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ABSTRACT

Benefiting from high-quality datasets and standardized evaluation metrics, ma-
chine learning (ML) has achieved sustained progress and widespread applications.
However, while applying machine learning to relational databases, the absence
of a well-established benchmark remains a significant obstacle to the develop-
ment of ML. To address this issue, we introduce ML Benchmark For Relational
Databases (RDBench), a benchmark that aims to promote hierarchical, robust, and
reproducible ML research on relational databases. RDBench offers hierarchical
datasets of varying scales, domains, and relations. It provides three types of data:
tabular data, homogeneous graphs, and heterogeneous graphs. Importantly, all
data formats share the same task definition, allowing for meaningful comparisons
between methods across different data formats. Reported results are averaged
over the same datasets and tasks (classification or regression), further enhancing
the robustness of the experimental findings. In addition to dataset construction,
we conduct extensive experiments to uncover performance differences between
models. To better present our proposed RDBench, we offer a user-friendly API
that provides standardized formats for three types of data.

1 INTRODUCTION

Providing authoritative datasets and standardized evaluation metrics, benchmarks in machine learning
like ImageNet (Deng et al., 2009), GLUE (Wang et al., 2019), and OGB (Hu et al., 2020a) are
playing a pivotal role in the development of the realm. These benchmarks have established clear
objectives and facilitated collaboration and advancement, resulting in widespread successes across
computer vision (Krizhevsky et al., 2012; He et al., 2016), natural language processing (Radford
et al., 2018; OpenAI, 2023), and graph representation learning (Ying et al., 2021). However, the lack
of well-established benchmarks in some domains has partially hindered the furtherance of machine
learning.

As a ubiquitous and fundamental tool for storing real-world data, relational databases have gradually
captivated the machine learning community (Cvitkovic, 2020). Benchmarks on relational databases
(Difallah et al., 2013; Cheng et al., 2019; Zhou et al., 2023) focus on database management system or
real-time feature extraction, ignoring the expanding demand from machine learning. Early works on
applying machine learning to relational databases (Schlichtkrull et al., 2018; Cvitkovic, 2020) were
constrained by the absence of benchmarks. It is worth noticing that building a benchmark can not
only improve the performance of machine learning methods on relational databases (Gorishniy et al.,
2021; Grinsztajn et al., 2022), but also facilitate potential interdisciplinary collaborations. Therefore,
the establishment of a well-established machine learning benchmark for relational databases has
become a top priority.

In order to address this challenge, we present Machine Learning Benchmark For Relational Databases
(RDBench), a benchmark aiming to facilitate hierarchical, robust, and reproducible ML research on
relational databases. An overview of our proposed RDBench is in Figure 1. Catering to the needs
of various users, RDBench provides 3 different kinds of data formats: tabular data, homogeneous
graphs, and heterogeneous graphs. And it is noteworthy that for the 3 kinds of formats, the task
definition remains the same, ensuring that the comparison between results is meaningful. RDBench
exhibits 11 datasets and 69 tasks; in order to provide more robust results, the presented results are
the average results for identical task types performed on the same dataset. For hierarchical purposes,
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Figure 1: An overview of our proposed benchmark RDBench.

RDBench organizes datasets into 3 different levels based on their complexity, specifically the number
of tables they contain. Extensive experiments are carried out on these datasets in order to present the
results of methods for 3 kinds of data.

To sum up, RDBench has the following characteristics:

• Unified Task Definition for Various Data Formats. We provide RDBench with 3 kinds of
data: tabular data, homogeneous graphs and heterogeneous graphs. For all these data formats,
we propose a unified task definition, enabling results comparison between models for different
formats of data.

• Hierarchical Datasets with Comprehensive Experiments. We present RDBench with 11
datasets with various scales, domains and relations. We categorized these datasets into three
groups based on the number of tables in the relational databases, a signal for relationship
complexity. Extensive experiments with 10 baselines are carried out on these datasets.

• Easy-to-use Interfaces with Robust Results. RDBench has a user-friendly API, utilizing
popular machine learning frameworks to present the 3 kinds of data. Besides, the evaluation of
RDBench is more robust because the results reported are averaged over the same dataset and
same task type (classification or regression).

2 RELATED WORKS

ML Benchmark. A benchmark is more than just a simple combination of datasets and evaluation
criteria today. Instead, a robust benchmark often leads the way in a machine learning field, reflecting
the trends in technological progress, including Scientific Machine Learning (Takamoto et al., 2022;
Thiyagalingam et al., 2022) and large language models (Valmeekam et al., 2022), and human-centric
evaluations (Zhong et al., 2023). Meanwhile, the absence of benchmarks for relational databases
has rendered this a crucial area that the machine learning community has long neglected (Cvitkovic,
2020).

ML on graph data. Graph Neural Networks (GNNs) are specialized machine learning models tai-
lored for graph-structured data. They have gained widespread usage in domains like recommendation
systems (Min et al., 2022) and social networks (Wu et al., 2020). GNNs can be categorized into
Message Passing Neural Networks (MPNNs), such as GCN (Kipf & Welling, 2017), GraphSAGE
(Hamilton et al., 2017), GAT (Veličković et al., 2017), and non-MPNNs (Wu et al., 2022; Ying et al.,
2021). Furthermore, there’s an extended version known as Heterogeneous Graph Neural Networks
(HeteroGNN) suitable for diverse graph data, such as HGCN (Peng et al., 2019) and HGT (Hu et al.,
2020b). It’s worth noting that the current focus of GNNs is primarily on explicit graph data and thus
the lack of graph data also constrains the development of the GNNs. In contrast, the structure of
databases presents new challenges for the application of GNNs.

ML on tabular data. Currently, most studies focus on single-tabular data. As conventional machine
learning techniques, Gradient Boosting Decision Trees(GBDT) algorithms, including LightGBM (Ke
et al., 2017), CatBoost (Prokhorenkova et al., 2018), XGBoost (Chen & Guestrin, 2016), sequentially
train an ensemble of decision trees to predict the desired output. While the second involves more
contemporary deep learning methods. They are often grouped into 4 classes: Architecture-based
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methods (Chen et al., 2022; Guo et al., 2017; Popov et al., 2020), transformer-based architectures (Arik
& Pfister, 2021; Gorishniy et al., 2021; Somepalli et al., 2021; Huang et al., 2020), Regularization-
based methods (Kadra et al., 2021; Shavitt & Segal, 2018), LLM-based models (Wang et al., 2023b).
For multi-table data, studies (Cvitkovic, 2020; Bai et al., 2021; Liu et al., 2023) propose solutions
for modeling as heterogeneous graphs, while the others (Ye et al., 2023; Liu et al., 2022; Wang &
Sun, 2022; Zha et al., 2023) are to perform pretraining on multi-table data to obtain meaningful
representations. These early research endeavors have provided valuable applications for modeling.
However, the absence of a robust benchmark severely constrains the further development of these
studies.

3 PRELIMINARIES

Relational Database. A relational database, denoted as D, comprises N tables represented as
D = {T1,T2, ...,TN}. For table Tn, each column T :c

n represents specific features or foreign keys
pointing to another table, while each row T r:

n is an instance. Each table Tn consists of multiple
features Fn = {fn1 , fn2 , ..., fnt} belonging to itself and foreign keys Kn = {kn1 , kn2 , ..., kns}
pointing to other tables, where s and t are natural numbers and we have Tn = {Fn,Kn}. For an
instance T r:

n at r-th row, its foreign key at a certain column krnw
is pointing to a row in another table

T t:
m, denoted as krnw

→ T t:
m. All foreign keys in the same column point to rows in the same table,

which can be denoted as knw → Tm. Besides, within a table, different foreign keys knw , knx could
point to the same table: knw

→ Tm, knx
→ Tm. For instance, in the Mutagenesis database (Debnath

et al., 1991), which stores molecular information, a bond corresponds to two atom’s id references
pointing to the same atom table.

Graphs. A graph, denoted as G, consists of two essential components: vertices and edges, represented
by sets V and E , respectively. Some nodes vi ∈ V and edges e(vs,vt) ∈ E possess attributes. These
attributes can be categorized into two primary types: types (e.g., node types such as paper or author)
and features (e.g., node features like age or gender), as exemplified in the context of citation networks
(Wang et al., 2020). In homogeneous graphs, denoted as Ghomo, all nodes and edges belong to the
same type or category, while heterogeneous graphs, denoted as Ghetero, encompass nodes and edges of
different types.

All of the notions above are in Appendix A.

