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Abstract

Pre-trained language models (PLMs) have at-001
tracted enormous attention over the past few002
years with their unparalleled performances.003
Meanwhile, the soaring cost to train PLMs004
as well as their amazing generalizability have005
jointly contributed to few-shot fine-tuning006
and prompting as the most popular training007
paradigms for natural language processing008
(NLP) models. Nevertheless, existing studies009
have shown that these NLP models can be back-010
doored such that model behavior is manipu-011
lated when trigger tokens are presented. In this012
paper, we propose PromptFix, a novel back-013
door mitigation strategy for NLP models via014
adversarial prompt-tuning in few-shot settings.015
Unlike existing NLP backdoor removal meth-016
ods, which rely on accurate trigger inversion017
and subsequent model fine-tuning, PromptFix018
keeps the model parameters intact and only019
utilizes two extra sets of soft tokens which ap-020
proximate the trigger and counteract it respec-021
tively. The use of soft tokens and adversarial022
optimization eliminates the need to enumerate023
possible backdoor configurations and enables024
an adaptive balance between trigger finding and025
preservation of performance. Experiments with026
various backdoor attacks validate the effective-027
ness of the proposed method and the perfor-028
mances when domain shift is present further029
shows PromptFix’s applicability to models pre-030
trained on unknown data source which is the031
common case in prompt tuning scenarios.032

1 Introduction033

Pre-trained language models (PLMs) such as BERT034

(Kenton and Toutanova, 2019), GPT (Brown et al.,035

2020) and PALM (Chowdhery et al., 2022) have036

significantly changed and re-galvanized the filed037

of Natural Language Processing (NLP). Such pre-038

trained language models can provide highly rep-039

resentative embeddings and are beneficial to most040

downstream tasks off the shelf. Given the strong041

representational power and the fast growth of PLM042

sizes, few-shot fine-tuning/prompting on PLM 043

backbones has become a dominant paradigm for 044

NLP tasks: on one hand, language models have be- 045

come so large in size that training one from scratch 046

is not affordable by most people; on the other hand, 047

PLMs are showing impressive performances even 048

under few-shot or zero-shot settings. 049

Unfortunately, there is mounting evidence that 050

PLMs are vulnerable to backdoor attacks, and such 051

vulnerabilities can persist finetuning (Shen et al., 052

2021) or prompt tuning (Xu et al., 2022). Backdoor 053

attacks allow adversaries to cause controllable mal- 054

functioning of victim models by injecting trigger 055

patterns into the inputs. In specific to text classi- 056

fication tasks, the compromised language models 057

will fail to process inputs with triggers and cate- 058

gorize them into a target class pre-selected by the 059

attacker. Recent works suggest the trigger pattern 060

can go beyond characters, words and phrases and 061

take the form of certain sentence structures (Qi 062

et al., 2021b) or become conditionally activated 063

(Zhang et al., 2021a) to enhance stealthiness and 064

breach filtering-based protections. Such backdoor 065

attacks pose severe security risks to NLP models 066

obtained via few-shot tuning. Hence, it is crucial 067

to develop methods to mitigate backdoors in NLP 068

models under few-shot settings accordingly. 069

Existing solutions for backdoor removal are typ- 070

ically carried out in two stages: 1) trigger inver- 071

sion, which aims to approximate the trigger of the 072

backdoor for a given model; 2) trigger unlearn- 073

ing, which fine-tunes the compromised model on 074

triggered datasets with the correct labels to coun- 075

teract the backdoor behavior. There are two major 076

concerns with such a backdoor removal approach: 077

First, the efficacy of backdoor removal is by de- 078

sign reliant on the accuracy of trigger inversion 079

but finding the exact trigger is both difficult and 080

expensive. Existing works like DBS (Shen et al., 081

2022) or PICCOLO (Liu et al., 2022) put consider- 082

able effort into making the trigger tokens differen- 083
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Figure 1: Illustration of how PromptFix fixes a backdoored model

