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ABSTRACT

We investigate a strategy for improving the efficiency of contrastive learning of
visual representations by leveraging a small amount of supervised information
during pre-training. We propose a semi-supervised loss, SuNCEt , based on
noise-contrastive estimation and neighbourhood component analysis, that aims to
distinguish examples of different classes in addition to the self-supervised instance-
wise pretext tasks. On ImageNet, we find that SuNCEt can be used to match the
semi-supervised learning accuracy of previous contrastive approaches while using
less than half the amount of pre-training and compute. Our main insight is that
leveraging even a small amount of labeled data during pre-training, and not only
during fine-tuning, provides an important signal that can significantly accelerate
contrastive learning of visual representations.

1 INTRODUCTION

Learning visual representations that are semantically meaningful with limited semantic annotations
is a longstanding challenge with the potential to drastically improve the data-efficiency of learning
agents. Semi-supervised learning algorithms based on contrastive instance-wise pretext tasks learn
representations with limited label information and have shown great promise (Hadsell et al., 2006;
Wu et al., 2018b; Bachman et al., 2019; Misra & van der Maaten, 2020; Chen et al., 2020a).
Unfortunately, despite achieving state-of-the-art performance, these semi-supervised contrastive
approaches typically require at least an order of magnitude more compute than standard supervised
training with a cross-entropy loss (albeit without requiring access to the same amount of labeled data).
Burdensome computational requirements not only make training laborious and particularly time-
and energy-consuming; they also exacerbate other issues, making it more difficult to scale to more
complex models and problems, and potentially inducing significant carbon footprints depending on
the infrastructure used for training (Henderson et al., 2020).

In this work, we investigate a strategy for improving the computational efficiency of contrastive
learning of visual representations by leveraging a small amount of supervised information during
pre-training. We propose a semi-supervised loss, SuNCEt , based on noise-contrastive estimation (Gut-
mann & Hyvärinen, 2010) and neighbourhood component analysis (Goldberger et al., 2005), that
aims at distinguishing examples of different classes in addition to the self-supervised instance-wise
pretext tasks. We conduct a case-study with respect to the approach of Chen et al. (2020a) on the
ImageNet (Russakovsky et al., 2015) and CIFAR10 (Krizhevsky & Hinton, 2009) benchmarks. We
find that using any available labels during pre-training (either in the form of a cross-entropy loss or
SuNCEt ) can be used to reduce the amount of pre-training required. Our most notable results on
ImageNet are obtained with SuNCEt , where we can match the semi-supervised learning accuracy of
previous contrastive approaches while using less than half the amount of pre-training and compute,
and require no hyper-parameter tuning.
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2 BACKGROUND

The goal of contrastive learning is to learn representations by comparison. Recently, this class of
approaches has fueled rapid progress in unsupervised representation learning of images through self-
supervision (Chopra et al., 2005; Hadsell et al., 2006; Bachman et al., 2019; Oord et al., 2018; Hénaff
et al., 2019; Tian et al., 2019; Misra & van der Maaten, 2020; He et al., 2019; Arora et al., 2019; Chen
et al., 2020a; Caron et al., 2020; Grill et al., 2020; Chen et al., 2020b). In that context, contrastive
approaches usually learn by maximizing the agreement between representations of different views of
the same image, either directly, via instance discrimination, or indirectly through, cluster prototypes.
Instance-wise approaches perform pairwise comparison of input data to push representations of
similar inputs close to one another while pushing apart representations of dissimilar inputs, akin to a
form of distance-metric learning.

Self-supervised contrastive approaches typically rely on a data-augmentation module, an encoder
network, and a contrastive loss. The data augmentation module stochastically maps an image
xi ∈ R3×H×W to a different view. Denote by x̂i,1, x̂i,2 two possible views of an image xi, and
denote by fθ the parameterized encoder, which maps an input image x̂i,1 to a representation vector
zi,1 = fθ(x̂i,1) ∈ Rd. The encoder fθ is usually parameterized as a deep neural network with
learnable parameters θ. Given a representation zi,1, referred to as an anchor embedding, and the
representation of an alternative view of the same input zi,2, referred to as a positive sample, the goal
is to optimize the encoder fθ to output representations that enable one to easily discriminate between
the positive sample and noise using multinomial logistic regression. This learning by picking out the
positive sample from a pool of negatives is in the spirit of noise-contrastive estimation (Gutmann
& Hyvärinen, 2010). The noise samples in this context are often taken to be the representations
of other images. For example, suppose we have a set of images (xi)i∈[n] and apply the stochastic
data-augmentation to construct a new set with two views of each image, (x̂i,1, x̂i,2)i∈[n]. Denote by
Z = (zi,1, zi,2)i∈[n] the set of representations corresponding to these augmented images. Then the
noise samples with respect to the anchor embedding zi,1 ∈ Z are given by Z\{zi,1, zi,2}. In this
work, we minimize the normalized temperature-scaled cross entropy loss (Chen et al., 2020a) for
instance-wise discrimination

`inst(zi,1) = − log
exp(sim(zi,1, zi,2)/τ)∑

z∈Z\{zi,1} exp(sim(zi,1, z)/τ)
, (1)

where sim(a, b) = aT b
‖a‖‖b‖ denotes the cosine similarity and τ > 0 is a temperature parameter.

In typical semi-supervised contrastive learning setups, the encoder fθ is learned in a fully unsupervised
pre-training phase. The goal of this pre-training is to learn a representation invariant to common data
augmentations (cf. Hadsell et al. (2006); Misra & van der Maaten (2020)) such as random crop/flip,
resizing, color distortions, and Gaussian blur. After pre-training on unlabeled data, labeled training
instances are leveraged to fine-tune fθ, e.g., using the canonical cross-entropy loss.

3 METHODOLOGY

Our goal is to investigate a strategy for improving the computational efficiency of contrastive learning
of visual representations by leveraging the available supervised information during pre-training.
Here we explore a contrastive approach for utilizing available labels, but we also include additional
numerical evaluations with a cross-entropy loss and a parametric classifier in Section 4.

Contrastive approach. Consider a set S of labeled samples operated upon by the stochastic data-
augmentation module. The associated set of parameterized embeddings are given by ZS(θ) =
(fθ(x̂))x̂∈S . Let x̂ ∈ S denote an anchor image view with representation z = fθ(x̂) and class
label y. By slight overload of notation, denote by Zy(θ) the set of embeddings for images in S with
class label y (same class as the anchor z). We define the Supervised Noise Contrastive Estimation
(SuNCEt ) loss as

`(z) = − log

∑
zj∈Zy(θ) exp(sim(z, zj)/τ)∑

zk∈ZS(θ)\{z} exp(sim(z, zk)/τ)
, (2)

which is then averaged over all anchors 1
|S|

∑
z∈ZS(θ) `(z).

2



Under review as a conference paper at ICLR 2021

In each iteration of training we sample a few unlabeled images to compute the self-supervised
instance-discrimination loss equation 1, and sample a few labeled images to construct the set S and
compute the SuNCEt loss equation 2. We sum these two losses together and backpropagate through
the encoder network. By convention, when “sampling unlabeled images,” we actually sample images
from the entire training set (labeled and unlabeled). This simple procedure bears some similarity
to unsupervised data augmentation (Xie et al., 2019), where a supervised cross-entropy loss and a
parametric consistency loss are calculated at each iteration.

