
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PREMISE SELECTION FOR A LEAN HAMMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural methods are transforming automated reasoning for proof assistants, yet
integrating these advances into practical verification workflows remains challeng-
ing. A hammer is a tool that integrates premise selection, translation to external
automatic theorem provers, and proof reconstruction into one overarching tool
to automate tedious reasoning steps. We present LEANPREMISE, a novel neural
premise selection system, and we combine it with existing translation and proof
reconstruction components to create LEANHAMMER, the first end-to-end domain
general hammer for the Lean proof assistant. Unlike existing Lean premise selec-
tors, LEANPREMISE is specifically trained for use with a hammer in dependent
type theory. It also dynamically adapts to user-specific contexts, enabling it to
effectively recommend premises from libraries outside LEANPREMISE’s training
data as well as lemmas defined by the user locally. With comprehensive evalua-
tions, we show that LEANPREMISE enables LEANHAMMER to solve 21% more
goals than existing premise selectors and generalizes well to diverse domains. Our
work helps bridge the gap between neural retrieval and symbolic reasoning, mak-
ing formal verification more accessible to researchers and practitioners.

1 INTRODUCTION

Interactive proof assistants have long been used to verify the correctness of hardware, software,
network protocols, cryptographic protocols, and other computational artifacts. Buoyed by successes
like the Liquid Tensor Experiment (Lean Community, 2022) and the formalization of the Sphere
Eversion Theorem (van Doorn et al., 2023), mathematicians are increasingly using the technology to
verify mathematical theorems (Tao, 2023) and build substantial mathematical libraries (The Mathlib
Community, 2020).

When working with a proof assistant, a user describes a proof in an idealized proof language, which
is a programming language that provides sufficient detail for the computer to construct a precise
formal derivation in the proof assistant’s underlying axiomatic system. One of the challenges to
formalization is the requirement to spell out what seem like straightforward inferences in painful
detail. This problem is exacerbated by the fact that at the most basic level of interaction, users
are required to name the required premises (i.e., definitions and lemmas) explicitly to justify an
inference step, from a library of hundreds of thousands of previously derived facts.

A hammer (Meng et al., 2006; Paulson & Blanchette, 2012; Blanchette et al., 2016) is a tool designed
to ease the pain of formalization by filling in small inferences automatically. Typically, a hammer has
three components: given a goal to prove, one first selects a moderate number of premises from the
library, project files, current file, and hypotheses that, one hopes, are sufficient to prove the goal. This
is known as premise selection. Then one translates the premises and the goal into the language of
powerful external automated theorem provers like Vampire (Kovács & Voronkov, 2013), E (Schulz
et al., 2019), and Zipperposition (Vukmirović et al., 2022), or SMT solvers like Z3 (de Moura &
Bjørner, 2008) and cvc5 (Barbosa et al., 2022). Finally, if the external prover succeeds in proving
the goal, it reports back the specific premises used, from which a formal proof in the proof assistant
is reconstructed.

In this paper, we present LEANPREMISE, a new premise selection tool for the Lean proof assistant
(de Moura & Ullrich, 2021). We combine it with the DTT-to-HOL (dependent type theory to higher-
order logic) translation tool, Lean-auto (Qian et al., 2025), and internal proof-producing tactics,
Duper (Clune et al., 2024) and Aesop (Limperg & From, 2023), resulting in LEANHAMMER, the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

first end-to-end domain general hammer for Lean. Through comprehensive evaluations, we show
that LEANHAMMER can hit nails.

Our work, which extends methods of premise selection used by Magnushammer (Mikuła et al.,
2024) and LeanDojo (Yang et al., 2023), is therefore an auspicious combination of neural premise
selection methods with symbolic proof search. For the first time, we specifically design contrastive
learning methods for the first end-to-end domain general hammer in Lean. We explain the design
choices to make LEANPREMISE performant for LEANHAMMER, including new hammer-aware data
extraction techniques. An important feature of LEANPREMISE is that it dynamically augments the
library of facts with locally defined facts from the user’s project, which is essential in practice.

Our core contributions are as follows:

• We develop LEANPREMISE, a premise selection tool for a hammer in dependent type theory.
• We combine LEANPREMISE with Aesop, Lean-auto, and Duper to make LEANHAMMER, the first

domain general hammer in Lean.
• We provide an accessible user-facing tactic interface that can dynamically process new premises

in the environment.
• We conduct comprehensive evaluations of LEANHAMMER’s performance on Mathlib and its abil-

ity to generalize to miniCTX-v2 (Hu et al., 2025). Through these evaluations, we show that LEAN-
HAMMER solves 21% more goals with LEANPREMISE than with existing premise selectors and
that LEANPREMISE enables LEANHAMMER to effectively use libraries and premises it hasn’t
seen before.

Note that premise selection can be used in other ways, for example, for calling various types of
internal automation directly, for presenting suggestions to a user engaged in manual proof, or for
use in a neural or neurosymbolic search. Although our focus here has been on a hammer, we expect
that many of the methods we develop carry over to other settings.

2 RELATED WORK

2.1 HAMMERS IN INTERACTIVE PROOF ASSISTANTS

As explained in the introduction, hammers support interactive proving by completing small infer-
ences, called goals. The first and still most successful hammer in use today is Isabelle’s Sledge-
hammer, developed initially by Meng et al. (2006) and further developed by Paulson & Blanchette
(2012); Blanchette et al. (2013), and many others. Since then hammers have been developed for
HOL (Kaliszyk & Urban, 2015a), Mizar (Kaliszyk & Urban, 2015b), Rocq (Czajka & Kaliszyk,
2018), and Metamath (Carneiro et al., 2023), among others. Of these, only Rocq is based on depen-
dent type theory. Despite Lean’s popularity, no hammer has been developed for Lean.

2.2 NEURAL THEOREM PROVING

Numerous neural-network-based tools have been developed to prove theorems. A straightfor-
ward approach of using neural models is to let them generate steps in proofs, notable examples
of which include GPT-f (Polu et al., 2023), HTPS (Lample et al., 2022), ReProver (Yang et al.,
2023), DeepSeek-Prover (Xin et al., 2024a;b) for Lean, LISA (Jiang et al., 2021) and Thor (Jiang
et al., 2022) for Isabelle, and PALM (Lu et al., 2024), Cobblestone (Kasibatla et al., 2024), and
Graph2Tac (Blaauwbroek et al., 2024) for Coq/Rocq. Another line of work uses neural models to
generate entire proofs or proof sketches (Jiang et al., 2023; Zhao et al., 2023; Wang et al., 2024; First
et al., 2023; Lin et al., 2025a;b; Wang et al., 2025; Chen et al., 2025). These proof search approaches
are complementary to a hammer, which serves as a tactic that may be used by neural models.

Hammers are embedded in a number of neural theorem proving frameworks such as Thor and Draft,
Sketch, and Prove (Jiang et al., 2022; Zhao et al., 2023; Jiang et al., 2023; Wang et al., 2024)
to fill small gaps in the proofs. It is worth noticing that all these works use the Isabelle proof
assistant (Nipkow et al., 2002) where the communication infrastructure (Jiang et al., 2021) between
neural models and the proof assistant is relatively mature and hammering is easy to set up. Our work
makes calling a hammer in Lean possible.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Despite a large number of research works, practical tools that a working mathematician has access
to without complex setup or prohibitive costs remain scarce. Recent state-of-the-art methods use
reinforcement learning on e.g. 7B LLMs with thousands of passes for a single theorem and use
infrastructures not callable from Lean (Wu et al., 2024; Lin et al., 2025a;b; Dong & Ma, 2025; Chen
et al., 2025), so it is prohibitive for Lean users to train, test, or use them. Our work brings forward a
tool that is packaged as a tactic and can be called straightforwardly from any IDE for Lean with low
computational cost and latency, hence enabling better automation for the masses.