tiable to enable gradient-based optimizations, but084

the triggers found are still only remotely similar to085

the ground truth. The quality of the trigger inver-086

sion also depends on whether the trigger injection087

method used during inversion matches the actual088

backdoor configurations, e.g. position of injection.089

Current methods have to enumerate a collection of090

possible backdoor configurations to cover as many091

cases as possible. Such a strategy hardly scales092

with the growingly complicated backdoors which093

are possibly triggered only when a number of crite-094

ria are met (Zhang et al., 2021a). Second, trigger095

fine-tuning in the two-stage design is not prepared096

for the few-shot learning settings. Fine-tuning typi-097

cally requires a larger dataset to avoid over-fitting098

and the sequential optimization for trigger and for099

a trigger-free model propagates errors, causing a100

considerable degradation in model performance.101

In this paper, we propose PromptFix, a novel102

few-shot backdoor mitigation algorithm featuring103

adversarial prompt tuning. It keeps the backdoored104

model completely frozen and expands the model105

vocabulary with two extra sets of soft tokens to en-106

code triggers and fixing prompts. The objective of107

the trigger tokens is to simulate the backdoor behav-108

ior, whereas the prompt tokens are meant to nullify109

the trigger tokens’ impact. Specifically, we formu-110

late the few-shot backdoor removal problem with111

an adversarial prompt tuning formulation where we112

first optimize the trigger token to find the worst-113

case backdoor triggers of the current model (with114

the prompt tokens) and then optimize the prompt115

token for mitigating even the strongest backdoor.116

PromptFix better preserves accuracy of the original117

model in the few-shot training settings while reduc-118

ing the ASR (attack success rate) of backdoors to a119

comparable or even lower level of that in existing120

works.121

2 Related Works 122

Backdoor Attacks Backdoor attacks inject triggers 123

into a neural network (NN) and enable adversaries 124

to manipulate the network’s output when triggers 125

are presented. Numerous works in computer vision 126

(Shafahi et al., 2018; Zhong et al., 2020; Saha et al., 127

2020; Xiang et al., 2021) have demonstrated the 128

susceptibility of NNs to various backdoors. Yet 129

it was not until recently that more efforts are de- 130

voted to backdoors in the NLP domain. The lag- 131

ging behind is largely due to the fact that textual 132

data are discrete, amorphous, and highly abstract, 133

in sharp contrast to those image triggers. Chen 134

et al. (2021) follows the established data poison- 135

ing framework in CV but uses spelling, occurrence 136

of certain words or specific sentence structures as 137

triggers of their backdoors; Boucher et al. (2022) 138

suggested using invisible or similar looking Uni- 139

code characters for triggers to improve their covert- 140

ness; Pan et al. (2022) triggers their backdoors 141

with certain writing styles which is even less dis- 142

cernible. Another line of work focuses on expand- 143

ing backdoor attacks from tasks-specific NLP mod- 144

els to PLMs. For example, Shen et al. (2021) and 145

Xu et al. (2022) both proposed backdoor attacks 146

to compromise language models and penetrate all 147

classification models that use them as backbones. 148

Backdoor Defence Backdoor detection is the 149

currently most explored topic regarding defense 150

against NLP backdoors. Current detection meth- 151

ods fall into two major categories. One of them 152

assumes no access to the model to be protected and 153

examines the inputs to identify possible triggers 154

in them. ONION (Qi et al., 2021a), for instance, 155

makes the decision according to the perplexity of 156

the input. The other line of works relies on trigger 157

inversion to search for a trigger of the backdoor 158

in the model and determines whether the model is 159
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Trojaned based on how well that trigger invokes160

the backdoor behavior. Azizi et al. (2021) trains a161

sequence-to-sequence model to generate triggers162

from victim models. DBS (Shen et al., 2022) and163

PICCOLO (Liu et al., 2022) use gradient ascent164

to approximate the possibility of each token in the165

vocabulary being part of the trigger.166

Adversarial Backdoor Unlearning Adversarial167

backdoor unlearning aims to fix compromised mod-168

els by removing the backdoor behavior through an169

adversarial training procedure (Madry et al., 2018).170

Currently, most works in adversarial backdoor un-171

learning focus on computer vision tasks. I-BAU172

(Zeng et al., 2021) first formulates the backdoor re-173

moval problem as a minimax bi-level optimization174

problem and utilized the implicit hypergradient to175

help solve the problem. ANP (Wu and Wang, 2021)176

trains an input perturbation and a mask of the neu-177

rons in the victim models, such that the perturba-178

tion triggers the backdoor and the mask shutdown179

the neurons that contributes to the backdoor. AWP180

(Chai and Chen, 2022) replaced the mask of neu-181

rons with a mask of parameters. The finer control182

of the models enables adversarial pruning for mod-183

els where the number of neurons is small. However,184

there haven’t been many attempts to adapt such185

methods to NLP and DBS (Shen et al., 2022) is the186

only work that has explicitly discussed this.187

Automatic Soft Prompt Tuning GPT-3 (Brown188

et al., 2020) has exhibited the use of prompting189

as a powerful few-shot tuning method for PLMs.190

By handcrafting prompts to describe an NLP task,191

the task can be transformed into a text generation192

problem so PLMs can solve it without much tuning193

by exploiting the copious information already em-194

bedded in them. Shin et al. (2020) introduced Au-195

toPrompt to search for better prompt systematically196

and it also extends prompt token from hard ones197

to soft ones as well. Soft prompts are prepended198

to the input just like real-text prompts, but their199

embeddings are tunable like an extra set of model200

parameters. P-tuning v2 (Liu et al., 2021) extends201

the use of soft prompts from the input layer to every202

layer of a transformer model and further expends203

the power of prompt tuning.204

2.1 Preliminaries205

Backdoor Attacks on NLP. Consider a victim206

classification model f parameterized by θ, a be-207

nign input sequence x, and the corresponding208

ground truth label y. A typical backdoor attack209

aims to mislead the classification model into target210

class y′ when the trigger pattern is presented, i.e., 211

f (A (x, t) ;θ) = y′ where t denotes the trigger, 212

and A denotes the trigger injection function to in- 213

ject t into x (Gu et al., 2017; Liu et al., 2018). For 214

NLP tasks, usually the triggers t are defined as cer- 215

tain characters (Chen et al., 2021; Boucher et al., 216

2022), words (Chen et al., 2021; Xu et al., 2022) 217

or phrases (Chen et al., 2021; Dai et al., 2019), and 218

the trigger injection function A is usually random 219

insertion, i.e. the backdoor is activated as long as 220

the t can be found in the input. There also exist 221

more complicated trigger injection functions for 222

improving the stealthiness of the backdoor attack 223

(Zhang et al., 2021a). For example, in the TrojAI 224

datasets1(IARPA, 2020), some backdoors are only 225

triggered when the trigger phrases are inserted into 226

the first or second half of the input sequences. 227

Two-Stage Backdoor Removal. Existing back- 228

door removal methods (Wang et al., 2019; Shen 229

et al., 2022) rely on trigger inversion to approxi- 230

mate the real trigger of the backdoor and then re- 231

move the backdoor by fine-tuning the victim model 232

on data with the found trigger and correct labels. In 233

general, the process can be described as solving the 234

following two optimization problems in sequence. 235

For the trigger inversion stage, we have 236

t̂ = argmin
t∈∆

E(x,y)∼D
[
L
(
f (A (x, t) ;θ) , y′

)]
, 237

where ∆ denotes the constraints we set for trig- 238

gers. Once the inverted trigger is obtained, we can 239

remove the potential backdoor via the following 240

model fine-tuning process: 241

θ̂ = argmin
θ

E(x,y)∼D

(
L
(
f
(
A(x, t̂)