Motivation. We motivate the form of the SuNCEt loss by leveraging the relationship between
contrastive representation learning and distance-metric learning. Specifically, the SuNCEt loss can
be seen as a form of neighborhood component analysis (Goldberger et al., 2005) with an alternative
similarity metric. Consider a classifier that predicts an image’s class based on the similarity of the
image’s embedding z to those of other labeled images zj using a temperature-scaled cosine similarity
metric d(z, zj) = zT zj/(‖z‖‖zj‖τ). Specifically, let the classifier randomly choose one point as its
neighbour, with distribution as described below, and adopt the neighbour’s class. Given the query
embedding z, denote the probability that the classifier selects point zj ∈ ZS(θ)\{z} as its neighbour
by

p(zj |z) =
exp(d(z, zj))∑

zk∈ZS(θ)\{z} exp(d(z, zk))
.

Under mutual exclusivity (since the classifier only chooses one neighbour) and a uniform prior, the
probability that the classifier predicts the class label ŷ equal to some class c, given a query image x
with embedding z, is

p(ŷ = c|z) =
∑

zj∈Zc(θ)

p(zj |z) =
∑

zj∈Zc(θ) exp(d(z, zj))∑
zk∈ZS(θ)\{z} exp(d(z, zk))

, (3)

where Zc(θ) ⊂ ZS(θ) is the set of embeddings of labeled images from class c. Minimizing the KL
divergence between p(ŷ|z) and the true class distribution (one-hot vector on the true class y), one
arrives at the SuNCEt loss in equation 2. Assuming independence between labeled samples, the
aggregate loss with respect to all labeled samples S decomposes into the simple sum

∑
z∈ZS(θ) `(z).

Numerical experiments in Appendix G show that using SuNCEt during pre-training optimizes this
aforementioned non-parametric stochastic nearest-neighbours classifier and significantly out-performs
inference with the more common K-Nearest Neighbours strategy.

Practical considerations. Rather than directly using the outputs of encoder fθ to contrast samples,
we feed the representations into a small multi-layer perceptron (MLP), hθproj , to project the repre-
sentations into a lower dimensional subspace before evaluating the contrastive loss, following Chen
et al. (2020a). That is, instead of using z = fθ(x̂) directly in equation 1 and equation 2, we use
hθproj(z) = hθproj(fθ(x̂)). The projection network hθproj is only used for optimizing the contrastive
loss, and is discarded at the fine-tuning phase. In general, adding SuNCEt to a pre-training script
only takes a few lines of code. See Listing 2 in Appendix A for the pseudo-code used to compute
SuNCEt loss on a mini-batch of labeled images.

4 EXPERIMENTS

In this section, we investigate the computational effects of SuNCEt when combined with the Sim-
CLR self-supervised instance-wise pretext task defined in Section 2.1 We report results on the
ImageNet (Russakovsky et al., 2015) and CIFAR10 (Krizhevsky & Hinton, 2009) benchmarks for
comparison with related work.
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:
All methods are trained

using the LARS optimizer (You et al., 2017) along with a cosine-annealing learning-rate sched-
ule (Loshchilov & Hutter, 2016). The standard procedure when evaluating semi-supervised learning
methods on these data sets is to assume that some percentage of the data is labeled, and treat the
rest of the data as unlabeled. On ImageNet we directly use the same 1% and 10% data splits used

1The SuNCEt loss can certainly be combined with other instance-wise pretext tasks as well.
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Figure 1: Top-5 validation accuracy of a ResNet50 pre-trained on ImageNet with access to 10% of the labels.
Orange markers depict SimCLR self-supervised pre-training followed by fine-tuning. Blue markers depict the
combination of SimCLR + SuNCEt . Using SuNCEt to leverage available labels during pre-training (not only
fine-tuning), (i) accelerates convergence and produces better models (left sub-figure); and (ii) can match the
semi-supervised learning accuracy of SimCLR whith much less pre-training (right sub-figure). Orange shading
in the right sub-figure depicts compute saved. We train all methods using 64 V100 GPUs. One SimCLR epoch
corresponds to 312 updates per GPU.
Table 1: Validation accuracy of a ResNet50 pre-trained on ImageNet with access to 10% of the labels (left table)
and 1% of labels (right table). All SimCLR implementations are pre-trained for a certain number of epochs and
then fine-tuned on the available labels. Using SuNCEt to leverage available labels during pre-training (not only
fine-tuning) accelerates training, and produces better models with much less compute.

10% Labeled Accuracy (%)

Method Epochs Top 1 Top 5
Chen et al. (2020a) implementation
SimCLR 1000 65.6 87.8

Our re-implementation
SimCLR 1000 66.1 87.8
SimCLR 500 65.4 87.3

+ SuNCEt (ours) 500 66.7 88.2

1% Labeled Accuracy (%)

Method Epochs Top 1 Top 5
Chen et al. (2020a) implementation
SimCLR 1000 48.3 75.5

Our re-implementation
SimCLR 1000 50.8 77.7
SimCLR 500 49.4 76.9

+ SuNCEt (ours) 500 49.8 77.5

by Chen et al. (2020a). On CIFAR10, we create the labeled data sets by independently selecting each
point to be in the set of labeled training points with some probability p; we run experiments for each
p in {0.01, 0.05, 0.1, 0.2, 0.5, 1.0}.

Architecture & data. The encoder network in our experiments is a ResNet-50. On CIFAR10 we
modify the trunk of the encoder following Chen et al. (2020a). While this network may not be optimal
for CIFAR10 images, it enables fair comparison with previous work. For the projection network
hθproj we use an MLP with a single hidden-layer; the hidden layer has 2048 units and the output of
the projection network is a 128-dimensional real vector. The stochastic data augmentation module
employs random cropping, random horizontal flips, and color jitter. On ImageNet, we also make use
of Gaussian blur.

Fine-tuning. Upon completion of pre-training, all methods are fine-tuned on the available set of
labeled data using SGD with Nesterov momentum (Sutskever et al., 2013). We adopt the same fine-
tuning procedure as Chen et al. (2020a). Notably, when fine-tuning, we do not employ weight-decay
and only make use of basic data augmentations (random cropping and random horizontal flipping).
Additional details on the fine-tuning procedure are provided in Appendix B.

4.1 IMAGENET

Experimental setup. Our default setup on ImageNet makes use of distributed training; we train
each run on 64 V100 GPUs and 640 CPU cores. We aggregate gradients using the standard all-reduce
primitive and contrast representations across workers using an efficient all-gather primitive. We
also synchronize batch-norm statistics across all workers in each iteration to prevent the models
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from leaking local information to improve the loss without improving representations (cf. Chen et al.
(2020a)). We linearly warm-up the learning-rate from 0.6 to 4.8 during the first 10 epochs of training
and use a cosine-annealing schedule thereafter. We use a momentum value of 0.9, weight decay
10−6, and temperature 0.1. These hyper-parameters are tuned for SimCLR (Chen et al., 2020a), but
we also apply them to the SimCLR + SuNCEt combination.
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::::
Using
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:::::
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::::::
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::::::::
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::::
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:::::::
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::::::
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We use a batch-size of 4096 (8192 contrastive samples) for
SimCLR; each worker processes 128 contrastive samples per
iteration. When implementing the SimCLR + SuNCEt combi-
nation, we aim to keep the cost per-iteration roughly the same
as the baseline, so we use a smaller unsupervised batch-size.
Specifically, each worker processes 88 unlabeled samples per
iteration, and 40 labeled samples (sub-sampling 20 classes in
each iteration and sampling 2 images from each of the sub-
sampled classes). With 10% of the images labeled, we turn
off the SuNCEt loss after epoch 250; with 1% of the images
labeled, we turn off the SuNCEt loss after epoch 30. We explore
the effect of the switch-off epoch and the supervised batch-size
(the fraction of labeled data in the sampled mini-batch) in Ap-
pendix D, and find the ImageNet results to be relatively robust
to these parameters.