2.3 PREMISE SELECTION

Formalizing mathematics in proof assistants requires users to select relevant premises from libraries
of hundreds of thousands of facts. To help facilitate this task, premise selection has been devel-
oped for a variety of proof assistants, using both neural and symbolic techniques. MePo (Meng
& Paulson, 2009) is a symbolic premise selector which has been widely used in Isabelle’s Sledge-
hammer. Other premise selectors which target hammers but use traditional machine learning tech-
niques include MaSh (Kühlwein et al., 2013), k-NN based premise selection for HOL4 (Gauthier
& Kaliszyk, 2015), CoqHammer’s premise selection (Czajka & Kaliszyk, 2018), and random forest
based premise selection for Lean (Piotrowski et al., 2023). LEANPREMISE differs from these by
using modern LM-based retrieval methods.

(L)LM-based premise selection trained by contrastive learning has also been explored for a variety
of use cases. Lean State Search (Tao et al., 2025) recommends relevant premises directly to Lean
users. Magnushammer (Mikuła et al., 2024) generates premises to supply directly to proof recon-
struction tactics. ReProver and Lean Copilot (Yang et al., 2023; Song et al., 2024) retrieve premises
to augment neural next-tactic generation. Unlike these, LEANPREMISE is specifically designed with
hammer integration in mind, which requires specific data extraction and loss formulation, and the
resulting selector to be fast and domain general.

3 METHODS

3.1 LEANHAMMER PIPELINE

Hammers broadly consist of three primary components: premise selection, translation to external
automatic theorem provers, and proof reconstruction. In traditional hammer pipelines, such as Is-
abelle’s Sledgehammer, these components are composed in a linear fashion, with the premises from
premise selection informing the translation to automatic theorem provers and the output from au-
tomatic theorem provers informing proof reconstruction. In other works, such as Magnushammer
(Mikuła et al., 2024) and Lean Copilot (Song et al., 2024), premises from premise selection are
provided directly to proof reconstruction tactics or language models, without translating and send-
ing them to external automatic theorem provers. LEANHAMMER introduces a new, unified hammer
pipeline that uses premise selection in both of these ways.

Figure 1: Overview of the LEANHAMMER pipeline. Phases that can neither fail nor produce a
terminal proof are green, phases that can fail but cannot produce a terminal proof are yellow, and
phases that can produce a terminal proof are blue. Black solid arrows indicate control flow, while
red dashed arrows indicate the transfer of information between phases.

Figure 1 gives an overview of the LEANHAMMER pipeline. In addition to LEANPREMISE itself,
LEANHAMMER is built upon Aesop, Lean-auto, and Duper. Aesop is a highly extensible proof
search tool that can be augmented with new proof search rules and procedures. Lean-auto is a

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

translation tool that does not search for proofs itself, but instead translates dependently typed Lean
goals into higher-order logic problems which can be solved by external automatic theorem provers
such as Zipperposition. Finally, Duper is a less powerful but proof-producing proof search tool
which implements many of the techniques found in automatic theorem provers, and is therefore well
suited to rediscovering and verifying proofs found by external automatic theorem provers.

In broad strokes, Aesop is called first and prioritizes finding a proof using its own built-in rules. If
a short proof using only built-in rules is not found quickly, it explores direct premise applications
using premises recommended by LEANPREMISE,1 and it queries Lean-auto to see if subgoals can
be closed using premises from the selector.2 When Lean-auto is given a subgoal, it translates that
subgoal (along with the premises provided by the selector) to higher-order logic and interfaces with
Zipperposition to find a proof. If Zipperposition succeeds, then Duper is provided just the set of
premises used by Zipperposition to solve the translated problem, and Duper attempts to reconstruct
a proof from these premises. For an illustrative example of LEANHAMMER’s pipeline in action, see
Section B.

3.2 DATA EXTRACTION

To support LEANPREMISE, we develop a data extraction pipeline designed to gather not just in-
formation useful for next-tactic generation or human examination, but all of the information that
may be helpful for a hammer tasked with discovering an end-to-end proof. This pipeline is used
dynamically to extract premises that LEANPREMISE can retrieve at runtime, including premises or
definitions defined by the user locally, and it is used statically to extract (state, premise) pairs for
training. As we describe our data extraction pipeline, we note the measures taken to collect data that
go beyond what appears explicitly in the source code for the formal proofs.

3.2.1 SIGNATURE EXTRACTION

A key aspect of premise selectors is how premises are presented to the model. Previous work (Yang
et al., 2023) extracts raw strings from the source code, which ignores many details in the full signa-
ture (see Section A for an example). We adopt a new normalized serialization as follows. For each
theorem and definition in each module, we extract the documentation description in the source code
(its docstring), if it exists, as well as its kind (theorem or definition), name, arguments, and over-
all type. Together, these can be composed into a signature of the form docstring? kind name
arguments* : type. When converting these signatures into strings, we disable notation pretty
printing (e.g. we print N as Nat), and we print every constant with its fully qualified name (e.g. we
print I as Complex.I). This standardizes premise representation, so that it depends only on the type
of the premise and does not depend on open namespaces, custom notations, and surface-level syntax,
which may change at run time. For an illustrative example, see Section A.

The signatures extracted in this manner are used to form the set of premises P that LEANPREMISE is
allowed to retrieve from. This signature extraction pipeline is also used to dynamically extract new
premises at runtime (Section 3.3.2). To prevent LEANPREMISE from constantly recommending
theorems that are technically relevant to the goal but never useful for our hammer’s automation, we
filter out a blacklist of 479 basic logic theorems such as and_true from P . We also filter out Lean
language-related (e.g. metaprogramming) definitions not useful for proofs.

3.2.2 STATE AND PREMISE EXTRACTION

The next key question is which (state, premise) pairs are extracted from human-written proofs to
train the model. Previous premise selectors (Yang et al., 2023) that focus on tactic generation only
extract from tactic-style proofs, and only extract explicit premises appearing in the raw source code
of only the next tactic. Our hammer-aware data extraction improves upon this in several ways. First,
we extract from both term-style and tactic-style proofs, significantly increasing training samples
especially for short proofs that LEANHAMMER is intended to automate. Second, for multi-tactic

1Premise applications are rules added to Aesop of the form (add unsafe 20% <premise>) where
<premise> is a premise selected by the premise selector.

2Lean-auto is added to Aesop as a rule of the form (add unsafe 10% (by auto [*, <premises>]))
where <premises> is a list of premises selected by the premise selector.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

proofs, the model is trained to select premises to close the goal (all tactics) rather than to modify the
goal (first tactic), because hammers are designed to finish proofs. Third, we extract both implicit
and explicit premises from the proof, including ones implicitly called by automation such as simp.
Finally, we format states with the same normalized serialization as for premises.

Specifically, for each theorem in each module, we collect data on the premises used to prove it.
Additionally, for each theorem proven via tactic-style proofs, we collect data on all intermediate
goal states induced by the tactic sequence. For an illustrative example, see Section A. Ultimately,
all data we extract contains:

• A proof state obtained either from the beginning of a theorem or from an intermediate step of a
tactic-style proof.

• The name and signature of the theorem from which the state was extracted.
• The set of premises used to prove the theorem3.

When theorems are proven via term-style proofs, meaning the theorem’s proof term is explicitly
written in the source code, the set of premises we extract is the set of theorems that appear in the
proof term. When theorems are proven via tactic-style proofs, meaning automation is invoked to tell
Lean how to build a proof term, the set of premises we extract contains both the theorems that appear
in the proof term constructed by the tactic sequence (so that all implicit premises are collected), as
well as any theorems and definitions that are explicitly used in rw or simp calls.

The benefit of collecting explicit theorems and definitions from rw and simp calls relates to Lean’s
dependent type theory. In Lean, terms can be definitionally equal without being syntactically equal,
and because of this, tactic-style proofs can invoke definitional equalities that do not appear in final
proof terms. We therefore collect these definitional equality premises. We experimentally verify
that our hammer-aware data extraction benefits LEANHAMMER in Section 4.4.