)
, y;θ

)
+ 242

L (f (x) , y;θ)
)
. 243

Despite being intuitive, such two-stage backdoor re- 244

moval strategies also have some major drawbacks: 245

• Successful backdoor removal requires that t̂ ac- 246

curately approximates the real trigger t, which is 247

difficult to achieve due to the discrete nature of 248

textual triggers. Empirically, the triggers found 249

by DBS are only remotely related to the actual 250

triggers injected (see table 1). 251

• The trigger approximated is specific to the choice 252

ofA and y′. When the trigger injection methodA 253

has many possible configurations or the number 254

1TrojAI competition: https://pages.nist.gov/trojai/
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of classes is large, the search space of (A, y′)255

grows exponentially and brute-force searching in256

existing methods will no longer be feasible.257

• Trigger fine-tuning requires a relatively large258

dataset to prevent overfitting which makes it not259

suitable in the few-shot settings.260

2.2 Adversarial Prompt Tuning261

To mitigate the above-mentioned drawbacks of the262

two-stage backdoor removal methods, we propose263

PromptFix, a novel few-shot backdoor mitigation264

strategy via adversarial prompt tuning. Figure 1265

illustrates the concept of removing backdoors with266

prompt that lies behind PromptFix.267

Compared with existing solutions, we made268

three major changes: 1) PromptFix replaced the269

two-stage design with adversarial optimization to270

allow the backdoor to be identified and removed271

gradually until even the worst possible trigger is272

nullified; 2) instead of hoping to exactly reconstruct273

the ground truth trigger in real texts, PromptFix274

doesn’t map soft trigger tokens into hard ones for275

removing and makes use of expressiveness in soft276

tokens to eliminate the need to enumerate possi-277

ble backdoor configurations; 3) the backdoor is278

removed via prompt-tuning instead of fine-tuning,279

which keeps the original model parameters intact280

and is less likely to overfit in few-shot settings.281

Specifically, we formulate PromptFix based on282

the following bi-level optimization problem:283

min
p

E(x,y)∼D

[
wp · LCE(fθ(p⊕ x), y)︸ ︷︷ ︸

Lp

− (1)284

min
t
LCE(fθ(p⊕ t⊕ x), y′)︸ ︷︷ ︸

Lt

]
,285

where ⊕ denotes the concatenation operation, wp286

is a hyper-parameter to balance the two losses, p287

denotes the fixing prompt and t is the approximated288

(soft) trigger. Denote the minimizer of eq. (1) as289

pfix and the resulting backdoor-removed model can290

be written as ffix(x) = fθ(p
fix ⊕ x). Intuitively291

speaking, the first loss term Lp in eq. (1) aims to292

ensure that p doesn’t hurt the model performance293

on benign data, while the second loss term Lt aims294

to find out how to best trigger the backdoor in the295

model.296

The use of adversarial tuning and soft tokens297

also allows us to save the effort to enumerate dif-298

ferent backdoor configurations, like the position of299

the trigger injection can be accounted for by the 300

embedding. See appendix A for discussions on 301

why PromptFix has the potential of automatically 302

adapting to various backdoor configurations. The 303

gradual removal of the backdoor in adversarial tun- 304

ing also makes PromptFix compatible with conven- 305

tional prompt tuning which is not possible for two- 306

stage methods. The integration of PromptFix into 307

prompt tuning resembles adversarial training and 308

the details on how to augment any prompt tuning 309

process with PromptFix are saved in appendix B. 310

2.3 Benign Prompt Regularization 311

Note that the first term (i.e., Lp) in eq. (1) is for 312

making sure the fixing prompt will not affect the 313

model’s natural accuracy when the input samples 314

are free of triggers. However, under few-shot set- 315

tings, such a term could also lead to overfitting 316

behavior on p. Therefore, in order to minimize the 317

influence brought by the fixing prompt, we need a 318

stronger regularization term for producing a “be- 319

nign” prompt. Consider splitting the model f into 320

g ◦ ϕ, where ϕ is a pre-trained language model 321

which supposedly generates a condensed represen- 322

tation (vector or text) of x and g is the classification 323

head/verbalizer that maps this representation into a 324

class label. For BERT-like ϕ, the extracted feature 325

of x is often stored in the output embedding of the 326

special token CLS. Then our benign prompt reg- 327

ularization can be formulated with the following 328

loss: 329

LCLS = LMSE(ϕθ(x), ϕθ(p⊕ x)). (2) 330

By using the victim model itself as a reference, 331

PromptFix doesn’t need a benign model. This leads 332

to the complete optimization problem for Prompt- 333

Fix: 334

min
p

(
wp · Lp + wCLS · LCLS +min

t
Lt

)
. (3) 335

Since the fixing prompt p and the inverted trigger t 336

are coupled in the adversarial optimization formu- 337

lation, the added LCLS provides implicit constraints 338

in optimizing t even though we didn’t provide ex- 339

plicit constraints on it. 340

2.4 Bi-level Optimization in Practice 341

To practically solve the bi-level problem in eq. (3), 342

we follow Projected Gradient Descent (PGD) 343

(Madry et al., 2019) to solve the inner and outer 344

optimization problems alternatively. Similar strate- 345

gies are also used in FreeLB (Zhu et al., 2019). 346
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DBS ##rani grandmaster ambassador property epic properties covert powerful renaissance stress
Ground truth intense felt constitutions immensity

