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ABSTRACT

Momentum-based optimizers are widely adopted for training neural networks.
However, the optimal selection of momentum coefficients remains elusive. This
uncertainty impedes a clear understanding of the role of momentum in stochastic
gradient methods. In this paper, we present a frequency domain analysis frame-
work that interprets the momentum method as a time-variant filter for gradients,
where adjustments to momentum coefficients modify the filter characteristics. Our
experiments support this perspective and provide a deeper understanding of the
mechanism involved. Moreover, our analysis reveals the following significant
findings: high-frequency gradient components are undesired in the late stages of
training; preserving the original gradient in the early stages, and gradually ampli-
fying low-frequency gradient components during training both enhance general-
ization performance. Based on these insights, we propose Frequency Stochastic
Gradient Descent with Momentum (FSGDM), a heuristic optimizer that dynam-
ically adjusts the momentum filtering characteristic with an empirically effective
dynamic magnitude response. Experimental results demonstrate the superiority of
FSGDM over conventional momentum optimizers.

1 INTRODUCTION

Momentum has achieved great success in deep learning applications when combined with Stochastic
Gradient Descent (SGD) (Robbins & Monro, 1951). Among various momentum methods (Polyak,
1964; Nesterov, 1983; Van Scoy et al., 2017; Ma & Yarats, 2018; Kidambi et al., 2018), one of the
most prevalent variants is the momentum method utilized within Stochastic Gradient Descent with
Momentum (SGDM) (Sutskever et al., 2013; Paszke et al., 2019), which can be expressed as:

Standard-SGDM (decoupled) : mt = utmt−1 + vtgt, xt = xt−1 − αtmt, (1)

where gt denotes the gradient at iteration t, mt is the momentum buffer, and xt represents the
learnable parameters. The momentum coefficients ut and vt control the influence of the previous
momentum and the current gradient, respectively, and αt is the learning rate. For these time-variant
momentum coefficients, a multistage setting has been commonly adopted in the machine learning
community (Aybat et al., 2019; Kulunchakov & Mairal, 2019; Liu et al., 2020). Throughout this
paper, we refer to this formulation, which decouples the two momentum coefficients, as Standard-
SGDM. In contrast, another prevalent variant couples the two momentum coefficients using the
Exponential Moving Average (EMA) method (Gardner Jr, 1985), leading to the formulation of EMA-
SGDM:

EMA-SGDM (coupled) : mt = utmt−1 + (1− ut)gt, xt = xt−1 − αtmt, (2)

where ut ∈ [0, 1) is the momentum coefficient. Notably, this coupled momentum formulation
is a special case of the decoupled one, i.e., Standard-SGDM with vt = 1 − ut. Our experiments
show performance gaps between these two formulations. Moreover, how the momentum coefficients
change over time can significantly affect the test accuracy (see Sec. 3). The existence of these two
distinct momentum formulations and their differing performances raises two primary questions in
modern deep learning:

1. Decoupling vs. Coupling: Should the coefficients ut and vt be decoupled or coupled?
2. Temporal Variation: How should the momentum coefficients evolve over time during

training to achieve better model performance?
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For Question 1, some literatures have investigated the convergence of the coupled method (Mai &
Johansson, 2020; Li et al., 2022). Liu et al. (2020) argued that coupling the coefficients leads only to
a constant scaling difference. Wang et al. (2024) further demonstrated that the mathematical equiv-
alence between EMA-SGDM and Standard-SGDM can be achieved by adjusting the momentum
coefficients and the learning rates in a coupled way. However, in practice, learning rate schedules
are typically independent of momentum coefficient tuning during network training. On the other
hand, popular frameworks like PyTorch (Paszke et al., 2019) adopt a decoupled momentum strategy
by default. In our framework, we tackle the first question from the frequency domain perspective,
revealing the relationship between the coupled and decoupled constructions.

Regarding Question 2, prior research offered diverse opinions on how the momentum coefficients
should vary over time. Some studies preferred fixed decoupled momentum coefficients (Yan et al.,
2018; Liu et al., 2018; Yu et al., 2019), commonly selecting ut values as 0.9 and vt value as 1. Liu
et al. (2020) highlighted the benefits of stagewise learning rate schedules in EMA-SGDM, noting
that ut can either remain constant or increase along with the stagewise adjustments. Conversely,
Smith (2018) demonstrated that decreasing the momentum coefficients while increasing the learning
rate improves test performance. Moreover, Adaptive momentum methods (Kingma & Ba, 2014;
Reddi et al., 2018; Luo et al., 2019; Chen et al., 2018) proved the convergence of decreasing coupled
momentum coefficients in the context of online convex optimization. Nonetheless, a consensus
regarding the optimal time-variant pattern of the momentum coefficients has yet to be reached.

To answer these questions, one has to understand how the momentum method affects the training
process. Goh (2017) analyzed the momentum method from the aspect of convergence and dynam-
ics. Several prior studies (Cutkosky & Orabona, 2019; Ma & Yarats, 2018) speculated that averaging
past stochastic gradients through momentum might reduce the variance of the noise in the parameter
update, thus making the loss decrease faster. Polyak (1964); Rumelhart et al. (1986) argued that the
EMA momentum can cancel out oscillations along high-curvature directions and add up contribu-
tions along low-curvature directions. From the signal processing perspective, the EMA method acts
as a discrete low-pass filter for smoothing out high-frequency fluctuations while retaining the low-
frequency baseband pattern of the signal (Gardner Jr, 1985). These points of view bring us a new
insight into connecting the momentum update processes with the specific filters. In this aspect, the
momentum methods with different coefficient selections can be interpreted in a unified frequency
domain analysis framework, whereby Questions 1 and 2 are resolved.

In this paper, we propose a novel frequency domain analysis framework to address the two ques-
tions and provide a deeper understanding of the role of momentum in stochastic optimization. To
the best of our knowledge, this paper, for the first time, reveals the fundamental difference between
Standard-SGDM and EMA-SGDM and uncovers the effects of the dynamic momentum coefficients
clearly with the help of frequency domain analysis. Within our framework, high-frequency gradi-
ent components correspond to rapid fluctuations in gradient signals, while low-frequency gradient
components represent smoother, gradual changes. Moreover, adjusting the momentum coefficients
during training is equivalent to modifying the time-variant filtering characteristics of the momentum
methods. This perspective not only explains the difference between various momentum methods
but also provides practical guidelines for designing well-performed optimizers. Building upon these
insights, we introduce the Frequency Stochastic Gradient Descent with Momentum (FSGDM) op-
timizer, which dynamically adjusts the momentum filter characteristics throughout training. Our
experiments validate the effectiveness of FSGDM, showing that it outperforms conventional SGD-
based momentum optimizers. The code will be released upon publication.

2 FREQUENCY DOMAIN ANALYSIS FRAMEWORK

This section introduces the background of Z-transform (Zadeh, 1950) in signal processing and then
proposes a new frequency domain analysis framework for momentum methods.