3.3 PREMISE SELECTION

LEANPREMISE uses the standard method of retrieval using textual encoders. In order to retrieve k
premises for a state s, we first determine the set Ps of accessible premises at position s, comprising
lemmas and definitions that are imported from other modules or declared earlier in the file. We use
an encoder-only transformer model E to embed both the state s and every premise p ∈ Ps, and the
resulting set of premises retrieved is

select_premises(s, k,Ps) = top-kp∈Ps
sim(E(s), E(p)) (1)

where sim(u, v) = u⊤v/∥u∥2∥v∥2 is cosine similarity. In Section 3.3.2 we describe the mechanism
for caching embedding and quick retrieval of the premises.

We do not train a separate reranking model as in Mikuła et al. (2024), because we did not find it to
increase performance in early experiments, especially since a hammer favors recall much more than
precision, and we determined the optimal k to be at least 16, at which point reranking does not offer
much improvement. It is also costly to deploy in practice.

3.3.1 MODEL TRAINING

We use a modified version of the InfoNCE loss (Oord et al., 2018) to train the encoder model. On
a high level, each batch consists of (state, premise) pairs, and a contrastive loss is used to let the
model learn to select the correct premise out of all premises in this batch. One problem is that there
are many premises in the library that do not appear in any proof. This is mitigated by also sampling
negative premises in each batch (Mikuła et al., 2024; Yang et al., 2023). Another problem is that
there are many premises that are shared across many proofs, so not all premises in the batch are
negative. We use the following masked contrastive loss to address these problems.

Specifically, for each training step, we sample a batch of B (state, premise) pairs, each consisting of
a state si and a premise p+i ∈ P+

si where P+
si is the set of ground-truth premises for si extracted as

3We also experimented with pairing states with just the set of premises used to close said states, as opposed
to all premises used to prove the overall theorem, but our preliminary experiments showed that this yielded
worse results than including all premises.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Premise selector LM-based Callable in Lean New premises

ReProver (Yang et al., 2023) ✓ ✗ ✗
Lean Copilot (Song et al., 2024) ✓ ✓ ✗
Random forest (Piotrowski et al., 2023) ✗ ✓ ✗
MePo (Meng & Paulson, 2009) ✗ ✓ ✓

LEANPREMISE ✓ ✓ ✓

Table 1: Usability comparison of existing premise selection tools. Note that this is orthogonal to the
quantitative performance comparisons (Table 2).

in Section 3.2. For each such pair (si, p+i ), we sample B− negative premises {p−ij}B
−

j=1 ⊆ Psi \P+
si ,

giving B states and B(1 + B−) premises in total in each batch. Of these premises, we determine
the set Ni = {p+i }i ∪ {p−ij}ij \ P+

si of negative premises for state si, and mask out the positive ones
in the loss to avoid mislabeling. The loss is:

L(E) =
1

B

B∑
i=1

exp(sim(E(si), E(p+i ))/τ)

exp(sim(E(si), E(p+i ))/τ) +
∑

p−
i ∈Ni

exp(sim(E(si), E(p−i ))/τ)
(2)

where τ is a scalar temperature hyper-parameter (set to 0.05 in our experiments).

3.3.2 API INTEGRATION

In order to make LEANPREMISE and LEANHAMMER more accessible for Lean users as well as
downstream methods, we design our pipeline to maximize usability—it is directly callable in Lean,
able to take in new premises, and efficient to run. Our pipeline for premise selection is as follows:
when a user invokes premise selection, the client side (Lean) collects all currently defined premises
Ps defined in the environment and the current proof state s and sends them to a server that hosts the
embedding model. The server embeds both the proof state and the list of premises, and then runs
FAISS (Douze et al., 2024) on the premises to compute select_premises(s, k,Ps), and returns
this list of k premises back to the client. Since the typical size of Ps is on the scale of ∼70k, the
server also caches the embeddings of premises at fixed versions of Mathlib, and only recomputes
embeddings of signatures of new premises uploaded by the user (e.g. when working outside Mathlib
or when the user has new premises in the context); the client side also caches the signatures of these
new premises computed as in Section 3.2.1.

LEANHAMMER is built as a tactic that can be directly called in Lean. It calls LEANPREMISE as a
subprocedure and the retrieved premises are then input to the LEANHAMMER pipeline (Section 3.1).
In Mathlib, premise selection usually takes about 1 second amortized on a CPU server (and well
under 1 second for a single-GPU server). The full LEANHAMMER pipeline on average takes well
under 10 seconds (see Section 4.2).

To the best of our knowledge, LEANPREMISE is the first premise selector using language models
that can be directly invoked in Lean and can incorporate new user-defined premises. It is also
efficient to run and requires no system setup for the user, because the main computation is only a
few string embeddings, and done centrally in a server by default. This makes the premise selector
itself a desirable user-facing tactic for the Lean community. Similarly, the full LEANHAMMER can
be called straightforwardly in Lean as a tactic. This bridges a gap that many previous LM-based
retrievers and provers leave. See Table 1 for a comparison.

3.4 VARIATIONS AND EXTENSIONS

Here, we discuss variations on LEANHAMMER’s design, implemented as settings that can be con-
trolled by the user. Note that the pipeline described in Section 3.1 has premises input both to Aesop
as premise application rules and to Lean-auto for translation to the external prover. We consider
variants that disable either one:

1. aesop: This setting only inputs LEANPREMISE’s premises to Aesop as premise applications,
omitting calls to Lean-auto or the external prover.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2. auto: This setting inputs LEANPREMISE’s premises directly to the external prover through Lean-
auto without Aesop normalization or premise application.

3. aesop+auto: This setting keeps both Aesop and Lean-auto, but does not use premise applica-
tions as Aesop rules.

4. full: This default setting is the full pipeline described in Section 3.1.

These variants are appealing because they offer cheaper computational cost while still preserving
much of LEANHAMMER’s ability. Experiments offer insight to the ability of each part of the pipeline
(see Section 4.2). We observe that the first three variants may prove theorems that full does not, so
we also consider cumul, which tries all four variants.

We note that other common domain-general automation tactics that take premises as inputs, such as
simp_all, may be roughly considered a subcase of aesop (which we verify in preliminary experi-
ments), so we do not consider them. We also tried using a second-stage model to predict simp_all
“hints”—whether a premise should be supplied to simp_all for preprocessing, and whether it
should be applied in reverse direction, but the performance did not increase. We remark that ad-
ditional automated reasoning tactics in the future may be easily added to our pipeline as a rule of
Aesop, similarly to how Lean-auto is added.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We extract theorem proofs from Mathlib, and premises from Mathlib, Batteries, and Lean core. In to-
tal, we extract 469,965 states from 206,005 theorem proofs, and extract 265,348 (filtered) premises.
For each state, there are on average 12.45 relevant premises, giving 5,817,740 (state, premise) pairs
in the training set. We randomly hold out 500/500 theorems as valid/test sets, respectively.

We train the model from three base models that were pre-trained for general natural language em-
bedding tasks (Reimers & Gurevych, 2019). These are small4 with 6 layers and hidden size 384
trained from MiniLM-L6, medium5 with 12 and 384 from MiniLM-L12, and large6 with 6 and 768
from DistilRoBERTa-base, respectively. We train our models with learning rate 2e−4, B = 256, and
B− = 3, found by a hyperparameter sweep. Training the large model requires 6.5 A6000-days.

We test LEANHAMMER on proving theorems in (1) our hold-out sets extracted from Mathlib, and (2)
the non-Mathlib splits of miniCTX-v2-test (Hu et al., 2025). We impose a 10-second time constraint
for each call to Zipperposition, and for each theorem a 300-second wall-clock time-out and Lean’s
default heartbeat limit of 200,000. We tuned the value of k on Mathlib-valid (see Section D.3), and
full uses the highest performing combination, which is k1 = 16 premises supplied to Lean-auto
(with Aesop priority 10%) and k2 = 32 premises for premise application rules (with Aesop priority
20%). Similarly, we use k = 16 for auto and aesop+auto, and k = 32 for aesop.

