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QUANTIFICATION VS. REDUCTION: ON EVALUATING
REGRESSION UNCERTAINTY

Domokos M. Kelen∗† Ádám Jung† András A. Benczúr†‡

ABSTRACT

Uncertainty quantification (UQ) methods for regression are frequently judged
based on improvements measured in negative log-likelihood (NLL). In this work,
we question the practice of relying too heavily on NLL, arguing that typical evalu-
ations can conflate better quantifying predictive uncertainty with simply reducing
it. We do so by studying how the uncertainty of various distributional parame-
ters affects NLL scoring. In particular, we demonstrate how the error of the mean
materializes as uncertainty, and how the uncertainty of the variance has almost no
effect on scores. Our results question how much of the reported progress is due to
decreasing, rather than accurately representing, uncertainty, highlighting the need
for additional metrics and protocols that disentangle these two factors.

1 INTRODUCTION

Uncertainty quantification (UQ) methods provide a framework for estimating the confidence of pre-
dictive models. Over the years, numerous UQ techniques have been proposed and evaluated based
on improvements in negative log-likelihood (NLL). While NLL is widely regarded as a robust met-
ric such as in the UCI Regression Uncertainty Benchmark (Hernández-Lobato & Adams, 2015)
due to its strictly proper scoring properties, we demonstrate that its ability of assessing uncertainty
quantification is confounded by improvements in overall predictive performance in regression.

A key concern in relying too heavily on NLL for evaluating UQ methods is that it does not strictly
measure the accuracy of uncertainty quantification but rather reflects how well the predicted distribu-
tion aligns with observed outcomes. Through proving two propositions, we formally show how NLL
can be reduced not just by genuinely refining uncertainty estimates, but also by merely improving
overall prediction accuracy. Since NLL is inherently linked to the entropy of the predicted distribu-
tion, a narrower target distribution, resulting from reduced predictive errors, naturally leads to lower
NLL scores. For our propositions to hold, ground truth can exist for the aleatoric uncertainty, unlike
assumed in the related argument of (Bengs et al., 2023).

The problem is excerberated by the fact that many UQ methods incorporate elements resembling
regularization techniques, which are specifically designed to decrease predictive uncertainty and
improve generalization, yet might not lead to a more accurate quantification of uncertainty. This
raises fundamental questions about the validity of using NLL as the primary evaluation metric for
UQ methods, and underscores the necessity of additional metrics and evaluation protocols that dis-
entangle the effects of improved predictive performance from better uncertainty quantification.

Our paper critically examines the limitations of NLL as a standalone metric for UQ evaluation.
Specifically, we explore how epistemic and aleatoric uncertainty influence predictive distributions,
and investigate the effects of accuracy in predicting parameters of the aleatoric uncertainty distribu-
tion. We demonstrate how better point predictions for the aleatoric mean µ lead to decreased predic-
tive uncertainty during evaluation, and quantify the effects of uncertainty regarding the distribution
of the aleatoric parameter σ2. In particular, we show that NLL scores appear almost independent
of the uncertainty in predicting σ2, to the point of enabling the use of the global variance as an
unconditional estimate.
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By doing so, we demonstrate the potentially highly misleading nature of traditional NLL evaluation.
Overall, our aim is to encourage the use of rigorous assessment of UQ techniques, and to encourage
further research into selecting appropriate metrics and evaluation protocols.

2 BACKGROUND

Typically, the data we record originates from a real-world process that is only partially observed.
In regression, the target value (i.e., the value to be predicted) can be modeled as a random vari-
able Y : Ω → R, with each ω ∈ Ω representing the true state of the world. Although ω itself
is unobservable, we can measure feature variables X : Ω → Rm, which offer partial informa-
tion about ω. The classic regression objective is then to approximate the conditional expectation
E[Y | X = x,D], where D is a sample of past (X,Y ) values, while UQ is concerned with the
distribution p(Y | X = x,D).