2.1 Z-TRANSFORM AND QUASI-STATIONARY APPROXIMATION

Frequency analysis is a crucial technique for understanding how systems react to varying fre-
quency components of input signals. Specifically, for discrete-time linear time-invariant systems,
Z-transform is leveraged to examine how systems attenuate or amplify signals at specific frequen-
cies, especially in the study of system stability, pole-zero behavior, etc. (Oppenheim et al., 1996).
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Interestingly, in neural network training, the momentum update process at time t can be seen as
a recursive filter where the gradient gt and the momentum mt act as input and output signals, re-
spectively. The momentum coefficients affect the gradient adjustments across different frequency
components. The high-frequency gradient components correspond to large and more abrupt changes
in the gradient; while the low-frequency components indicate smooth and more gradual adjustments.

However, one key issue is that our momentum method can be inherently time-variant, as its coef-
ficients may change stagewise throughout the training process. This variability makes it difficult
to apply traditional Z-transform analysis. To overcome this, inspired by the Zadeh (1961); Jury
(1964), we approximate the system as time-invariant in each discrete interval stage. By holding the
momentum coefficients constant over every interval, we construct a time-invariant quasi-stationary
system (Hubner & Tran-Gia, 1991), enabling us to apply the Z-transform validly.

In our following analysis framework and our later optimizer design, we follow this multistage strat-
egy for changing momentum coefficients. Particularly, for a predefined stage whose length is de-
noted by δ, the momentum coefficients are redefined using the floor function to ensure they remain
constant over the whole stage:

ut = u(⌊t/δ⌋ × δ) and vt = v(⌊t/δ⌋ × δ), (3)

where u(t), v(t) are the continuous dynamic sequence functions with respect to t. While there
are multiple sequences with different designs, in this paper, we use the following increasing and
decreasing sequences:

Increasing : u(t) or v(t) =
t

t+ µ
, Decreasing : u(t) or v(t) = 1− t+ 1

t+ ν
, (4)

where µ and ν are the increasing and decreasing factors 1. In App. B.1, we also examined the test
set performance using other kinds of dynamic sequences. Under the above settings, for a given stage
k (k = 1, · · · , N ), with t ∈ [(k − 1)δ, kδ − 1], the momentum system 2 becomes:

mt = ukmt−1 + vkgt (5)

where uk = u((k − 1)δ) and vk = v((k − 1)δ) are constants for the duration of the k-th stage.
Additionally, we set the total number of stages, denoted by N , to a constant value of 300 for all the
experiments in this paper.

2.2 FREQUENCY DOMAIN ANALYSIS OF THE MOMENTUM METHOD

In this subsection, we introduce our frequency domain analysis framework and analyze the impacts
of the momentum method on neural network training. We first apply Z-transform, denoted by Z , to
Eqn. 5:

M(z) = ukz
−1M(z) + vkG(z), (6)

where G(z) = Z{gt}, M(z) = Z{mt}, and z−1M(z) = Z{mt−1}. To obtain the frequency
response of the momentum system during stage k, we evaluate the transfer function Hk(z) on the
unit circle (Oppenheim et al., 1996):

Hk(z) =
M(z)

G(z)
=

vk
1− ukz−1

z=ejω
====⇒ Hk(ω) =

vk
1− uke−jω

, (7)

where ω ∈ [0, π] is the normalized angular frequency of the real-value signal. The frequency re-
sponse of the momentum system describes how the input gradient signal G(z) is altered to the output
momentum signal M(ω) when it passes through the system. Note that this transfer function is valid
for the entire duration of the k-th quasi-stationary stage.

Magnitude Response. The magnitude response of the momentum system in the k-th stage can be
calculated by taking the magnitude of Hk(ω):

|Hk(ω)| =
|vk|√

1− 2uk cosω + u2
k

. (8)

1Note that different from the increasing sequence, the numerator of the decreasing sequence is t + 1. This
design avoids the zero gradients at the first training stage.

2In this paper, momentum system refers to the momentum update process.
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The magnitude response describes the amplitude scaling effect of the system at different frequen-
cies. It indicates how the momentum system amplifies or attenuates different frequency components
during each stage. This characteristic of the momentum system plays a key role in affecting the
optimization process. Notably, when |Hk(ω)| < 1, the momentum system attenuates the signals
with frequency ω; when |Hk(ω)| > 1, the momentum system amplifies the signals with ω. Conse-
quently, we divide the momentum systems into two categories: Orthodox Momentum Systems and
Unorthodox Momentum Systems.

Orthodox Momentum Systems are the ones whose amplitude of the magnitude response will not
surpass 1, like the EMA-SGDM (2). This kind of momentum system only shows attenuating char-
acteristics. Specifically, the momentum system behaves as a low-pass filter when uk > 0 and a
high-pass filter when uk < 0. Additionally, when uk gets close to 1, the momentum system will
prefer to attenuate the gradient components with high frequencies. The visualization of the (dy-
namic) magnitude responses of orthodox momentum systems is in Sec. 3.1 and App. B.2.

For Unorthodox Momentum Systems where the amplitude of magnitude response will surpass 1,
such as selecting ut = 0.9 and vt = 1 in Standard-SGDM (1), the momentum system possesses both
amplifying and attenuating characteristics. In this paper, we refer to these kinds of unorthodox filters
as low/high-pass gain filters. Specifically, the momentum system behaves as a low-pass gain filter
when uk > 0, vk = 1 and a high-pass gain filter when uk < 0, vk = 1. Additionally, if uk is close to
1, the momentum system attenuates high-frequency gradient components while strongly amplifying
low-frequency components; if uk is close to −1, the momentum system attenuates low-frequency
gradient components while strongly amplifying high-frequency components. The visualization of
the (dynamic) magnitude responses of unorthodox momentum systems is in Sec. 3.2 and App. B.2.

To demonstrate the momentum effects from the frequency perspective, in Fig. 1, we compare an
original sinusoidal signal, a noisy version injected with Gaussian noise, and the signal after applying
the momentum method (which is called momentum signal for short) in the time domain. The red
curve represents the noisy signal, the black dashed curve corresponds to the original noise-free true
signal, and the cyan curve shows the momentum signal. We can see that different selections of uk

and vk significantly affect the amplifying or attenuating effects of the momentum system.
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(a) Dynamic Low-pass Filter
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(b) Dynamic High-pass Filter
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(c) Low-pass Gain Filter
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(d) High-pass gain Filter

Figure 1: Visualization of different filters towards the noisy sinusoidal signal. (a) uk = 0 → 1, vk =
1 − uk, with the system gradually shifting from an all-pass filter to a narrow low-pass filter; (b)
uk = 0 → −1, vk = 1 + uk, with the system gradually shifting from an all-pass filter to a narrow
high-pass filter; (c) uk = 0.9, vk = 1, which indicates the momentum behaves like a low-pass gain
filter with amplification on low-frequency gradient components; (d) uk = −0.9, vk = 1, which
indicates the momentum behaves like a high-pass gain filter with amplification on high-frequency
components. The amplifying and attenuating effects of different momentum systems are verified.