For all experiments and data extraction tasks, we use Lean version v4.16.0. We run a maximum of
16 parallel tests on 16 CPUs with 512GB total memory, so 1 CPU and 32GB are allocated per test
theorem. In practice, the actual memory used rarely exceeds 4GB. Each CPU is AMD EPYC 9354
(3.8GHz, 32 cores, 64 threads) or similar.

4.2 RESULTS

For each theorem, we record the average percentage of ground-truth premises retrieved in the top-k
premises (recall@k), and the percentage of theorems proven (proof rate), shown in Tables 2 and 3.
We favor recall over metrics like precision, because a hammer can tolerate irrelevant premises much
more than missing important ones.

LEANHAMMER proves a significant number of theorems. As shown in Table 2, we find that
LEANHAMMER proves a significant proportion of test theorems, with 33.3% proved by the large

4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
5https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
6https://huggingface.co/sentence-transformers/all-distilroberta-v1

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Premise selector Model size Recall (%) Proof rate (%)

@16 @32 aesop auto aesop+auto full cumul

None — 0.0 0.0 16.9 9.4 16.9 16.9 16.9
Random forest* — 22.1 22.3 19.1 11.9 19.1 19.1 19.1
MePo — 38.4 42.1 23.3 14.5 21.5 26.3 27.5
ReProver 218M 35.1† 38.7† 11.4 12.9 20.5 12.0 22.3

LEANPREMISE (small) 23M 59.2 67.8 23.9 19.1 25.9 27.9 31.9
LEANPREMISE (medium) 33M 58.6 68.1 23.1 20.1 26.1 28.5 30.7
LEANPREMISE (large) 82M 63.5 72.7 24.1 21.3 28.5 30.1 33.3

LEANPREMISE (large) ∪ MePo 28.9 23.9 30.3 35.9 37.6
LEANPREMISE (cumulative) 27.5 25.5 31.1 34.5 37.3
LEANPREMISE (cumulative) ∪ MePo 30.3 27.1 32.3 38.2 39.6

Ground truth 27.7 33.1 37.8 41.0 43.0

*Performance upper bound, excluding errors. †Our definition is slightly different from Yang et al. (2023). See Section C.

Table 2: Performance of LEANHAMMER with different premise selectors on Mathlib-test.

Premise selector Proof rate using full (%)

Carleson ConNF FLT Foundation HepLean Seymour Average

None 0.0 10.0 27.3 38.0 8.0 6.0 14.9
LEANPREMISE (large) 0.0 16.0 36.4 38.0 10.0 24.0 20.7
Ground truth 7.1 16.0 39.4 40.0 20.0 34.0 26.1

Table 3: Out-of-Mathlib performance of LEANHAMMER on miniCTX-v2-test (Hu et al., 2025) using
the large model trained on Mathlib. For other settings than full, see Table 5.

model in the cumul setting, and 37.3% when accumulated over model sizes. We also test giving
ground-truth premises (those that appear in the human-written proof) to LEANHAMMER, which
serves as a theoretical best-case scenario of how LEANHAMMER would perform if the models
achieved 100% recall, and this proves 43.0% of the theorems. Compared to previous work, LEAN-
HAMMER approaches this limit in the settings considered.

Performance scales with model size and accumulation. In Table 2 and Figure 2a, as we increase
our model size, for most settings the recall and proof rates also correspondingly increase (e.g.,
recall@32 increases from 67.8% to 72.7% and full proof rate increases from 27.9% to 30.1%).
We also observe that by accumulating across different model sizes or taking the union of neural
(our model) and symbolic (MePo) approaches, the proof rate increases much more than scaling
the model alone (e.g., full proof rate increases to 34.5% when accumulated), meaning different
selectors prove different sets of theorems. More effective methods of ensembling models may be
explored in future work.

LEANHAMMER settings offer different abilities at different costs. For the settings auto, aesop,
aesop+auto, and full, the proof rate roughly increases in this order for all models. This shows
that each part of the full pipeline incrementally contributes to the final proof rate. Their mean
run times on Mathlib-test are 4.3s, 0.92s, 4.9s, and 6.6s respectively, so the non-full variants are
computationally appealing alternatives that recover some of the full performance. We also note
that cumul achieves higher proof rates than full, so some cases benefit from a partial pipeline (e.g.
if the full pipeline does not terminate).

LEANHAMMER shows robust out-of-Mathlib generalization. As shown in Table 3, the perfor-
mance on miniCTX-v2-test (Hu et al., 2025) is comparable to the performance on Mathlib—the
proportion of theorems proven by LEANHAMMER with the large selector, out of theorems proven
with the ground-truth premises (i.e. the best-case scenario), is 73.5% on Mathlib and 79.4% on
miniCTX with the full pipeline, showing that performance does not decrease (the other settings
also have comparable numbers; see Table 5). We also confirm in the table that if no premises are
supplied, the performance is much worse (except for the Foundation split), which indicates that the
LEANHAMMER is not just proving trivial theorems.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Premise selector Recall (%) Proof rate (%)

@16 @32 aesop auto aesop+auto full cumul

LEANPREMISE (medium) 61.1 71.9 29.8 22.6 30.2 34.6 37.6
+ naive data 57.5 66.8 29.3 20.0 28.5 33.1 35.2
− negatives 51.8 59.5 28.6 20.0 28.4 33.0 36.8
− loss mask 59.1 69.6 29.4 21.2 29.0 34.4 38.4

Ground truth 30.8 32.0 38.4 41.2 43.6
+ naive data 31.2 30.0 37.0 39.8 42.4

Table 4: Ablation study of LEANHAMMER with different training settings on Mathlib-valid.

Across all benchmarks, there are a handful of common patterns characterizing problems that LEAN-
HAMMER fails to solve. Some problems are not solved because LEANPREMISE fails to retrieve
necessary lemmas, as can be seen from the fact that the ground truth outperforms all other premise
selectors in Tables 2 and 3. Some problems are not solved because they are out of scope for Lean-
auto’s translation procedure, which can occur when the problem in question contains features from
dependent type theory not easily translated to higher-order logic. And some problems are not solved
because the solutions require forms of reasoning not supported by Aesop, Zipperposition, or Duper
(e.g. induction or arithmetic). Comparatively, it is rare for LEANHAMMER to succeed at proof
search with Zipperposition but fail at the proof reconstruction stage with Duper. See Sections D.4
and D.5 for additional analysis.

4.3 COMPARISONS

We compare LEANPREMISE against the following existing work: non-LM methods MePo (Meng
& Paulson, 2009) and Piotrowski et al. (2023), and LM-based ReProver (Yang et al., 2023). We
use a recent adaptation of MePo from Isabelle to Lean (implemented by Kim Morrison), tune its
parameters p and c on our evaluation recall@k, and apply our premise blacklist. For Piotrowski et al.
(2023), we select their random forest model with highest reported performance; in order to overcome
errors, we modified its training and evaluation in a way that only gives them unfair advantage, so
the reported performance is an upper bound. (See Section C for details of both methods.) We
find that LEANPREMISE clearly outperforms either method—for the large model, our recall@32
is 73% higher relative to MePo and our cumul proof rate is 21% higher (Table 2). Meanwhile,
the theorems that the union of theorems our models and MePo can solve is much higher than each
method separately, indicating that symbolic and neural methods have complementary strengths. We
believe effective combinations of neural and symbolic methods warrant future investigation.