SuNCEt . Figure 1 shows the top-5 accuracy as a function of
the amount pre-training when 10% of the data is labeled. Orange
markers denote SimCLR self-supervised pre-training followed
by fine-tuning. Blue markers denote the SimCLR + SuNCEt
combination followed by fine-tuning. Using SuNCEt to leverage
available labels during pre-training accelerates convergence and
produces better models with much less compute. The orange shaded region in the right sub-figure
explicitly shows the amount of compute saved by using SuNCEt during pre-training. To put these
results in the context of our 64 GPU setup, one epoch of SimCLR corresponds to 312 updates per
GPU. SimCLR+SuNCEt matches the best SimCLR top-5 accuracy while using only 44% of the
compute, and matches the best SimCLR top-1 accuracy while using only 45% of the compute. It may
be possible to push these savings further by optimizing the hyper-parameters for SuNCEt .
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With 1% labeled data we find that SuNCEt matches the best SimCLR 500-epoch top-5 accuracy
while using only 81% of the compute, and matches the best SimCLR top-1 accuracy while using
only 83% of compute.2 While these savings are significant when considering the overall cost of
performing 500-epochs of pre-training on 64 V100 GPUs, we note that the improvements are slightly
more modest compared to the 10% labeled data setting. This observation supports the hypothesis that
improvements in convergence can be related to the availability of labeled data during pre-training.
Table 1 shows the top-1 and top-5 model accuracies with 10% labeled data (left sub-table) and with
1% labeled data (right sub-table).

Cross-entropy. Next we experiment with leveraging labeled samples during pre-training using a
cross-entropy loss and a parametric linear classifier (as opposed the non-parametric SuNCEt loss).
Similarly to the SuNCEt experiments, we use the same hyper-parameters as in Chen et al. (2020a)
for pre-training. Figure 3 reports savings with respect to our SimCLR 1000-epoch baseline; the

2Note that with 1% labeled data, our 500-epoch re-implementation of SimCLR outperforms the original
1000-epoch results of Chen et al. (2020a).
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Figure 3: Percentage compute used by various methods to match the best SimCLR (ResNet50, ImageNet) top-1
validation accuracy (top plot) and top-5 validation accuracy (bottom plot) with 1000 epochs of pre-training,
followed by fine-tuning with 10% of labels. Both SimCLR + SuNCEt and SimCLR + cross-entropy use the
default SimCLR hyper-parameters. The SimCLR+cross-entropy approach matches the best SimCLR validation
accuracy while using only 63% of the compute. These savings are lower than those provided by SuNCEt (which
only requires ∼44% of pre-training to match the best SimCLR accuracy), but are significant nonetheless.

cross-entropy approach matches the best SimCLR 1000-epoch top-1 and top-5 validation accuracy
while using only 63% of the compute. These savings are lower than those provided by SuNCEt
(which only requires 44% of pre-training to match the best SimCLR top-5 accuracy and 45% of
pre-training to match the best SimCLR top-1 accuracy), but are significant nonetheless.

With 1% labeled data, despite low training loss, SimCLR + cross-entropy does not obtain significantly
greater than random validation accuracy with the SimCLR hyper-parameters (even if we only leave
the cross-entropy term on for 30 epochs to avoid overfitting). With only 12 samples per class in the
1% data setting, it is quite easy to overfit with a cross-entropy loss, suggesting that more fine-grained
tuning may be required. In contrast, recall that we observe 19% compute savings out of the box with
SimCLR + SuNCEt in this scenario with the default SimCLR hyper-parameters.

Transfer. Our previous results show that leveraging labeled data during pre-training can result in
computational savings. Next we investigate the effect of this procedure on downstream transfer tasks.
We evaluate transfer learning performance of the 500-epoch pre-trained ImageNet models on Pascal
VOC07 (Everingham et al., 2010) (11-mAP), and CIFAR10 and CIFAR100 (Krizhevsky & Hinton,
2009) (top-1), using the fine-tuning procedure described in Chen et al. (2020a) (cf. Appendix B for
details). Transfer results are reported in Table 2. Using the SuNCEt loss to leverage available labels
during pre-training always improves transfer over pure self-supervised pre-training for the same
number of epochs. Moreover, on Pascal VOC07, the SimCLR + SuNCEt combination with only 500
epochs of pre-training significantly outperforms 1000 epochs of SimCLR pre-training.

Table 2: Evaluating transfer learning performance of a ResNet50 pre-trained on ImageNet. Using SuNCEt
to leverage available labels during pre-training (not just fine-tuning) always improves transfer relative to
self-supervised pre-training with same number of pre-training epochs.

CIFAR10 CIFAR100 Pascal VOC07
Method Epochs (Top-1) (Top-1) (11-mAP)

SimCLR 1000 97.7 85.9 84.1
SimCLR 500 97.3 84.6 83.9

+ SuNCEt (ours) 500 97.6 85.5 85.1
10% labeled

4.2 CIFAR10

Experimental setup. Our training setup on CIFAR10 uses a single V100 GPU and 10 CPU cores.
We use a learning-rate of 1.0, momentum 0.9, weight decay 10−6, and temperature 0.5. These
hyper-parameters are tuned for SimCLR (Chen et al., 2020a), and we also apply them to the SimCLR
+ SuNCEt combination. All methods are trained for a default of 500 epochs. Results reported at
intermediate epochs correspond to checkpoints from the 500 epochs training runs, and are intended
to illustrate training dynamics. We use a batch-size of 256 (512 contrastive samples) for SimCLR.
When implementing the SimCLR + SuNCEt combination, we set out to keep the cost per-iteration
roughly the same as the baseline, so we use a smaller unsupervised batch-size of 128 (256 contrastive
samples) and use a supervised batch-size of 280 (sampling 28 images from each of the 10 classes
in the labeled data set). Note that we only sample images from the available set of labeled data to
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(a) SimCLR test-set convergence with fine-tuning on various percentages of labeled data.

50 100 150 200 250 300 350 400 450 500
Training Epochs

65

70

75

80

85

90

95

To
p 

1

1% 5% 10% 20% 50% 100%

100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0
Petaflops

65

70

75

80

85

90

95

To
p 

1

1% 5% 10% 20% 50% 100%

(b) SimCLR + SuNCEt test-set convergence with fine-tuning on various percentages of labeled data.
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(c) SuNCEt improvement in test-set convergence with
fine-tuning on various percentages of labeled data.
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(d) Computation saved by SuNCEt in reaching the best
SimCLR test accuracy with fine-tuning on various

percentages of labeled data.

