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Abstract

Knowledge-enhanced graph learning is one of
the current frontiers for neural models of graph
data. In this paper, we propose a new approach to
enhancing deep generative models with domain
knowledge that is represented by first-order logic
rules. First-order logic provides an expressive
formalism for representing interpretable knowl-
edge about relational structures. Our approach
builds on ideas from statistical-relational learn-
ing (SRL), a field of machine learning that aims
to combine first-order logic with statistical mod-
els. One of the fundamental concepts in SRL is
rule moment matching: constrain model training
such that the expected instance count of each rule
matches its observed instance count. Our con-
ceptual contribution is to adapt this idea for deep
generative models by maximizing the (approxi-
mate) model likelihood subject to the rule moment
matching constraint. Our algorithmic contribution
is a novel method for computing the expected rule
instance count of a Variational Graph Autoen-
coder (VGAE), based on matrix multiplication.
Empirical evaluation on four benchmark datasets
shows that rule moment matching improves the
quality of generated graphs substantially (by or-
ders of magnitude on standard graph quality met-
rics).
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1. Introduction
Generative models for graphs based on graph neural net-
works (GNNs) have achieved great success in modeling
complex graphs (Hamilton, 2020). One of the current
research frontiers is enhancing graph learning with do-
main knowledge (Tian et al., 2024). Different enhance-
ment methodologies are appropriate for different types of
knowledge (e.g., knowledge from models, humans, external
sources). In this paper, we consider leveraging knowledge
in the form of a first-order logic knowledge base (Russell &
Norvig, 2010), comprising a set of if-then rules. An example
rule would be “If person X works in city Y , then X lives in
city Y (with probability p)” (see Appendix Figure 5(a)).

Advantages. Logical rules have several advantages for
enhancing graph learning. (1) Expressiveness: First-order
rules are one of the most common formalisms for represent-
ing domain knowledge in AI and database systems (Russell
& Norvig, 2010). (2) Interpretability: If-then rules are easily
understood by users and domain experts. In this work we de-
rive rules from a causal graph, which facilitates an intuitive
qualitative interpretation in terms of causal relationships,
and allows the set of rules to be visualized perspicuously.
(3) Learnability: The field of statistical-relational learning
has developed statistical methods for learning rules from
a heterogeneous training graph, known as structure learn-
ing. (4) User Control: Users can control the behavior of the
final graph generation system by specifying and/or reject-
ing rules. We utilize a mixed-initiative structure learning
method, where users can partially specify a causal graph,
and the system completes it based on data. (5) Graph Real-
ism and Data Efficiency: When the first-order rules capture
valid patterns, constraining graph learning to match them
leads to more realistic graphs. Even when GNNs have the
expressive power to capture these patterns through embed-
dings, presenting them to the GNN explicitly as constraints
speeds up learning because less data is needed to learn them.

Approach. Figure 1 shows our system components. We
build on fundamental ideas from statistical-relational learn-
ing (SRL) and show how they can be combined with deep
graph generative models (GGMs). SRL is an area of ma-
chine learning that combines first-order logic with statistical
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Figure 1. System Overview for Rule-Enhanced Graph Learning

models (Raedt et al., 2016). A fundamental concept of SRL
is rule moment matching (Domingos & Lowd, 2019; Rus-
sell, 2015; Kuzelka et al., 2018). The general idea is that a
rule can be viewed as specifying a motif or subgraph pattern
with an instance count in a given graph (for illustration see
Appendix Figure 5). Rule moment matching requires that
the expected rule instance count from a model should match
the observed rule count in a training graph. Our novel
GGM training objective is to maximize the GGM likelihood
subject to rule moment matching.

Our algorithmic contribution is a differentiable new matrix
multiplication method for computing observed and expected
rule instance counts. We show that for every rule (satisfying
a minor syntactic constraint), there is a corresponding se-
quence of adjacency matrices, such that i) the observed rule
count is obtained by multiplying data adjacency matrices,
and ii) the expected rule count is obtained by multiplying
expected adjacency matrices. A well-known special case is
calculating the number of triangles in a graph through the
third power A3 of its adjacency matrix.

Evaluation. Our methodology uses an A-B design where
we compare training a variational graph auto-encoder
(VGAE) (Kipf & Welling, 2016) with and without rule mo-
ment matching, on five benchmark datasets. To learn rules,
we deploy the Factorbase system, which uses Bayesian net-
work structure learning to find a comprehensive set of prob-
abilistic rules (Schulte & Khosravi, 2012; Qian & Schulte,
2015). We find that rule-enhanced VGAEs score better than
standard VGAEs on several metrics: (1) They generate more
realistic graphs, by orders of magnitude, as measured by
SOTA graph quality metrics (F1 MMD) (Thompson et al.,
2022; O’Bray et al., 2022). (2) On the downstream task
of node classification, the rule-enhanced VGAE node em-
beddings improve accuracy compared to standard VGAE,
whereas the link prediction accuracy remains the same.

Contributions Our main contributions can be summa-
rized as follows.

• A new objective function for enhancing generative
graph learning with domain knowledge represented

by logical rules.

• A new matrix multiplication algorithm for counting the
number of rule instances in a graph.

• A new algorithm for estimating the expected number
of rule instances for a Variational Graph Autoencoder
model, based on matrix multiplication.

• Two extensions of the previous VGAE model:

– VGAE+ generates node features and edge types.
– VGAE+R uses the new objective function to

train a VGAE+ model that matches rule instance
counts.