Phase Response. We also have the phase response of the momentum system in the k-th stage,

arg(Hk(ω)) = arg(vk)− tan−1

(
uk sinω

1− uk cosω

)
, (9)

where arg(·) is the argument operator. For any real value vk, arg(vk) = 0 if vk > 0 and arg(vk) = π
if vk < 0; for any ω ∈ [0, π] and uk ∈ (−1, 1), tan−1 (uk sinω/(1− uk cosω)) ∈ (−π

2 ,
π
2 ). The

phase response describes the phase-shifting effect of the momentum system at different frequencies.
In the context of gradient-based optimization, the phase shift indicates a change in the optimization
direction. Therefore, when vk < 0, the phase shift of the momentum adds up an extra π rad on the
shifted direction, indicating that the direction of the update is greatly reversed, which can lead to
oscillations, instability, or divergence in the optimization process. Thus, it is necessary to select a
positive vk when applying momentum methods.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

While the phase response of the momentum only provides limited insights, understanding the be-
havior of the magnitude response across stages is essential for analyzing the time-variant charac-
teristics of the momentum system. By plotting the dynamic magnitude response value |Hk(ω)| on
the normalized angular frequency axis for each stage k, we can track how the frequency-dependent
behavior of the multistage momentum system evolves over time. This provides valuable insights
into the amplifying or attenuating characteristics of the momentum system. Further results on the
comparisons of momentum systems with different dynamic magnitude responses are presented in
the next section.

3 DYNAMIC MAGNITUDE RESPONSE OF THE MOMENTUM SYSTEMS

In this section, we present an empirical study to discover the influence of the momentum coeffi-
cients by comparing the test performance on momentum systems with different dynamic magnitude
responses. We train VGG (Simonyan & Zisserman, 2014) on the CIFAR-10 (Krizhevsky et al.,
2009) dataset and ResNet50 (He et al., 2016) on the CIFAR-100 dataset using different momentum
coefficients, while keeping all other hyperparameters unchanged. For each experiment, we report
the mean and standard error (as subscripts) of test accuracy for 3 runs with random seeds from 0-2.
The detailed experimental settings can be found in App. C. The experimental results in CIFAR-10
show high similarity to those in CIFAR-100. Thus, here, we mainly focus on the analysis based on
CIFAR-100 and defer the experimental results of VGG16 on CIFAR-10 in App. B.3.

3.1 ORTHODOX MOMENTUM SYSTEMS
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Figure 2: (Up) Analysis of the (dynamic) magnitude responses in the early and late training stages
for EMA-SGDM with low-pass momentum defined in Eqn. 10. The solid lines denote the magnitude
responses in the early stages, and the dashed lines denote the magnitude responses in the late stages.
(Down) The comparison between the gradient norms and momentum norms for EMA-SGDM with
low-pass momentum. Left Column: increasing sequence. Middle Column: fixed sequence. Right
Column: decreasing sequence.

We first focus on the orthodox momentum systems with the following two main types: low-pass and
high-pass momentum, defined as:

Low-pass : mt = utmt−1 + (1− ut)gt, High-pass : mt = −utmt−1 + (1− ut)gt, (10)

where ut ∈ [0, 1) can be set as increasing, decreasing sequences, or fixed value. For time-variant
momentum systems, different strategies of ut result in different time-variant filtering characteris-
tics during training. According to Sec. 2.1, scaling the increasing and decreasing factors affects the
changing rates of ut. In the following, we demonstrate the dynamic magnitude responses, compar-
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isons between gradient norms and momentum norms, and test accuracy results of orthodox momen-
tum systems under different ut sequences 3.

Example 1: Low-Pass Momentum. We first explore the effect of increasing, fixed, and decreasing
ut sequences in low-pass momentum. Fig. 2(a) - 2(c) show the corresponding dynamic magnitude
responses over time. With increasing ut, the system transits from an all-pass to a progressively nar-
rower low-pass filter, gradually attenuating high-frequency components. Larger µ results in slower
transitions. Decreasing ut shows a reverse behavior, with larger ν resulting in slower transitions. ut

with a fixed value maintains a constant filter, with larger ut leading to more aggressive smoothing
and noise reduction characteristics. The norm comparisons in Fig. 2(d) - 2(f) show that the momen-
tum norms in low-pass momentum systems are always less than the corresponding gradient norms.
Larger ut, ν and smaller µ lead to more reduced momentum norms, which validates the time-variant
filtering characteristics of orthodox momentum systems.

Test accuracy results in Table 1 reveal that increasing or fixing ut can achieve higher accuracy
compared to applying decreasing sequences of ut. In particular, momentum systems with proper
increasing sequences of ut can outperform those with fixed ut. We also find that larger ν results
in poorer model performance. These phenomena indicate that gradually attenuating high-frequency
components during training improves test set performance, while excessive suppression of low-
frequency gradient components in early stages and retention of high-frequency components in late
stages degrade model performance.

Example 2: High-Pass Momentum. High-pass momentum systems exhibit symmetric dynamic
magnitude responses and similar norm comparisons, compared to their low-pass counterparts (see
Fig. 6 in App. B.2). With increasing ut, the system shifts from an all-pass to a narrow high-pass
filter, progressively attenuating low-frequency components. Decreasing sequences act in reverse.
Fixed sequences with larger ut lead to more aggressive attenuation of low-frequency components.
The comparison of gradient norms and momentum norms can be found in App. B.2.

Test accuracy in Table 1 shows that dynamic high-pass systems with larger µ and smaller ν yield
better top-1 accuracy performance. When selecting fixed values, momentum systems with larger ut

perform more poorly. These results confirm that suppressing low-frequency gradient components
is harmful. Moreover, high-pass systems generally outperform low-pass systems when applying
decreasing strategies with the same ν, suggesting that high-frequency components play a crucial
role in the early training stages, which is also supported by the studies in App. B.4.

From Examples 1 and 2, we empirically verify that high-frequency gradient components are detri-
mental in late training stages, while their preservation in early stages leads to higher test accuracy,
which matches the viewpoint that gradient noise has a generalization benefit early in training (Smith
et al., 2020).

Table 1: Top-1 ACC. (%) comparisons of different momentum coefficient strategies of orthodox
momentum systems of ResNet50 on CIFAR-100.