2.1 ALEATORIC VS. EPISTEMIC UNCERTAINTY

Different sources of uncertainty can be distinguished (Hüllermeier & Waegeman, 2021). Epistemic
uncertainty arises from our inability to pinpoint the optimal model based on limited data, and can
be reduced by collecting more data (i.e., expanding D). This is typically formalized as examining
the conditional distribution of model parameters given the data, for example in Bayesian Neural
Networks (Blundell et al., 2015; Gawlikowski et al., 2023). Aleatoric uncertainty, by contrast, stems
from the fact that knowing X may not fully determine Y , as some component of Y is independent
of X . As a result, it cannot be reduced without redefining X or Y .

2.2 NEGATIVE LOG-LIKELIHOOD, PROPER SCORING RULES, AND DIFFERENTIAL ENTROPY

Negative log-likelihood (NLL) is commonly used to measure how closely a predicted probability
distribution matches observed data. Formally, it is defined as

−E
[
log q̃θ(Y | X)

]
,

where q̃θ(Y | X) denotes the model’s predicted distribution for the target variable. NLL is a strictly
proper scoring rule (Gneiting & Raftery, 2007), meaning it is minimized exactly when the predicted
distribution matches the true data-generating distribution, thereby encouraging accurate estimates.

When the predicted distribution is identical to the ground truth, the expected NLL reduces to the
differential entropy −E[log p(Y | X)]. Thus, predicting a distribution with lower entropy naturally
leads to lower range of NLL values.

3 RELATED WORK

In UQ, the majority of methods focus on quantifying epistemic uncertainty, for example the
BNN (Blundell et al., 2015), or its many enhancements (Gawlikowski et al., 2023). Goodness of
regression uncertainty approaches is usually measured on the UCI Benchmark (Hernández-Lobato
& Adams, 2015), with most papers reporting RMSE and (negative) log-likelihood (NLL) results.

In Bengs et al. (2023), the possibility of second-order scoring rules is investigated, i.e., scoring rules
for epistemic uncertainty. Their results indicate that such scoring rules most likely cannot exists,
thereby also questioning the validity of using first-order scoring rules such as NLL. However, their
result hinges on the fact that no ground truth exists for the aleatoric uncertainty distribution. Our
results venture further, highlighting the misleading nature of NLL evaluation even in cases where
we assume nonexistent or known aleatoric uncertanty.

NLL conflating improvements of accuracy and UQ is not a new idea, with multiple recent publi-
cations describing the problem. However, both Sluijterman et al. (2024) and Kristoffersson Lind
et al. (2024) approach the matter by demonstrating the effect through brief numeric evaluations.
We provide a more formal analysis, contrasting the problem with scoring rule theory, aleatoric and
epistemic uncertainty, and studying the effects of the uncertainty of different aleatoric parameters.

2



Published as a conference paper at ICLR 2025

4 UNCERTAINTY QUANTIFICATION VS. REDUCTION

In this section, we study the exact ways in which comparing predicted distributions against the data
using NLL can conflate better quantifying uncertainty with simply reducing uncertainty.

4.1 SIMPLIFIED DETERMINISTIC SETTING

To illustrate our point, we begin with a highly simplified problem setup. Suppose there is no inherent
(aleatoric) noise in Y given X , so that

Y = E[Y | X]. (1)

In other words, Y is fully determined by X . The model’s core task is then simply to learn the
function

µ(x) = E[Y | X = x]. (2)
A typical regression model might produce a point estimate µ̃(x; θ) that approximates µ(x). An
uncertainty-aware model, however, outputs a distribution over possible values for µ(x). For ex-
ample, a Bayesian neural network (BNN) might represent the predicted distribution of µ(x) by
producing different samples with each evaluation, interpreted as samples from the distribution.

Let us denote the model’s predicted distribution over the true parameter µ(x) as

q̃θ
(
µ(x) | X = x

)
. (3)

A standard evaluation via negative log-likelihood (NLL) is then

−E
[
log q̃θ

(
Y | X

)]
≈ − 1

n

n∑
i=1

log q̃θ
(
yi | xi

)
, (4)

where (xi, yi) are samples from the ground-truth joint distribution of (X,Y ).

The usual argument for NLL-based evaluation is that NLL is a strictly proper scoring rule, which
means it is minimized precisely when the predicted distribution matches the true distribution. Under
this argument, the predictor is incentivized to align the predicted distribution with the ground-truth.