DBS backstage abroad preserved cockpit descriptions ##ometer antilles ##chrome only greta
Ground truth frankly show remark certainly alliances aware

DBS ##ize ##ount necklace ##ttes ##bm spin terminology securities manufactures ##gles
Ground truth tale

Table 1: Examples of recovered triggers by DBS (Shen et al., 2022) vs. ground truth triggers.

Algorithm 1: PromptFix optimization
Input: backdoored model f = ϕ ◦ g,

targets class y′, few-shot dataset of
{x(i), y(i)}

1 foreach x(i) do
2 φ(i) ← ϕ(x),L(i) ← CE (f(x), y)
3 end
4 for 1 to num_round do
5 Initialize p = 0, t = 0
6 for 1 to num_trigger_step do
7 Sample x from training data
8 Lt ← CE (f(p⊕ t⊕ x), y′)

9 end
10 for 1 to num_prompt_step do
11 Sample x, y,φ from training data
12 L′t ← CE (f(p⊕ t⊕ x), y) ·

max (L′t − L+ ce_threshold, 0)
13 LCLS ← MSE (ϕ(p⊕ x),φ)
14 p← p−αp ·∇p(L′t+αCLS ·LCLS)

15 end
16 end

As detailed in alg. 1, PromptFix involves 3 dif-347

ferent forward paths characterized by their inputs.348

The path of the unmodified x (L2) runs only once349

for each x to compute ϕ (x) as the ground truth350

feature in LCLS. The path of p ⊕ x (L13) runs351

when optimizing p, and the path of p ⊕ t ⊕ x352

(L8, L12) is shared between the steps optimizing353

p and t. In eq. (1), the outer optimization should354

maximize Lp = LCE(f(p ⊕ t ⊕ x), y′), but in355

practice, the outer optimization problem minimizes356

L′p = LCE(f(p⊕ t⊕ x), y) instead.357

The actual learnable parameters for the fixing358

prompt is in line with word embeddings, i.e. p =359

[p1 · · ·pnum_prompt] where pi ∈ Rd with d repre-360

senting the hidden dimension size of the trans-361

former model. While, that for the trigger is de-362

signed as a linear combination of possible token363

embeddings, so t = [t1 · · · tnum_trigger] and each364

SoftMax(ti) is modeled as a discrete distribution 365

over the vocabulary. Here ti ∈ R|V|, and the equiv- 366

alent embedding for each trigger token is 367

∑
k∈[|V|]

exp (ti;j)∑
j∈[|V|] exp (ti;j)

· ek 368

where V is the vocabulary, ek refers to the input 369

embedding of token k, and a temperature parameter 370

for SoftMax can also be adopted to manipulate the 371

degree of concentration of the distribution. Despite 372

that t needs to be turned into the embeddings above 373

to participate in the computation of a transformer 374

model, t is overloaded to denote the embeddings 375

as well, so it looks symmetric with p and avoids 376

tedious notations. 377

The use of a distribution instead of an embed- 378

ding promotes the fact that trigger token have to 379

be existent in the vocabulary. While by performing 380

temperature scaling but not mapping t to the most 381

likely token as in DBS, we maintain the slackness 382

to bear extra information with non-zero weights. 383

2.5 CE Loss threshold 384

A model can overfit if the output logits are over
concentrated for the sake of lowering the cross-
entropy loss when the predictions see no changes
(Salman and Liu, 2019). As a result, PromptFix
employs following threshold on the loss (L12 in
alg. 1)

max
(
L′t − L+ ce_threshold, 0

)
where L is the loss computed from the model with- 385

out trigger or fixing prompt, which serves as a 386

reference of the natural loss the model can achieve. 387

Note that the reference model is exactly the model 388

to be fixed, not a benign model as used in DBS. 389

Intuitively, the optimization is turned off when 390

L′t is lower thanL by ce_threshold. With smaller 391

or even negative ce_threshold, PromptFix be- 392

comes more tolerant of the cross-entropy loss and 393
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becomes less likely to undermine the clean accu-394

racy. Shutting down the outer optimization loop395

also adaptively adjust the relative strength of trig-396

ger finding and removal, allowing for the inner397

loop to have a higher chance of finding leftover398

backdoor event after the most obvious parts have399

been found. In practice, an average loss of the cor-400

rectly predicted cases can be used for a good start401

of ce_threshold.402

2.6 Target Label Selection403

Note that eq. (1) assumes we already know the tar-
get class while in practice we need to decide what
is the potential target class. To do that, PromptFix
computes the mean of training ASR throughout the
removal process and subtracts its standard devia-
tion to represent the average backdoor evidence
found, i.e.