Figure 4: Training a ResNet50 with an adjusted-stem on CIFAR10 given various percentages of labeled data.
Evaluations reported at intermediate epochs correspond to checkpoints from the same run, with a 500 epoch
learning-rate cosine-decay schedule. SuNCEt epochs are counted with respect to number of passes through the
unsupervised data loader. Both the sample efficiency and computational efficiency of SimCLR improve with the
availability of labeled data, even if labeled data is only used for fine-tuning. Using SuNCEt to leverage available
labels during pre-training further improves the sample efficiency (sub-figure (c)) and computational efficiency
(sub-figure (d)) of SimCLR.

compute the SuNCEt loss in each iteration. We turn off the SuNCEt loss after the first 100 epochs
and revert back to completely self-supervised learning for the remaining 400 epochs of pre-training to
avoid overfitting to the small fraction of available labeled data; we explore this point in Appendix E.3

Results. Figure 4a shows the convergence of SimCLR with various amounts of labeled data, both
in terms of epochs (left sub-figure) and in terms of computation (right sub-figure). Both the sample
efficiency (left sub-figure) and computational efficiency (right sub-figure) of SimCLR improve with
the availability of labeled data, even if labeled data is only used for fine-tuning. Figure 4b shows the
convergence of the SimCLR + SuNCEt combination with various amounts of labeled data, both in
terms of epochs (left sub-figure) and in terms of computation (right sub-figure). Epochs are counted
with respect to the number of passes through the unsupervised data-loader. We observe a similar
trend in the SimCLR + SuNCEt combination, where both the sample efficiency and computational
efficiency improve with the availability of labeled data. Figure 4c shows the improvement in Top-1

3The only exception to this rule is the set of experiments where 100% of the training data is labeled, in which
case we keep SuNCEt on for the entire 500 epochs. We only observed overfitting on CIFAR10, not ImageNet.
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test accuracy throughout training (relative to SimCLR) when using SuNCEt during pre-training.
Not only does SuNCEt accelerate training from a sample efficiency point of view, but it also leads
to better models at the end of training. Figure 4d teases apart the computational advantages by
showing the amount of computation saved by the SimCLR + SuNCEt combination in reaching the
best SimCLR accuracy. SuNCEt saves computation for any given amount of supervised samples.
With only 1% of the training data labeled, SuNCEt can reach the best SimCLR test accuracy while
conserving roughly 50 petaflops of computation and over 10000 model updates.4 In the best case,
SuNCEt , with the same exact hyper-parameters as the self-supervised baseline, only requires 22%
of SimCLR pre-training to match the best SimCLR test accuracy. It may be possible to push these
savings further by optimizing hyper-parameters for SuNCEt .

5 RELATED WORK

Table 3:
:::::::
Validation

::::::::
accuracy

::
of
::

a
::::::::

ResNet50
:::::::::

pre-trained
:::

on
::::::::

ImageNet
::::

with
::::::

access
::

to
:::::

10%
::
of

::::::
labels.

::::::::
Contrastive

:::::::
methods

:::
like

:::::::
SimCLR

::::::::::::::::
(Chen et al., 2020a)

::
and

::::::
SwAV

:::::::::::::::
(Caron et al., 2020)

::
can

:::::::
leverage

::::::
SuNCEt

:::::
during

:::::::::
pre-training

::
to
::::::

surpass
::::

their
:::::::

baseline
:::::::::::::

semi-supervised
:::::::
accuracy

::
in

::::
half

:::
the

::::::
number

::
of

:::::::::
pre-training

:::::
epochs.

::::::::::::::
SuNCEt+SwAV

:::
is

::::
also

:::::::::
competitive

::::
with

:::::
other

:::::::::::::
semi-supervised

:::::::::
approaches

::::
and

:::::::::
outperforms

:::::::::::::::::::
FixMatch+RandAugment

:
in
:::::
terms

::
of

::::
top-5

:::::::
accuracy.

:::::::
Method

::::::
Epochs

: :::::
Top-1

: :::::
Top-5

:

:::::::::
Supervised

:::::::::::::::
(Zhai et al., 2019)

:::
200

:::
56.4

: :::
80.4

:

:::::::
NPID++

:::::::::::::::::::::::::::::::::::::::::
(Wu et al., 2018b; Misra & van der Maaten, 2020)

:::
800

:
–
: :::

81.5
:

:::::
PIRL

::::::::::::::::::::::::::
(Misra & van der Maaten, 2020)

:::
800

:
–
: :::

83.8
:

::::
UDA

::
+
::::::::::::
RandAugment

:::::::::::::::
(Xie et al., 2019)

:
–

:::
68.8

: :::
88.5

:

::::::::
FixMatch

::
+

::::::::::::
RandAugment

::::::::::::::::
(Sohn et al., 2020)

:::
300

:::
71.5

: :::
80.1

:

:::::::::
SimCLRv2

:::::::::::::::::
(Chen et al., 2020b)

::::
1200

: :::
68.4

: :::
89.2

:

:::::::
SimCLR

:::::::::::::::::
(Chen et al., 2020a)

::::
1000

: :::
65.6

: :::
87.8

:

:::::::::::::::
SimCLR+SuNCEt

::::::
(ours)

:::
500

:::
66.7

: :::
88.2

:

:::::
SwAV

:::::::::::::::::
(Caron et al., 2020)

:::
800

:::
70.2

: :::
89.9

:

:::::::::::::
SwAV+SuNCEt

::::::
(ours)

:::
400

:::
70.8

: :::
89.9

:

Self-supervised learning. There are a number of other self-supervised learning approaches in
the literature, besides the instance-discrimination pretext task in SimCLR (Chen et al., 2020a;b).
Some non-contrastive approaches learn feature representations by relative patch prediction (Doersch
et al., 2015), by solving jigsaws (Noroozi & Favaro, 2016), by applying and predicting image
rotations (Gidaris et al., 2018), by inpainting or colorization (Denton et al., 2016; Pathak et al.,
2016; Zhang et al., 2016; 2017), by parametric instance-discrimination (Dosovitskiy et al., 2014),
and sometimes by combinations thereof (Doersch & Zisserman, 2017; Kolesnikov et al., 2019).
Of the contrastive approaches, Contrastive Predictive Coding (CPC) (Oord et al., 2018; Hénaff
et al., 2019) compares representations from neighbouring patches of the same image to produce
representations with a local regularity that are discriminative of particular samples. Non-Parametric
Instance Discrimination (NPID) (Wu et al., 2018b) aims to learn representations that enable each
input image to be uniquely distinguished from the others, and makes use of a memory bank to train
with many contrastive samples. The NPID training objective offers a non-parametric adaptation
of Exemplar CNN (Dosovitskiy et al., 2014). Misra & van der Maaten (2020) generalizes the
NPID method as Pretext-Invariant Representation Learning (PIRL) to contrast images both with
and without data augmentations, and combine the method with other instance-wise pretext tasks.
He et al. (2019) proposes Momentum Contrast (MoCo) to build even larger memory banks by
using an additional slowly progressing key encoder, thus benefiting from more contrastive samples
while avoiding computational issues with large-batch training. Grill et al. (2020) also contrasts
representations with those of a slowly progressing target encoder, but eliminates negative samples
all together. There is also recent work (Li et al., 2020), which makes use of EM (McLachlan,
2004) and clustering algorithms for estimating cluster prototypes (Snell et al., 2017), and the recent
SwAV method of Caron et al. (2020), which contrasts image representations with random cluster

4One model update refers to the process of completing a forward-backward pass, computing the loss, and
performing an optimization step.
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prototypes.
::
We

::::::
report

:::::
results

:::
for

::::::::::::::
SwAV+SuNCEt

::
in

:::::
Table

::
3,

::::::
trained

::::
with

:::
the

::::
same

:::::
exact

::::::::
batch-size

:::
and

:::::::::::
learning-rate

::
as

::
for

::::::::::::::::
SuNCEt+SimCLR.