Increasing Factor (µ) Fixed Value (ut) Decreasing Factor (ν)
Parameters 1k 10k 100k 0.3 0.6 0.9 100 1k 10k

Low-pass 77.120.07 77.060.14 76.860.12 76.980.09 76.820.18 76.840.06 72.580.44 70.530.31 69.690.75
High-pass 51.590.78 67.550.22 74.720.06 72.460.13 65.140.17 53.430.26 76.820.25 75.920.12 70.990.18

3.2 UNORTHODOX MOMENTUM SYSTEMS

Unorthodox momentum systems allow magnitude responses larger than 1, meaning they can both
attenuate and amplify gradients in different frequency bands. We focus on two main types: low-pass
gain and high-pass gain momentum, defined as:

Low-pass gain : mt = utmt−1 + gt, High-pass gain : mt = −utmt−1 + gt, (11)

where ut ∈ [0, 1) can follow increasing, fixed, or decreasing sequences. For simplification reasons,
we use the PyTorch setting with vt = 1. We show the dynamic magnitude responses, comparisons
between gradient norms and momentum norms, and test accuracy results of unorthodox momentum
systems under different ut sequences as follows.

3Note that selecting µ = 100 and ν = 104 lead to a long stage of super narrow-band filter. To avoid this
problem, we select µ = 103, 104, 105 and ν = 102, 103, 104 in this paper.
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Figure 3: (Up) Analysis of the (dynamic) magnitude responses in the early and late training stages
for Standard-SGDM with low-pass gain momentum defined in Eqn. 11. The solid lines denote
the magnitude responses in the early stages, and the dashed lines denote the magnitude responses
in the late stages. (Down) The comparison between the gradient norms and momentum norms
for Standard-SGDM with low-pass gain momentum. Left Column: increasing sequence. Middle
Column: fixed sequence. Right Column: decreasing sequence.

Example 3: Low-Pass Gain Momentum. In low-pass gain momentum, the system transits from
an all-pass to a narrower low-pass gain filter as ut increases, amplifying low-frequency components
while attenuating high-frequency components. Fig. 3(a) - 3(c) show the corresponding dynamic
magnitude responses over time. A large µ corresponds to the slow shifts. Decreasing ut reverses
the trend, heavily amplifying low-frequency components early and relaxing this effect over time.
Fixed ut maintains constant filters, in which larger ut amplifies low-frequency components more
aggressively. Fig. 3(d) - 3(f) demonstrate larger momentum norms compared to gradient norms,
indicating the amplification effects in gain filters. Larger ut, ν and smaller µ lead to more reduced
momentum norms, which validates the time-variant filtering characteristics of orthodox momentum
systems. Test results in Table 2 indicate that increasing ut with appropriate µ outperforms the sce-
narios using fixed and decreasing sequences of ut. We also find that smaller ν yields worse accuracy
in test sets. From these results, we conclude that amplifying low-frequency gradient components and
attenuating high-frequency ones in a proper way, improves test set performance.

Example 4: High-Pass Gain Momentum. High-pass gain momentum mirrors the dynamic mag-
nitude response behavior of low-pass gain systems (see Fig. 7 in App B.2). Increasing ut gradually
amplifies high-frequency gradient components and attenuates low-frequency ones. Decreasing ut

reverses this pattern, heavily amplifying high-frequency components early on. Fixed constructions
more aggressively amplify high-frequency components for larger ut. The comparison of gradient
norms and momentum norms can be found in App. B.2. Test accuracy in Table 2 shows that fixed
constructions with larger ut and decreasing ut with larger ν perform worse. These findings confirm
that amplifying high-frequency gradients in training might be undesirable.

From Examples 3 and 4, we empirically verify that proper amplification in unorthodox momen-
tum systems can improve model performance, particularly when amplifying low-frequency gradient
components.

Table 2: Top-1 ACC. (%) comparisons of different momentum coefficient strategies of unorthodox
momentum systems of ResNet50 on CIFAR-100.

Increasing Factor (µ) Fixed Value (ut) Decreasing Factor (ν)
Parameters 1k 10k 100k 0.3 0.6 0.9 100 1k 10k

Low-Pass Gain 76.100.14 80.480.03 78.020.03 78.010.04 79.510.15 79.710.25 70.370.67 71.530.62 76.180.38
High-Pass Gain 75.470.21 74.540.16 75.970.27 75.680.18 74.560.09 73.770.18 76.410.41 74.000.26 68.900.82
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3.3 DISCUSSION

The differences in norm comparison and test accuracy between orthodox and unorthodox momentum
systems validate the distinction between EMA-SGDM and Standard-SGDM from the signal process-
ing perspective. EMA-SGDM only possesses attenuating filter effects, while Standard-SGDM can,
at the same time, amplify and attenuate different frequency gradient components. Moreover, we
show that Standard-SGDM with proper momentum coefficients can consistently outperform EMA-
SGDM. These results clarify the difference between coupled and decoupled momentum coefficients
and indicate that decoupling the momentum coefficients is usually beneficial, which answers Ques-
tion 1.

Regarding Question 2, the test results show that decoupled momentum coefficients with a properly
increasing ut and fixed vt can achieve better performance. In particular, our empirical findings
reveal the following insights in training Convolutional Neural Networks (CNNs): 1) high-frequency
gradient components are undesired in the late stages of training; 2) preserving the original gradient in
the early stages leads to improved test set accuracy; 3) gradually amplifying low-frequency gradient
components enhance the generalization performance. Furthermore, we find that these insights are
also adaptable in various learning areas (see Sec. 5). Based on these insights, it may be possible to
design a more effective optimizer by appropriately adjusting the momentum coefficients.

4 FREQUENCY-BASED OPTIMIZER

As suggested by our frequency domain analysis framework, achieving better test performance is
equivalent to finding an appropriate dynamic filter-changing pattern for momentum systems. Based
on this idea, we propose FSGDM, a heuristic optimizer that dynamically adjusts momentum filtering
characteristics. Furthermore, in order to explore the potential optimal strategies of our proposed
FSGDM based on the findings in Sec. 3.3, several sets of experiments in various deep-learning tasks
are conducted.

4.1 FREQUENCY STOCHASTIC GRADIENT DESCENT WITH MOMENTUM

Algorithm 1: FSGDM
Input: Σ, c, v, N ;
Initialization: m0, µ = cΣ,
δ = Σ/N ;

for each t = 1, 2, . . . do
gt = ∇Lt(xt−1, ζt−1);
u(t) = t

t+µ , ut = u(⌊t/δ⌋×δ);
mt = utmt−1 + vgt;
xt = xt−1 − αtmt;

end

Generally, determining the best optimization strategy
by tuning ut and vt according to our frequency domain
analysis is challenging. In the field of signal processing,
how to select the best filters for different problems is
still an open problem. However, we can design a better
optimizer based on the findings in Sec. 3.3. Still, there
are infinite dynamic magnitude responses that can meet
the requirements of the aforementioned findings. Based
on Occam’s Razor principle, we provide a minimalist
form of our proposed optimizer in Algorithm 1, where
Σ is the total gradient update steps in the whole training
process determined by the epoch number and the size of

the dataset, c is a scaling factor, Lt : Rd → R is the loss for the t-th step, ζt−1 denotes a minibatch
drawn from the training data, and N is the number of stages. µ and v are adjustable parameters that
dominate the filtering characteristic of FSGDM. Moreover, since µ is a function of Σ, the dynamic
magnitude response can be inherited when Σ varies. In particular, we have the following proposition.
Proposition 1. By fixing the number of stages N and the scaling factor c, the dynamic magnitude
response of Algorithm 1 keeps invariant with respect to changes in the total number of training steps.