4 MACHINE LEARNING TASKS ON RELATIONAL DATABASE

Given a multi-table relational database D = {T1,T2, ...,TN}, we define the machine learning tasks
on it as feature prediction. More specifically, we define a task by identifying a specific feature column
fnk

in features Fn of table Tn as the prediction objective, then make use of the information from the
rest part of table Tn and all of the others to predict the target column fnk

.

To further formalize our task definition, we classify the relational database usages into 3 categories:
single table, one-hop neighborhood and whole database. For all the categories, the objection is
Y = g(X), where Y is fnk

, and g is the model. For single table, we have

X =
⋃
j ̸=k

fnj (1)

For one-hop neighborhood, the foreign keys of the current table are used to join other tables’
information, i.e. features, and we have

X =
⋃
j ̸=k

fnj

⊕ ⋃
kni

→Tl

Fl (2)

Where
⊕

means the aggregation of information. For whole database, all the information of the
database except for object column can be used, thus we have

X =
⋃
j ̸=k

fnj

⊕
Kn

⊕ ⋃
m ̸=n

Tm (3)
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The data format of a single table and one-hop neighborhood can be effectively represented as tabular
data, making it easy to process through machine learning methods. However, to make optimal use
of relational databases, we need to introduce graph data, including homogeneous graph data and
heterogeneous graph data.

To sum up, in our proposed baselines, we provide 3 different formats of relational databases: tabular
data, homogeneous graph data as well as heterogeneous graph data. It is worth noticing that there
are two kinds of tabular data: single table and one-hop neighborhood, respectively. And they can be
expressed as regular and joint table for short.

5 BRIDGING BETWEEN RELATIONAL DATABASES AND GRAPHS

5.1 MOTIVATION

Though possessing strong relationship representing ability, relational databases have received rela-
tively less attention in the field of machine learning, especially graph representation learning. On the
other hand, the application of graph representation learning is considered restricted by the complicated
procedure (Hu et al., 2020a) to provide suitable graph data. However, the fundamental similarity of
representing relationships makes it possible to solve both problems at one time. Several attempts
(Cvitkovic, 2020; Bai et al., 2021; Liu et al., 2023) explore to model relational databases as graphs.
In a molecular prediction task (Debnath et al., 1991), graphs are also transformed into relational
databases successfully.

In order to bridge the gap between relational databases and graphs and fully leverage the information
within relational databases, we provide the graph format of relational databases. In the following
section, we will introduce the procedure on both data level and task level. Besides, in order to validate
the correctness and utility of the graph format, we also propose to transform graphs into relational
databases and present the algorithm in Appendix C.

5.2 RELATIONAL DATABASES TO GRAPHS

The conversion from relational databases to graphs can be achieved through a 2-step procedure, as
expressed below. The detailed procedure refer to Figure 2.

D = {T1,T2, ..,Tn}
f1−→ Ghetero

f2−→ Ghomo (4)

Firstly, we transform the relational database into a heterogeneous graph. The heterogeneous graph
here consists of nodes and edges, where a node has node features and node type, while an edge has an
edge type. In this procedure, we treat the r-th row T r:

n of table Tn as a node vrn, assigning the row’s
feature F r

n to the node’s feature and the index n to the node’s type. On the other hand, we treat the
foreign keys of a row as edges, for each foreign key krnw

→ T t:
m, connecting the node it from (vrn) to

the node it points to (vtm). And the edge type is decided by both the first table and the second table.

Then, following prior works (Wang et al., 2023a) carrying out homogeneous graph learning methods
on heterogeneous graph data, we opt to concatenate node features and embed the type information
in them. After removing node types and edge types, heterogeneous graphs are transformed into
homogeneous graphs.

Furthermore, as mentioned in Section 4, the defined tasks on relational databases are feature prediction
tasks. And in heterogeneous graph, all the features in relational databases are transformed into node
features. Thus the tasks on heterogeneous corresponding to relational databases are node property
prediction tasks.

6 RDBENCH: ML BENCHMARK FOR RELATIONAL DATABASES

6.1 RDBENCH FEATURES

There exist diverse types of features within the tables, and we classify them into two categories:
continuous and discrete. Based on the distinct characteristics of the data, we employ different
approaches to process the corresponding features.
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Figure 2: The procedure transforming relational databases to graphs.

Discrete Features. In our table, columns containing non-date string values and integer values are
identified as discrete features. Strings primarily represent categorical features such as gender or
geographical regions. Integers might also signify categorical features like different product kinds,
though they could potentially exhibit explicit order relationships such as frequency occurrences.
Categorical features lack inherent ordinal relationships and represent distinct values, thus we map
them into a vector space with the same dimension.

Continuous Features. Columns with non-integer values and time values are regarded as continuous
features. We normalize these continuous features such as prices, times or scores, and utilize them as
processed features directly. It’s worth noticing that we transform the integer numbers with too many
unique values into floating point numbers, following the procedure we transform date into floating
point numbers.

Missing Features. While facing missing features, we adopt 3 different kinds of ways to deal with
them. Firstly, while dealing with missing target features, we just drop the rows from objective column,
i.e. we do not predict these missing features. Besides, when the missing features are in other columns,
we assign the average value of that column to the missing value. And when missing values occur in
foreign key columns, we simply do not construct that edge.

After dealing with features, we merge discrete features and continuous features to create the features
used in our training and testing procedure.

6.2 RDBENCH DATA

Data Source. We collect our datasets from a relational dataset repository (Motl & Schulte, 2015) 1.
The selection of our dataset is based on the criterion of ensuring representativity. More specifically,
we choose datasets that exhibit variations in terms of number of tables, number of rows, number of
columns, and source origin, aiming to capture a diverse range of relational databases. Besides, in
order to validate the effectiveness of our graph transformation, we select several datasets from OGB
(Hu et al., 2020a).

Data Format. We provide 3 kinds of data formats and 4 kinds of data in total. The 3 kinds of data
formats are tabular data, heterogeneous graph data and homogeneous graph data. And tabular data
has two kinds: tabular data without joint table (single table) and tabular data with joint table (one-hop
neighborhood). Both kinds of tabular data are represented as tensors. Both kinds of graph data are
represented with the PyTorch Geometric (PyG) library (Fey & Lenssen, 2019). Besides, all of above
data are provided with their training, validation and testing masks to facilitate model evaluation.

Data Spliting. As for data spliting, we provide the procedure to produce the masks in our experiments
part instead of providing merely fixed masks like some other benchmarks. Furthermore, while dealing
with data with strong dependencies such as stock price prediction (Berka, 1999), we will partition the
data based on time-series order to preserve temporal relationships.

1Website: https://relational.fit.cvut.cz/
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6.3 RDBENCH TASKS

Task Definition. As previously introduced in Section 4, machine learning tasks on relational databases
are defined as missing value prediction, or more specifically target column prediction. As for graphs
(whether homo or hetero), the target column prediction tasks are transformed into node prediction
tasks. In order to enhance robustness, for the same dataset and task, we select multiple objection
columns to define a task, performing an averaging operation to get the final result.

Task Selection. As for task selection, we tend to choose the column with moderate difficulty and
predictive value. For classification tasks, difficulty could be reflected by accuracy, where most results
should be neither too high nor too low. For regression tasks, difficulty could be reflected by mean
squared error, results should be better than predicting average. Predictive value has two parts. Firstly,
the target column should be valuable at semantic level in the relational databases. Besides, the length
of the target column should be adequate to evaluate models’ performance.

Target Leakage. During experiments, several results imply that target leakages may have taken
place. More specifically, the target column might be expressed by several other columns, resulting in
extremely high accuracy or low mean squared error. We have eliminated most of the tasks with target
leakage, but we intentionally retain a few sporadic instances to assess the model’s capabilities, as not
all models can achieve such high performance.

7 DATASETS

In order to bridge the existing gap between relational databases and machine learning, we present
RDBench datasets. Our proposed datasets are sourced from real-world relational databases and
tailored for machine learning, across various domains such as medical, business, sports, and gov-
ernment, ensuring their representative nature. As mentioned in Section 5, our proposed datasets
provide 3 different kinds of APIs: tabular data, heterogeneous graph data and homogeneous graph
data, respectively. In the following passages, we will present and analyze the performance of popular
methods for different data formats on the same task.

The subsections of this section will be arranged as follows: for relational databases, we categorize
them into three levels based on the complexity of their relationships, specifically the number of
tables in the database. These levels consist of datasets with 3-5 tables, 6-10 tables, and more than
10 tables, respectively. Additionally, to validate the effectiveness of our graph transformation, we
select two datasets from OGB (Hu et al., 2020a) and carry out experiments on both original graphs
and reconstructed graphs. Each level will be presented in a separate subsection.