2. Related Work
Our work falls under the heading of neuro-symbolic AI, a
cutting-edge field of AI that aims to combine symbolic for-
malisms, such as first-order logic, with neural network learn-
ing. For surveys of neuro-symbolic AI, please see (Raedt
et al., 2020; Garcez & Lamb, 2023). Within neuro-symbolic
AI, our approach belongs to the family of semantic loss
frameworks where the training objective is enhanced with
symbolic knowledge, but the trained system is a standard
NN model (in our case, a deep GGM) that does not uti-
lize rules at test time. In contrast, rule-based approaches
utilize rules at test time, for example to perform symbolic
reasoning (Raedt et al., 2020; Qu et al., 2021). Compared to
other semantic loss approaches, our main novelty is that we
incorporate knowledge expressed in first-order logic, rather
than the less powerful formalism of propositional logic (Xu
et al., 2018; Garcez & Lamb, 2023).

Deep graph generative models. The closest predecessor
to our work is the constrained VGAE model of (Ma et al.,
2018) where a VGAE likelihood is maximized subject to
a constraint of the form g(θ) = 0. While this general
form covers rule matching, the work of Ma et al. does not
incorporate first-order logic for specifying graph patterns,
nor does it address computing pattern counts.

In principle the rule-enhanced likelihood objective can be
used for maximum likelihood training with any deep graph
generative model. We selected VGAEs as our base model
for several reasons. (1) They are a well-established and
widely used GGM. (2) They support learning from a sin-
gle large graph, rather than from a set of graphs (Faez
et al., 2021). Rule learners also utilize the single-graph
setting (Qian & Schulte, 2015; Meilicke et al., 2024), so
the VGAE input data are compatible with the rule learner
input data. (3) As we show in this paper, the conditional
link independence assumptions of VGAEs facilitates the
computation of expected rule instance counts. We believe
that extending rule moment matching to other generative
models is a fruitful topic for future research.
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Maximum Entropy Moment Matching. Kuzelka et al. (2018)
show that a distribution P over graphs maximizes entropy
subject to rule moment matching if and only if P is defined
by a log-linear model known as a Markov Logic Network
(MLN) with maximum likelihood weights w. While the
maximum entropy objective is based on rule counts only,
our constrained likelihood objective can also capture local
graph patterns that complement the global graph statistics
represented by rule counts. For example, matching the num-
ber of observed triangles in a graph is unlikely to capture
community structure, or which nodes have special properties
such as centrality.

3. Variational Graph Auto-Encoder Model and
Training

We describe our generative VGAE+ model, which augments
a VGAE to generate features and labels, with training and
implementation details. Figure 2 shows the VGAE+ train-
ing architecture.

3.1. Data Format

A graph is a pair of (V,E) where V is a set of nodes of size
|V | = n andE ⊆ V ×V is a set of edges. Node features are
summarized in n× f matrix X and node labels in a n× L
matrix L where the u-th row of L is a one-hot encoding of
the label of node u. Different edge types are represented
by a set of adjacency matrices A = {A1, . . . ,AT }. The
notation Ar[u, v] = 1 indicates that there is a link u→r v
of type r from node u to node v.

3.2. VGAE+ Model

Let z be an n× d matrix that represents latent node embed-
dings. In the VGAE model, links are generated indepen-
dently given node embeddings. Following the GraphVAE
approach (Simonovsky & Komodakis, 2018), we generate
node classes and node features independently as well given
node embeddings. We thus utilize three decoder models
(see Figure 2):

pθ(A|z) =
T∏
r=1

∏
u,v

pθr (Ar[u, v]|z[u], z[v])

pψ(X|z) =
∏
u

pψ(X[u]|z[u])

pϕ(L|z) =
∏
u

pϕ(L[u]|z[u])

(1)

where pθ : Rd×Rd → [0, 1] is a trainable link decoder, pψ
is a trainable feature decoder, and pϕ is a trainable label
decoder.

Let D = (X,A) be the attributed training graph. The
graph encoder qϕ(z|X,A) is implemented by a GNN that
takes as input an attribute graph and returns latent node
embeddings. For compatibility with baseline methods, the
encoder does not receive node labels as input, but adding
them is straightforward.

A VGAE+R model is trained using the rule-matching vari-
ational ELBO objective that extends the standard VGAE
ELBO (Kipf & Welling, 2016; Hamilton, 2020):

L(θ, ψ, ϕ) = KL
(
qϕ(z|X,A)||p(z)

)
− Ez∼qϕ(z|X,A)

[α× ln pθ(A|z) + β × ln pψ(X|z) + γ × ln pϕ(L|z)

+λ/k

k∑
i=1

ρ(ni(D), E[ni(G)|z])
]
(2)

where ρ(count1, count2) ≥ 0 is a differentiable distance
metric that maps two counts to a non-negative number,
such that ρ(count1, count2) = 0 if and only if count1 =
count2. The notation E[ni(G)|z]) = EG∼P (G|z)[ni(G)]
denotes the expected rule instance count, conditional on
the node embeddings z. The hyperparameters α, β and
γ weight the importance of different reconstruction tasks.
The hyperparameter λ controls the importance of moment
matching and can be interpreted as a Lagrange multiplier.
The next section discusses how the instance count ni(G) is
defined.

Implementation of VGAE+ model For the encoder, we
used an RGCN (Schlichtkrull et al., 2018), with the Pytorch
Geometric implementation. The node embedding dimension
was 64, the number of RGCN layers 2, with separate layers
for estimating the Gaussian posterior mean and the Gaussian
posterior standard deviation for each node. We trained the
RGCN for 300 epochs. In our experiments, we set λ = 0
as the VGAE+ baseline training objective, and λ = 1 as
the training objective for a VGAE+R model that leverages
rules.