The proof of Proposition 1 is deferred in App. A.3. By this, we show that the dynamic magnitude
response of a well-performed FSGDM can be adaptable to various tasks. In the following subsection,
we explore the optimal scaling factor c and momentum coefficient v for FSGDM.

4.2 EMPIRICAL EXPLORATION OF OPTIMAL SETTINGS FOR FSGDM

As discussed in Sec. 3, different choices of c and v can significantly affect the filtering character-
istics of FSGDM. To understand their impact on optimization performance and to identify optimal
parameter settings, we conduct a comprehensive empirical study.

8
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Specifically, we empirically explore the optimal parameter selection of FSGDM across three dif-
ferent image classification tasks by first sweeping c and v within the ranges of (0, 1) and [0.5, 3],
respectively. Specifically, we conduct three sets of experiments using the same codebase (See App. C
for more training details): (1) training ResNet18 for 100 epochs on CIFAR-10, (2) training ResNet34
for 100 epochs on Tiny-ImageNet (Le & Yang, 2015), and (3) training ResNet50 for 300 epochs on
CIFAR-100. We also explore the optimal parameter selection on one natural language processing
task in App. B.7. By finding the parameter selections with better test performance in different tasks,
we try to empirically summarize the law of optimal parameter selection.
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Figure 4: The Top-1 test errors of training ResNet18 on CIFAR-10, ResNet34 on Tiny-ImageNet
and ResNet50 on CIFAR-100. The results show that the optimal parameter selections across these
three training settings exhibit a high similarity. The black points denote the parameter selections
with better test performance. The optimal zone of the parameter selection is circled in red.

The results in Fig. 4 show that there exists an optimal zone where relatively better test accuracy
results can be achieved. When the momentum coefficient v is fixed, the test accuracy shows an
initial increase followed by a decline as the scaling factor c increases. In App. B.8, we plot the
magnitude responses and the test accuracy results of the black points in Fig. 4 and find that these
parameter selections have similar dynamic magnitude responses and test accuracy curves. Thus,
we assume the parameter selections with similar dynamic magnitude responses will lead to close
performance. More discussions are in App. B.8.

5 EXPERIMENTS

To verify the generalization of the proposed FSGDM, we perform a large-scale comparison across
vision classification tasks, natural language processing (NLP) tasks and reinforcement learning (RL)
tasks. We compare the test performance of FSGDM and conventional SGD-based momentum opti-
mizers, including Standard-SGDM and EMA-SGDM. We set ut = 0.9, vt = 1 for Standard-SGDM,
and ut = 0.9 for EMA-SGDM, which are the common momentum coefficient selections in training
neural networks. For a fair comparison and convenience, we set c = 0.033, v = 1, which is one of
the black points in the optimal zone in Fig. 4, for FSGDM. Note that other combinations of c and v
in the optimal zone can also be selected. For the other adjustable parameters in Algorithm 1, we set
N to 300 as mentioned at the end of Sec. 2.1, and set Σ as the number of total training steps. No-
tably, since our focus is on comparing the performance of different optimizers, we do not fine-tune
every parameter for each individual model but use the same hyperparameters across all models for
convenience. See App. C for more experimental details.

Table 3: Performance on Image Classification Experiments
Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet
Model VGG16 ResNet18 ResNet50 DenseNet121 ResNet34 MobileNet ResNet50

EMA-SGDM 93.710.07 94.190.07 76.840.06 76.180.23 62.280.17 55.000.10 74.240.04
Standard-SGDM 94.080.07 95.570.06 79.710.25 80.490.09 67.510.08 58.310.20 76.660.09
FSGDM 94.190.07 95.660.07 81.440.06 81.140.05 67.740.06 59.610.11 76.910.05

CNNs on Image Classification. We perform four sets of experiments with different datasets in
computer vision tasks and use various CNN architectures for training them. Specifically, we select:
(a) VGG16 and ResNet18 for CIFAR-10; (b) ResNet50 and DenseNet121 (Huang et al., 2017)
for CIFAR-100; (c) ResNet34 and MobileNet (Howard, 2017) for Tiny-ImageNet; (d) ResNet50
for ILSVRC 2012 ImageNet Russakovsky et al. (2015). For each task, we report the mean and
standard error (as subscripts) of test accuracy for 3 runs with random seeds from 0-2. The results
in Table 3 show that our FSGDM consistently achieves better test set performance. Additionally,
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we can observe that Standard-SGDM steadily outperforms EMA-SGDM, which aligns with our
discoveries in Sec. 3.3.

Natural Language Processing (NLP). We conducte experiments on the IWSLT14 German-English
translation task (Cettolo et al., 2014) to represent NLP tasks, a widely used benchmark in the
community. Specifically, we train six different models encompassing a variety of architectures:
two convolution-based models, FConv (Gehring et al., 2017) and LightConv (Wu et al., 2019);
two LSTM-based models, vanilla LSTM (Hochreiter et al., 1997) and an LSTM variant, LSTM-
W (Wiseman & Rush, 2016); and two Transformer-based models (Vaswani et al., 2017) with dif-
ferent sizes, Transformer-tiny and Transformer. Model performance is reported using BLEU scores,
where higher scores indicate better performance, and we summarize all results in Table 4. Com-
pared with the baseline optimizers, the proposed FSGDM outperforms all others in this task across
six different models. This shows the effectiveness of our optimizer in improving translation qual-
ity. Moreover, the consistent improvement highlights the robustness of FSGDM and its ability to
generalize across different neural network structures in natural language processing tasks.

Table 4: Performance on IWSLT14 Dataset
Model FConv LightConv LSTM LSTM-W Transformer-tiny Transformer

EMA-SGDM 13.970.01 10.560.01 4.990.01 1.200.07 5.170.01 6.270.01
Standard-SGDM 27.410.02 33.050.04 28.120.06 24.660.06 18.160.03 31.500.05
FSGDM 28.300.01 33.440.02 29.270.02 27.410.03 19.940.07 32.400.05
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Figure 5: The reward curves of EMA-SGD, Standard-SGD and FSGDM on three MuJoCo tasks.