Baselines. As for experiments, we provide three kinds of representative baselines, including (1)
Tabular Data: MLP, XGBoost (Chen & Guestrin, 2016), (2) Homogeneous Graph: GCN (Kipf &
Welling, 2017), GIN (Xu et al., 2018), GAT (Veličković et al., 2017), GraphSage (Hamilton et al.,
2017), (3) Heterogeneous Graph: HGCN (Peng et al., 2019), HGT (Hu et al., 2020b).

7.1 RDBENCH-L0: GRAPH DATASETS AS RELATIONAL DATABASES

In the initial stage, we focus on graph data in machine learning. Leveraging graph datasets, our
intention was to not only validate the effectiveness of our graph transformation but also indicate
the wide applicability nature of relational databases. We transform graphs into relational databases
first and then transform them back into graphs using our API. Since only Graphsage and GCN have
mature results in both tasks in the GNN dataset leaderboard 2, we primarily conduct experiments
on these two models. For other models, we attempt to design the architectures by ourselves. It’s
worth noting that on both initial and reconstructed graphs, we preserve all network architectures and
conduct parameter tuning solely for network depth and learning rate. All details have been listed in
Appendix D.

Overview. For RDBench-L0, i.e. graph datasets, we present 2 datasets: rdb0-arxiv and rdb0-mohiv,
which respectively stem from OGB (Hu et al., 2020a) datasets ogbn-arxiv and ogbg-molhiv. The

2Graph leaderboard: https://ogb.stanford.edu/docs/leader_overview/
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ogbn-arxiv dataset represents the paper citation network and the task is to classify papers into forty
subject areas. The ogbg-molhiv is a molecular property prediction dataset and the objective is a
binary graph classification task. The statistical information is shown in Table 1.

Table 1: Statistics of Original OGB Datasets

Dataset Task #Graph #Node #Edge Evaluation
ogbn-arxiv Node Clas. 1 169,343 1,166,243 Accuracy

ogbg-molhiv Graph Clas. 41,127 25.5 27.5 AUC-ROC

Table 2: Experimental results on graph datasets rdb0-
arxiv and rdb0-molhiv. The symbol Recon indicates
results on the reconstructed graph, while those without
it are from the original graph. Results are expressed in
percentages. The best results are in bold and the second-
best results are underlined.

Model rdb0-arxiv rdb0-molhiv
Evaluation Accuracy AUC-ROC

MLP 55.46 70.98
XGBoost 52.38 54.17

GCN 72.08 76.98
GraphSage 72.28 73.88
Recon GCN 70.18 77.21

Recon GraphSage 69.73 73.43

66
68
70
72
74
76
78

2 4 6 8

Recon GCN GCN 

Figure 3: GCN Performance on rdb0-molhiv.
X-axis is the number of GCN layers on the
reconstructed graph and we double the actual
number of layers in the original graph GNN to
ensure correspondence. Results are expressed
in percentages.

Discussion. The experimental results in Table 2 show that the best results of GCN and Graphsage
closely resemble the well-established baseline on the original graph, which underscores the reliability
of our modeling approach from the model perspective. GNN methods perform best in both tasks,
which indicates the importance of structural information. In node classification tasks of rdb0-arxiv,
XGBoost performs slightly worse than MLP, but in graph classification tasks rdb0-molhiv, XGBoost
falls significantly behind MLP. Unlike node classification, where it’s possible to aggregate first-order
information for each node, providing truly effective graph features is quite hard for XGBoost.

Moreover, as discussed in Appendix D, regarding the properties of the reconstructed graph, on the
right side of Figure 3, we illustrate the results of GCN on rdb0-molhiv dataset from the perspective
of graph information at different depths. We observed the following: (1) At corresponding layers, the
performance on both sides is close, indicating that the model exhibits similar information capture
abilities on both the original and reconstructed graphs. (2) With an increase in the number of layers,
the performance of the original GCN improves, and the performance of the transformed GCN also
improves, with the optimal performance occurring at corresponding points. (3) With further layer
increasing, over-smoothing occurs, leading to a decrease in model performance. This phenomenon
becomes more pronounced due to the deeper layers in the reconstructed graph.

7.2 RDBENCH-L1: RELATIONAL DATABASES WITH 3-5 TABLES

In the next three subsections, we turn to relational databases, which are relatively less explored in
the machine learning community. We categorize our relational databases into 3 levels: databases
with 3-5 tables, 6-10 tables, and more than 10 tables. At each level, we provide 3-4 representative
relational databases with different sizes from different domains for hierarchical purpose.

Overview. For RDBench-L1, i.e. relational databases with 3-5 tables, we present 4 datasets:
rdb1-ather, rdb1-rscore, rdb1-accdt, rdb1-seznam. The rdb1-ather dataset collects patients’ medical
examination information and their disease status. The rdb1-rscore dataset provides eateries inspection
results. The rdb1-accdt dataset presents traffic accidents. The rdb1-seznam dataset collects the
transaction data of Seznam’s wallet. The statistical information is shown in Table 3.

Discussion. The experimental results from Table 4 show that, the XGBoost model demonstrated
significantly superior performances compared to other models on the majority of selected tasks on
datasets. Additionally, among the results of graph neural networks, GraphSage and HGCN achieve
relatively better results. It is worth noticing that, HGCN emerged as the only graph model that
outperformed XGBoost on a single task. Comparing the results of XGBoost and Join XGBoost, we

7



Under review as a conference paper at ICLR 2024

Table 3: Statistics of Relational Databases with 3-5 Tables (RDBench-L1)

Dataset Domain # Tables Diameter # Cols # Rows # Clas. # Reg.
rdb1-ather Science 4 2 198 12,781 4 2
rdb1-rscore Economic 3 2 27 66,172 2 3
rdb1-accdt Society 3 1 44 1,463,093 4 4

rdb1-seznam Economic 4 2 17 2,689,257 4 2

Table 4: Experimental results on relational databases with 3-5 tables (RDBench-L1). Results are
expressed in percentages for classification tasks, while as numerical values for regression tasks. The
best results are in bold and the second-best results are underlined.

Model rdb1-ather rdb1-rscore rdb1-accdt rdb1-seznam
Task Clas. Reg. Clas. Reg. Clas. Reg. Clas. Reg.
MLP 27.05 0.156 75.56 0.610 53.02 1.353 31.66 0.014

XGBoost 35.00 0.159 86.98 0.077 66.36 0.019 37.97 0.005
Join MLP 21.88 0.190 53.41 0.812 50.49 3.764 31.33 0.401

Join XGBoost 36.09 0.162 91.40 0.065 67.76 0.019 44.69 0.003
GCN 29.88 0.186 60.67 0.186 58.96 0.261 39.08 0.040
GIN 28.30 0.402 52.10 0.781 35.88 1.105 41.49 0.381

GraphSage 32.80 0.176 70.57 0.139 63.62 0.214 37.57 0.031
GAT 28.66 0.173 53.61 0.149 53.13 0.280 32.24 0.029

HGCN 32.61 0.194 72.05 0.155 63.69 0.233 46.11 0.024
HGT 28.52 0.182 54.59 0.274 61.48 0.247 36.27 0.024

can discover that Join XGBoost obtains significant performance improvement from aggregating the
information from 1-hop neighbors, which indicates the vital importance of neighborhood information.
While considering the results for regression tasks, we find that the tree-based model: XGBoost can
significantly surpasses other neural network based model in regression tasks, which presents the same
trends as prior work on tabular data (Grinsztajn et al., 2022). An interesting result is that after gaining
the information from one-hop neighborhood, XGBoost gains significant performance enhancement,
while MLP gains a sharp performance drop. This phenomenon indicates that certain fixed size neural
network may face difficulties capturing the real valuable information.

7.3 RDBENCH-L2: RELATIONAL DATABASES WITH 6-10 TABLES

Overview. For RDBench-L2, i.e. relational databases with 6-10 tables, we present 4 datasets:
rdb2-hbv, rdb2-ncaa, rdb2-ncaa, rdb2-imdb. The rdb2-hbv dataset presents the comparison of patients
with different diseases. The rdb2-ncaa dataset collects the results of the basketball tournament. The
rdb2-ncaa dataset contains successful and not successful loan data. The rdb2-imdb dataset provides
the ratings of movies. The statistical information is shown in Table 5.