::::
The

::::::
results

::
are

:::::::::
consistent

::::
with

:::
the

:::::::
SimCLR

::::::::::
experiments

::
in

::::::
Section

::
4;

:::
we

:::
can

:::::
match

:::
the

:::::::
baseline

::::::::::::::
semi-supervised

:::::::::
contrastive

::::::::
accuracy

::::
with

:::
less

::::
than

::::
half

::
the

:::::::::
pre-training

:::::::
epochs.

:

Semi-supervised learning. Self-supervised learning methods are typically extended to the semi-
supervised setting by fine-tuning the model on the available labeled data after completion of self-
supervised pre-training. S4L (Zhai et al., 2019) is a recent exception to this general procedure,
using a cross-entropy loss during self-supervised pre-training. While Zhai et al. (2019) does not
study contrastive approaches, nor the computational efficiency of S4L, it shows that S4L can be
combined in a stage-wise approach with other semi-supervised methods such as Virtual Adversarial
Training (Miyato et al., 2018), Entropy Regularization (Grandvalet & Bengio, 2006), and Pseudo-
Label (Lee, 2013) to improve the final accuracy of their model (see follow-up work (Tian et al.,
2020; Hendrycks et al., 2019)). Chen et al. (2020a) reports that the SimCLR approach with self-
supervised pre-training and supervised fine-tuning outperforms the strong baseline combination
of S4L with other semi-supervised tasks. Other semi-supervised learning methods not based on
self-supervised learning include Unsupervised Data Augmentation (UDA) (Xie et al., 2019) and
the MixMatch trilogy of work (Berthelot et al., 2019a;b; Sohn et al., 2020). FixMatch (Sohn
et al., 2020) makes predictions on weakly augmented images and (when predictions are confident
enough) uses those predictions as labels for strongly augmented views of those same images. An
additional key feature of FixMatch is the use of learned data augmentations (Berthelot et al., 2019a;
Cubuk et al., 2019). Of the non-contrastive methods, FixMatch sets the current state-of-the-art on
established semi-supervised learning benchmarks.

::::
Note

::::
that

:::::::::::::
SwAV+SuNCEt

::
is
::::::::::
competitive

::::
with

::
the

:::::
other

::::::::::::::
semi-supervised

:::::::::
approaches

::::
and

::::::::::
outperforms

:::::::::::::::::::::
FixMatch+RandAugment

::
in
:::::

terms
:::

of
::::
top-5

:::::::
accuracy

:::
(cf.

:::::
Table

:::
3).

Supervised contrastive loss functions. Supervised contrastive losses have a rich history in the
distance-metric learning literature. Classically, these methods utilized triplet losses (Chechik et al.,
2010; Hoffer & Ailon, 2015; Schroff et al., 2015) or max-margin losses (Weinberger & Saul, 2009;
Taigman et al., 2014), and required computationally expensive hard-negative mining (Shrivastava
et al., 2016) or adversarially-generated negatives (Duan et al., 2018) in order to obtain informa-
tive contrastive samples that reveal information about the structure of the data. One of the first
works to overcome expensive hard-negative mining is that of Sohn (2016), which suggests using
several negative samples per anchor.

::::
Most

::::::
similar

::
to

:::
the

:
SuNCEt

:::
loss

::
is
::::
that

::
of

:::::::::::::::
Wu et al. (2018a)

:
,
:::::
which

::::::::::
investigates

:::::::::::
neighborhood

::::::::::
component

:::::::
analysis

::::::
(NCA)

:::::::::::::::::::::
(Goldberger et al., 2005)

:
in

:::
the

:::::
fully

:::::::::
supervised

::::::
setting.

:::::::::
However,

::::
their

:::::::
method

::::::::::::
approximates

:::
the

:::::
NCA

:::
loss

:::
by

::::::
storing

:::
an

:::::::::
embedding

:::::
tensor

:::
for

:::::
every

:::::
single

:::::
image

::
in

:::
the

:::::::
dataset,

::::::
adding

:::::::::
non-trivial

:::::::
memory

::::::::
overhead.

::::
The SuNCEt

:::
loss

::::::
instead

::::
relies

:::
on

:::::
noise

:::::::::
contrastive

:::::::::
estimation

:::
and

::::
does

:::
not

:::::
have

:::
this

:::::::::
limitation. Another more recent

supervised contrastive loss is that proposed in Khosla et al. (2020) for the fully supervised setting;
while their proposed method is more computationally draining than training with a standard cross-
entropy loss, it is shown to improve model robustness. As mentioned, the loss can be seen as a form
of neighborhood component analysis (Goldberger et al., 2005) with an alternative similarity metric.
:::
The

:::::::
SuNCEt

::::
loss

::
is
::::::::
different

::::
from

::::
the

:::
loss

:::
of

:::::::::::::::::::
Khosla et al. (2020, v1)

:
.
:::::::::
However,

::::
after

:::
the

:::::
initial

::::::
preprint

:::
of

:::
our

:::::
work

::::::::
appeared

:::
on

:::::::::::
OpenReview,

::::::::::::::::::::::::::::::::::::::::
Khosla et al. (2020, v2, Section 15-Change Log)

:::
was

:::::::
updated

::::
with

::
an

:::::::::
additional

:::::::::
contrastive

::::
loss

::
of

:
a
:::::::
similar

:::::
format

::
to
:
SuNCEt

:
.
:::
We

:::::::
provide

:
a
::::
brief

:::::::::
comparison

:::
of

:::
the

:::
loss

::
in
::::::::::::::::::::

Khosla et al. (2020, v1)
:::
and

:
SuNCEt

:::::
using

:::
the

:::
full

:::
set

::
of

::::::
labeled

::::
data

::
in

::::::::
Appendix

::
H.

:::
In

:::::
short,

:::::
when

:::::
using

:::
the

:::::
losses

::
in
::::::::::

conjunction
:::::

with
:::::::
SimCLR

::::
and

:
a
:::::
small

:::::::::
supervised

:::::::::
batch-size,

::::
both

:::::::
methods

:::::::
perform

::::::::
similarly.

::::::::
However,

:::::
when

::::
used

::::::::::::
independently

::::
with

:::::
larger

::::::
batches

:::
and

::::
more

:::::::
positive

:::::::
samples

:::
per

:::::::
anchor,

::::
their

::::::::::
performance

:::::::
differs.