We retrain ReProver using their training and retrieval scripts, but on our train/valid/test splits and
an updated Mathlib version (Section C). LEANPREMISE clearly outperforms ReProver (Yang et al.,
2023) in terms of recall and proof rate—LEANHAMMER using our large model (82M parameters)
proves 150% more theorems relative to using ReProver (218M) in the full setting and 50% more
in the cumul setting. We attribute the performance gap to two main factors. First, ReProver focuses
on premises used in the next tactic for tactic generation, while LEANPREMISE focuses on finishing
the entire proof, so the definitions of ground-truth premises are different (Section 3.2.2). Second,
LEANHAMMER uses techniques such as term-style proof extraction, extraction of implicit premises,
and better premise signature formatting (Section 3.2). ReProver also uses an ℓ2 loss on the cosine
similarity for training, rather than our contrastive loss, and we suspect this also contributes to our
better performance.

4.4 ABLATIONS

Table 4 shows the performance of LEANHAMMER on Mathlib-valid with some components re-
moved: (1) we use a naive data extraction script that (a) uses default pretty-printing options, (b)
disables our premise blacklist, and (c) disables collection of premises from simp or rw calls; (2) we
do not sample negative premises during training (B− = 0); and (3) we disable masking positive
in-batch premises in the contrastive loss, i.e. the denominator of Equation (2) being simply the sum
over all B(1 + B−) premises in batch. We observe these changes clearly degrade performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Specifically, our data extraction (Section 3.2) is specifically designed with Lean-auto translation
in mind, and we observe that settings with Lean-auto have a lower performance with a naive data
extraction script. We observe that randomly sampling negative premises and the loss mask (Sec-
tion 3.3.1) improve performance. (Although the cumul proof rate of LEANHAMMER without the
loss mask is higher, we strongly believe this is due to random noise, because all individual settings
give lower performances, the recall is lower, and proof rate has higher variance than recall.)

5 CONCLUSION

We developed LEANPREMISE, a novel premise selection tool for a hammer in dependent type the-
ory, and combined neural premise selection with symbolic automation to build LEANHAMMER,
the first domain-general hammer in Lean. With comprehensive experiments, we show that LEAN-
HAMMER is performant on Mathlib compared to baselines, and generalizes well to miniCTX-v2.
LEANPREMISE and LEANHAMMER are designed with accessibility for Lean users in mind, and lay
down groundwork for future hammer-based neural theorem proving in Lean.

REPRODUCIBILITY STATEMENT

We make all code for data extraction, model training, evaluation, and API integration publicly avail-
able with an open-source license. We open source both LEANPREMISE and LEANHAMMER as
tactics in Lean. We also release the extracted data and all trained models and baselines.

REFERENCES

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Ab-
dalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias
Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile and
industrial-strength SMT solver. In Dana Fisman and Grigore Rosu (eds.), Tools and Algorithms
for the Construction and Analysis of Systems, pp. 415–442, Cham, 2022. Springer International
Publishing. doi: 10.1007/978-3-030-99524-9_24.

Lasse Blaauwbroek, Mirek Olsák, Jason Rute, Fidel Ivan Schaposnik Massolo, Jelle Piepenbrock,
and Vasily Pestun. Graph2tac: Online representation learning of formal math concepts. In Forty-
first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=A7CtiozznN.

Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending sledgehammer
with SMT solvers. J. Autom. Reason., 51(1):109–128, 2013. doi: 10.1007/S10817-013-9278-5.

Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C Paulson, and Josef Urban. Hammering
towards qed. Journal of Formalized Reasoning, 9(1):101–148, 2016.

Mario Carneiro, Chad E. Brown, and Josef Urban. Automated Theorem Proving for Metamath. In
Adam Naumowicz and René Thiemann (eds.), Interactive Theorem Proving (ITP), pp. 9:1–9:19,
Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/
LIPIcs.ITP.2023.9.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated
theorem proving. arXiv preprint arXiv:2507.23726, 2025.

Joshua Clune, Yicheng Qian, Alexander Bentkamp, and Jeremy Avigad. Duper: A Proof-
Producing Superposition Theorem Prover for Dependent Type Theory. In Yves Bertot, Temur
Kutsia, and Michael Norrish (eds.), Interactive Theorem Proving (ITP), volume 309, pp. 10:1–
10:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ITP.2024.10.

Lukasz Czajka and C. Kaliszyk. Hammer for Coq: Automation for dependent type theory. Journal
of Automated Reasoning, 61:423 – 453, 2018. URL https://api.semanticscholar.org/
CorpusID:11060917.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R. Ramakrishnan and
Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–
340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-78800-3_24.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language.
In André Platzer and Geoff Sutcliffe (eds.), Conference On Automated Deduction (CADE), pp.
625–635. Springer, 2021. doi: 10.1007/978-3-030-79876-5_37.

Kefan Dong and Tengyu Ma. Beyond limited data: Self-play llm theorem provers with iterative
conjecturing and proving. arXiv preprint arXiv:2502.00212, 2025.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. In Satish Chandra, Kelly Blincoe, and Paolo Tonella (eds.),
Proceedings of the 31st ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA,
December 3-9, 2023, pp. 1229–1241. ACM, 2023. doi: 10.1145/3611643.3616243. URL
https://doi.org/10.1145/3611643.3616243.

Thibault Gauthier and Cezary Kaliszyk. Premise selection and external provers for HOL4. In
Proceedings of the 2015 Conference on Certified Programs and Proofs, New York, NY, USA,
January 2015. ACM.

Jiewen Hu, Thomas Zhu, and Sean Welleck. miniCTX: Neural theorem proving with (long-
)contexts. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=KIgaAqEFHW.

Albert Q. Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. Lisa: Language models of isabelle
proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, pp. 378–392, 2021.

Albert Q. Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygózdz, Piotr
Milos, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language models
and automated theorem provers. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Bel-
grave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/
paper/2022/hash/377c25312668e48f2e531e2f2c422483-Abstract-Conference.html.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothée Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In International Conference on Learning Representations
(ICLR). OpenReview.net, 2023. URL https://openreview.net/forum?id=SMa9EAovKMC.

Cezary Kaliszyk and Josef Urban. Hol(y)hammer: Online ATP service for HOL light. Mathematics
in Computer Science, 9(1):5–22, 2015a. doi: 10.1007/s11786-014-0182-0.

Cezary Kaliszyk and Josef Urban. Mizar 40 for mizar 40. Journal of Automated Reasoning, 55(3):
245–256, 2015b. doi: 10.1007/s10817-015-9330-8.

Saketh Ram Kasibatla, Arpan Agarwal, Yuriy Brun, Sorin Lerner, Talia Ringer, and Emily First.
Cobblestone: Iterative automation for formal verification. CoRR, abs/2410.19940, 2024. doi:
10.48550/ARXIV.2410.19940. URL https://doi.org/10.48550/arXiv.2410.19940.

Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha Shary-
gina and Helmut Veith (eds.), Computer Aided Verification (CAV), pp. 1–35, Berlin, Heidelberg,
2013. Springer.

Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban. Mash: machine
learning for sledgehammer. In Interactive Theorem Proving: 4th International Conference, ITP
2013, Rennes, France, July 22-26, 2013. Proceedings 4, pp. 35–50. Springer, 2013.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guillaume Lample, Timothée Lacroix, Marie-Anne Lachaux, Aurélien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
a8901c5e85fb8e1823bbf0f755053672-Abstract-Conference.html.

Lean Community. Completion of the liquid tensor experiment. blog post, 2022. URL https:
//leanprover-community.github.io/blog/posts/lte-final/.

Jannis Limperg and Asta Halkjær From. Aesop: White-box best-first proof search for lean. In
Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and
Proofs, pp. 253–266, 2023.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated
theorem proving. arXiv preprint arXiv:2502.07640, 2025a.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with
scaffolded data synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025b.