4. First-Order Logic Rules and Instance
Counts

A rule is of the form B → H where B is a conjunction
of literals known as the rule body and H is a single literal
known as the head. Most rule learners are based on dis-
criminative learning, building on classification techniques
to search for bodies that predict the head. A question re-
searched in statistical-relational learning is how to convert
a set of predictive rules to a set of graph features or graph
statistics that support generative graph modelling. For log-
linear MLNs, the recommended answer is to convert each
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Figure 2. Encoder-Decoder Training Architecture for the VGAE+ Model

rule to a conjunction ϕ = (B, H) (Domingos & Richardson,
2007, 12.5.3), (Kazemi et al., 2014; Khosravi et al., 2012).
This is known as the moralization procedure because it is a
logical analogue of the moralization algorithm for convert-
ing a directed graphical model to an equivalent undirected
graphical model (e.g., converting a Bayesian network to a
Markov random field). While a moment matching objective
can in principle be applied with any method for extracting
graph statistics from a set of rules, we follow the moral-
ization approach and utilize first-order conjunctions. We
briefly review concepts from first-order logic; the Appendix
provides full formal definitions.

4.1. First-Order Conjunctions

A functor represents a node attribute/label or relationship
of a given type. We assume that all functors are Boolean. A
unary functor f represents a node attribute/label. The nota-
tion f(u) indicates that node u has the attribute represented
by f . A binary functor Rr represents a relation of type r.
The notation Rr(u, v) indicates the existence of a link of
type r between nodes u and v.

A node variable ranges over node indices. Note that a
node variable is not a random variable, but is a place-
holder for a generic node index, analogous to a variable
in a programming language. For example, if node is a
node variable, the assignment node = u assigns node
index u to the node variable. A literal is of the form
R(U, V ),¬R(U, V ), f(U),¬f(U). A grounding U = u
assigns a node index from a list u to each node variable in
a list U . A graph G specifies a Boolean variable for each
ground literal. We write IG(ℓi(U = u)) for the indicator
function that returns 1 if a ground literal is true in a graph,
0 otherwise.

A conjunction is a list of literals ϕ = ℓ1, . . . , ℓs. A graph G
satisfies a ground conjunction ϕ(U = u) if it satisfies each
ground literal in the conjunction, where U includes all node
variables in the conjunction. A grounding is valid if (i) a
node variable is assigned the same node in each occurrence,
and (ii) two distinct node variables U ̸= V are assigned two
distinct nodes. The instance count for a conjunction ϕ in a

graph G returns the number of valid groundings that satisfy
the conjunction:

nϕ(G) =
∑

U=u is valid

s∏
i=1

IG(ℓi(U = u)).

Example. For the graph G shown in Figure 3,
Taughtby(Course,Professor) is a relationship
literal. A valid grounding for this literal is
Taughtby(Course = “Deep Learning”,Professor =
“Jane”). Because there is a TaughtBy link between
deep learning and Dr. Jane in the graph G, we have
IG(Taughtby(Course = “Deep Learning”,Professor =
“Jane”)) = 1. On the other hand, there is
no TaughtBy link between Deep Learning and
Tom in the graph so IG(¬Taughtby(Course =
“Deep Learning”,Professor = “Tom”)) = 1. Similarly
IG(Intelligent(Student = “Jack”)) = 1 because Jack is
intelligent.

Figure 3. An example graph containing unary and binary literals.

4.2. Expected Instance Counts

For given node embeddings z, a VGAE+ model assigns
a probability pz(ℓ(U = u)) to each ground literal. Since
literals are independent given z, the probability of a con-
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junction is just the product of the conjunct probabilities. We
can therefore define the probabilistic instance count by
replacing the 0/1 indicator values with probabilities:

nϕ(G̃z) =
∑

U=u is valid

s∏
i=1

pz(ℓi(U = u))

where G̃z is the expected graph, which is a probabilistic
graph where each link and attribute is assigned its decoder
probability pz; see Appendix Figure 6 for illustration.

Proposition 4.1. The expected conjunction count given a
set of node embeddings can be computed as the conjunction
count in the expected graph: E[nϕ(G)|z] = nϕ(G̃z)

The next section presents a matrix multiplication algorithm
for obtaining instance counts in both the observed and the
expected graphs.

5. Matrix Multiplication for Instance Counting
We describe our method briefly and informally; a formal
specification is in Appendix A.4. A conjunction with P
relationship literals ℓ1(U1, V1), . . . , ℓP (UP , VP ) is a chain
if Ui+1 = Vi for every i. A conjunction is a chain con-
junction if its binary literals form a chain. To aid intuition,
note that a chain conjunction defines a graph motif: The
relationship chain defines a path template (or metapath (Sun
& Han, 2012)) that specifies which types of links are present
(absent) in the path. The unary functors specify constraints
on what type of nodes participate in the motif.

Example. ϕ = {TakesCourse(Student = “Jack”,Course
= “Deep Learning”),Taughtby(Course = “Deep
Learning”,Professor = “Jane”)} is an example of a
grounded chain conjunction. For the graph shown in
Figure 3, IG{ϕ} = 1 because student “Jack” takes the
course “Deep Learning” taught by professor “Jane”.

The input to our counting algorithm is an in-
put graph G and a centered chain conjunction
{ℓ1(U1, V1), . . . , ℓP (UP , VP ), ℓ1(W1), . . . , ℓQ(WQ).