However, this assumes that the ground-truth distribution being approximated is fixed, which in
our setup is not the case. As we have assumed aleatoric uncertainty in Y to be zero, the only
distribution left to approximate is that of the model’s own errors, not a fixed noise distribution. If
the model’s errors decrease, the associated “true” distribution of those errors shrinks; if the model’s
errors increase, it broadens. In both scenarios, uncertainty can be deemed accurately quantified if
the predicted uncertainty distribution matches the (changing) error distribution.

A narrower target distribution inherently corresponds to a lower range of NLL values: the ideal NLL
is always equal to the differential entropy of the target distribution, and it is known that H(αX) =
H(X) + log |α|. Thus, a more accurate (lower-error) model with a less well-calibrated uncertainty
estimate can outscore a less accurate model with a perfectly calibrated estimate. This conflates
reducing predictive error with quantifying it more effectively.

4.1.1 GAUSSIAN EXAMPLE

In this section, we illustrate the problem through a concrete example. Again assume Equation (1),
and simplifying even further, that the model posits a Gaussian density:

q̃θ
(
y | X = x

)
= N

(
y
∣∣ µ̃(x; θ), σ̃2(x; θ)

)
. (5)

Denoting the residual as
ε(x) = Y − µ̃(x; θ), (6)

the negative log-likelihood can be expressed as

−E
[
log q̃θ(Y | X)

]
= −E

[
log

(
N
(
ε(X)

∣∣ 0, σ̃2(X; θ)
))]

. (7)
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Essentially, the predicted distribution is being compared against the residual distribution ε(X).
However, crucially, ε(x) is itself defined by the model’s chosen function µ̃(x; θ). As µ̃(x; θ) be-
comes more accurate, the distribution of ε(x) tightens around zero; while if accuracy worsens, it
broadens. In other words, the “target distribution” we compare against is not fixed, but depends on
the quality of the model’s point estimate.

Thus, the strictly proper scoring rule argument can be misleading in this setting: it implicitly assumes
a fixed ground-truth distribution that the model is approximating, whereas the actual “ground truth”
(the residual distribution) co-evolves with the model’s predictions. This means that improvements
in NLL conflate (i) reducing prediction error ε(x) with (ii) better matching the distribution of that
error. As a result, we argue that more fine-grained metrics and evaluation protocols are needed to
disentangle these two aspects.

4.2 EXTENDING TO THE GENERAL CASE

So far, we have considered a deterministic scenario where the relationship between X and Y con-
tains no aleatoric uncertainty and any distribution to be learned is purely the model’s residual dis-
tribution. In practice, however, most real-world problems involve non-zero aleatoric noise: Y can
vary even for fixed X . Therefore the full distribution must include both aleatoric and epistemic
components of uncertainty.

Conceptually, one way to handle this mix is to regard epistemic uncertainty as a meta-distribution
over the unknown parameters of the aleatoric distribution. Formally, suppose the aleatoric distribu-
tion of Y | X is characterized by some parameter vector rx = (r

(1)
x , . . . , r

(n)
x ). The model then

needs to produce a predictive distribution for the aleatoric parameter vector rx, i.e.,

p(y | X = x, θ) =

∫
Rn

p(y | r) p(r | θ,X = x) dr. (8)

Predicting the distribution of rx is the approach is taken by most methods, e.g., Bayesian Neural
Networks (Blundell et al., 2015; Gawlikowski et al., 2023), which use a nondeterministic neural
network to model the distribution of aleatoric parameters.

Essentially, while the value of target variable Y is no longer assumed to be deterministic given X ,
we can still assume that there is an ideal mapping x 7→ rx which the model is trying to approximate
based on the data. Most commonly aleatoric uncertainty is modeled in simple parametric forms
(e.g., Gaussian) where r might be a relatively small set of parameters (e.g., mean and variance).
However, more expressive distributions (Bishop, 1994) may also be used.

Modeling more than one parameter does not change the fact that there is distinction to be made be-
tween more accurately predicting the parameters and accurately assessing the error made when doing
so. However, the relation of aleatoric parameters to negative log-likelihood is rarely as straightfor-
ward as in Section 4.1. To illustrate the non-trivial nature of these relations, in the next section we
study an analytically tractable example for the uncertainty of the variance parameter.