6 CONCLUSION

This work demonstrates that a small amount of supervised information leveraged during contrastive
pre-training (not just fine-tuning) can accelerate convergence. We posit that new methods and theory
rethinking the role of supervision — to not only improve model accuracy, but also learning efficiency
— is an exciting direction towards addressing the computational limitations of existing methods while
utilizing limited semantic annotations.
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Appendix

A PSEUDO-CODE

Listing 1: Pseudo-code for main training script computing SimCLR+SuNCEt when a small fraction of labeled
data is available during pre-training.

# -- init image sampler for instance-discrimination
unsupervised_data_loader = ...

# -- init (labeled) image sampler for SuNCEt
supervised_data_loader = ...

for epoch in range(num_epochs):

for itr, imgs in enumerate(unsupervised_data_loader):

# -- compute instance-discrimination loss
z = mlp(encoder(imgs))
ssl_loss = simclr(z)

# -- compute supervised-contrastive loss on labeled data
imgs, labels = next(supervised_data_loader)
z = mlp(encoder(imgs))
supervised_loss = suncet(z, labels)

# -- compute aggregate loss and update encoder & mlp
loss = supervised_loss + ssl_loss
loss.backward()
optimizer.step()
lr_scheduler.step()

Listing 2: Pseudo-code for computing SuNCEt on a given tensor of image embeddings.

def suncet(z, labels):

# -- normalize embeddings: [n x d]
z = z.div(z.norm(dim=1).unsqueeze(1))

# -- compute similarity between embeddings: [n x n]
exp_cs = torch.exp(torch.mm(z, z.t()) / temperature).fill_diag(0)

# -- compute loss for each sampled class and accumulate
loss = 0.
num_classes = 0
for l in set(labels):

# -- batch-size of embeddings with class-label ‘l’
bs_cls = (labels == l).sum()
num_classes += 1

pos_cls = torch.sum(exp_cs[labels == l][:, labels == l], dim=1)
den_cls = torch.sum(exp_cs[labels == l], dim=1)
loss += - torch.sum(torch.log(pos_cls.div(den_cls))) / bs_cls

loss /= num_classes
return loss
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B ADDITIONAL DETAILS ABOUT FINE-TUNING

We follow the fine-tuning procedure of Chen et al. (2020a). Upon completion of pre-training, all
methods are fine-tuned on the available labeled data using SGD with Nesterov momentum. We
do not employ weight-decay during fine-tuning, and only make use of basic data augmentations
(random cropping and random horizontal flipping). The weights of the linear classifier used to
fine-tune the encoder network are initialized to zero. On CIFAR10, models are fine-tuned for 90
epochs. All results are reported on the standard CIFAR10 test set. We use a batch-size of 256, along
with a momentum value of 0.9 and an initial learning-rate of 0.05 coupled with a cosine-annealing
learning-rate schedule. On ImageNet, in the 10% labeled data setting, models are fine-tuned for 30
epochs; in the 1% labeled data setting, models are fine-tuned for 60 epochs. We use a batch-size
of 4096, along with a momentum value of 0.9 and an initial learning-rate of 0.8 coupled with a
cosine-annealing learning-rate schedule. All results are reported on the standard ImageNet validation
set using a single center-crop.

C ADDITIONAL DETAILS ABOUT TRANSFER

We follow the fine-tuning transfer procedure outlined in Chen et al. (2020a). Specifically, we fine-tune
the pre-trained model for 20,000 steps using Nesterov momentum. We use a batch-size of 256 and
set the momentum value to 0.9. We perform random resized crops and horizontal flipping, and select
the learning rate and weight decay by performing grid search with a grid of 7 logarithmically spaced
learning rates between 0.0001 and 0.1 and 7 logarithmically spaced values of weight decay between
10−6 and 10−3, as well as no weight decay. We divide the weight decay values by the learning rate.

D EFFECT OF SUPERVISED BATCH-SIZE ON IMAGENET
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Figure 5: Training a ResNet50 on ImageNet using the SimCLR + SuNCEt
combination when given access to 10% of the labels (top sub-plot) and
1% of the labels (bottom sub-plot). We examine the best top-1 and top-5
validation accuracy, and the corresponding computational requirements, as
we vary the fraction of labeled samples per mini-batch. If we only use a small
fraction of labeled data in each mini-batch, then the best model accuracy drops.
However, in general, the best final model accuracies, and the corresponding
computational requirements, are not significantly affected by the fraction of
labeled data per mini-batch and the corresponding swtich-off epoch.

What fraction of our sampled
mini-batches should corre-
spond to labeled images
for computing the SuNCEt
loss? We fix the total num-
bers of passes through the la-
beled data and vary the frac-
tion of labeled data sampled
per mini-batch. Therefore,
runs that sample less labeled
data per mini-batch keep the
SuNCEt loss on for more
updates, whereas runs that
sample more labeled data per
mini-batch keep the SuNCEt
loss on for less updates.

We train a ResNet50 on Im-
ageNet for 500 epochs on 64
V100 GPUs using the Sim-
CLR + SuNCEt combina-
tion with the default Sim-
CLR optimization parame-
ters described in Section 4.
In one setting, 10% of the im-
ages are labeled, and, in the
other, 1% of the images are
labeled. The left sub-plots in
Figure 5 show how the best
top-1 and top-5 validation ac-
curacy vary as we change the
fraction of labeled data per
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mini-batch. The right sub-plots show the compute (petaflops) used to obtain the corresponding
models in the left subplots vary as we change the fraction of labeled data per mini-batch. If we only
use a small fraction of labeled data in each mini-batch, then the best model accuracy drops. However,
in general, the best final model accuracies, and the corresponding computational requirements to
obtain said models, are not significantly affected by the fraction of labeled data per mini-batch and
the corresponding switch-off epoch.

E LIMITATIONS ON CIFAR10

The amount of time that we can leave the SuNCEt loss on without degrading performance on
CIFAR10 is positively correlated with the amount of labeled data. To shed light on this limitation, we
conduct experiments where we switch-off the SuNCEt loss at a certain epoch, and revert to fully
self-supervised learning for the remainder training. All models are trained for a total of 500 epochs;
epochs are counted with respect to the number of passes through the unsupervised data loader.

The left subplots in Figure 6 report the final model test-accuracy on CIFAR10 as a function of the
switch-off epoch, for various percentages of available labeled data. The right subplots in Figure 6
report the amount of petaflops needed to train the corresponding models in the left subplots.

To study the potential accuracy degradation as a function of the switch-off epoch, we first restrict
our focus to the left subplots in Figure 6. When 20% or more of the data is labeled (bottom three
subplots), the final model accuracy is relatively invariant to the switch-off epoch (lines are roughly
horizontal). However, when less labeled data is available, the final model accuracy can degrade if
we leave the SuNCEt loss on for too log (top three subplots). The magnitude of the degradation is
positively correlated with the amount of available labeled data (lines become progressively more
horizontal from top subplot to bottom subplot).
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Figure 6: Training a ResNet50 with an adjusted-stem on CIFAR10 given various percentages of labeled data.
Left subplots report the final model test-accuracy as a function of the epoch at which the SuNCEt loss is
switched off. Right subplots report the amount of petaflops needed to train the corresponding models in the lefts
subplots. The number of epochs that one can utilize the SuNCEt loss for without degrading performance is
positively correlated with the amount of available labeled data. To balance improvements in model accuracy
with computational costs, it may also be beneficial to switch off the SuNCEt loss early on in training, even if
leaving it on does not degrade performance.
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Figure 7: Training a ResNet50 with an adjusted-stem on CIFAR10 given various percentages of labeled data. The
SuNCEt loss is only used for the first 100 epochs of training, and then switched off for the reaminder of training.
Left subplots report the supervised SuNCEt loss during training. Right subplots report the self-supervised
InfoNCE loss during training. In practice, we turn off the SuNCEt loss when it has plateaued, and revert to fully
self-supervised training thereafter. In these experiments, the SuNCEt loss has roughly plateaued at around 100
epochs of training.