Minghai Lu, Benjamin Delaware, and Tianyi Zhang. Proof automation with large language models.
In Vladimir Filkov, Baishakhi Ray, and Minghui Zhou (eds.), Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2024, Sacramento, CA, USA,
October 27 - November 1, 2024, pp. 1509–1520. ACM, 2024. doi: 10.1145/3691620.3695521.
URL https://doi.org/10.1145/3691620.3695521.

Jia Meng and Lawrence C Paulson. Lightweight relevance filtering for machine-generated resolution
problems. Journal of Applied Logic, 7(1):41–57, 2009.

Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for interactive proof: First proto-
type. Information and Computation, 204(10):1575–1596, 2006. doi: https://doi.org/10.1016/j.ic.
2005.05.010.

Maciej Mikuła, Szymon Tworkowski, Szymon Antoniak, Bartosz Piotrowski, Albert Q. Jiang,
Jin Peng Zhou, Christian Szegedy, Łukasz Kuciński, Piotr Miłoś, and Yuhuai Wu. Mag-
nushammer: A transformer-based approach to premise selection. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
oYjPk8mqAV.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Springer, 2002. doi: 10.1007/3-540-45949-9.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Lawrence Charles Paulson and Jasmin Christian Blanchette. Three years of experience with Sledge-
hammer, a practical link between automatic and interactive theorem provers. In IWIL@LPAR,
2012. URL https://api.semanticscholar.org/CorpusID:598752.

Bartosz Piotrowski, Ramon Fernández Mir, and Edward Ayers. Machine-learned premise selec-
tion for lean. In International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, pp. 175–186. Springer, 2023.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/forum?id=-P7G-8dmSh4.

Yicheng Qian, Joshua Clune, Clark Barrett, and Jeremy Avigad. Lean-auto: An interface between
lean 4 and automated theorem provers. In Lecture Notes in Computer Science, Lecture notes in
computer science, pp. 175–196. Springer Nature Switzerland, Cham, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.org/
abs/1908.10084.

Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster, higher, stronger: E 2.3. In Pascal
Fontaine (ed.), Conference on Automated Deduction (CADE), pp. 495–507. Springer, 2019.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Lean copilot: Large language models as
copilots for theorem proving in lean. arXiv preprint arXiv:2404.12534, 2024.

Terence Tao. Formalizing the proof of pfr in lean4 using blueprint: a short
tour. blog post, 2023. URL https://terrytao.wordpress.com/2023/11/18/
formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/.

Yicheng Tao, Haotian Liu, Shanwen Wang, and Hongteng Xu. Assisting mathematical formalization
with a learning-based premise retriever. arXiv preprint arXiv:2501.13959, 2025.

The Mathlib Community. The lean mathematical library. In Jasmin Blanchette and Catalin Hritcu
(eds.), Certified Programs and Proofs (CPP), pp. 367–381. ACM, 2020. doi: 10.1145/3372885.
3373824.

Floris van Doorn, Patrick Massot, and Oliver Nash. Formalising the h-principle and sphere eversion.
In Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic (eds.), Certified
Programs and Proofs (CPP), pp. 121–134. ACM, 2023. doi: 10.1145/3573105.3575688.

Petar Vukmirović, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa Nummelin, and
Sophie Tourret. Making higher-order superposition work. Journal of Automated Reasoning, 66:
541–564, 2022. doi: 10.1007/s10817-021-09613-z.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Zhengying Liu, Qingxing Cao, Yinya Huang, Jing
Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, and Xiaodan Liang. Lego-prover: Neural
theorem proving with growing libraries. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=3f5PALef5B.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
Internlm2. 5-stepprover: Advancing automated theorem proving via expert iteration on large-scale
lean problems. arXiv preprint arXiv:2410.15700, 2024.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda
Li, and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-
scale synthetic data. CoRR, abs/2405.14333, 2024a. doi: 10.48550/ARXIV.2405.14333. URL
https://doi.org/10.48550/arXiv.2405.14333.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wu, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. CoRR, abs/2408.08152, 2024b. doi:
10.48550/ARXIV.2408.08152. URL https://doi.org/10.48550/arXiv.2408.08152.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models. In Neural Information Processing Systems (NeurIPS), 2023.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving. CoRR, abs/2305.16366, 2023. doi: 10.48550/
ARXIV.2305.16366. URL https://doi.org/10.48550/arXiv.2305.16366.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATA EXTRACTION EXAMPLE

We provide an example of proof state and premise extraction to illustrate the features of our data
extraction pipeline.

Consider the following theorem, AlgebraicGeometry.Scheme.RationalMap.mem_domain,
proven in the module Mathlib.AlgebraicGeometry.RationalMap:

lemma RationalMap.mem_domain {f : X 99K Y} {x} :
x ∈ f.domain ↔ ∃ g : X.PartialMap Y, x ∈ g.domain ∧ g.toRationalMap = f :=

TopologicalSpace.Opens.mem_sSup.trans (by simp [@and_comm (x ∈ _)])

We extract its proof data, including its intermediate proof states and premises used (Section 3.2.2).
This is a term-style proof (the proof does not start with by), and our data extraction extracts premises
corresponding to the whole proof of the theorem, with state (note the pretty-printing options that
disable notations and print full names):

X Y : AlgebraicGeometry.Scheme
f : X.RationalMap Y
⊢ ∀ {x : ↑↑X.toPresheafedSpace},

Iff (Membership.mem f.domain x) (Exists fun g => And (Membership.mem g.domain
x) (Eq g.toRationalMap f))

and the ground-truth set of premises used, which is the union of premises appear-
ing in the compiled proof term (e.g. exists_exists_and_eq_and implicitly invoked by
simp) and appearing explicitly (e.g. and_comm appearing in the argument of the simp
call): [Iff.trans, exists_prop, Eq.trans, of_eq_true, iff_self, congr, funext,
exists_exists_and_eq_and, TopologicalSpace.Opens.mem_sSup, propext, and_comm,
congrArg].

This set of premises are then filtered by a blacklist of common logical premises and other
ineligible premises, which removes trivial theorems such as iff_self (p : Prop) : (p
↔ p) = true. This helps the selector to only focus on the smaller subset of premises
that are meaningful for a hammer. The resulting list of premises is [exists_prop, funext,
exists_exists_and_eq_and, TopologicalSpace.Opens.mem_sSup].

For tactic-style (sub)proofs, the state before each tactic is also collected. In the proof above, this is
the state before the simp call:

X Y : AlgebraicGeometry.Scheme
f : X.RationalMap Y
x : ↑↑X.toPresheafedSpace
⊢ Iff

(Exists fun u =>
And (Membership.mem (setOf fun x => Exists fun g => Exists fun x_1 => Eq

g.domain x) u) (Membership.mem u x))
(Exists fun g => And (Membership.mem g.domain x) (Eq g.toRationalMap f))

This state has the same ground-truth premises as the state above, since they correspond to the same
theorem proof. Compare this data extraction with prior work (Yang et al., 2023) that only extract
premises that explicitly occur in the next tactic in tactic-style proofs (which is sensible for their
purpose of textual next-tactic generation but not for a hammer that needs all relevant premises to
close the current goal).

Aside from extracting data from its proof, this theorem may be used as a premise for down-stream
theorems. Therefore we also collect it as a premise (Section 3.2.1), with pretty-printed signature as
follows:7

theorem AlgebraicGeometry.Scheme.RationalMap.mem_domain {X Y :
AlgebraicGeometry.Scheme} {f : X.RationalMap Y} {x : ↑↑X.toPresheafedSpace} :
Iff (Membership.mem f.domain x) (Exists fun g => And (Membership.mem g.domain
x) (Eq g.toRationalMap f))

7We tried excluding the theorem name (here AlgebraicGeometry.Scheme.RationalMap.mem_domain)
in a premise signature, but preliminary ablation experiments did not show performance gains.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Note the difference between this signature and the raw source code string at the start: pretty-printing
notation shorthands like 99K and ∃ is disabled, names are expanded to full names, implicit types are
added (such as the type of x), previously declared variables like X and Y are included, and the proof
is not included. This is because our signature printing is a function of the type of the premise and
not its source string as in Yang et al. (2023). This gives the entire information of a premise while
standardizing its signature printing.