Reinforcement Learning (RL). We evaluate FSGDM on PPO (Schulman et al., 2017), one of the
most popular policy gradient methods in reinforcement learning. We replace the default Adam
optimizer (Kingma & Ba, 2014) in PPO with FSGDM, Standard-SGDM and EMA-SGDM. We test
the three optimizers on Walked2d-v4, HalfCheetah-v4 and Ant-V4, which are actually continuous
control environments simulated by the standard and widely-used engine, MuJoCo (Todorov et al.,
2012). Following standard evaluation, we run each game under 10 random seeds (range from 0-9),
and test the performance for 10 episodes every 30,000 steps. All experiments are conducted using
the Tianshou codebase (Weng et al., 2022), a widely known RL framework. Fig. 5 presents the
results on three tasks, where the solid line represents the average episode rewards during evaluation,
and the shaded region indicates the 75% confidence interval. It can be easily observed that on three
test games, our FSGDM achieves the highest rewards than Standard-SGDM and EMA-SGDM.

6 CONCLUSIONS

This paper proposes a frequency domain analysis framework for the momentum method. Based on
the proposed framework, we find that different selections of momentum coefficients correspond to
different filter characteristics of the momentum methods. The generalization performance will be
significantly distinct under different time-variant momentum coefficients. Furthermore, we develop
a heuristic optimizer named FSGDM which outperforms the conventional SGD-based momentum
optimizers in various learning tasks. Future work may investigate how we can achieve the best
filtering strategy for all the general scenarios in a more theoretical way. Moreover, extending the
frequency domain analysis framework to other second-moment optimizers like RMSprop (Tieleman
& Hinton, 2012) and Adam is also an interesting topic.
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A ADDITIONAL DERIVATIONS AND PROOF

A.1 DERIVATION OF EQUATION (8)

|Hk(ω)| =
√
Hk(ω)H

†
k(ω)

=

√
vk

1− uke−jω
· vk
1− ukejω

=

√
v2k

1− uke−jω − ukejω + u2
ke

−jωejω

=

√
v2k

1− uk(cosω − j sinω)− uk(cosω + j sinω) + u2
k(cos

2 ω + sin2 ω)

=

√
v2k

1− 2uk cosω + u2
k

=
|vk|√

1− 2uk cosω + u2
k

A.2 DERIVATION OF EQUATION (9)

arg(Hk(ω)) = arg(vk)− arg(1− uke
−jω)

= arg(vk)− arg ((1− uk cosω) + j(uk sinω))

= arg(vk)− tan−1

(
uk sinω

1− uk cosω

)

A.3 PROOF OF PROPOSITION 1

According to Algorithm 1, the momentum coefficient in the k-th stage (k = 1, 2, · · · , N ) is

uk =
(k − 1)δ

(k − 1)δ + µ
=

(k − 1)δ

(k − 1)δ +Σ/c
=

(k − 1)δ

(k − 1)δ + cNδ
=

k − 1

k − 1 + cN
. (12)

This guarantees that the number of training steps, which may be different when choosing other
training strategies or changing datasets, is independent of uk when the scaling factor c and the
number of stages N are already determined.

B ADDITIONAL EXPERIMENTS

In this section, we present several supplementary experiments. The detailed experimental settings
are shown in App. C.

B.1 DYNAMIC SEQUENCE CONSTRUCTION

There are infinite increasing or decreasing sequences. In this part, we compare the test set perfor-
mance of the sequence mentioned in Equ. 4 with four other dynamic sequences. Specifically, we
compare with the following four dynamic increasing sequences within Algorithm 1:

Linear: u(t) = a1t;

Exponential: u(t) = 1− e−a2t;

Sine: u(t) = sin(a3t);

Logarithmic: u(t) = ln(a4t);
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where a1 to a4 are scaling coefficients. For a fair comparison, we adjust the coefficients to keep the
ut of all sequences unchanged in the beginning and ending stages. To make other types of sequences
unique, we keep the ut of different dynamic sequences nearly unchanged in the beginning and
ending stages. Table 5 displays their test accuracy results after 300 epochs of training on CIFAR-
100 using ResNet50. We ran each experiment under 3 different random seeds (0, 1, 2). Clearly, the
dynamic sequence we use in Equ. 4 shows its superiority over other constructions.

Table 5: Top-1 ACC. (%) comparisons of using linear, exponential, sine, logarithmic, and our se-
quences when adopting FSGDM.

Dynamic Sequence Type Ours Linear Exponential Sine Logarithmic

ACC-1 (%) 81.440.06 78.240.24 80.380.04 78.760.29 78.700.09

Specifically, (a1, a2, a3, a4) = (8.271× 10−6, 3.793× 10−5, 1.125× 10−5, 1.394× 10−5).

B.2 ADDITIONAL FIGURES OF HIGH-PASS MOMENTUM SYSTEMS ON CIFAR-100

This subsection provides the figures of the dynamic magnitude responses and norm of high-pass
(gain) momentum systems mentioned in Sec. 3. Fig. 6 and Fig. 7 show the magnitude responses
and norm comparisons of high-pass and high-pass gain momentum systems, respectively. The high-
pass (gain) momentum systems preserve or even amplify rapidly fluctuating gradient components,
leading to sharp oscillations in gradient norm curves and momentum norm curves across iterations.
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Figure 6: (Up) Analysis of the (dynamic) magnitude responses in the early and late training stages
for EMA-SGDM with high-pass momentum defined in Eqn. 10. The solid lines denote the mag-
nitude responses in the early stages, and the dashed lines denote the magnitude responses in the
late stages. (Down) The comparison between the gradient norms and momentum norms for EMA-
SGDM with high-pass momentum. Left Column: increasing sequence. Middle Column: fixed
sequence. Right Column: decreasing sequence.

B.3 ADDITIONAL EXPERIMENTS OF VGG16 ON CIFAR-10

In this subsection, we provide experiments of training VGG16 on CIFAR-10. The experimental
settings follow Sec. 3 and App. C. From the test accuracy in Table 6 and Table 7, we observe that
the test performances and norm comparisons in different momentum methods in training VGG16 on
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Figure 7: (Up) Analysis of the (dynamic) magnitude responses in the early and late training stages
for Standard-SGDM with high-pass gain momentum defined in Eqn. 11. The solid lines denote
the magnitude responses in the early stages, and the dashed lines denote the magnitude responses
in the late stages. (Down) The comparison between the gradient norms and momentum norms
for Standard-SGDM with high-pass gain momentum. Left Column: increasing sequence. Middle
Column: fixed sequence. Right Column: decreasing sequence.

CIFAR-10 are similar to those in training ResNet50 on CIFAR-100. This similarity implies that the
empirical findings in Sec. 3 are applicable to various CNNs.

Table 6: Comparison of Top-1 Accuracy (%) among different momentum coefficient methods in
orthodox momentum systems using VGG16 on CIFAR-10.

Increasing Factor (µ) Fixed Value (ut) Decreasing Factor (ν)
Parameters 1k 10k 100k 0.3 0.6 0.9 100 1k 10k

Low-Pass 93.800.05 93.780.12 93.790.09 93.680.18 93.640.08 93.710.07 92.330.04 90.890.11 90.560.19
High-Pass 90.020.05 92.640.09 93.410.01 93.520.16 92.710.07 90.320.07 93.860.09 93.730.08 93.380.09

Table 7: Comparison of Top-1 Accuracy (%) among different momentum coefficient methods in
unorthodox momentum systems using VGG16 on CIFAR-10.