Table 5: Statistics of Relational Databases with 6-10 Tables (RDBench-L2)

Dataset Domain # Tables Diameter # Cols # Rows # Clas. # Reg.
rdb2-hbv Science 7 4 29 12,927 4 0
rdb2-ncaa Society 9 4 112 202,305 2 4
rdb2-bank Economic 8 3 55 1,079,680 5 5
rdb2-imdb Society 7 4 27 1,249,411 5 0

Discussion. The experimental results from Table 6 show that, XGBoost is still the best method among
baselines because of its dominating experimental performances. Besides, methods on heterogeneous
graphs outperform methods on homogeneous graphs in most tasks, demonstrating the heterogeneous
nature of our transformed data from relational databases. It is worth noticing that results on regression
tasks show the same trend as Table 4, that tree-based method consistently outperforms neural network
based models. However, in classification tasks, graph neural network methods are showing compatible
performance compared with methods for tabular data, which indicates that relational information
more than one-hop is also very important.

7.4 RDBENCH-L3: RELATIONAL DATABASES WITH 10+ TABLES

Overview. For RDBench-L3, i.e. relational databases with 10+ tables, we present 3 datasets:
rdb3-toxic, rdb3-lahman, rdb3-govern. The rdb3-toxic dataset presents the characteristics and
carcinogenicity of compounds. The rdb3-lahman dataset is a baseball dataset collecting complete
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Table 6: Experimental results on relational databases with 6-10 tables (RDBench-L2). Results are
expressed in percentages for classification tasks, while as numerical values for regression tasks. The
best results are in bold and the second-best results are underlined. And N/A means feature without
join table is unavailable.

Model rdb2-hbv rdb2-ncaa rdb2-bank rdb2-imdb
Task Clas. Clas. Reg. Clas. Reg. Clas.
MLP 56.69 62.95 0.092 78.18 0.150 N/A

XGBoost 60.46 64.73 0.062 79.14 0.132 N/A
Join MLP 56.69 62.30 0.132 52.14 0.318 41.23

Join XGBoost 60.46 65.51 0.059 87.14 0.036 46.36
GCN 61.56 59.79 0.176 62.87 0.271 51.33
GIN 60.59 33.14 0.892 35.93 0.760 44.46

GraphSage 65.13 59.79 0.158 75.47 0.212 53.89
GAT 62.45 59.79 0.177 58.59 0.289 47.18

HGCN 64.46 59.79 0.197 83.53 0.243 60.84
HGT 72.74 59.79 0.173 66.89 0.205 60.39

batting and pitching statistics. The rdb3-govern dataset presents results of government elections. The
statistical information is shown in Table 7.

Table 7: Statistics of Relational Databases with 10+ Tables (RDBench-L3)
Dataset Domain # Tables Diameter # Cols # Rows # Clas. # Reg.

rdb3-toxic Science 38 4 111 29,850 4 3
rdb3-lahman Society 25 6 368 472,489 4 4
rdb3-govern Society 19 7 138 803,901 4 0

Table 8: Experimental results on relational databases with 10+ tables (RDBench-L3). Results are
expressed in percentages for classification tasks, while as numerical values for regression tasks. The
best results are in bold and the second-best results are underlined. And N/A means features without
joint table are unavailable.

Model rdb3-toxic rdb3-lahman rdb3-govern
Task Clas. Reg. Clas. Reg. Clas.
MLP N/A N/A 44.36 0.966 56.45

XGBoost N/A N/A 57.26 0.076 51.58
Join MLP 61.79 0.371 39.64 0.599 58.48

Join XGBoost 68.30 0.354 67.74 0.076 61.23
GCN 74.76 0.325 47.56 0.272 55.05
GIN 66.31 0.712 22.16 1.068 40.50

GraphSage 81.89 0.270 51.57 0.236 58.34
GAT 73.14 0.291 45.14 0.250 55.40

HGCN 88.67 0.393 50.23 0.669 57.86
HGT 88.43 0.235 48.42 0.261 61.97

Discussion. The experimental results from Table 8 show that, with the growing number of tables, the
tree-based method XGBoost is beat by graph methods on more than half tasks and no longer holds a
dominant position. This shift is related to the increased complexity of relationships and serves as
significant evidence of the prominent role that relationships hold in relational databases. It is worth
noticing that even in regression tasks, graph methods can outperform tabular methods, which is a
substantial transformation, indicating that the relationship between tables is more and more important
with the growth of number of tables, and should be taken into significant consideration.

8 CONCLUSION

In response to the gap between machine learning and relational databases, we present ML Benchmark
For Relational Databases (RDBench). We provide hierarchical datasets and a user-friendly toolkit,
offering various commonly used data format interfaces: tabular data, homogeneous graph data, and
heterogeneous graph data. It’s worth noticing that all these data formats share an identical task
definition. We also carried out extensive experiments on these datasets. With the help of our unified
task definition and easy-to-use interfaces, researchers from different ML subdomains can deploy
models, get comparable results and further enhance collaboration.
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A NOTIONS

All necessary notations are organized below.

Notations

D The relational database

Tn The n-th table in relational database D

T r:
n , T :c

n The n-th table’s r-th row, c-th column

T r:c
n The value in the c-th column of the r-th row of the n-th table

Fn, Kn The features and foreign keys of the n-th table Tn

krnw
→ T t:

m The w-th foreign key of the r-th row of the table Tn points to the t-th row
of table Tm

knw → Tm The w-th foreign key of table Tn points to table Tm

Ghomo, Ghetero Homogeneous Graph, Heterogeneous Graph

V , E The set of nodes, edges in Graph G

B IMPLEMENTATION DETAILS OF RELATIONAL DATABASES

B.1 HYPERPARAMETERS

Neural network based models. For all neural network-based models, we adopt Adam optimizer
(Kingma & Ba, 2014) with learning rate set to 0.001 and a cosine learning rate scheduler. The number
of layers is set to 4 considering the diameter of datasets, and the hidden dimension is set to 128. More
specifically, number of head is set to 4 for GAT and HGT. For dataset rdb1-seznam, number of epoch
is set to 50. For datasets rdb1-accdt, rdb2-bank, rdb2-imdb, the number of epochs is set to 100. For
other datasets, number of epoch is set to 200. Early stop epochs is set to 50, i.e. training without
better results on validation set for 50 epochs is terminated.

Tree based models. For the only tree-based model XGBoost, we adopt the default configuration.
Max depth is set to 3, learning rate is set to 0.1, number of estimators is set to 100, booster is set to
gbtree, and weight of L2 regularization is set to 1.

B.2 EVALUATION

Datasets are randomly split into training set, validation set and testing set, the ratio is 0.8, 0.1 and 0.1.
And we conduct 3 times for each experiment, reporting the detailed average and squared error in the
Appendix F.

C FROM GRAPHS TO DATABASES

Expanding upon the approach introduced in (Debnath et al., 1991), we present a unified method for
transforming graphs into up to three essential tables. This approach enables the flexible migration of
node, edge, and graph classification tasks from the graph domain to a database environment.

More specifically, our database consists of three tables, denoted as Tedge, Tnode, and Tgraph, each
dedicated to different data types: edges, nodes, and graphs. Notably, the first two columns in Tedge

contain node information, serving as foreign keys to Tnode. Additionally, the second column of Tnode

includes graph information for each node, acting as a foreign key to Tgraph. The remaining columns
in each table are features and types. We also provide an example of a graph containing two directed
subgraphs, as illustrated in Figure 4 below.
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Figure 4: An example from Graphs to Databases. In this illustration, we present two graphs, where
node order is delineated in black, and the node sequence is highlighted in Dark Magenta. Different
colored nodes represent different types. Nodes of different colors denote distinct types. Within Graph
1, we assume uniform node types, but the edge types vary between the two graphs. Node, edge, and
graph features are represented by two-dimensional random numbers.

D ANALYSIS OF RECONSTRUCTED GRAPH PROPERTIES

D.1 TRANSFORMED GRAPHS

Raw Graph Reconstructed graph

Recon
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Figure 5: An Example of Graph Transformation Process. In this illustration, node order is delineated
in black, and the node sequence is highlighted in Dark Magenta. The nodes and edges of the raw
graph are marked with the same colors as their corresponding nodes in the reconstructed graph. The
symbol (Recon) the reconstruction process
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At Level 0, we conducted comparative experiments between the original graph and the reconstructed
graph. Concurrently, to enhance our comprehension of the characteristics of the reconstructed
graph, we provide an example in Figure 5 here. Subsequently, we take the topological properties
on the homogenous graph as an example. By comparing the original graph with the transformed
homogenous graph, we can discover some interesting properties and better understand the modeling
process.