A chain is centered if the only node variable that appears
twice non-consecutively is the first one (formally, ifUi = Vj
and j ̸= i+1, then Ui = U1). In our experiments, we found
that all learned rules were centered. We discuss below how
our method can be extended to non-centered chains. We
construct a sequence of matrices as follows.

1. For a positive relationship literal ℓ = R(U, V ) the
initial adjacency matrix is Aℓ = Ar, the adjacency
matrix for relationR. For a negative relationship literal
ℓ = ¬R(U, V ) the initial adjacency matrix is Aℓ =

¬Ar where ¬Ar[u, v] = 1 − Ar[u, v] for all node
indices u, v.

2. Say that a unary functor ℓ(W ) matches a relationship
literal ℓ(U, V ) if U = W or V = W . For every
relationship literal ℓ(U, V ) and for every matching
grounding W = w = U , multiply the row Aℓ[w, :]
by the indicator IG(W = w) (probability for expected
counts).

Similarly for the columns, if W = w = V , multiply
the column Aℓ[w, :] by the indicator IG(W = w) If a
node w violates a unary functor constraint, its row resp.
column entries will be zeroed out, so we refer to the
resulting matrices as the masked matrices Āℓ.

3. Define the sequence of matrix multiplications Ok, k =
1, . . . , P as follows.

(a) O1 is the masked adjacency matrix for literal L1.
(b) Inductively, Ok+1 = OkĀℓk+1

. If Vk+1 = U1,
we zero out the non-diagonal entries.

The next proposition shows that the instance count for the
relationship chain can be obtained through summing over
the entries in the constructed matrix product.

Proposition 5.1. The (u, v)-th entry of Ok counts the num-
ber of groundings of a centered chain conjunction ϕ of
length k in a graph G where U1 = u and VP = v. There-
fore

nϕ(G) =
∑

(Ok(ϕ)).

Example The element (i, j) in A3 represents the number
of distinct paths of exactly 3 steps connecting node i to
node j. Our algorithm uses different adjacency matrices
to capture multiple relationship types. For example, mul-
tiplying three different adjacency matrices A, B, and C,
e.g., ABC, gives the number of length-3 paths where the
first step is from A, the second from B, and the third from
C. This generalization is more flexible than just computing
A3, as it allows analyzing complex networks with diverse
connections between nodes. For example, if A, B, and C
represent friendships, co-workers, and family, respectively,
then ABC counts paths where the first step is a friendship,
the second a co-worker relationship, and the third a family
connection. This provides a richer understanding of node
connectivity and reachability in the network.

Our construction and the correctness proof extend to proba-
bilistic adjacency matrices and unary factors, which allows
us to compute expected motif counts (see Proposition 4.1).
Another extension is to the case of nested conjunctions,
which have no crossing equalities. Say that two variable
equalities Uk1 = Vk2 and Uk3 = Vk4 cross if k1 < k3 < k2
and k2 < k4. A nested chain comprises centered chains, so
construction recursively computes instance counts.
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6. Evaluation
We detail our methodology and then discuss our empirical
results. We will make our code available on-line.

6.1. Experimental Design.

We describe our benchmark datasets, comparison methods,
and how evaluation metrics are computed.

6.1.1. DATASETS

We utilize datasets from previous studies of GGMs (Kipf
& Welling, 2016; Yun et al., 2019; Hao et al., 2020). Cora,
ACM, and CiteSeer are citation networks, IMDb is a movie
dataset. Appendix A.5 presents dataset statistics.

Data Preprocessing Following previous work (Kipf &
Welling, 2016), for GNN message passing we add self-
loops and make all links undirected (i.e., if the training data
contains an adjacency, v → u, it also contains u→ v.) Cora
and CiteSeer are homogeneous datasets, whereas ACM and
IMDb are heterogeneous datasets. Rule learning is applied
to the original data.

6.1.2. EVALUATION METRICS

We compare rule-enhanced VGAE+ training with standard
VGAE+ training, using three main metrics. In the following,
we refer to a complete dataset as the input graph. Our
evaluation metrics measure performance on two downstream
tasks, node classification and link prediction, and graph
realism, the quality of generated graphs.

Count Distance We report the root mean squared dis-
tance between the observed motif counts and the expected
motif counts in the reconstructed graph. Formally, let
D̃ be a reconstruction of the input graph D obtained
by sampling a node embedding matrix z from the en-
coder posterior qϕ(z|D) and and then applying the decoder
model Equation (1) to z. We report the mean squared dis-
tance (1/k

∑k
i=1[ni(D) − ni(D̃)]2)1/2 as the count dis-

tance (CD).

Graph Realism measures how similar graphs generated
by the model are to observed graphs. How to quantita-
tively assess generated graphs has been studied in recent
papers (O’Bray et al., 2022; Thompson et al., 2022; Shirzad
et al., 2022). The general approach proceeds in two stages:
1) For a graph G, extract a real-valued descriptor vec-
tor ϕ(G). 2) Measure the similarity µ(G, Ĝ) of an ob-
served graph G and a generated graph Ĝ by applying a
distance/kernel on real-valued vectors to their descriptors
ϕ(G) and ϕ(Ĝ). The similarity of a set of observed graphs
and a set of generated graphs can be quantified as the similar-

ity of their descriptor sets using Maximum Mean Distance
(MMD). The SOTA descriptor function utilizes a reference
embedding network GNN E . The embedder E is obtained
from random weights or pretraining and is therefore inde-
pendent of any of the models under evaluation.