∆yi = ASRtrain;yi − λ · std (ASRtrain;yi)

where λ is a hyperparameter. The cumulative mean404

of ASR measures the strength of the backdoors405

discovered across adversarial rounds given that the406

ASR always attenuates in the prompt tuning stages407

despite the choice of the right or the wrong target408

labels, while the negative standard deviation pro-409

motes more stable training curves. For a wrongly410

selected target label, the backdoor found out of411

nowhere is reasonably weaker than the real back-412

door, and these fake backdoors causes the model413

fixed with the fixing prompt to behave unnecessar-414

ily different from its original state causing drastic415

changes in ASR. Therefore, the average backdoor416

evidence when the target label is wrong should417

be lower than when it is correct, and we choose418

i = argmaxj ∆yj as the predicted target label. λ419

decides the relative importance of strength of the420

backdoor and stability of the resulting fixed model421

in distinguishing the backdoors encountered by the422

correct and wrong choice of target labels. In prac-423

tice, we find similar label decision results with λ424

varying from 0.5 to 2, and eventually 1 is used for425

simplicity.426

3 Experiment & Results427

3.1 Performance Evaluation on TrojAI428

In this section we evaluated PromptFix using Tro-429

jAI(IARPA, 2020). TrojAI is a dataset of model-430

backdoor pairs designed for a backdoor detection431

competition held by NIPS. We focus on Round 6432

of this competition, where the victim models are433

binary text classification models trained and poi- 434

soned on the AmazonReview dataset. Each back- 435

doored model in TrojAI contains a language model 436

backbone and an LSTM/RNN cell or a linear layer 437

serving as the classification head where a backdoor 438

resides. Each backdoor is specified by its trigger 439

text in the form of characters, words or phrases, the 440

target class label, and a condition for the backdoor 441

to be activated, e.g. spatial constraints of where the 442

trigger should be inserted 443

We utilize 100 different poisoned models in its 444

holdout dataset with DistilBert as their backbones. 445

To simulate an extremely few-shot scenario, we 446

limited the access to as low as 2 or 4 training sam- 447

ples to simulate the very-few-shot senario. 448

For the baseline, we compare PromptFix with 449

DBS(Shen et al., 2022). Being designed prioritiz- 450

ing backdoor detection, DBS assumed access to a 451

benign model for reference during trigger inversion 452

which isn’t reasonable here, so the regularization 453

term depending on it is deleted. Since DBS was 454

not prepared for few-shot tuning, we also updated 455

the learning rate and the number of maximum train- 456

ing steps to better accommodate it for the use case 457

(detailed in appendix E). Despite the only baseline, 458

DBS is a representative of all two-stage removal 459

methods, given that different methods of this kind 460

only differs in how triggers are being approximated 461

while the removal part is just regular fine-tuning, 462

and DBS already ranked first in this TrojAI compe- 463

tition. 464

Tables 2 and 3 summarize the backdoor mitiga- 465

tion performance of PromptFix and PromptFix* vs. 466

DBS in the TrojAI experiment under 2-shot and 4- 467

shot settings. PromptFix* refers to PromptFix with 468

the CE loss threshold enabled. A handful of un- 469

labeled data is also made available to PromptFix* 470

(see appendix C) for regularization use. PromptFix 471

achieves comparable ASR with DBS while man- 472

ifesting a significant lead in the clean accuracy. 473

PromptFix* further improves the performance so 474

that both the clean accuracy and ASR outperforms 475

DBS. 476

Especially when the actual trigger is a character, 477

DBS sees a larger gap with PromptFix because 478

the sequence of trigger tokens injected in the DBS 479

trigger inversion stage favors words and phrases 480

over characters. 481

3.2 Applicability under Domain Shift 482

Besides removing backdoors with the target dataset 483

being identical to the dataset used for poison train- 484
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Method
character word&phrase overall

Acc ASR Acc ASR Acc ASR

Original 88.45 88.02 88.46 92.56 88.4 91.06

DBS 65.01 18.92 63.64 9.18 64.08 12.33

PromptFix 80.36 18.07 73.70 16.36 75.92 15.93

PromptFix* 79.21 17.64 70.03 8.98 73.38 12.88

Table 2: Performance across different backdoor config-
urations in 2-shot settings

Method
character word&phrase overall

Acc ASR Acc ASR Acc ASR

Original 88.45 88.02 88.46 92.56 88.4 91.06

DBS 71.82 12.18 70.93 9.84 71.22 10.60

PromptFix 79.67 12.89 73.49 9.38 75.19 10.56

PromptFix* 79.67 12.54 73.51 8.88 75.20 10.00

Table 3: Performance across different backdoor config-
urations in 4-shot settings

num data
2 4 8

Acc ASR Acc ASR Acc ASR

DBS 67.14 18.82 71.49 11.99 79.63 8.37

PromptFix 72.84 16.73 73.64 10.89 77.86 4.86

Table 4: Performance when target domain differs from
the domain of data which the backdoored models are
trained with