B LEANHAMMER EXAMPLE

We provide an example of a proof produced by LEANHAMMER to illustrate the features of our
hammer pipeline.

Consider the following theorem, associated_gcd_right_iff, proven in the module
Mathlib.Algebra.GCDMonoid.Basic:

theorem associated_gcd_right_iff [GCDMonoid A] {x y : A} :
Associated y (gcd x y) ↔ y | x :=

⟨fun hx => hx.dvd.trans (gcd_dvd_left x y),
fun hxy => associated_of_dvd_dvd (dvd_gcd hxy dvd_rfl) (gcd_dvd_right x y)⟩

The initial goal state produced by this theorem’s signature is:

A : Type
inst1 : CancelCommMonoidWithZero A
inst : GCDMonoid A
x y : A
⊢ Associated y (gcd x y) ↔ y | x

Initial goal state (as printed by VS Code)

A : Type
inst1 : CancelCommMonoidWithZero A
inst : GCDMonoid A
x y : A
⊢ Iff (Associated y (GCDMonoid.gcd x y))

(Dvd.dvd y x)

String sent to premise selection server

Note that there are slight differences between this goal state as printed by VS Code and as printed
by our state extraction procedure. These differences serve to disambiguate constants and remove
potentially overloaded notation, and are described in Section 3.2.1.

Given this initial goal state, our premise selection server looks up premises accessible by this proof,
which are premises either imported by the current module or defined earlier in the current module.
Among these, it returns the following ordered list of 32 premises:

1. GCDMonoid.gcd_dvd_left
2. dvd_gcd_iff
3. GCDMonoid.dvd_gcd
4. GCDMonoid.gcd_dvd_right
5. Associated.dvd_iff_dvd_right
6. Associated.dvd_iff_dvd_left
7. gcd_comm’
8. gcd_eq_zero_iff
9. Associated.symm

10. Associated.dvd
11. gcd_zero_right’
12. Associated.trans
13. gcd_dvd_gcd
14. Associated.refl
15. associated_one_iff_isUnit
16. gcd_zero_left’

17. instDecompositionMonoidOfNonemptyGCDMonoid
18. associated_of_dvd_dvd
19. instNonemptyGCDMonoid
20. associated_gcd_left_iff
21. gcd_mul_lcm
22. gcd_assoc’
23. dvd_dvd_iff_associated
24. gcd_mul_right’
25. gcd_mul_left’
26. GCDMonoid.gcd_mul_lcm
27. dvd_gcd_mul_of_dvd_mul
28. gcd_mul_dvd_mul_gcd
29. Associated.mul_left
30. gcd_one_right’
31. mul_dvd_mul_iff_left
32. gcd_pow_left_dvd_pow_gcd

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

As described in Section 3.4, LEANHAMMER uses k1 = 16 premises supplied to Lean-auto, and
k2 = 32 for premise application rules, so the first 16 premises are sent to Lean-auto and all 32 of
the above premises are added to Aesop as premise application rules. The proof that LEANHAMMER
discovers is equivalent to the following:

theorem associated_gcd_right_iff [GCDMonoid A] {x y : A} :
Associated y (gcd x y) ↔ y | x := by

apply Iff.intro -- Applied by Aesop
· intro a -- Applied by Aesop

duper [a, GCDMonoid.gcd_dvd_left, Associated.dvd_iff_dvd_left]
· intro a -- Applied by Aesop

apply associated_of_dvd_dvd -- Premise application (18)
· duper [a, GCDMonoid.dvd_gcd, Associated.dvd, Associated.refl]
· apply GCDMonoid.gcd_dvd_right -- Premise application (4)

In this proof, Aesop begins by transforming the initial goal into subgoals with the constructor intro-
duction rule Iff.intro. The first subgoal is provable using just the first 16 premises supplied by the
premise selector, so after Lean-auto translates it into higher-order logic, Zipperposition reports that
GCDMonoid.gcd_dvd_left (premise 1) and Associated.dvd_iff_dvd_left (premise 6) entail
the first subgoal on their own. Then, since it is known that only these two premises are required to
solve the first subgoal, these two premises can be passed to Duper on their own, and Duper is able
to produce a proof for the first subgoal.

The second subgoal cannot be proven by Lean-auto and Zipperposition using just the first 16
premises, but Aesop sees that associated_of_dvd_dvd (premise 18) can be applied directly. Af-
ter it does so, two more subgoals are created, the first of which can once again be proven with
Lean-auto, Zipperposition, and Duper (using a different subset of the first 16 premises), and the
second of which can be proven with a direct application of GCDMonoid.gcd_dvd_right (premise
4). Since GCDMonoid.gcd_dvd_right is part of the first 16 premises, it would also be possible
for this final subgoal to be proven using Lean-auto, Zipperposition, and Duper, but because direct
premise applications are assigned a higher priority than invocations of Lean-auto (20% as compared
to 10%, see Section 3.4), Aesop discovers the simpler proof first.

C BASELINE SETTINGS

The following baselines are used in our analysis. The specific setup details of each baseline are
listed below:

• None: No premises are supplied to LEANHAMMER.
• MePo (Meng & Paulson, 2009): A prototype implementation of MePo was recently adapted into

Lean by Kim Morrison. We note that MePo is designed for selecting a much larger number of
premises than what is typically optimal for LEANHAMMER (Section D.3). We select the final k
premises selected by MePo, as we experimentally confirm that the final premises selected are the
most relevant, while supplying too many premises to LEANHAMMER would decrease its perfor-
mance (Figure 3). We tuned the parameters p and c in the range p ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and
c ∈ {0.9, 1.2, 2.4, 3.6} on our test data, and found that the setting leading to highest recall@k is
p = 0.6 and c = 0.9 (which effectively only runs the inner loop of MePo once). We also filter out
ineligible premises and Lean language-related (e.g. metaprogramming) premises, similar to what
we do in Section 3.2.1.

• Random forest (Piotrowski et al., 2023): this is a random forest model based on features, which are
the collection of symbols appearing in the goal. We select their model with the highest reported
performance, which is the model trained on data extracted with n+b features. We also modify
their training to train on all Mathlib data (including our evaluation data), because it is nontrivial to
modify their code to follow our data splits. This means that the training data given to their model
includes our test/valid theorems. This gives their model an unfair advantage, so our observations
are an upper bound on their model performance. We encountered non-terminating data extraction
on a small number of modules, so we set a limit of 1,000 seconds for data extraction on each
module. We also encountered time-out and out-of-memory issues during premise retrieval (some
using >30GB RAM for a single retrieval), so we also increased LEANHAMMER time-out from

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

300 to 1,000 seconds. We did an additional pass to ensure we evaluate on as many theorems as
possible. This still results in 300 premise retrieval errors out of 500 test theorems, so we only
report the average over the successful ∼200 theorems in Table 2.
We do not test on their k-NN model because it is reported to be worse than the random forest
model, and including our evaluation theorems in the training data gives k-NN significant unfair
advantage.

• ReProver (Yang et al., 2023): We run LeanDojo’s data extraction script on our train/valid/test
splits and Lean 4 version (version v4.16.0), and retrain their model on this data. We retrieve
premises from accessible premises using their script. We note that our definition of ground-truth
premises (premises used in the entire proof) is different from their definition (premises used in
the next tactic), because we focus on finishing the goal and they focus on tactic generation, so
there is discrepancy between recall@k in Table 2 and Yang et al. (2023). (We manually verified
that the recall@10 value using their definition is similar to what they report, at about 38%, so our
re-training worked properly.)

D ADDITIONAL RESULTS

D.1 PROOF RATE AND RUN TIME

In Figure 2a, we show the performance of our models as the size of the premise selector scales on
Mathlib-test. We note that using our models, performance scales well with model size.