We adapt the GNN-based approach to the setting of learning
from a single training graph D as follows. We compare the
training graph to generated expected graphs G̃1, . . . G̃m. An
expected graph G̃i is generated by sampling a node embed-
ding zi from the prior distribution p(z), then applying the
decoder model Equation (1) to zi. We apply an embedder E
with random weights to the training graph resp. generated
expected graphs to obtain embeddings e resp. ê1, . . . , êm.
The random GNN option does not require multiple training
graphs. The message-passing mechanism of GNNs natu-
rally extends to weighted graphs, so we can apply the GNN
embedder to expected graphs directly, rather than sampling
binary adjacency matrices/features from the expected graph.
To quantify the similarity of the generated embeddings to
the training graph embedding e, we utilize the MMD metric
with a linear kernel, which is recommended by (Thompson
et al., 2022) for measuring the realism of generated graphs.
Unlike Count Distance, the MMD metric is completely in-
dependent of the training objective.

Link Prediction To compute a link prediction score, fol-
lowing (Kipf & Welling, 2016) we randomly divide the
links in the input graph into training links and test links
(80%/20%). The training graph includes the training links
and all nodes from the input graph. At test time, we use the
node embeddings from the training graph to predict the test
edges (Kipf & Welling, 2016).

Node Classification To compute a node classification
score, we randomly divide the nodes in the input graph
into training and test nodes (80%/20%). The training graph
is the input graph but with the test node labels removed. At
test time, we run the encoder on the input graph to obtain
node embeddings for all nodes, then apply the decoder to
predict node labels for the test nodes.

6.1.3. COMPARISON METHODS.

Rule Learning We used the Factorbase system (Qian &
Schulte, 2015; Schulte & Khosravi, 2012) with default set-
tings. Factorbase is the most scalable system for learning
first-order generative graphical models with state-of-the-art
predictive performance. Factorbase outputs directed prob-
abilistic rules B → H; p, where H is a literal, B is a
conjunction, and p, is a conditional probability P (H|B).

As a rule quality metric for pruning, we use
2n(B, H) ln(n(H|B)/n(H))− lnn(H). Here the counts
n are computed with respect to the training data D. The
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Table 1. Count Distance with and without rule-enhancement.

DATASET CORA CITESEER IMDB ACM

VGAE+ 4233.6 4085.6 137612.3 36572.1
VGAE+R 797.2 523.56 14373.3 12984.5

Table 2. Graph Realism MMD F1 metric.

DATASET CORA CITESEER IMDB ACM

VGAE+ 2.8E+12 6.8E+11 1.7E+19 1.9E+15
VGAE+R 1.2E+10 2.6E+9 7.8E+15 4.5E+15

conditional count is given by n(H|B) = n(H,B)/n(B).
This metric computes the increase in the log-probability of
the head given the body, relative to the prior probability of
the head, together with a BIC-type correction for sample size
(Schulte & Gholami, 2017). We keep all rules whose quality
metric is above 0, which can be interpreted as a positive
local BIC model selection score. Rule pruning reduces the
number of rules for scalability, and also simulates the impact
of a domain expert selecting the most important rules.

VGAE+R model For the distance metric ρ that compares
an expected rule count with an observed row count we use

ρ(ni(D), E[ni(G)|z]) = | lnni(D)− lnE[ni(G)|z])|

The magnitude of conjunction counts grows exponentially
with the number of node variables in the conjunction. Com-
paring expected counts on a log-scale decreases the impact
of the number of variables and improves numeric stability.

6.2. Experimental Results

We first evaluate the quality of the generated graphs, then
the VGAE effectiveness on downstream tasks.

6.2.1. COUNT DISTANCE AND GRAPH REALISM

Table 1 shows the difference between expected and ob-
served rule instance counts.

Both methods show large absolute distances because a
VGAE model does not match graph data well; in partic-
ular, it produces overly dense graphs (Orbanz & Roy, 2014).
However in comparison, we observe a very large improve-
ment in the match between expected and observed counts,
by at least a factor of 5 depending on the dataset. This
shows that VGAE training without the moment matching
constraint is far from matching rule counts.

On the graph realism metric shown in Table 2, we again

find large absolute distances with the training set, and very
large improvements through rule learning. An exception
is the ACM dataset where the standard VGAE generates
more realistic graphs, though not by an order of magnitude.
Overall we conclude that unconstrained VGAE training
does not match the instantiation counts of the learned rules,
and that moment matching has a large impact on the graphs
generated.

6.2.2. DOWNSTREAM TASKS

On the downstream task of node classification, Table 3
shows a substantive improvement on 2 out of 4 datasets,
Cora and Citeseer. For example on Cora, the F1 score im-
proves by 13 points, and on Citeseer by 3 points. On IMDB
there is no big difference, and on ACM, the node classifica-
tion score decreases. This is likely related to the fact that
ACM is the only data set for which rule matching decreases
graph realism (cf. Table 2).

Table 3. Node classification results for various datasets.

Dataset Metric Model
VGAE+ VGAE+R

Cora Precision 0.7952 0.8556
F1 0.7178 0.8440
Recall 0.8284 0.8542

Citeseer Precision 0.7265 0.7579
F1 0.6958 0.7251
Recall 0.7233 0.7639

IMDB Precision 0.6328 0.6337
F1 0.6282 0.6219
Recall 0.6297 0.6250

ACM Precision 0.9675 0.9323
F1 0.8623 0.7925
Recall 0.9624 0.9396

For the downstream task of link prediction, we use AUC
(Area Under Curve) and AP (Average Precision), standard
metrics for class-imbalanced binary labels. AUC measures
the area underneath the receiver operating characteristic
(ROC) curve and AP calculates the average of the precisions
over all possible classification thresholds (Davis & Goad-
rich, 2006). We observe no substantial difference between
the vanilla and the rule-enhanced VGAE models. Inspect-
ing the learned rules, we find that many of them express
homophily constraints on links, e.g. that if one paper cites
another, then they are likely from the same research area.
We believe that the standard message-passing mechanism
adequately captures homophily constraints through node
embeddings even without an explicit moment matching con-
straint.
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Table 4. Link prediction results for various datasets and edge types.