ing, we also used IMDB as an alternative target485

data domain to emulate the process of backdoor486

removal in conjunction with few-shot domain adap-487

tion, which is a more realistic scenario for few shot488

tuning.489

Table 4 shows the performance of PromptFix490

handling target domain that is different from which491

is used for training/poisoning. PromptFix achieves492

consistently lower ASR after the removal, and493

higher clean accuracy under the extremely few-shot494

settings. Since the number of learnable parameters495

in PromptFix is significantly lower than DBS, DBS496

can better make use of the performance headroom497

when domain shifts and losing accuracy to it by a498

little when more data are available is not surprising.499

3.3 Removal of Different Backdoors500

While TrojAI already has an extensive trigger501

space, encompassing character-, word- and phrase-502

based triggers, along with the positional conditions,503

the poison training method being employed is pri-504

marily in the BadNets (Gu et al., 2017) fashion,505

which lacks diversity and is not always challenging506

enough for removal. More recent attacks, such as 507

those highlighted in benchmark research like Cui 508

et al. (2022), typically vary from it in the following 509

3 directions: 510

Poison location BadNets-like poisoning method 511

tend to result in the poisoned part clustering to- 512

wards the last layers (Gu et al., 2017) due to the 513

inherited characteristic from fine-tuning (Kenton 514

and Toutanova, 2019; He et al., 2016). To address 515

this, LWP (Li et al., 2021) introduces layer weights 516

to distribute the poison more evenly across layers, 517

while EP (Yang et al., 2021a) further constrains 518

the poisoned part to the embedding of the trigger 519

tokens only. 520

Parameter- or neuron-wise basis Classical poi- 521

soning methods are also known to be less generaliz- 522

able and may not resist fine-tuning well enough in 523

our context. NeuBA(Zhang et al., 2023) proposes 524

to poison neurons instead of parameters to make 525

the attack task-agnostic while being as effective. 526

Stealthiness Stealthiness receives less attention 527

in many even established attack methods, as rare- 528

tokens and syntactically improper sentences are 529

adopted as triggers and the change in semantic 530

meaning brought by the triggers are often over- 531

looked. SynBkd(Qi et al., 2021c) uses certain sen- 532

tence structure as the triggers and rewrites benign 533

samples into poisoned samples of equivalent con- 534

tents, and TrojanLM(Zhang et al., 2021b) relies on 535

another language model to generate natural-looking 536

poisoned samples while minimizing the compro- 537

mise of the original meaning. 538

Given these varying attack strategies, we investi- 539

gated the effectiveness of PromptFix in removing 540

LWP, EP, NeuBA SynBkd and TrojanLM back- 541

doors to have a comprehensive look at its per- 542

formance across different attacks. Each attack is 543

launched at a BERT-based model targeting SST-2 544

with the sample configuration in its original paper. 545

As shown in table 5, PromptFix demonstrates 546

considerable advantage in all the attacks. When 547

the poisoning method differs from the assumptions 548

made by DBS, DBS still is able to remove the back- 549

doors to a considerable extent but at a much higher 550

cost of undermining the benign performances. 551

3.4 Ablation Studies 552

Number of trigger tokens Both PromptFix and 553

DBS use 10 triggers in the main experiment. We se- 554

lected 10 backdoored models out of TrojAI where 555

the trigger consists of at least 6 tokens and inves- 556

tigate if PromptFix is capable of removing back- 557
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Backdoor
LWP NeuBA EP TrojanLM SynBkd

Acc ASR Acc ASR Acc ASR Acc ASR Acc ASR

Original 91.32 99.78 92.04 60.77 90.61 100.00 90.99 87.72 90.50 90.79

DBS 78.20 45.18 81.88 27.08 73.04 12.61 87.67 53.07 81.27 62.50

PromptFix 90.17 21.60 91.43 10.31 90.44 12.94 85.61 34.87 89.13 55.92

Table 5: Backdoor removal performances across different backdoor attacks

doors when the available number of tokens in t is558

lower than that. Table 6 and Table 7 shows the559

results when the number of trigger tokens varies560

between 1, 2, 5 and 10. These trials share the same561

hyper-parameters optimized for 10 trigger tokens.562

PromptFix turns out to be benefiting from more563

trigger tokens but even with insufficient number of564

tokens, PromptFix can already remove backdoors565

to a satisfactory extent.566

num trigger 1 2 5 10

Acc 80.34 77.99 75.10 78.78

ASR 76.04 53.26 30.04 20.23

Table 6: Impact of trigger token count in 2-shot settings

num trigger 1 2 5 10

Acc 81.38 80.34 77.70 75.27

ASR 69.96 54.75 39.72 14.25

Table 7: Impact of trigger token count in 4-shot settings

Number of prompt tokens The number of567

prompt tokens is an important hyper-parameter for568

adjusting the strength of backdoor removal. We569

use the same subset of models as in section 3.4570

and the results can be found in table 8. Using two571

prompt tokens can already remove the backdoors572

pretty well and when increasing the number of to-573

ken from 5 to 10, there is no apparent improvement574

on the performance. Hence, a number of prompt575

tokens larger than 5 is enough for 10 trigger tokens.576

Less few-shot settings The advantage of577

PromptFix over existing methods is most signif-578

icant in the extremely few-shot settings and it is579

questionable if PromptFix only works without suf-580

ficient data. We tested PromptFix with access to 20581

examples in each class on 10 backdoored models582

and verified that PromptFix is applicable to less583

few-shot settings as well and the results are in ta-584

ble 9.585

num prompt 1 2 5 10

Acc 87.34 75.98 72.07 75.27

ASR 56.19 20.94 17.73 14.25

Table 8: Impact of prompt token count in 4-shot settings

num data 2 4 20

Acc/ASR 81.64/17.50 80.22/15.70 81.52/6.82

Table 9: Performance of PromptFix when different num-
ber of training data is available