D.2 THE MODELING PROCESS

We denote the original graph as G, the transformed graph as G̃. The sets of nodes and edges in the
original graph are V and E , while the sets of nodes and edges in the transformed graph are Ṽ and Ẽ .
The reconstruction mapping is denoted as f , and we describe this process as follows:

G f−→ G̃ (5)

∀vi ∈ V, vi
f−→ ṽi ∈ Ṽ (6)

∀e(s,t) ∈ E , e(s,t)
f−→ ṽe(s,t) ∈ Ṽ (7)

Furthermore, if nodes vi and e(s,t) are connected in G, then nodes ṽi and ṽe(s,t) are connected as well.

D.3 PROPERTIES

Shortest Path Distance(SPD) is used to describe the number of edges that two nodes or edges pass
along the shortest path (SPD >= 1). In message-passing neural networks, information needs to go
through "SPD" layers in order to be transmitted from one node to another.

Proposition 1. (Shortest Path Distance): Let edge e(i,j) represent the connection between nodes vi
and vj . V and Ṽ respectively represent the node sets of the original graph and the reconstructed
graph. The relationship between the Shortest Path Distance on the original graph G and the
reconstructed graph G̃ can be described as:

• For the SPD between nodes after transformation,

∀vi, vj ∈ V, SPD(ṽi, ṽj) = 2 ∗ SPD(vi, vj) (8)

• For the SPD between edges and nodes after transformation,

∀vi ∈ V,∀es,t ∈ E , SPD(ṽi, ṽes,t) = 2 ∗ min
(a,b)∈{(i,s),(i,t)}

SPD(va, vb) (9)

• For the SPD between edges after transformation,

∀es,t, ei,j ∈ E , SPD(ṽei,j , ṽes,t) = 2 ∗ min
(a,b)∈{(i,s),(i,t),(j,s),(j,t)}

SPD(va, vb) + 1

(10)

Here, we count each self-loop as an increment of one to the node’s degree. For instance, in the
original graph 5, the degree of node 5 is recorded as 2.

Proposition 2. (Degrees of nodes) Supoose ⊮vi
self denote the number of self-loop edges for node vi.

The node degrees on the reconstructed graph G̃ can be described as:

• For nodes transformed from edges,

∀es,t ∈ E , deg(ṽes,t) = 2 (11)

• For nodes transformed from nodes,

∀vi ∈ V, deg(ṽi) = deg(vi) + ⊮vi
self (12)
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Proposition 3. (Number of nodes and edges) Suppose the original graph G has |V| nodes and |E|
edges, the transformed graph G̃ has |Ṽ| = |V|+ |E| nodes. The number of edges |Ẽ | is equal to 2 ∗ |E|.
A = Ã2[node_index]

This proposition can be obtained by summing the degrees of all nodes.
1

2
{
∑
vi∈V

(deg(vi) + ⊮vi
self ) +

∑
e(s,t)∈E

2} = 2 ∗ |E| (13)

Furthermore, we calculate the average node degrees, denoted as ρG and ρG̃ . When compared to the
original graph, it becomes apparent that the transformed graph tends to be sparser, with an average
degree not exceeding two.

ρG =
|E|
|V|

, ρG̃ = 2 ∗ |E|
|V|+ |E|

= 2 ∗ ρG
1 + ρG

≤ 2,
ρG̃
ρG

=
2

1 + ρG
(14)

E LEVEL0 EXPERIMENT DETAILS

In regard to each result, we conducted three experiments and took the average. For
each model, we perform a grid search where we adjust the learning rate in the range of
{0.1, 0.01, 0.001, 0.0005, 0.00001}. For the original graph, we tune the number of layers in the
range of {1, 2, 3, 4, 5}. For the reconstructed graph, we tune the number of layers in the range of
{2, 3, 4, 5, 6, 7, 8, 9, 10}.

Here are the specific procedures for each experiment.

E.1 NODE PREDICTION: RDB0-ARXIV

rdb0-arxiv is a homogeneous graph dataset where each node has a 128-dimensional feature vector.
The ultimate prediction task is a multiclass classification problem with 40 categories.

Implementation details.

1. We established baseline results by directly applying Graph Neural Networks (GNNs) to the
original graph.

2. For the Multilayer Perceptron (MLP) model, we generated predictions by directly utilizing
the features of each node.

3. In the case of XGBoost, we aggregated the average features of each node’s neighbors and
concatenated them with the original node features, enabling XGBoost to make predictions.

4. Initially, we converted the graph into a database and subsequently transformed it back into a
new graph using our proposed API. We ensured that the training set, validation set, test set,
and the GNN architecture precisely matched the original graph to guarantee fairness in the
comparison.

E.2 GRAPH PREDICTION: RDB0-MOLHIV

rdb0-molhiv is a homogeneous graph dataset that incorporates both node and edge features. The
prediction task can be described as a binary classification problem, with model performance assessed
using the ROC-AUC metric.

Implementation details.

1. In MLP, the original node features are used as input for the prediction task.
2. For xgboost, we calculate the mean, sum, or maximum of the features of all nodes or edges

and concatenate them together as each graph’s features for training. We retain the best
results among these three operations.

3. The reconstructed graph and the original graph utilize consistent label indexing and splitting.
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E.3 EXPERIMENTS ON GAT AND GIN

Since the aim of our level 0 experiments is to demonstrate the validity of the graph API modeling
approach rather than proposing new GNN algorithms, we fixed the number of GAT headers and the
default settings for each layer of GIN. Parameter tuning was performed only by adjusting the learning
rate and network depth.

Model rdb0-arxiv rdb0-molhiv
Evaluation Accuracy AUC-ROC

MLP 55.46 70.98
XGBoost 52.38 54.17

GIN 62.13 75.23
GAT 69.83 69.64

Recon GIN 55.00 73.65
Recon GAT 61.28 66.70

Table 9: Experimental results of GAT and GIN on graph datasets(Level 0). All results are expressed
in percentages. The symbol (Recon) indicates results on the reconstructed graph, while those without
it are from the original graph. The best results are in bold and the second-best results are underlined

Discussion. Similar to the results in the main text, XGBoost performs slightly worse than MLP
in node classification tasks in Table 9. Due to the challenge of transforming the entire graph
information into a unified feature representation for XGBoost, it significantly lags behind MLP in
graph classification tasks. In the case of the rdb0-molhiv, GIN leverage graph information but exhibit
mixed performance compared to MLP. Moreover, the performance gap between GIN and GAT on
both the original graph and the reconstructed graph is larger than that shown in Table 3 of the main
text for GCN and GraphSage. This difference can be attributed, in large part, to the fact that we have
rigidly constrained several hyperparameters and model architectures. Simultaneously, it underscores
the challenge of identifying appropriate learning rates and network depths within the confines of the
constrained parameter search space, particularly when dealing with larger graphs.

F DETAILED DATASETS INFORMATION AND EXPERIMENTAL RESULTS

In this section, we will list the background information of our datasets to help you better understand
the tasks.

F.1 RDBENCH-L1

F.1.1 RDB1-ATHER

This dataset is about one study on atherosclerosis. The study aims to identify prevalence of atheroscle-
rosis risk factors in middle-aged men, who are considered to be the most influenced by the disease.

The explanation of this dataset is in Table 10. And the detail of experiments is in 11 and 12.

F.1.2 RDB1-RSCORE

This dataset is about food safety of restaurants in San Francisco. It contains Information about
inspections on those restaurants, and violations found during these inspections.

The explanation of this dataset is in Table 13. And the detail of experiments is in 14 and 15.

F.1.3 RDB1-ACCDT

This is one dataset consisting of all accidents that happened in Slovenia’s capital city Ljubljana
between the years 1995 and 2005.

The explanation of this dataset is in Table 16. And the detail of experiments is in 17 and 18.
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F.1.4 RDB1-SEZNAM

Seznam.cz is a web portal and search engine in the Czech Republic. The data represent online
advertisement expenditures of users’ accounts. Normally, users need to prepay some money into their
accounts, and Seznam will charge from their accounts if users utilize some service. In some time,
payments are made directly by users without utilizing their prepaid balance.

The explanation of this dataset is in Table 19. And the detail of experiments is in 20 and 21.

F.2 RDBENCH-L2

F.2.1 RDB2-HBV

This dataset describes examinations of 206 patients of Hepatitis B or C.

The explanation of this dataset is in Table 22. And the detail of experiments is in 23.

F.2.2 RDB2-NCAA

This dataset is about NCAA men’s basketball tournament. It contains information about historical
games from 1985 to 2014 and detailed information for games from 2003 to 2014.