Increasing Factor (µ) Fixed Value (ut) Decreasing Factor (ν)
Parameters 1k 10k 100k 0.3 0.6 0.9 100 1k 10k

Low-Pass Gain 84.010.13 94.190.07 93.850.07 93.860.11 93.980.09 94.080.07 92.000.05 92.270.12 92.970.23
High-Pass Gain 93.340.03 93.560.06 93.790.13 93.710.11 93.460.06 93.330.02 93.790.07 93.330.12 93.050.08

B.4 THE EARLY STAGES OF TRAINING

This subsection focuses on the test performance affected by the momentum coefficients in the very
early training stages. We plot the test accuracy curves for the first 10 epochs of different momentum
systems in Sec. 3 and study the early behaviors of different momentum systems.

Fig. 8 demonstrates the early test accuracy curves of different momentum coefficient methods. For
orthodox momentum systems, preserving the original gradient (i.e., all-pass momentum system,
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(b) Unorthodox Momentum Systems

Figure 8: The first 10 epochs of the test accuracy curves with different momentum coefficient meth-
ods. We choose 104 for both increasing and decreasing factors (µ and ν) in dynamic momentum
systems and ut = 0.9 for static momentum coefficient.

low-pass momentum system with an increasing ut, and high-pass momentum system with an in-
creasing ut) or attenuating high-frequency gradient components(i.e., static low-pass momentum
system with ut = 0.9) results in better initial performance, while greatly attenuating high-frequency
gradient components (i.e., low-pass momentum system with a decreasing ut) or attenuating low-
pass components (i.e., static high-pass and high-pass momentum system with a decreasing ut) lead
to bad test performance at the beginning.

On the other hand, for unorthodox momentum systems, preserving the original gradient (i.e., all-
pass momentum system, low-pass gain momentum system with an increasing ut, and high-pass
gain momentum system with an increasing ut) can achieve better early performance, while greatly
amplifying high-frequency gradient components (i.e., static high-pass gain momentum system and
high-pass gain momentum system with a decreasing ut) leads to bad initial accuracy results.

These observations significantly validate that preserving the original gradient in early stages en-
hances test performance, which matches the findings in Sec. 3. Additionally, our proposed FSGDM
retains the all-pass characteristic and possesses the same quick start property in test accuracy curves.

B.5 COMPARISON WITH SPECIAL MOMENTUM SYSTEMS
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Figure 9: The magnitude response curves of Stage 1, 150, 300 in different momentum systems.

In this subsection, we investigate the test performance of the following four types of momentum
systems: 1) low-pass to high-pass momentum system (LP2HP); 2) high-pass to low-pass momen-
tum system (HP2LP); 3) low-pass gain to high-pass gain momentum system (LPG2HPG); 4) high-
pass gain to low-pass gain momentum system (HPG2LPG). Their dynamic magnitude responses
are shown in Fig. 9. Note that the maximum values |H(ω)| of these four systems are the same as
the default setting in FSGDM. We run each experiment under 3 different random seeds (0-2). Ta-
ble 8 displays the test accuracy results of four types of momentum systems and FSGDM. Clearly,
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our proposed FSGDM outperforms all four special momentum systems. Specifically, the test ac-
curacy of the momentum systems shifting from high-pass to low-pass is better than that shifting
from low-pass to high-pass. This indicates that compared to the low-frequency gradient compo-
nents, high-frequency components are more undesired in the late training stages, which supports the
finding in Sec. 3.

Table 8: Comparison of Top-1 Accuracy (%) among the low-pass to high-pass, high-pass to low-
pass, low-pass gain to high-pass gain, high-pass gain to low-pass gain momentum systems and
FSGDM.

Dynamic Magnitude Response FSGDM LP2HP HP2LP LPG2HPG HPG2LPG

ACC-1 (%) 81.440.06 74.770.21 77.000.13 72.600.58 78.910.25

B.6 TRAINING WITH EXTREME MOMENTUM COEFFICIENTS
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Figure 10: The magnitude responses of different ut and vt with extreme value ranges. (a): EMA-
SGDM; (b), (c): Standard-SGDM.

Why do researchers usually choose ut = 0.9 or vt = 1 instead of larger values? From the frequency
domain perspective, we discover that 1) when ut is extremely close to 1 in EMA-SGDM, the mo-
mentum system will behave like a super narrow low-pass filter, with an extreme reduction in most
of the high-frequency gradient components; 2) when ut is extremely close to 1 in Standard-SGDM,
the momentum system will behave like a super narrow low-pass gain filter, with a reduction in high-
frequency gradient components and high amplification in a narrow band of low-frequency gradient
components; 3) when vt is larger than 1 in Standard-SGDM, the attenuation of high-frequency gra-
dient components is then reduced. We speculate that all these poor filtering characteristics of the
momentum systems will lead to bad test performance. Fig. 10 displays the magnitude response
of these three situations. As shown in Fig. 11, the test performance results validate our previous
speculations and support our frequency domain analysis framework.
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Figure 11: The test accuracy curves of different ut and vt in extreme value ranges. (a): EMA-
SGDM; (b), (c): Standard-SGDM.
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B.7 ADDITIONAL EXPLORATION OF OPTIMAL SETTINGS FOR NLP TASKS

In this subsection, we provide experiments that explore the optimal parameter selection of FSGDM
for the IWSLT14 translation task by training LSTM-W and Transformer-tiny. The experimental
settings follow Sec. 5 and App. C.

0.01 0.1 1
Scaling Factor c

0.5

1.0

1.5

2.0

2.5

3.0
Mo

m
en

tu
m

 C
oe

ffi
cie

nt
 v

Optimal Zone
IWSLT14-LSTM-W

0.01 0.1 1
Scaling Factor c

Mo
m

en
tu

m
 C

oe
ffi

cie
nt

 v

Optimal Zone
IWSLT14-Transformer-tiny

20.000

20.806

21.612

22.418

23.225

24.031

24.837

25.643

26.449

27.255

12.000

12.844

13.688

14.532

15.376

16.221

17.065

17.909

18.753

19.597

Figure 12: The BLEU scores of training LSTM-W and Transformer-tiny on IWSLT14 German-
English translation task. The results show that the optimal parameter selections across these two
training settings exhibit a high similarity. The black points denote the parameter selections with
better test performance. The optimal zone of the parameter selection is circled in blue.

The results in Fig. 12 indicate that similar optimal zones can be observed on the NLP task. When
the momentum coefficient v is fixed, the BLEU score shows an initial increase followed by a decline
as the scaling factor c increases, which is highly consistent with the results in Sec. 4.2. In addition,
we find that the empirical insights discussed in Sec. 3.3 are also applicable to various deep learning
models beyond CNNs, as well as NLP tasks.