Dataset Model type
ACM Cora Citeseer IMDB

Author -
Paper

Paper -
Subject

Paper -
Paper

Paper -
Paper

Actor -
Movie

Director -
Movie

AUC
VGAE+ 0.9748 0.9741 0.9209 0.9067 0.9032 0.8869

VGAE+R 0.9769 0.9741 0.9328 0.8810 0.9074 0.8908

AP
VGAE+ 0.9945 0.9961 0.9064 0.9064 0.9201 0.8949

VGAE+R 0.9963 0.9973 0.9355 0.9156 0.9255 0.8950

Learning Curve We report a learning curve experiment
to examine the effect of rule knowledge on data efficiency.
After learning an informative set of rules S on the entire
training graph, we sample x% of nodes and use them to
train the standard VGAE+ model and the VGAE+ model
enhanced by the rules S. The models are tested on the
remaining 100 − x% of nodes. The idea is to simulate
the impact of a domain expert providing the model with a
strong set of rules. As Figure 4 illustrates, on the CiteSeer
dataset the rules make learning substantially more efficient.
We omit learning curves for other datasets due to space
constraints.

Figure 4. A node classification learning curve for the Citeseer
Dataset. The rule-enhanced VGAE model achieves both higher
precision and higher recall for almost every dataset size.

7. Conclusion
We proposed a new objective function for training a deep
graph generative model (DGGM) to incorporate domain
knowledge expressed by logical rules: Maximize the data
likelihood subject to a moment matching constraint, which
requires the expected rule instance counts under a model
to match the observed rule instance count. Our main algo-

rithmic contribution is a new differentiable matrix multipli-
cation method for computing both observed and expected
counts. For the observed counts, matrix multiplication is
applied to the data adjacency matrices directly. For the
expected counts, matrix multiplication is applied to the ex-
pected adjacency matrices under the model. In empirical
evaluation, we found that rule matching improves the qual-
ity of the graphs generated by a Variational Graph Auto-
Encoder (VGAE) model by orders of magnitude, both with
respect to expected counts and with respect to a standard
metric of graph realism. On downstream tasks that apply the
trained GGM, rule matching substantially improves node
classification accuracy, and makes little difference to link
prediction performance.

The main limitation of our current approach is scaling the
matrix multiplication algorithm for expected counts. While
multiplying sparse 0/1 adjacency matrices is fast, expected
adjacency matrices are dense and slow to multiply. A possi-
ble approach would be to deploy approximation algorithms
from the related problem of weighted model counting (van
Bremen & Kuzelka, 2020).

Our novel approach to rule-enhanced graph learning opens
several avenues for future research, including (1) Extracting
different rule statistics for moment matching (e.g. condi-
tional probabilities from if-then rules). (2) End-to-end joint
learning of a rule set and a GGM through moment matching.
(3) Enhancing different types of GGMs with rule matching
(e.g. auto-regressive methods).

In sum, rule moment matching presents a novel approach
to neuro-symbolic AI that combines logical rules with deep
graph learning. Our experiments show great potential for
enhancing deep graph generative models with rule-based
knowledge.
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WorksIn

LivesIn

City

(a) Motif/Subgraph Pattern

WorksIn

LivesIn

Vancouver
Christie

WorksIn

LivesIn

Beijing
Yue

(b) Two example instances of the rule.

Figure 5. A motif for the rule “If X works in city Y, then X also lives in city Y” with example instances.

A. Appendix
A.1. Rules, Conjunctions, and Motifs

Figure 5 shows how moralization converts a rule to a conjunction, and how a conjunction represents a motif.

A.2. First-Order Logic Definitions

A positive relationship literal is of the form R(U, V ). A negative relationship literal is of the form ¬R(U, V ). A generic
relationship literal (positive or negative) is denoted as ℓ(U, V ). A ground relationship literal is of the form ℓ(U = u, V = v)
where u and v are two node indices. Similar to specifying arguments for variables in a programming language, grounding
specifies arguments for node variables. Positive and negative unary literals are defined similarly.

For a positive ground relationship literal ℓ(U = u, V = v) = R(U = u, V = v), the indicator IG(ℓ(U = u, V = v)) = 1 if
the two nodes u and v are linked by edge type R in graph G. For a negative ground relationship literal, ℓ(U = u, V = v) =
¬R(U = u, V = v), we have IG(¬R(U = u, V = v)) = 1− IG(R(U = u, V = v)).

Figure 6. An example expected graph corresponding to Figure 3

A conjunction is a list of literals. Intuitively, a conjunction is a template for a motif or frequently occurring subgraph. The
indicator function specifies which nodes satisfy the literal/conjunction. Our formal definitions are as follows.

A conjunction ϕ comprises three elements:

1. A list ℓ1(U1, V1), . . . , ℓP (UP , VP ) comprising P relationship literals where Ui and Vi are node variables.

2. A list ℓ1(W1), . . . , ℓQ(WQ) comprising Q unary literals, where Wi is a node variable.

3. A set of equality constraints EQ of the form Dk = Ek for any two node variables Dk and Ek that appear in the list of
relationship literals or unary literals. Formally, EQ is a set of unordered pairs of node variables.