The explanation of this dataset is in Table 24. And the detail of experiments is in 25 and 26.

F.2.3 RDB2-BANK

Financial dataset contains 606 successful and 76 not successful loans along with their information
and transactions.

The explanation of this dataset is in Table 27. And the detail of experiments is on 28 and 29.

F.2.4 RDB2-IMDB

MovieLens is a web-based recommender system and virtual community. This dataset contains users’
rating on movies, actors and directors.

The explanation of this dataset is in Table 30. And the detail of experiments is in 31.

F.3 RDBENCH-L3

F.3.1 RDB3-TOXIC

This dataset is about whether one compound is carcinogenic, or not. It contains information on the
structure of compounds.

The explanation of this dataset is in Table 32. And the detail of experiments is in 33 and 34.

F.3.2 RDB3-LAHMAN

This dataset comes from famous reporter Sean Lahman. It contains information about baseball
competitions from 1871 to 2014, including complete batting and pitching statistics, fielding statistics,
standings, team statistics , managerial records, post-season data, and more.

The explanation of this dataset is in Table 35. And the detail of experiments is in 36 and 37.

F.3.3 RDB3-GOVERN

This dataset is about parliamentarians from the Czech Republic, and votes on bills.

The explanation of this dataset is in Table 38. And the detail of experiments is in 39.

18



Under review as a conference paper at ICLR 2024

Table 10: Basic Information of tasks on rdb1-ather, # Class means the number of classes, StdErr
means standard error.

Table Target Type # Class StdErr
death DeathReason Clas. 8 N/A
death DeathMonth Clas. 12 N/A
entry Group Clas. 6 N/A

control ExamYear Clas. 24 N/A
entry Cholesterol Reg. N/A 0.245
entry Triglycerides Reg. N/A 0.166

Table 11: Experiment result details of classification tasks on dataset rdb1-ather. The best results are
in bold and the second-best results are underlined.

Table death entry control
Column DeathReason DeathMonth Group ExamYear

MLP 27.03±2.21 7.21±5.55 44.21±0.33 29.77±1.65
XGBoost 25.22±1.28 10.81±0.00 58.87±2.31 45.13±2.13
Join MLP 18.02±4.59 9.01±4.59 43.02±0.89 17.50±1.64

Join XGBoost 26.13±3.37 9.01±3.37 59.58±5.05 49.67±1.86
GCN 25.23±2.55 8.11±2.20 76.83±5.47 9.37±1.70
GIN 30.63±5.10 6.31±2.55 68.79±6.10 7.47±0.66

GraphSage 27.93±10.20 5.41±2.21 81.56±3.01 16.34±0.71
GAT 22.52±3.37 2.70±2.21 79.20±2.61 10.22±4.41

HGCN 26.13±3.37 12.61±2.55 78.25±3.49 13.47±1.38
HGT 23.43±5.10 9.01±2.55 73.29±0.67 8.39±1.05

Table 12: Experiment result details of regression tasks on dataset rdb1-ather. The best results are in
bold and the second-best results are underlined.

Table entry
Column Cholesterol Triglycerides

MLP 0.161±0.010 0.150±0.027
XGBoost 0.164±0.012 0.155±0.023
Join MLP 0.225±0.011 0.155±0.029

Join XGBoost 0.161±0.012 0.162±0.026
GCN 0.196±0.016 0.175±0.042
GIN 0.439±0.302 0.366±0.167

GraphSage 0.180±0.002 0.171±0.036
GAT 0.178±0.007 0.168±0.037

HGCN 0.208±0.013 0.179±0.033
HGT 0.197±0.007 0.167±0.047

Table 13: Basic Information of tasks on rdb1-rscore, # Class means the number of classes, StdErr
means standard error.

Table Target Type # Class StdErr
violations RiskLevel Clas. 3 N/A

inspections Type Clas. 12 N/A
inspections Score Reg. N/A 0.236
restaurant Latitude Reg. N/A 0.079
restaurant Longitude Reg. N/A 0.002
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Table 14: Experiment result details of classification tasks on dataset rdb1-rscore. The best results are
in bold and the second-best results are underlined.

Table violations inspections
Column RiskLevel Type

MLP 95.65±1.44 55.47±0.39
XGBoost 100.00±0.00 73.96±0.21
Join MLP 51.48±0.47 55.34±0.27

Join XGBoost 100.00±0.00 82.80±0.86
GCN 65.23±9.86 56.12±0.86
GIN 48.65±4.47 55.56±0.32

GraphSage 84.74±8.74 56.41±1.03
GAT 51.86±0.64 55.37±0.80

HGCN 81.48±7.34 62.63±1.24
HGT 53.83±0.79 55.36±0.79

Table 15: Experiment result details of regression tasks on dataset rdb1-rscore. The best results are in
bold and the second-best results are underlined.

Table inspections restaurant
Column Score Latitude Longitude

MLP 0.228±0.008 0.841±0.244 0.760±0.208
XGBoost 0.229±0.005 0.000±0.000 0.000±0.000
Join MLP 0.833±0.096 0.841±0.244 0.760±0.208

Join XGBoost 0.196±0.003 0.000±0.000 0.000±0.000
GCN 0.207±0.008 0.266±0.027 0.084±0.001
GIN 0.700±0.693 1.283±0.202 0.362±0.036

GraphSage 0.211±0.004 0.129±0.015 0.076±0.002
GAT 0.233±0.007 0.156±0.014 0.058±0.017

HGCN 0.213±0.004 0.169±0.005 0.083±0.001
HGT 0.206±0.012 0.537±0.021 0.078±0.006

Table 16: Basic Information of tasks on rdb1-accdt, # Class means the number of classes, StdErr
means standard error.

Table Target Type # Class StdErr
person IsCauseOfAccident Clas. 2 N/A

accident WeatherCondition Clas. 11 N/A
accident TrafficCondition Clas. 5 N/A
accident AccidentClass Clas. 6 N/A
person Age Reg. N/A 0.295
person Experience Reg. N/A 0.203

accident X Reg. N/A 0.407
accident Y Reg. N/A 0.371
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Table 17: Experiment result details of classification tasks on dataset rdb1-accdt. The best results are
in bold and the second-best results are underlined.

Table person accident
Column IsCauseOfAccident WeatherCondition TrafficCondition AccidentClass

MLP 64.50±0.16 23.78±1.31 55.94±0.16 67.87±0.26
XGBoost 65.94±0.12 58.63±0.29 62.51±0.16 78.39±0.15
Join MLP 54.69±0.02 23.48±1.17 55.96±0.17 67.87±0.26

Join XGBoost 71.23±0.08 58.86±0.34 62.58±0.09 78.41±0.09
GCN 59.12±0.64 39.88±0.45 56.12±0.04 80.74±2.91
GIN 50.32±0.44 20.73±2.83 22.46±23.60 50.03±23.68

GraphSage 66.18±0.15 42.90±0.10 57.43±0.12 88.00±0.43
GAT 59.26±0.15 29.73±0.50 55.63±0.17 67.93±0.08

HGCN 63.21±1.07 44.45±1.74 57.83±0.13 89.29±2.24
HGT 60.25±0.13 41.68±0.21 56.15±0.77 87.87±1.09

Table 18: Experiment result details of regression tasks on dataset rdb1-accdt. The best results are in
bold and the second-best results are underlined.

Table person accident
Column Age Experience X Y

MLP 0.069±0.002 0.048±0.004 2.552±0.276 2.742±0.412
XGBoost 0.046±0.000 0.029±0.000 0.001±0.000 0.001±0.000
Join MLP 5.331±2.057 4.248±1.632 3.203±2.441 2.275±0.778

Join XGBoost 0.046±0.000 0.029±0.000 0.001±0.000 0.001±0.000
GCN 0.274±0.004 0.180±0.002 0.288±0.013 0.301±0.004
GIN 1.067±0.561 0.808±0.278 1.254±0.475 1.293±0.484

GraphSage 0.227±0.012 0.136±0.004 0.238±0.008 0.256±0.008
GAT 0.288±0.001 0.189±0.004 0.330±0.004 0.312±0.005

HGCN 0.243±0.004 0.166±0.005 0.264±0.016 0.260±0.012
HGT 0.260±0.003 0.163±0.001 0.284±0.032 0.282±0.020

Table 19: Basic Information of tasks on rdb1-seznam, # Class means the number of classes, StdErr
means standard error.