From a computational perspective, it may also beneficial to turn off the SuNCEt loss at some point,
even if leaving it on does not degrade performance. We hypothesize that once we have squeezed out
all the information that we can from the labeled data, it is best to revert all computational resources to
optimizing the (more slowly-convergent) self-supervised instance-discrimination task. We see that
leaving the SuNCEt loss on for more epochs does not provide any significant improvement in model
accuracy (left subplots in Figure 6), but the corresponding computational requirements still increase
(right subplots in Figure 6).

Switching-off the SuNCEt loss when it has roughly plateaued provides a good strategy for balancing
gains in model accuracy with computational costs. We switch off the SuNCEt loss at epoch 100
in all of our CIFAR10 experiments in the main paper (except the experiment with 100% labeled
data, where SuNCEt is left on for all 500 epochs of training). Figure 7 depicts the supervised
SuNCEt loss during training for various percentages of available labeled data (left subplots), and
the self-supervised InfoNCE loss during training for various percentages of available labeled data
(right subplots). The SuNCEt loss has roughly plateaued after 100 training epochs (left subplots).
Figure 7 also suggests that the rate at which the SuNCEt loss plateaus is negatively correlated with
the available amount of labeled data. This observation supports the intuition that one should turn
off the SuNCEt loss earlier in training if less labeled data is available (cf. Figure 6). In general, the
strategy we adopt is simply to keep the number of passes through the labeled data fixed; meaning that
less data will require less updates.

F ADDITIONAL EXPERIMENTS FOR SIMCLR + CROSS-ENTROPY (CIFAR10)

Experimental setup. Our training setup for SimCLR + cross-entropy on CIFAR10 is identical to
that used in Section 4 for SimCLR + SuNCEt . Specifically, we use a single V100 GPU and 10 CPU
cores. We use a learning-rate of 1.0, momentum 0.9, weight decay 10−6, and temperature 0.5. These
hyper-parameters are tuned for SimCLR (Chen et al., 2020a), and we also apply them to the SimCLR
+ cross-entropy combination.
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(b) SimCLR + cross-entropy test-set convergence with fine-tuning on various percentages of labeled data.
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Figure 8: Training a ResNet50 with an adjusted-stem on CIFAR10 given various percentages of labeled data.
Evaluations reported at intermediate epochs correspond to checkpoints from the same run, with a 500 epoch
learning-rate cosine-decay schedule. Cross-entropy epochs are counted with respect to number of passes through
the unsupervised data loader.

We use a batch-size of 256 (512 contrastive samples) for SimCLR. When implementing the SimCLR
+ cross-entropy combination, we set out to keep the cost per-iteration roughly the same as the baseline,
so we use a smaller unsupervised batch-size of 128 (256 contrastive samples) and use a supervised
batch-size of 280 (sampling 28 images from each of the 10 classes in the labeled data set). Note that
we only sample images from the available set of labeled data to compute the cross-entropy loss in
each iteration.

We turn off the cross-entropy loss after the first 100 epochs and revert back to completely self-
supervised learning for the remaining 400 epochs of pre-training to avoid overfitting to the small
fraction of available labeled data.5

Results. Figure 8a shows the convergence of SimCLR with various amounts of labeled data, both
in terms of epochs (left sub-figure) and in terms of computation (right sub-figure). Both the sample
efficiency and computational efficiency of SimCLR improve with the availability of labeled data,
even if labeled data is only used for fine-tuning.

5The only exception to this rule is the set of experiments where 100% of the training data is labeled, in which
case we keep SuNCEt on for the entire 500 epochs.
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Figure 8b shows the convergence of the SimCLR + cross-entropy combination with various amounts
of labeled data, both in terms of epochs (left sub-figure) and in terms of computation (right sub-figure).
Epochs are counted with respect to the number of passes through the unsupervised data-loader. We
observe a similar trend in the SimCLR + cross-entropy combination, where both the sample efficiency
and computational efficiency improve with the availability of labeled data.

Figure 8c shows the improvement in Top 1 test accuracy throughout training (relative to SimCLR)
when using cross-entropy. Similarly to SuNCEt , we see that cross-entropy accelerates training from
a sample efficiency point of view, and also leads to better models at the end of training.

Figure 8d shows the amount of computation saved by the SimCLR + cross-entropy combination in
reaching the best SimCLR accuracy. There are two x-axes in this figure. The top shows the petaflops
saved and the bottom shows the number of model updates saved to reach the best SimCLR test
accuracy. Similarly to SuNCEt , cross-entropy saves computation for any given amount of supervised
samples. These results provide further evidence for our hypothesis, namely, that leveraging labeled
data during self-supervised pre-training can accelerate convergence.

G NON-PARAMETRIC INFERENCE

In Section 3 we showed that, from a theoretical perspective, the SuNCEt loss optimizes a non-
parametric classifier based on a type of stochastic nearest neighbours. Here we empirically evaluate
this connection on ImageNet by classifying validation images using the inference procedure described
in Section 3, and comparing to a K-Nearest Neighbours (KNN) classifier with the same similarity
metric.

We consider the 10% labeled data setting and use the 400-epoch pre-trained+fine-tuned Sim-
CLR+SuNCEt models to compute image embeddings. Specifically, we classify each point in
the validation set by computing the SuNCEt class probabilities in equation 3 with respect to the small
set of available labeled training images, and choosing the class with the highest probability. We refer
to this non-parameteric inference procedure as SuNCEt -NPI. We employ basic data augmentations
(random cropping and random horizontal flipping) to the labeled training images before computing
their corresponding embeddings, and apply a single center-crop to the validation images. When
performing inference using SuNCEt -NPI, we find it best to use the temperature parameter used
during training, τ = 0.1 in this case, and, surprisingly, to also use the image embeddings obtained
before the MLP projection head. We also find it best to use the image embeddings obtained before
the MLP projection head when using the KNN classifier. We experiment with various values of K for
the KNN classifier, and find K = 10 to work best (surprisingly, better than larger values of K).