In Figure 2b, we show the run time of LEANHAMMER on Mathlib-test using the large model,
depending on if the theorem was proven. Most successful applications of LEANHAMMER run in
under 1 second, but some theorems require a much longer time.

ReProver
(218M)

LeanPremise
(small, 23M)

LeanPremise
(medium, 33M)

LeanPremise
(large, 82M)

LeanPremise
(cumulative)

Premise selector size

0

5

10

15

20

25

30

35

40

45

Pr
oo

f r
at

e 
(%

)

aesop
auto
aesop+auto
full
cumul

(a) Proof rate on Mathlib-test using different premise se-
lectors. Dashed lines are ground-truth proof rates.

<0.1 0.1 1 1 5 5 10 10 15 15
LeanHammer run time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 o

f t
he

or
em

s (
%

)

Success
Failure

(b) LEANHAMMER (full) run time on Mathlib-
test, depending on if the theorem was proven.

Figure 2: Analysis of proof rate and execution speed in different settings.

D.2 EXTENDED miniCTX-V2 RESULTS

We present the complete results over all settings on miniCTX-v2 in Table 5. We note that over all
settings, the ratio of our proof rate to the proof rate given ground-truth premises is largely preserved,
or even increases for some settings, from Mathlib to miniCTX-v2. For the Carleson split, our pipeline
resulted in an unexpected error which we believe is fixable, but in the meantime we put the proof
rate as 0.0 (as a lower bound of performance).

D.3 FINDING OPTIMAL k

In order to determine the number k of premises to retrieve and supply to LEANHAMMER, we per-
form a sweep of possible numbers (Figure 3) and determine that k1 = 16 premises should be
supplied to Lean-auto and k2 = 32 premises should be supplied for premise application rules. Their

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Premise selector Setting Proof rate (%)

Carleson ConNF FLT Foundation HepLean Seymour Average

None aesop 0.0 10.0 27.3 38.0 8.0 6.0 14.9
LEANPREMISE (large) aesop 0.0 16.0 39.4 38.0 10.0 20.0 20.6
Ground truth aesop 2.4 16.0 30.3 40.0 12.0 22.0 20.4

None auto 0.0 10.0 12.1 32.0 4.0 4.0 10.4
LEANPREMISE (large) auto 0.0 10.0 15.2 32.0 4.0 10.0 11.9
Ground truth auto 4.8 10.0 24.2 34.0 12.0 32.0 19.5

None aesop+auto 0.0 10.0 27.3 38.0 8.0 6.0 14.9
LEANPREMISE (large) aesop+auto 0.0 10.0 30.3 40.0 10.0 16.0 17.7
Ground truth aesop+auto 4.8 10.0 36.4 40.0 18.0 30.0 23.2

None full 0.0 10.0 27.3 38.0 8.0 6.0 14.9
LEANPREMISE (large) full 0.0 16.0 36.4 38.0 10.0 24.0 20.7
Ground truth full 7.1 16.0 39.4 40.0 20.0 34.0 26.1

None cumul 0.0 10.0 27.3 38.0 8.0 6.0 14.9
LEANPREMISE (large) cumul 0.0 16.0 39.4 40.0 12.0 26.0 22.2
Ground truth cumul 7.1 16.0 39.4 40.0 20.0 38.0 26.8

Table 5: Extended table of performance of LEANHAMMER on each split of miniCTX-v2-test (Hu
et al., 2025) using the large model trained on Mathlib.

8 12 16 20 24
k1 premises for Lean-auto

48
40

32
24

16
k 2

 p
re

m
ise

s a
s A

es
op

 ru
le

s

32.4 33.4 34.0 33.4 33.8

32.4 33.2 33.8 33.2 33.6

33.0 33.8 34.6 34.0 34.2

32.0 33.0 33.8 33.0 33.2

31.4 32.6 33.4 33.4 33.4
31.5

32.0

32.5

33.0

33.5

34.0

34.5

Pr
oo

f r
at

e 
us

in
g 
fu
ll

 (%
)

Figure 3: Proof rate on Mathlib-valid by number of retrieved premises under full setting.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

respective Aesop priority values 10% and 20% are determined similarly, though their effect is much
less than changing k, so we omit the details.

D.4 ANALYSIS OF PROOF RATE BY THEOREM DIFFICULTY

1 2 3 4 5 6 7 8
Proof length (lines)

0

10

20

30

40
Pe

rc
en

ta
ge

 o
f t

he
or

em
s (

%
)

Success
Failure

0 1 2 3 4 5 8 9 16 17
Number of ground truth premises

0

5

10

15

20

Pe
rc

en
ta

ge
 o

f t
he

or
em

s (
%

)

Success
Failure

(a) Theorem statistics by difficulty using the large model.

1 2 3 4 5 6 7 8
Proof length (lines)

0

10

20

30

40

Pe
rc

en
ta

ge
 o

f t
he

or
em

s (
%

)

Success
Failure

0 1 2 3 4 5 8 9 16 17
Number of ground truth premises

0

5

10

15

20

Pe
rc

en
ta

ge
 o

f t
he

or
em

s (
%

)

Success
Failure

(b) Theorem statistics by theorem difficulty using ground-truth premises.

Figure 4: Analysis of theorem statistics by difficulty, on Mathlib-test with the full setting, depend-
ing on if the theorem was proven.

For each theorem in Mathlib-test, we record the number of lines of the human-written proof uses8

and the number of (filtered) premises used by the human-written proof, as proxy metrics of the
difficulty of the theorem. Shown in Figure 4, we found that almost all theorems that LEANHAMMER
solves, whether using our model or with ground-truth premises, use 1–2 lines in the human-written
proof, while theorems not solved have a longer tail distribution. This means that, even if our premise
selector were optimal, we would expect LEANHAMMER to primarily be useful for solving the final
few lines or small gaps in a proof. Note that proofs in Mathlib are often “golfed”, and 1–2-line proofs
still have a wide range of difficulties. Similarly, the number of ground-truth premises of theorems
that LEANHAMMER proves is usually no more than 8. These result imply that LEANHAMMER is
good at filling in the small gaps in proofs, as the search space becomes prohibitively large for longer
proofs.

D.5 ERROR ANALYSIS

The LEANHAMMER pipeline has multiple components, and each part may encounter an error during
a proof attempt. In order to identify parts that may be improved in the future, we record the source of
error leading to each unsuccessful proof, specifically in the auto setting (the part involving premise
selection, Lean-auto translation, Zipperposition proof search, and Duper proof reconstruction), be-
cause the Aesop part is more established and well-understood (Limperg & From, 2023). When the
ground truth premises (resp. premises retrieved by the large model) were supplied to LEANHAM-
MER, the results are as follows on Mathlib-test:

8Excluding proof headers such as := by and where.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1. 21.7% (26.7%) of the theorems could not be translated by Lean-auto into the TH0 format used
by Zipperposition (usually because the theorem itself or one of the premises supplied is outside
the scope of the current translation procedure).

2. 43.6% (50.4%) of the theorems were translated by Lean-auto, but could not be proven by Zip-
perposition. This may be because necessary premises were not retrieved, Zipperposition was
unable to perform the required form of reasoning (e.g. arithmetic or induction), or the translation
did not preserve enough information (e.g. because the translation did not unfold some necessary
constant).

3. 1.6% (1.2%) of the theorems were proven by Zipperposition, but its proof could not be recon-
structed in Lean by Duper.

4. 0.0% (0.4%) of the theorems encountered another error.
5. The remaining 33.1% (21.3%) were successfully proven.

This shows that there may be improvements gained from (1) increasing recall@k of our premise
selector, (2) improving translation of Lean into TH0, and (3) incorporating complementary tactics
such as grind capable of solving problems not ideally suited to Duper, Zipperposition, or Aesop
(e.g. problems involving arithmetic).

20