4.2.1 STUDENT-T DISTRIBUTION EXAMPLE

Let’s assume a Gaussian aleatoric uncertainty distribution with rx = (µx, σ
2
x), and suppose some-

how we are given the ideal µ(x) = µx function that calculates the mean, leaving the model respon-
sible only for determining the distribution of the parameter σ2

x. Assuming an inverse-gamma density
makes it possible to analytically reason about the effects of changing the mean and variance of σ2

x:
let Ỹ be the compound distribution of a Gaussian with known expectation µ, and σ2 distributed as
Γ−1(α, β). It is then known that p(Ỹ ) is a location-scale Student-t (Gelman et al., 1995).

Proposition A. If Ỹ is defined as above, then Var(Ỹ ) = E
(
Γ−1(α, β)

)
= β

α−1 ,

See Appendix A.1 for proof. The proposition states that, under the assumptions, changing the
variance of σ2 has no effect on Var(Ỹ ), as the latter only depends on the expected value of σ2.
However, it does not mean that Var(σ2) has no effect on NLL: the shape of p(Ỹ | X) still changes
in Var(σ2). To see this, we study the differential entropy H , equivalent to the ideal NLL.

Proposition B. Let Ỹ be as in Proposition A. Then as Var(σ2) increases, H(Ỹ ) decreases.
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Figure 1: Change of H(Ỹ ).

See Appendix A.2 for the proof. Note that the effect is
relatively small: as illustrated in Figure 1, the entropy re-
mains nearly constant as Var(σ2) changes. Nonetheless,
Proposition B is quite counterintuitive, since we typically
expect greater uncertainty to correspond to higher en-
tropy. However, recall from Proposition A that changing
Var(σ2) does not alter the variance of Ỹ ; it only affects
its shape. Therefore, the unexpected outcome is a result
of the peculiarities of differential entropy combined with
the Student-t distribution’s shape. Proposition B serves to
further emphasize that distribution-based NLL scores can
be difficult to interpret as indicators of UQ.

Proposition A is conceptually unsurprising, as it essentially re-states the law of total variance

Var(Ỹ ) = E
[
Var

(
Ỹ | X

)]
+Var

[
E
(
Ỹ | X

)]
(9)

from the model’s perspective, with the uncertainty of the mean on right-hand side assumed to be
zero. However, its consequences are much more substantial than could appear at first glance. First,
the result implies that given that its unbiased, the uncertainty of the predicted aleatoric variance σ2

only affects NLL evaluation through its effect on the shape of the distribution, see Proposition B.

Second, and much more crucially, since we only have a single sample from each conditional distri-
bution, questioning whether our prediction for σ2 is biased only makes sense in comparison to the
unconditional, global variance. Therefore, as long as we correctly quantify the expected error of the
mean, we can use the global variance of σ2 as an unconditional estimate for Var(σ2 | X) largely
without penalty, as again it only affects NLL through changing the shape of the distribution, which
can affect the score either positively or negatively, as in Proposition B. This consequence is so fun-
damentally unexpected that we feel obligated to also verify it experimentally, see in Appendix A.3.

4.3 THE EFFECT OF REGULARIZATION

Regularization and epistemic uncertainty are closely related, both influencing model parameter se-
lection. While UQ seeks to characterize p(θ | D), regularization modifies the learning process to
encourage preferred parameter values. In many cases, regularization can be seen as imposing an
explicit or implicit prior on model parameters. A well-known example is ridge regression, where
L2 regularization is mathematically equivalent to placing a zero-mean Gaussian prior on the model
weights in a Bayesian framework.

Given this connection, it is unsuprising that several works have successfully repurposed regulariza-
tion techniques for UQ. Monte Carlo Dropout (Gal & Ghahramani, 2016), for instance, leverages
dropout as a means of estimating uncertainty, effectively treating it as a Bayesian approximation.
Notably, BNNs themselves apply a similar weight-sampling process, though they typically rely on
Gaussian rather than binary dropout-based sampling.

However, regularization is primarily designed to improve generalization and point prediction ac-
curacy. If regularization-based UQ methods also lead to systematic reductions in prediction error,
then improvements in metrics like NLL may be misleading. This reinforces our broader argument:
if we cannot distinguish between gains in prediction accuracy and genuine advances in uncertainty
quantification, then it remains unclear whether these models truly enhance the latter.