11



Rule-Enhanced Graph Learning

This definition is equivalent to the definition in the main paper: all node variables are assumed to occur exactly once
in a conjunction, and the equality constraints specify which node variables must be mapped to the same node indices.
Representing equality constraints in an explicit list facilitates the statement of our matrix multiplication algorithm.

A conjunction with P relationship literals ℓ1(U1, V1), . . . , ℓP (UP , VP ) is a chain conjunction if there is a permutation π
of the literals such that the equality constraints comprise Vπ(i−1) = Uπ(i) for i = 2, . . . , P . A conjunction ϕ has 2P +Q
parameters (i.e., node variables). Specifying a list of 2P + Q node indices as arguments to the conjunction returns a
grounded conjunction. A grounded chain conjunction corresponds to a path in the graph where each consecutive pair of
nodes is connected by an edge.

The indicator function for a grounded conjunction is given by:

IG(ℓ1(U1 = u1, V1 = v1), . . . , ℓP (UP = uP , VP = vP ), ℓ1(W1 = w1), . . . , ℓQ(WQ = wQ))

=

P∏
i=1

IG(ℓi(Ui = ui, Vi = vi))

Q∏
j=1

IG(ℓj(Wj = wj)) (3)

Conjunction Counts. For compactness, write a grounding as ⟨U = u,V = v,W = w⟩ so the indicator function returns
a 0/1 value for IG(⟨U = u,V = v,W = w⟩,EQ). A grounding ⟨U = u,V = v,W = w⟩ is valid for a set of equality
constraints EQ if for any two assignments D = d and E = e we have d = e if and only if (D = E) ∈ EQ . Thus node
variables constrained to be equal must be assigned the same node, and otherwise must be assigned different nodes. We write
ValidEQ for the set of valid groundings. The instance count for a conjunction ϕ in a graph G returns the number of valid
groundings that satisfy the conjunction:

nϕ(G) =
∑

⟨u,v,w⟩∈ValidEQ

IG(⟨U = u,V = v,W = w⟩)

Here, we evaluate the indicator function for each combination of ⟨u,v,w⟩, and sum up the values for all combinations to
obtain the desired count of satisfying groundings.

A.3. Proof of Proposition 4.1

The output of VGAE+ model is an expected graph like Figure 6. The following proposition states how the expected counts
can be computed based on a expected graph.

Proposition A.1. The expected conjunction count given a set of node embeddings can be computed as the conjunction count
in the expected graph: EG∼P (G|z)[nϕ(G)] = nϕ(G̃z)

Proof. Without loss of generality, assume the conjunction is of the form ℓ1(U1 = u1, V1 = v1), . . . , ℓP (UP = uP , VP =
vP ), ℓ1(W1 = w1), . . . , ℓQ(WQ = wQ) with equality constraints EQ . Define the random variables luvi , i = 1, . . . , P to
return the indicator value IG(ℓi(Ui = u, Vi = v) and lwj , j = 1, . . . , Q to return the indicator value IG(ℓj(Wj = w)) . Then

12
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EG∼P (G|z)[nϕ(G)] = E[
∑

⟨u,v,w⟩∈ValidEQ

P∏
i=1

IG(ℓi(Ui = ui, Vi = vi))

Q∏
j=1

IG(ℓj(Wj = wj))]

= E[
∑

⟨u,v,w⟩∈ValidEQ

P∏
i=1

luivi
i

Q∏
j=1

l
wj

j ]

=
∑

⟨u,v,w⟩∈ValidEQ

E[

P∏
i=1

luivi
i

Q∏
j=1

l
wj

j ]

=
∑

⟨u,v,w⟩∈ValidEQ

P∏
i=1

E[luivi
i ]

Q∏
j=1

E[l
wj

j ] (4)

=
∑

⟨u,v,w⟩∈ValidEQ

P∏
i=1

pG̃z
(ℓi(Ui = ui, Vi = vi))

Q∏
j=1

pG̃z
(ℓj(Wj = wj))

= nϕ(G̃z)

Equation (4) follows because the expectation of a product of independent random variables is the product of their
expectations. The random variables luivi

i and lwj

j are independent because the (in)equality constraints ensure that in a valid
grounding, no two different literals are ground to the same ground literal. And conditional on the node embeddings z, any
two different ground literals are independent.

A.4. Matrix Multiplication Method

We next formulate the proposition that for every chain conjunction, there is a corresponding sequence of matrix multiplication
operations such that: for every input graph G, applying the operation sequence to the graph edge label tensor returns the
instance count. In this formulation, we use these facts: 1) Every ground positive (negative) relationship literal corresponds
to a link present (absent) in the graph. 2) A grounded chain conjunction corresponds to a path in the graph where each
consecutive pair of nodes is connected by a present/absent link. Intuitively, a chain conjunction is a template for a motif or
frequently occurring subgraph. The indicator function specifies which nodes satisfy the literal/conjunction. Our formal
definitions are as follows.

The input to our counting algorithm is a chain conjunction {ℓ1(U1, V1), . . . , ℓP (UP , VP ), ℓ1(W1), . . . , ℓQ(WQ),EQ} and
an input graph G. The first step is to process the unary literals by masking adjacency matrix entries of nodes that do not
satisfy all unary literals. The second step is to define inductively a sequence of matrices such that the instance count of
the conjunction can be computed as the entry sum of the matrix product. We use A ◦B to denote the element-wise matrix
(Hadamard) product and I for the identity matrix of the appropriate dimension. A positive relationship literal R(U, V ) is
associated with Ar, the adjacency matrix for relation R. A negative relationship literal ¬R(U, V ) is associated with ¬Ar
where ¬Ar[u, v] = 1− Ar[u, v] for all node indices u, v.