Table 4 shows the validation accuracy of these non-parametric classifiers. We consider (i) K-
Nearest Neighbours (K=10); (ii) SuNCEt -NPI (Single-View), where we compute the SuNCEt class
probabilities in equation 3 and use one embedding for each available labeled training image; (iii)

Table 4: Non-parametric inference. Validation accuracy of a ResNet50 pre-trained on ImageNet for 400-epochs
with access to 10% of labels using SimCLR+SuNCEt with the default SimCLR hyper-parameters. Inference is
conducted non-parametrically by computing the similarity of validation images to the 10% labeled train images.
We consider (i) K-Nearest Neighbours (K=10); (ii) SuNCEt -NPI (Single-View), where we compute the SuNCEt
class probabilities in equation 3 and use one embedding for each labeled training image; (iii) SuNCEt -NPI
(Multi-View), where we compute the SuNCEt class probabilities in equation 3 and use multiple embedding
for each labeled training image. Validation accuracies obtained using SuNCEt -NPI are significantly greater
those obtained using K-Nearest Neighbours, suggesting that using SuNCEt during pre-training optimizes the
non-parametric stochastic nearest classifier described in Section 3. Moreover, using multiple views for inference
has no significant effect on classification accuracy (likely due to the invariance induced by self-supervised
instance-discrimination).

10% Labeled Accuracy (%)

Classification Method Top 1 Top 5
KNN (K=10) 52.3 –
SuNCEt -NPI (Single-View) 61.7 85.8
SuNCEt -NPI (Multi-View) 61.6 85.7
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SuNCEt -NPI (Multi-View), where we compute the SuNCEt -NPI class probabilities in equation 3 and
use multiple embedding for each available labeled training image. The validation accuracies obtained
by using SuNCEt -NPI are significantly greater than those obtained using K-Nearest Neighbours;
suggesting that using SuNCEt during pre-training optimizes for the non-parametric stochastic nearest
classifier described in Section 3.

As a final observation, we find that using multiple views of training images for inference has no
significant effect on the classification accuracy; this is likely due to the invariance induced by self-
supervised instance-discrimination. It should also be noted that the accuracies in Table 4 are obtained
by comparing the validation images to only the 10% of labeled images used during pre-training. It
is almost certainly possible to increase the accuracies for all methods in this table by conducting
inference with respect to the entire training set. Moreoever

::::::::
Moreover, it may be possible to further

increase the SuNCEt -NPI accuracies by fine-tuning the pre-trained models using the SuNCEt loss
:
.

H
:::::::::::::::
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::
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:::::
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:::::
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::::
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:::::
When

:::::
using

::
the

::::::
losses

::
in

:::::::::
conjunction

::::
with

::::::::
SimCLR

:::
and

::
a

::::
small

:::::::::
supervised

:::::::::
batch-size,

::::
both

:::::::
methods

::::::
perform

::::::::
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:::::::::
However,

::::
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:::::
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:::::::::::
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::::
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:::::
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:::::::
positive

:::::::
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:::
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::::::
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:::::
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::::::::::
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::::::
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::::
We

::::
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:
a
:::::::::
ResNet50

:::
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:::
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::::::
epochs

:::
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::::::::
ImageNet

:::::
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:::
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:::
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:::
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::
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::::::
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::::
data,

:::::::
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:::
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::
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::::::
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:::
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:::::::::
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:::
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:::::
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:::::::
network

::::::
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::::
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::
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:::::::::::
cross-entropy

::::
loss.
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:::
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::::::
default

:::::::
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::::::::::::::::
data-augmentations

::::
and

::::::::::::::
hyper-parameters

::::::::
(learning

:::
rate

:::::::
= 4.8).

Table 5:
:::::::

Validation
:::::::
accuracy

::
of

:
a
::::::::
ResNet50

::::::::
pre-trained

::
on

::::::::
ImageNet

::::
with

:::::
access

::
to

::::
100%

::
of

:::::
labels,

:::::
using

::
the

:::::
default

:::::::
SimCLR

:::::::::::::::
data-augmentations

:::
and

:::::::::::::
hyper-parameters

:::::::
(learning

:::
rate

::::::
= 4.8).

:::::
(Left

:::::
table):

:::::::
training

:::
with

:::::::
SimCLR,

::::
using

:::
an

::::::::::
unsupervised

::::::::
batch-size

::
of

:::::
4,096

::::::
samples

:::
and

::
a
::::::::
supervised

::::::::
batch-size

::
of

:::::
1,280

:::::::
samples.

:::::
(Right

:::::
table):

::::::
training

::::
using

::::
only

:::
the

::::::::
supervised

:::::
losses

:::
and

:
a
::::::::
batch-size

::
of

:::
16k

::::
(125

::::::
classes,

:::
128

:::::::
instances

:::
per

:::::
class).
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::::
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losses
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:::::::::
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::::
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:::::::
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:::
and
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a
::::
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:::::::::
supervised

::::::::
batch-size,

::::
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::::::
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::::::
perform

:::::::
similarly.

::::::::
However,
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when

::::
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:::
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:::::
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:::
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:::::
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::::::
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::::::
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:::
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::::::
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::
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:::::
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:::::::
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:::::::
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::
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::::
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::::::
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::::::
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::::::::
Pre-train
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loss

:::::
Top-1

: :::::
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:

::::
rand.

::::
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:::
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: :::
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:

:::::::
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::
+
::::
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: :::
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::::::::
SimCLR+SuNCEt

:::::
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:::
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:::::::
sub-table
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::::::
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::::
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::::::::
methods

:::::
jointly

::::
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:::::
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::::
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::::
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:::::::
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::::
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::
a
:::::
batch

:::
size

::
of

:::::
16K;

:::
125

:::::::
classes

::::
and

:::
128

:::::::::
instances

:::
per

:::::
class.

:::::
This

:::
is

::::::
similar

::
to
::::

the
:::::::::::
experimental

:::::
setup

::
in

::::::
Section

::
4,

::::::
where

:::
we

::::
each

::::::::::
mini-batch

:::::::
contains

::::
128

:::::::
samples

:::
per

:::::
class

::
(2

::::::::
sampled

:::
by

::::
each

::::::
GPU).

:::
We

:::
had

::::::::
difficulty

::::::
getting

:::
the

:::::::::::::::::
Khosla et al. (2020)

:::
loss

::
to

::::::::
converge

::::
with

:::
this

:::::
many

:::::::
positive

::::::::
samples,

::::
even

:::::
when

:::
we

::::
made

:::
the

:::::::::::
learning-rate

::::::
small,

::
so

:::
we

:::::
added

::
a
:::::::::::::::::
batch-normalization

::::
(BN)

:::::
layer

:::::
before

::
the

:::::
final

::::
layer

:::
of

:::
the

:::::::::
projection

:::::
head,

::::
and

:::
this

:::::
fixed

:::
the

:::::
issue.

::::
We

:::::::::
evaluated

:
SuNCEt

:::
loss

::::
both

::::
with

:::
and

:::::::
without

:::
the

:::
BN

:::::
layer,

:::
and

::
it
:::
did

:::
not

:::::
affect

:::::::::::
performance,

:::
so

:::
we

:::
left

:
it
:::
in

::
for

:::
the

:::::::
purpose

::
of

::::::::::
comparison.

::::
The SuNCEt

:::::::
accuracy

::
is
:::::
more

::::
than

:::::
+10%

::::::
higher.

20


	Introduction
	Background
	Methodology
	Experiments
	ImageNet
	CIFAR10

	Related work
	Conclusion
	Pseudo-code
	Additional details about fine-tuning
	Additional details about transfer
	Effect of supervised batch-size on ImageNet
	Limitations on CIFAR10
	Additional experiments for SimCLR + cross-entropy (CIFAR10)
	Non-parametric inference
	Contrastive losses