5 CONCLUSIONS

In this work, we argued that negative log-likelihood (NLL) alone is an incomplete measure of uncer-
tainty quantification (UQ) in regression. While NLL encourages models to match observed distribu-
tions, it does not distinguish between improved uncertainty characterization and reduced predictive
error. We showed that lower NLL can result simply from smaller residual variance, even in the
absence of aleatoric noise, and that factors like aleatoric parameter uncertainty or regularization can
yield misleading conclusions. These findings highlight the need to separate predictive accuracy from
uncertainty representation. Without this distinction, reducing residual error can give the illusion of
better UQ, even in the abscence of an actual improvement of quantification.
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A APPENDIX

A.1 STUDENT-T VARIANCE

Proposition A. Assume a normal aleatoric uncertainty distribution with rx = (µx, σ
2
x) and suppose

we have the true mean function µ(x) = µx at our disposal. Further assume that our prediction for
the variance σ2

x follows an inverse-gamma distribution Γ−1(α, β). Then denoting the marginal
distribution of the predicted variable Ỹx,

Var(Ỹx) = E
(
Γ−1(α, β)

)
=

β

α− 1
. (10)

Proof. It is known (Gelman et al., 1995) that if Z is the compound distribution of a normal distribu-
tion with parameters (µ, σ2) and σ2 ∼ Γ−1(α, β), then

(Z − µ)

(
β

α

)− 1
2

∼ t(ν = 2α), (11)

where t(ν) is Student’s t-distribution with ν degrees of freedom. Further if Z ∼ t(ν), then

Var(Z) =
ν

ν − 2
, (12)

and if σ2 ∼ Γ−1(α, β) then

E(σ2) =
β

α− 1
. (13)

From Equation (11), the variance of Ỹ is then

Var(Ỹx) =
ν

ν − 2
· β
α

=
2α

2α− 2
· β
α

=
β

α− 1
= E

(
σ2

)
. (14)

A.2 IDEAL NLL WITH KNOWN MEAN AND ASSUMED INVERSE-GAMMA VARIANCE

First, we need to prove a bound for the half-integer difference of trigamma functions ψ1 as a lemma.
Lemma B. For z > 0,

1

(2z + 1)(z + 1)
+

1

z2
− 4

(2z + 1)2
≥ ψ1(z)− ψ1

(
z +

1

2

)
, (15)

where ψ1(z) is the trigamma function ψ1(z) =
d2

dz2 log Γ(z).

Proof.

ψ1(z)− ψ1

(
z +

1

2

)
=

∫ z+ 1
2

z

−ψ2(t) dt , (16)

where ψ2 is the polygamma function of order 2, i.e., ψ2(z) =
d3

dz3 log Γ(z).

It is known (Guo et al., 2015) that ψ2 is negative on R+, and that

|ψ2(z)| ≤
1(

z + 1
2

)2 +
2

z3
. (17)

Therefore,∫ z+ 1
2

z

−ψ2(t) dt ≤
∫ z+ 1

2

z

1(
t+ 1

2

)2 +
2

t3
dt =

1

(2z + 1)(z + 1)
+

1

z2
− 4

(2z + 1)2
. (18)
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Proposition C. Assume a normal aleatoric uncertainty distribution with rx = (µx, σ
2
x) and suppose

we have the true mean function µ(x) = µx at our disposal. Further assume that our prediction for
the variance σ2

x follows an inverse-gamma distribution Γ−1(α, β). Then denoting the marginal
distribution of the predicted variable Ỹx, the differential entropy H(Ỹx) decreases monotonically as
the variance of the distribution Γ−1(α, β) increases.