Step 1: Unary Literals Consider binary relationship literal ℓi(U, V ) with associated m× n adjacency matrix Ai(G). We
search for every unary literal ℓ(W ) where (U = W ) ∈ EQ . For each such literal, we create a binary vector T of size m
such that T [w] := IG(ℓ(W = w)). Thus the entry T [w] masks all the nodes that do not satisfy the unary literal. We apply
the mask to the w row of matrix Ai, setting Āi[w, :] = Ai[w, :] ◦ T [w]. where A(w, :) represents the entire w row of matrix
A. If the w entry of T is zero, the entire row of Āi is set to 0. If the w entry of T is one, the entire row of Ai is copied to Āi.

Similarly, if a unary literal ℓ(W ) exists where (V =W ) ∈ EQ , we mask the corresponding column entries in the adjacency
matrix Ai, and repeat the masking process for all such unary literals. We refer to the adjacency matrix that incorporates the
unary functor constraints as the masked adjacency matrix Āi.

Step 2: Binary Literals A chain conjunction is centered if all equality constraints for the binary literals (other than the
chain constraints) involve the first node variable, that is they are of the form U1 = Ek. For a centered chain, we define a
sequence of matrix multiplications as follows.

13



Rule-Enhanced Graph Learning

1. For a single literal conjunct ϕ = ℓ(U, V ) with associated masked matrix Ā, let

O1(ϕ) =

{
Ā, if U = V /∈ EQ

Ā ◦ I, if U = V ∈ EQ

Ā ◦ I agrees with Ā on the diagonal and is 0 off-diagonal.

2. Inductively, consider a conjunction ϕ of length k+1 in the form of ϕ = ϕ′, ℓk+1(Uk+1, Vk+1) where ϕ′ =
ℓ1(U1, V1), . . . , ℓk(Uk, Vk) is a conjunction of length k. Let

Ok+1(ϕ) =

{
Ok(ϕ

′)Āk+1, if U1 = Vk+1 /∈ EQ

(Ok(ϕ
′)Āk+1) ◦ I, if U1 = Vk+1 ∈ EQ

(5)

Proposition A.2. The (u, v)-th entry of Ok counts the number of groundings of a centered chain conjunction ϕ of length k
in a graph G where U1 = u and VP = v. Therefore

nϕ(G) =
∑

(Ok(ϕ)).

Proof. Base case, k = 1. If ϕ = {ℓ(U, V )}, then the conjunction count is the number of pairs (u, v) such that (i) both
groundings U = u and V = v satisfy all unary literals, and (ii) IG(ℓ(U = u, V = V )) = 1. All and only such pairs have
the entry Ā[u, v] = 1 in the masked adjacency matrix associated with ℓ(U, V ).

Case 1: (U = V ) /∈ EQ . Then the number of satisfying groundings is simply given by
∑

(Ā).

Case 2: (U = V ) ∈ EQ . Then the satisfying groundings are of the form U = u, V = u, so their count is given by the
matrix trace of Ā, or equivalently

∑
(Ā ◦ I). This establishes the base case.

Inductive Step: Assume the proposition holds for k and consider the matrix Ok+1 computed by Equation (5). By the
inductive hypothesis, the (u, v)-th entry of Ok counts the number of instantiations of length k between vertices u and v
that satisfy ϕ′. Now, the number of instantiations of length k + 1 between u and w equals the number of instantiations
of length k from vertex u to each vertex v that has ℓk+1 relation with w. The non-zero entries of column w of masked
matrix Āk+1 represent vs related by ℓk+1 to w. So, (u,w)-th entry of OkĀk+1 gives the number of instantiations between u
and w satisfying the centered conjunction and all equality constraints except possibly U1 = Vk+1. Therefore for the case
where U1 = Vk+1 ̸∈ EQ , the matrix Ok+1 satisfies the inductive hypothesis. For the case where U1 = Vk+1 ∈ EQ , we
observe that the number of instantiations of length k + 1 from node u to u equals the (u, u) diagonal entry of OkĀk+1 or
equivalently, (OkĀk+1) ◦ I . Thus the total number of satisfying groundings is given by

∑
(Ok+1(ϕ)) in either case, which

establishes the inductive hypothesis.

A.5. Dataset Statistics

To evaluate all the methods we utilize 4 datasets used in previous studies of generative models (Kipf & Welling, 2016; Yun
et al., 2019; Hao et al., 2020).

• Cora (Kipf & Welling, 2016) is a citation dataset that consists of nodes that represent machine-learning papers divided
into seven classes and links that represent citation between them. This dataset has 5,429 links, 2,708 nodes with an
average node degree 3.8.

• ACM (Yun et al., 2019) is a citation dataset. It has three types of nodes (paper, author, and venue) and four types of
links. This dataset has 18,929 links, 8,993 nodes with an average node degree 2.209.

• IMDb (Yun et al., 2019) is a movie dataset with three types of nodes (movies, actors, and directors) and it uses genre
of movies as their labels. This dataset has 19,120 links, 12,772 nodes with an average node degree 2.9.

• CiteSeer CiteSeer (Kipf & Welling, 2016) is also a citation dataset which consists of nodes that represent machine-
learning papers divided into six classes and links that represent citation between them. This dataset has 4,732 links,
3,327 nodes with an average node degree 2.7.
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