4 Conclusion & Discussion 586

PromptFix is the first attempt to use prompt-tuning 587

for backdoor removal, and it is also the first NLP 588

backdoor mitigation method to be specifically de- 589

signed with few-shot tuning in mind. It is capable 590

of maintaining model performance better, while 591

reducing ASR to comparable or even lower values 592

comparing with the best existing method. The ad- 593

versarial prompt tuning formulation makes Prompt- 594

Fix compatible with domain adaptation and can 595

easily augment any prompt-tuning process. The 596

use of soft tokens instead of hard ones saves the 597

effort of enumerating through various possible con- 598

ditions with a fixed trigger injection method only, 599

allowing it to automatically adapt to other trigger 600

types without the need to manually emphasize them 601

in the search space. These desirable properties in 602

PromptFix give rise to more efficient backdoor mit- 603

igation, and since the patch is much smaller com- 604

paring with the entire model, PromptFix makes it 605

easier to publish fixes to an already released model, 606

contributing to responsible releases of AI models. 607

5 Limitations 608

As is shown in section 3.3, despite being able to 609

adapt to more attack settings and induce better re- 610

moval performances, the removal is not necessarily 611

complete. There are attacks that still preserves 612

considerable ASR after being PromtFixed and also 613

attacks that lies towards the blind regions of prompt 614
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tuning at which PromptFix becomes less effective.615

These all means that PromptFix is not a comprehen-616

sive defending solution, and hence as is discussed617

in appendix F, it is better combined with some sim-618

ple voting-based defensive methods. Although we619

have made PromptFix easy enough to incorporate620

such additional parts, voting is still an extra part621

of LLMs that is more or less independent and we622

still need to look for an more all-round backdoor623

removal method so we can end up with a seamless624

replacement of the backdoored models.625

In addition, due to a lack in good evaluation met-626

rics for general-purpose text generation tasks. In627

spite of the emergence of NLG backdoor methods628

(Xu et al., 2023; Zhao et al., 2023), the extension629

of PromptFix to NLG is yet to come.630
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A Auto Coverage of Conditional847

Backdoors848

In eq. (1), the inner minimization problem aims to849

recover strong trigger token embeddings that sim-850

ulate the backdoor behavior even with the fixing851

prompt working against it, while the outer mini-852

mization problem aims to adjust the fixing prompt853

accordingly to nullify the impact of the trigger854

tokens while keeping the model performance on855

clean data. Through such a two-level optimization856

problem, the final outer minimizer obtained (i.e.,857

p∗) would be able to mitigate the impact of the858

backdoor. Such a design allows us to keep the vic-859

tim model frozen while nullify the backdoor but860

augmenting the input.861

Note that in eq. (1), we directly concatenate the862

soft tokens with the input without bothering with863

the elusive trigger injection function. This is be-864

cause, soft tokens are more expressive than hard865

tokens and adversarial optimization allows back-866

doors to be removed gradually.867

Take location-conditioned backdoors as an ex-868

ample. These backdoors take effects only when869

the trigger is injected into a position that satisfies870

certain criteria. To account for such conditions, the871

injection position needs to be included in the opti-872

mization problem. Since in classical transformer873

models, the positional information is integrated by874

adding non-tunable positional encoding lt to the875

token embeddings et. Consider,876

l∗t , e
∗
t = argmin

lt,et

L
(
f (Alt (x, t)) , y

′)877

f , with a slight abuse of notations, refers to the878

same model f which takes embeddings as input879

instead of computing them internally.880

Since t has to be effective for any x as long as the881

injection position is correct, injecting to a position882

is equivalent to replacing the token at that position,883

which effectively means poisoning x′ which is ob-884

tained by deleting a token first. Then the formula885

above can be rewritten as 886

l∗t , e
∗
t = argmin

bt,et

L
(
f ((lx + ex)⊕ (lt + et)) , y

′) 887

where lx, ex are the position encoding and token 888

embedding of x, which are both constants with 889

respect to the choice of t. 890

Relabeling et = lt + et and ex = lx + ex, 891

then the formula is turned back into the inner op- 892

timization problem of eq. (1) because soft tokens 893

are interchangeable with their token embeddings in 894

the formula. The same reasoning is valid for many 895

other conditions as well, for example backdoors 896

with non-adjacent trigger tokens. 897

The concept of gradual removal further allows 898

more semantically-conditioned backdoor config- 899

urations to be automatically covered because if 900

a trigger is designed to be activated in a certain 901

context, it effectively means the backdoor has a 902

collection of triggers t⊕ xc ∀xc that contains the 903

context. 904

B In Conjunction with Prompt Tuning 905

Since DBS inverts the trigger and remove the back- 906

door in a single pass, it requires the victim model 907

to have already exhibited the backdoor behavior 908

before the mitigation is applied. In the context of 909

tuning a PLM for a downstream task, however, the 910

backdoor is finalized only when the tuning is fin- 911

ished. Consider BToP (Xu et al., 2022) which poi- 912

sons a PLM with minLMSE (ϕ(A(x, t)), b) where 913

ϕ is the PLM and b is a target embedding, which 914

can be randomly generated and have no semantic 915

meaning. The trigger is injected into the model 916

before it is tuned for any down stream task, so the 917

trigger behavior cannot be effectively differentiated 918

from the benign model outcomes. Depending on 919

the tuning method, e.g. whether ϕ is frozen or not, 920

ϕ(A(x, t)) can also shift away from b and still be- 921

ing malicious. In practice, it has been observed 922

that after different tuning processes, the same t 923

can show up as triggers for a different target class, 924

which means naively applying DBS is impossible 925

in such cases. 926

On contrary, PromptFix is highly compatible 927

with conventional prompt tuning. Just like ad- 928

versarial training for tuning models more robust, 929

PromptFix can augment prompt-tuning to perform 930

adaption and backdoor mitigation at the same time. 931
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Formally, eq. (3) can be rewritten as932