Proof. The differential entropy of the t distribution can be expressed (Lazo & Rathie, 1978) as

H(Z) =
ν + 1

2

[
ψ

(
ν + 1

2

)
− ψ

(ν
2

)]
+ log

[√
νB

(
ν

2
,
1

2

)]
, (19)

where Z ∼ t(ν), ψ is the digamma function ψ(z) = d
dz log Γ(z) and B is the Beta function

B(z1, z2) =
Γ(z1)Γ(z2)
Γ(z1+Z2)

. Further, by the properties of differential entropy,

H(Z) = H((Z − d)c)− log |c|. (20)

Therefore, using Equation (11),

H
(
Ỹ
)
=

(
α+

1

2

)[
ψ

(
α+

1

2

)
− ψ(α)

]
+ log

[√
2αB

(
α,

1

2

)]
+

1

2
log

(
β

α

)
. (21)

We can reparametrize the inverse-gamma distribution using the formula for its mean m = β
α−1 and

variance s = β2

(α−1)2(α−2) as

α = 2 +
m2

s
(22)

β = m+
m3

s
, (23)

resulting in
β

α
=
ms+m3

2s+m2
. (24)

We are interested in the behavior of the differential entropy of Equation (21) when keeping m con-
stant and increasing s. Therefore, we further express s as a function of m and ν. Remember from
Equation 11 that ν = 2α. Then,

α =
ν

2
(25)

s =
m2

α− 2
=

2m2

ν − 4
(26)

ν =
2m2

s
+ 4 (27)

β

α
=
m

(
2m2

ν−4

)
+m3

2
(

2m2

ν−4

)
+m2

=
m(ν − 2)

ν
, (28)

and

H
(
Ỹ
)
=
ν + 1

2

[
ψ

(
ν + 1

2

)
− ψ

(ν
2

)]
+ log

[√
νB

(
ν

2
,
1

2

)]
+

1

2
log

(
m(ν − 2)

ν

)
. (29)

From Equation (27), as s increases, the value of ν decreases, converging to 4. Therefore, we expect
the value of H(Ỹ ) to decrease as ν decreases. To prove this, we need to verify that sign of the
derivative is positive, i.e., that:

d

dν
H(Ỹ ) =

ν + 1

4

[
ψ1

(
ν + 1

2

)
− ψ1

(ν
2

)]
+

1

2(ν − 2)
> 0, (30)
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where ψ1(z) is the trigamma function ψ1(z) =
d2

dz2 log Γ(z). This is equivalent to showing that

2

(ν − 2)(ν + 1)
> ψ1

(ν
2

)
− ψ1

(
ν + 1

2

)
. (31)

By Lemma B, we have

2

(ν + 1)(ν + 2)
+

4

ν2
− 4

(ν + 1)2
≥ ψ1

(ν
2

)
− ψ1

(
ν + 1

2

)
. (32)

It is then straightforward to check that for ν > 4, we indeed have

2

(ν − 2)(ν + 1)
>

2

(ν + 1)(ν + 2)
+

4

ν2
− 4

(ν + 1)2
. (33)

A.3 EXPERIMENT ABOUT THE UNCERTAINTY OF ALEATORIC PARAMETERS

Let us define the data generating process as

X ∼ U(0, 5), (34)
µ(x) = sin(xπ), (35)

σ2(x) = cos2(2xπ) +
1

2
, (36)

and
p(Y | X = x) = N (µ(x), σ2(x)). (37)

We then numerically measure the NLL score of models of varying accuracy, represented by

µ̃(x) ∼ N (µ(x), s1) (38)

and
σ̃2(x) = σ̃2

e(x) + σ̃2
a(x), (39)

where

σ̃2
e(x) = s1, and (40)

σ̃2
a(x) ∼ Γ−1

(
2 +

σ4(x)

s2
, σ2(x) +

σ6(x)

s2

)
, (41)

cf. Equations (22) and (24). Note that Equation 40 essentially assumes perfect knowledge about the
uncertainty of µ.

We run each measurement with a sample of n = 10000 points. Please see the data distribution
visualized on Figure 2. Figure 3 displays the NLL scores measured with different amounts of uncer-
tainty for the aleatoric parameters µ and σ2. As we can see, there is barely any effect of s2 on the
resulting NLL scores, especially when we are also dealing with an uncertain µ.

In Figure 4, we display scores for various rows of Figure 3, along with NLL scores of a model with
an estimate for σ2 that is not conditioned on X , rather is set to the global variance of the data. As
we can see, the resulting scores are basically almost independent of whether we use conditional or
global estimates for σ2, and mostly depend on s1, the uncertainty of µ, which we assumed perfect
knowledge of.
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Figure 2: Distribution of the data.
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Figure 3: Visualizing NLL as a function of s1, s2.
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