B.8 OPTIMAL ZONE OF FSGDM
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(a) c = 0.016, v = 0.5
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(c) c = 0.051, v = 1.5
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(d) c = 0.069, v = 2.0
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(e) c = 0.088, v = 2.5
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(f) c = 0.107, v = 3.0

Figure 13: The dynamic magnitude responses of the black points in the optimal zone.

In this subsection, we delve further into the optimal zone. We suspect that the similarity of the
dynamic magnitude responses may lead to close test set performance. The dynamic magnitude
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responses of the black points with different parameters in the optimal zone (Fig. 4) are shown in
Fig. 13. We train ResNet50 on CIFAR-100 and visualize the training losses and the test accuracy
curves of different points in the optimal zone. The results are shown in Fig. 14.
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Figure 14: The training losses and test accuracy of different parameter settings in the optimal zone.

From the training loss and test accuracy curves, we find that the optimization processes of different
black points in the optimal zone resemble each other. According to the existing parameter settings
of the black points, one can find that the mathematical relationship between c and v in training
ResNet50 on CIFAR-100 is approximately 30.992

v ≈ 1 + 1
c

4.

B.9 ABLATION STUDY ON DIFFERENT BATCH SIZE

This subsection provides the experiments of training ResNet50 on CIFAR-100 with different
batch size settings. We compare the Top-1 accuracy of the test set by using our FSGDM with
c = 0.033, v = 1, Standard-SGDM with ut = 0.9, vt = 1, and EMA-SGDM with ut = 0.9, as
shown in Table 9. The test results show that our FSGDM consistently outperforms popular conven-
tional SGD-based momentum optimizers.

Table 9: Comparison of Top-1 Accuracy (%) among the FSGDM, Standard-SGDM, and EMA-
SGDM with different batch size settings.

Batch size 64 128 256

EMA-SGDM 79.420.11 76.840.06 69.030.39
Standard-SGDM 79.550.13 79.710.25 78.960.33
FSGDM 80.920.13 81.440.06 80.340.01

C EXPERIMENTAL SETTINGS

C.1 TRAINING SETTINGS FOR VISION CLASSIFICATION TASKS

We use custom training code based on the PyTorch tutorial code for all our visual classification
experiments (including the experiments in Sec. 3, Sec. 4.2 and Sec. 5) We choose the CosineAn-
nealingLR (Loshchilov & Hutter, 2016) as our training scheduler. Additionally, we set the learning
rate as 1 × 10−1 for all experiments, while the weight decay is set as 5 × 10−4 for experiments on
CIFAR-10, CIFAR-100 and Tiny-ImageNet, and 1 × 10−1 for ImageNet. All models we used are
simply following their paper’s original architecture, and adopt the weight initialization introduced
by He et al. (2015). Additionally, we train 300 epochs for experiments on CIFAR-10 and CIFAR-100
and train 100 epochs for Tiny-ImageNet and ImageNet. We use a 128 batch size for experiments on

4This relationship can be better approximated and generalized with continued experimentations across di-
verse tasks.
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CIFAR-10, CIFAR-100 and Tiny-ImageNet, and 256 for ImageNet. All experiments are conducted
on RTX 4090 or A100 GPUs.

Data Augmentation. For experiments on CIFAR-10, CIFAR-100 and Tiny-ImageNet, we adopt
PyTorch’s RandomCrop, followed by random horizontal flips. Specifically, the random crop size is
set to 32x32 for CIFAR-10 and CIFAR-100 and set to 64x64 for Tiny-ImageNet. For experiments
on ImageNet, we adopt PyTorch’s RandomResizedCrop, cropping to 224x224 followed by random
horizontal flips. Test images use a fixed resize to 256x256 followed by a center crop to 224x224. At
last, a data normalization is adopted to input images.

C.2 TRAINING SETTINGS FOR NATURAL LANGUAGE PROCESSING TASKS

All models used in our experiments are directly adopted from the FairSeq 5 framework. We retain
the original architecture of each model and train all models for 100 epochs using a single NVIDIA
RTX 4090 GPU. We set the maximum batch size to 4,096 tokens and apply gradient clipping with
a threshold of 0.1. The baseline learning rate is set to 0.25, and for the optimizer, we use a weight
decay of 0.0001.

C.3 TRAINING SETTINGS FOR REINFORCEMENT LEARNING TASKS

For the experiments in RL tasks, we do not make any changes except for replacing the original Adam
optimizer with Standard-SGDM, EMA-SGDM and our proposed FSGDM. To ensure fairness, we
use Tianshou’s (Weng et al., 2022) default hyperparameters for PPO training. However, since SGD-
based optimizers are highly sensitive to the learning rate, we conducted a search for suitable learning
rates across the three games, ultimately setting 10−2, 10−2 and 10−3 for Walker2d-v4, HalfCheetah-
v4, and Ant-v4, respectively.

D CHALLENGES IN THE FREQUENCY DOMAIN ANALYSIS FOR ADAPTIVE
OPTIMIZERS

Algorithm 2: RMSprop
Input β2, ϵ, v0;
for each t = 1, 2, . . . do

gt = ∇Lt(xt−1, ζt−1);
vt = β2vt−1 + (1− β2)g

2
t ;

xt = xt−1 − αtgt/(
√
vt + ϵ);

end

Algorithm 3: Adam
Input β1, β2, ϵ, m0,v0;
for each t = 1, 2, . . . do

gt = ∇Lt(xt−1, ζt−1);
mt = β1mt−1 + (1− β1)gt;
vt = β2vt−1 + (1− β2)g

2
t ;

m̂t =
mt

1−βt
1

, v̂t = vt
1−βt

2
;

xt = xt−1 − αtm̂t/(
√
v̂t + ϵ);

end

In this section, we make a discussion on the potential challenges for the extension of the frequency
domain analysis framework to adaptive optimizers like RMSprop and Adam as shown in Algo-
rithm 2 and 3. The first-moment estimate of Adam is in the form of EMA and thus acts as a
low-pass filter. However, the second-moment estimate presents additional obstacles for frequency
domain analysis in the following ways:

1. The second-moment estimates of Adam and RMSprop involve the squared gradient term
g2t , resulting in nonlinearity that complicates the direct application of the Z-transform.

2. Adam introduces both the first- and second-moment estimates (mt and vt), and adopts
m̂t/(

√
v̂t + ϵ) as the update step. This intricate interaction between mt and vt also makes

the analysis more challenging.

At this stage, we suspect that our argument regarding the three insights discussed in Sec. 3.3 might
be also applicable to other types of optimizers. However, how the different frequency gradient
components in the model parameter updates are actually processed by the Adam optimizer remains
unclear. We anticipate that resolving these issues will provide deeper insights.

5https://github.com/facebookresearch/fairseq
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