min
p{cls,fix}

(
wp · LCE(fθ(pcls ⊕ pfix ⊕ x), y)︸ ︷︷ ︸

Lp

+933

min
pfix

(LMSE (ϕ (pcls ⊕ pfix ⊕ x) , ϕ (pcls ⊕ x)))︸ ︷︷ ︸
LCLS

−934

min
t
LCE(fθ(p⊕ t⊕ x), y′)︸ ︷︷ ︸

Lt

)
, (4)935

where pcls,pfix are respectively the prompt for clas-936

sification and PromptFix. The only difference be-937

tween pcls and pfix is the former one can be in-938

stantiated with embeddings of hard tokens and it939

provides reference to the latter.940

C Unlabeled Data for Regularization941

Despite the limited amount of data available when942

tuning a model for the target task, there is always an943

abundance of unlabeled and irrelevant textual data944

like Wikitext(Merity et al., 2016). We sometimes945

omits the condition on x, which is x ∼ D in eq. (2)946

and eq. (3), whereD is the few-shot training dataset.947

With unlabeled data Du, it can be extended to948

min
p

E(x,y)∼D [wp · Lp(x, y)] +949

Ex∼D∪Du

[
wCLS · LCLS(x) + min

t
Lt(x)

]
.950

While for loss of the fixing prompt Lp, the data at951

our hand are still limited to the few-shot dataset,952

the introduction of unlabeled data has provided953

stronger regularization to prevent the model from954

drifting too far from its original state. In addition,955

unlabeled data can also help with finding better trig-956

ger tokens because backdoors should be activated957

so long as the trigger that satisfies its condition958

presents, and the other parts of the input are unim-959

portant.960

D Checkpoint Selection961

While the training loss is oscillating due to the
adversarial optimization, making it much harder
for PromptFix to detect convergence than two-
stage methods like DBS. It is possible to use ∆
as defined in section 2.6 to help decide the round
in which backdoors are completely removed and
PromptFix starts to look for nonexistent backdoors
which often overfit to the small training data and
undermine the overall performances. Let ∆t for

t = 1, · · · , num_round denote the average back-
door evidence observed in round t. With the back-
door being gradually removed, the remaining back-
door in the model becomes dominated by the fake
backdoors as would appear when the label is wrong,
so we expect ∆t to converge. In practice, we
choose a δ such that

t̂ =

{
argmint∆

t ≤ δ , if mint∆i ≤ δ
num_round , otherwise

is chosen as the optimal checkpoint. δ = 0.2 em- 962

pirically gives a good result. 963

E Hyper-parameter Choice & Computing 964

Infrastructure 965

The hyper-parameters unique to PromptFix are 966

num_prompt_token=10, num_prompt_steps = 967

num_trigger_steps = 100, num_round = 25, 968

prompt learning rate is 1e-4 for the TrojAI experi- 969

ment and 5e-5 for the domain shift experiment and 970

the experiments on various other attacks, weights 971

αp = αt = αCLS = 1, and ce_threshold = -0.1 972

and the ratio of unlabeled and labeled data in each 973

batch is 1:1 whenever used. 974

For hyper-parameters shared by PromptFix and 975

DBS, most of them are kept the same as the rec- 976

ommended value in the paper of DBS, including 977

trigger learning rate of 0.5 and initial/max temper- 978

ature = 2, etc. We performed a search on the best 979

learning rate for DBS among 1e-5 to 5e-4 to bal- 980

ance the removal performance and overfitting to 981

adapt to our extremely few-shot settings: 2e-5 is 982

chosen for the TrojAI experiment and 1e-4 for the 983

rest. The maximum total number of optimization 984

steps is 5000, which is identical to that of Prompt- 985

Fix. 986

We use a single Nvidia A6000 GPU to perform 987

backdoor removal of each model and sometimes 988

multiple removal shares a single GPU. In any case 989

and for both DBS and PromptFix the process fin- 990

ishes very quickly within an hour. 991

F Study of an Individual 992

Under-Performing Case 993

As shown in the first column of table 10 Prompt- 994

Fix encounters difficulty in removing SOS(Yang 995

et al., 2021b) backdoors. SOS promotes stealthi- 996

ness by embedding triggers in words that can easily 997

form a natural sentence and using negative sam- 998

pling to make sure partial existence of the trig- 999

ger won’t falsely induce the backdoor behavior. 1000
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This happens to lie in the blind point of PromptFix:1001

The negative sampling applied estranged the trigger1002

with its semantically neighboring embeddings and1003

poses hurdles to removing the backdoor by parts1004

because partial trigger is being specially taken care1005

of. However, such stealthiness sacrifices sensitivity1006

and hence SOS backdoors can be easily mitigated1007

by masking and voting, which works along with1008

PromptFix very well as they both don’t need to1009

modify the model parameters. As table 10 shows,1010

when 5 masked (each with 5 or 10 tokens masked)1011

variants are used in voting, the ASR can be ef-1012

fectively reduced without causing any observable1013

decrease in the benign accuracy.1014

Mask Method None 5,5 5,10

Acc 90.22 90.99 90.39
ASR 72.13 59.76 31.16

Table 10: Removal of SOS with masking and voting.
Mask method m,n refers to voting between m masked
variant, each of which has n tokens masked.
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