Table Target Type # Class StdErr
charge PrepayService Clas. 8 N/A
prepay PrepayService Clas. 8 N/A
client Location Clas. 14 N/A
client Domain Clas. 52 N/A
charge ChargeMoney Reg. N/A 0.007
prepay PrepayMoney Reg. N/A 0.005

Table 20: Experiment result details of classification tasks on dataset rdb1-seznam. The best results
are in bold and the second-best results are underlined.

Table charge prepay client
Column PrepayService PrepayService Location Domain

MLP 42.63±0.28 48.51±0.06 26.83±0.43 8.70±0.40
XGBoost 59.03±0.01 56.08±0.06 27.31±0.27 9.46±0.42
Join MLP 42.03±1.21 47.78±0.09 26.83±0.43 8.70±0.40

Join XGBoost 71.98±0.09 70.02±0.27 27.31±0.27 9.46±0.42
GCN 49.60±5.48 65.24±3.46 27.93±0.40 13.59±0.90
GIN 53.29±10.53 70.02±4.06 27.92±0.41 14.75±0.07

GraphSage 49.86±6.81 59.19±0.04 27.93±0.40 13.33±1.06
GAT 43.67±2.53 47.72±0.23 27.93±0.40 9.65±1.82

HGCN 68.86±0.32 72.88±1.43 28.28±0.41 14.44±0.51
HGT 47.20±3.70 57.09±3.35 27.93±0.40 12.88±1.04
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Table 21: Experiment result details of regression tasks on dataset rdb1-seznam. The best results are
in bold and the second-best results are underlined.

Table charge prepay
Column ChargeMoney PrepayMoney

MLP 0.010±0.004 0.019±0.008
XGBoost 0.006±0.001 0.004±0.001
Join MLP 0.161±0.068 0.641±0.076

Join XGBoost 0.003±0.000 0.004±0.001
GCN 0.008±0.002 0.073±0.003
GIN 0.259±0.157 0.503±0.346

GraphSage 0.008±0.001 0.054±0.007
GAT 0.006±0.001 0.052±0.010

HGCN 0.010±0.002 0.039±0.007
HGT 0.006±0.001 0.043±0.005

Table 22: Basic Information of tasks on rdb2-hbv, # Class means the number of classes.

Table Target Type # Class
patient Type Clas. 2

exam_result Got Clas. 5
exam_result Ztt Clas. 6
exam_result Tp Clas. 4

Table 23: Experiment result details on dataset rdb2-hbv. The best results are in bold and the second-
best results are underlined.

Type Classification
Table patient exam_result

Column Type Got Ztt Tp
MLP 54.00±9.09 64.26±1.70 56.36±1.33 52.14±3.01

XGBoost 56.67±2.49 68.60±1.53 59.81±0.36 56.77±0.90
Join MLP 54.00±9.09 64.26±1.70 56.36±1.33 52.14±3.01

Join XGBoost 56.67±2.49 68.60±1.53 59.81±0.36 56.77±0.90
GCN 75.33±8.38 63.09±1.45 56.94±0.72 50.91±1.83
GIN 76.00±8.64 64.73±2.65 56.53±2.12 45.11±5.77

GraphSage 80.00±5.89 66.14±1.30 59.29±1.79 55.13±0.46
GAT 67.33±3.40 64.85±1.37 58.35±1.55 59.29±0.41

HGCN 87.33±0.94 64.21±1.30 55.36±0.90 50.96±2.87
HGT 95.33±1.89 70.88±4.40 61.80±2.47 62.97±2.41

Table 24: Basic Information of tasks on rdb2-ncaa, # Class means the number of classes, StdErr
means standard error.

Table Target Type # Class StdErr
compact_results WinnerLocation Clas. 3 N/A
detailed_results WinnerLocation Clas. 3 N/A
compact_results WinnerScore Reg. N/A 0.160
compact_results LoserScore Reg. N/A 0.174
detailed_results WinnerScore Reg. N/A 0.204
detailed_results LoserScore Reg. N/A 0.181
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Table 25: Experiment result details of classification tasks on dataset rdb2-ncaa. The best results are
in bold and the second-best results are underlined.

Table compact_results detailed_results
Column WinnerLocation WinnerLocation

MLP 59.49±0.32 66.42±0.66
XGBoost 61.70±0.26 67.76±0.14
Join MLP 59.47±0.32 65.14±0.45

Join XGBoost 62.45±0.22 68.59±0.18
GCN 59.84±0.07 59.75±0.49
GIN 39.54±14.32 26.75±23.82

GraphSage 59.84±0.07 59.75±0.49
GAT 59.84±0.07 59.75±0.49

HGCN 59.85±0.06 59.75±0.49
HGT 59.84±0.07 59.75±0.49

Table 26: Experiment result details of regression tasks on dataset rdb2-ncaa. The best results are in
bold and the second-best results are underlined.

Table compact_results detailed_results
Column WinnerScore LoserScore WinnerScore LoserScore

MLP 0.131±0.004 0.143±0.002 0.047±0.005 0.047±0.003
XGBoost 0.111±0.000 0.121±0.001 0.010±0.000 0.007±0.000
Join MLP 0.177±0.005 0.194±0.004 0.083±0.003 0.074±0.010

Join XGBoost 0.105±0.000 0.115±0.001 0.010±0.000 0.007±0.000
GCN 0.157±0.001 0.172±0.001 0.200±0.001 0.177±0.001
GIN 0.833±0.139 0.958±0.139 0.913±0.169 0.866±0.169

GraphSage 0.119±0.004 0.156±0.005 0.190±0.002 0.168±0.001
GAT 0.157±0.001 0.172±0.001 0.201±0.000 0.178±0.002

HGCN 0.172±0.005 0.185±0.005 0.226±0.006 0.205±0.007
HGT 0.152±0.004 0.170±0.002 0.195±0.003 0.174±0.001

Table 27: Basic Information of tasks on rdb2-bank, # Class means the number of classes, StdErr
means standard error.

Table Target Type # Class StdErr
loan Status Clas. 4 N/A
loan Duration Clas. 5 N/A

transaction PaymentType Clas. 8 N/A
card Type Clas. 3 N/A
order PaymentType Clas. 4 N/A
order Amount Reg. N/A 0.343
loan Amount Reg. N/A 0.337
loan Payments Reg. N/A 0.428

transaction Balance Reg. N/A 0.177
transaction Amount Reg. N/A 0.218
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Table 28: Experiment result details of classification tasks on dataset rdb2-bank. The best results are
in bold and the second-best results are underlined.

Table loan transaction card order
Column Status Duration PaymentType Type PaymentType

MLP 83.33±3.02 97.06±1.20 81.92±1.98 74.15±1.59 54.46±0.64
XGBoost 86.27±3.02 90.69±4.22 97.72±0.01 68.16±4.34 52.86±1.42
Join MLP 60.29±3.60 19.61±3.67 49.90±1.86 74.90±2.65 56.00±0.89

Join XGBoost 84.80±2.50 89.22±3.86 99.20±0.04 100.00±0.00 62.49±0.57
GCN 69.61±3.67 39.70±6.24 62.26±9.72 72.66±2.12 70.14±1.25
GIN 26.96±18.62 16.18±2.08 29.06±2.21 72.66±2.12 34.84±26.22

GraphSage 79.41±4.33 71.08±3.86 84.07±1.38 72.66±2.12 70.14±1.25
GAT 58.82±7.21 59.31±15.99 32.05±0.18 72.66±2.12 70.14±1.25

HGCN 78.43±6.04 85.78±5.93 86.10±0.39 87.26±2.12 80.09±1.58
HGT 75.00±3.60 69.12±1.20 34.17±2.61 81.65±8.48 74.52±1.30

Table 29: Experiment result details of regression tasks on dataset rdb2-bank. The best results are in
bold and the second-best results are underlined.

Table order loan transaction
Column Amount Amount Payments Balance Amount

MLP 0.330±0.004 0.027±0.006 0.106±0.024 0.151±0.001 0.139±0.001
XGBoost 0.351±0.009 0.018±0.002 0.034±0.012 0.129±0.000 0.126±0.000
Join MLP 0.358±0.003 0.299±0.013 0.514±0.053 0.188±0.003 0.233±0.017

Join XGBoost 0.002±0.000 0.019±0.005 0.040±0.017 0.116±0.000 0.000±0.000
GCN 0.314±0.013 0.288±0.050 0.405±0.028 0.166±0.003 0.184±0.012
GIN 0.905±0.403 0.889±0.395 1.194±0.423 0.516±0.267 0.298±0.095

GraphSage 0.307±0.014 0.156±0.025 0.293±0.011 0.157±0.003 0.147±0.004
GAT 0.315±0.008 0.355±0.033 0.431±0.009 0.166±0.002 0.176±0.002

HGCN 0.329±0.015 0.222±0.013 0.311±0.016 0.160±0.001 0.193±0.011
HGT 0.297±0.012 0.174±0.027 0.188±0.034 0.162±0.000 0.202±0.001

Table 30: Basic Information of tasks on rdb2-imdb, # Class means the number of classes.

