure 12: Comparison of forgetting rates on TinyImageNet.
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