Table Target Type # Class
movies2actors CastNum Clas. 4

movies2directors MovieGenre Clas. 9
actor ActorQuality Clas. 6

director DirectorQuality Clas. 6
user2movie Rating Clas. 5

Table 31: Experiment result details on dataset rdb2-imdb. The best results are in bold and the
second-best results are underlined. In some cases, the input table donot have any feature, so we mark
it as N/A.

Type Classification
Table movies2actors movies2directors actor director user2movie

Column CastNum MovieGenre ActorQuality DirectorQuality Rating
MLP N/A N/A 41.60±0.64 51.97±0.43 N/A

XGBoost N/A N/A 41.90±0.22 51.51±0.57 N/A
Join MLP 47.32±0.20 30.28±2.02 41.60±0.64 51.97±0.43 35.01±0.26

Join XGBoost 55.43±0.27 41.79±1.72 41.90±0.22 51.51±0.57 41.17±0.22
GCN 50.14±1.40 31.48±0.80 68.96±7.42 70.45±3.77 35.63±0.11
GIN 36.51±8.22 20.13±8.07 65.63±17.81 71.06±16.83 29.00±4.23

GraphSage 49.42±0.27 35.27±2.91 80.68±1.87 68.79±4.77 35.31±0.22
GAT 47.71±0.28 29.55±1.31 66.76±0.21 56.97±6.10 34.95±0.05

HGCN 50.18±0.20 40.50±2.38 84.61±2.09 90.61±0.77 38.32±0.34
HGT 50.70±0.78 42.19±0.99 84.01±1.80 87.12±4.39 37.96±0.55
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Table 32: Basic Information of tasks on rdb3-toxic, # Class means the number of classes, StdErr
means standard error.

Table Target Type # Class StdErr
bond_count Count Clas. 4 N/A

active Activity Clas. 2 N/A
bond BondArg Clas. 4 N/A

has_property Arg2 Clas. 2 N/A
atom Arg4 Reg. N/A 0.192

max_charge Max Reg. N/A 0.280
min_charge Min Reg. N/A 0.560

Table 33: Experiment result details of classification tasks on dataset rdb3-toxic. The best results are
in bold and the second-best results are underlined. In some cases, the input table donot have any
feature, so we mark it as N/A.

Table bond_count active bond has_property
Column Count Activity BondArg Arg2

MLP N/A N/A N/A 59.03±1.57
XGBoost N/A N/A N/A 54.45±5.08
Join MLP 55.58±0.94 60.92±13.30 72.65±0.66 58.02±1.65

Join XGBoost 60.47±3.09 83.91±7.08 74.40±1.68 54.45±5.08
GCN 84.56±1.77 70.12±14.45 78.73±8.52 65.65±3.74
GIN 79.13±3.40 50.58±8.60 77.55±6.86 58.02±7.19

GraphSage 89.22±0.99 81.61±15.51 93.38±1.41 63.36±6.51
GAT 58.18±1.31 100.00±0.00 72.82±0.55 61.58±3.14

HGCN 88.07±1.04 98.85±1.63 95.53±0.75 72.26±3.20
HGT 86.24±0.50 98.85±1.63 98.68±0.20 69.98±2.52

Table 34: Experiment result details of regression tasks on dataset rdb3-toxic. The best results are in
bold and the second-best results are underlined. In some cases, the input table donot have any feature,
so we mark it as N/A.

Table atom max_charge min_charge
Column Arg4 Max Min

MLP 0.124±0.012 N/A N/A
XGBoost 0.080±0.009 N/A N/A
Join MLP 0.215±0.019 0.352±0.038 0.547±0.045

Join XGBoost 0.077±0.008 0.403±0.042 0.583±0.058
GCN 0.225±0.019 0.255±0.024 0.495±0.049
GIN 0.434±0.216 0.696±0.345 1.006±0.429

GraphSage 0.120±0.013 0.272±0.037 0.418±0.069
GAT 0.187±0.007 0.214±0.096 0.473±0.028

HGCN 0.173±0.015 0.405±0.018 0.602±0.061
HGT 0.091±0.010 0.260±0.036 0.353±0.090

Table 35: Basic Information of tasks on rdb3-lahman, # Class means the number of classes, StdErr
means standard error.

Table Target Type # Class StdErr
pitchingpost Game Clas. 8 N/A

teams Rank Clas. 13 N/A
fielding Position Clas. 11 N/A

awardsplayers League Clas. 4 N/A
managers RankTeam Reg. N/A 0.470
fielding Position Reg. N/A 0.178

appearances GameAll Reg. N/A 0.573
players Height Reg. N/A 0.128
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Table 36: Experiment result details of classification tasks on dataset rdb3-lahman. The best results
are in bold and the second-best results are underlined.

Table pitchingpost teams fielding awardsplayers
Column Game Rank Position League

MLP 67.78±0.20 33.82±1.52 32.90±0.65 42.95±0.43
XGBoost 74.78±0.49 49.69±2.52 72.19±0.38 32.41±2.62
Join MLP 56.08±1.03 33.82±1.52 26.17±1.01 42.49±1.87

Join XGBoost 74.30±1.58 49.69±2.52 71.78±0.28 75.19±1.04
GCN 45.51±6.31 20.42±2.30 52.91±0.38 71.44±2.30
GIN 27.53±19.12 12.67±0.17 10.92±2.31 37.54±8.22

GraphSage 57.44±3.30 22.14±2.97 53.97±0.37 72.77±0.50
GAT 40.81±0.20 23.74±1.55 44.53±1.62 71.50±1.90

HGCN 57.76±1.36 20.05±2.56 51.73±1.40 71.39±1.75
HGT 50.04±0.69 17.47±3.36 53.08±0.36 73.11±1.26

Table 37: Experiment result details of regression tasks on dataset rdb3-lahman. The best results are
in bold and the second-best results are underlined.

Table managers fielding appearances players
Column RankTeam Position GameAll Height

MLP 0.258±0.013 0.113±0.001 0.054±0.005 3.439±0.483
XGBoost 0.196±0.010 0.020±0.000 0.002±0.000 0.087±0.000
Join MLP 0.249±0.006 0.182±0.041 0.359±0.171 1.606±0.221

Join XGBoost 0.197±0.007 0.020±0.000 0.002±0.000 0.087±0.002
GCN 0.420±0.011 0.119±0.007 0.364±0.005 0.187±0.004
GIN 0.853±0.524 0.689±0.283 0.945±0.321 1.785±0.189

GraphSage 0.418±0.025 0.074±0.005 0.321±0.005 0.131±0.001
GAT 0.403±0.019 0.111±0.021 0.360±0.014 0.127±0.001

HGCN 0.474±0.034 0.399±0.041 0.512±0.021 1.292±0.310
HGT 0.413±0.020 0.141±0.003 0.379±0.003 0.109±0.000

Table 38: Basic Information of tasks on rdb3-govern, # Class means the number of classes.

Table Target Type # Class
individual_vote Result Clas. 5

vote Result Clas. 2
member Region Clas. 22
member Term Clas. 7

Table 39: Experiment result details on dataset rdb3-govern. The best results are in bold and the
second-best results are underlined.

Type Classification
Table individual_vote vote member

Column Result Result Region Term
MLP 51.82±0.02 97.82±0.27 18.10±2.56 58.06±1.36

XGBoost 56.81±0.11 70.93±1.09 22.08±2.44 56.51±2.77
Join MLP 51.80±0.02 97.82±0.36 14.35±2.98 69.98±4.60

Join XGBoost 61.19±0.09 70.93±1.09 48.56±2.98 64.24±1.43
GCN 51.71±0.19 72.26±3.22 13.25±1.43 83.00±1.90
GIN 51.71±0.19 71.88±2.85 6.18±1.74 32.23±4.13

GraphSage 52.99±0.99 73.77±3.03 19.87±2.35 86.76±2.48
GAT 51.71±0.19 71.88±2.85 12.81±1.13 85.21±3.26

HGCN 53.27±0.31 73.11±2.08 18.99±1.36 86.09±3.01
HGT 52.35±1.09 74.34±3.03 38.85±2.77 82.34±1.13
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