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Abstract
Discrete speech tokenization is a fundamental
component in speech codecs. However, in large-
scale speech-to-speech systems, the complexity
of parallel streams from multiple quantizers and
the computational cost of high-time-dimensional
codecs pose significant challenges. In this pa-
per, we introduce HH-Codec, a neural codec
that achieves extreme compression at 24 tokens
per second for 24 kHz audio while relying on
single-quantizer inference. Our approach involves
a carefully designed Vector Quantization space
for Spoken Language Modeling, optimizing com-
pression efficiency while minimizing information
loss. Building on this, we propose an asymmet-
ric encoder-decoder architecture (Audio-VQ-Mel-
Audio) that leverages dual supervision and pro-
gressive training to enhance reconstruction sta-
bility and fidelity. HH-Codec achieves state-of-
the-art performance in speech reconstruction with
an ultra-low bandwidth of 0.3 kbps. We fur-
ther evaluate its effectiveness in codebook uti-
lization and generative model adaptation, with
extensive ablations validating the necessity of
each module. Our code is available at https:
//github.com/opendilab/HH-Codec.

1. Introduction
Unlike traditional waveform and parametric codecs like
Opus (Valin et al., 2012) and Enhanced Voice Services (Di-
etz et al., 2015), neural audio codecs have gained attention
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for applications in many areas like speech emotion analy-
sis (Felix et al., 2021), accent conversion (Nguyen et al.,
2023), and speech-to-speech translation (Popuri et al., 2022).
Recently, the rise of Large Language Model (LLM)-based
audio generation (Achiam et al., 2023), latent diffusion-
based Text-to-Speech (TTS) (Du et al., 2024), and multi-
modal speech integration (Défossez et al., 2024) has further
underscored the need for efficient discrete acoustic repre-
sentations (Défossez et al., 2024; Hsu et al., 2021). These
methods transform audio into token representations compat-
ible with LLMs, typically categorized as Automatic Speech
Recognition (ASR)-based semantic tokens or Vector Quan-
tization (VQ) -based acoustic tokens.

Specifically, the former approach maps audio to seman-
tic features through methods such as HuBERT (Hsu et al.,
2021), which employs the BERT-based self-supervision;
Wav2Vec2 (Baevski et al., 2020), a method for pretraining
ASR models on unlabeled data and fine-tuning with lim-
ited supervision; and CosyVoice (Du et al., 2024), which
employs a supervised ASR model for semantic tokeniza-
tion. While these methods achieve efficient compression,
they often sacrifice acoustic details, particularly affecting
emotional expressiveness captured by large models. Ad-
ditionally, their scalability remains challenging, limiting
practical applications. For the latter, originating from HiFi-
GAN (Kong et al., 2020), researchers have developed dis-
crete neural codecs that train encoder-decoder networks
with reconstruction losses and VQ techniques (Défossez
et al., 2022) to discretize hidden representations into com-
pact code vectors. However, recent studies (Défossez et al.,
2024; Ji et al., 2024; Li et al., 2024) point out a key challenge
of VQ-based approaches: temporal compression ratios and
quantizer counts are crucial for LLM-based audio tasks.

In contrast to natural language tokenizers like BPE (Sen-
nrich, 2015) used in LLMs, which process approximately
100 tokens per 75 words (e.g., in GPT-4o (Achiam et al.,
2023)), existing discrete neural codecs exhibit substantially
higher token rates - DAC (Kumar et al., 2024) operates at
900 tokens/second while SpeechTokenizer (Zhang et al.,
2024) requires 300. This significant disparity stems pri-
marily from the use of multiple discrete VQ streams; for
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instance, DAC employs 9 Residual Vector Quantization
(RVQ) layers (Défossez et al., 2022), while SpeechTok-
enizer utilizes 4. To address the resulting model complexity,
various solutions have been proposed, including VALL-E’s
non-autoregressive approach (Wang et al., 2023) and Mu-
sicGen’s token interleaving technique (Copet et al., 2024),
both aiming to optimize the processing of multiple VQ
streams. However, these approaches still face consider-
able challenges in terms of computational efficiency and
model complexity. Thus, the adoption of a single quan-
tizer emerges as a promising alternative. This approach
enables more consistent and seamless integration between
speech and text models, and it significantly streamlines both
training and inference processes.

However, previous single quantizers require relatively high
token rates to maintain high-quality audio modeling. Wav-
Tokenizer (Ji et al., 2024) utilizes K-means clustering and
random awakening strategies within the VQ space, achiev-
ing 75 tokens per second. This remains far less efficient than
natural language tokenization. Similarly, Single-Codec (Li
et al., 2024) uses a specialized BiLSTM architecture to
preserve performance with a single quantizer, albeit only
reconstructing the mel-spectrogram. The pursuit of extreme
compression with single quantizers reveals two fundamental
challenges. First, a constrained vocabulary struggles to cap-
ture rich semantic content in the codebook space, making the
entire training especially difficult. Second, under low band-
width, the audio reconstruction loss is even higher during
the early stages of training and remains difficult to reduce;
in this setting, applying adversarial training (Kong et al.,
2020) to an under-trained codebook not only makes training
unstable but also markedly degrades the final reconstruction
quality. Our empirical analysis of tuning the training hyper-
parameters of WavTokenizer at ultra-high compression ra-
tios yields several key observations, which more intuitively
demonstrates these challenges:

① Adversarial Training Collapse: Reducing token counts
in existing methods increases early-stage failure rates.
When the bandwidth drops below 0.3 kbps, introducing
additional scheduling strategies and lowering the learning
rate becomes necessary to maintain stable training.

② Limited Benefits from Larger Dataset: Expanding from
LibriTTS (Zen et al., 2019) train-clean-100 to train-clean-
360 improves UTMOS (Saeki et al., 2022) by only 0.6
with 20 tokens but by 1.3 with 75 tokens.

③ Low Codebook Utilization: At an extreme compression
rate of 0.3 kbps, an 8192-entry codebook achieves only
43 %, whereas at 0.75 kbps utilization exceeds 90 %.

④ Severe Quality Degradation: When the token rate drops
below 30 per second, UTMOS decreases by 63%.

To overcome these limitations, we introduce HH-Codec, a
discrete neural codec that achieves an unprecedented com-
pression rate of 24 tokens per second while operating at an
ultra-low bandwidth of only 0.3k bits per second (0.3kbps).
Our solution incorporates three key innovations: Firstly,
we propose SLM-VQ, a specialized VQ space designed for
spoken language modeling, as illustrated in the middle part
of Figure 1. This space aims to preserve critical seman-
tic information and essential acoustic characteristics (e.g.,
emotion) while discarding redundant details to achieve high
compression ratios. In doing so, we align the granularity
of audio tokens with that of text tokens, enabling seamless
integration with language models. Inspired by Zhu et al.
(2024), SLM-VQ employs a frozen codebook with a learn-
able MLP to implicitly generate codes. And we replace
the traditional straight-through estimator with a rotational
trick (Fifty et al., 2024) for gradient backward. Addition-
ally, the first-layer output of SLM-VQ is projected via a
linear layer and optimized through HuBERT-based seman-
tic distillation, ensuring effective feature extraction. More
importantly, we employ multi-layer residual connections
during training to enhance gradient flow and network opti-
mization, while maintaining inference efficiency by utilizing
only the first VQ layer - this design choice preserves both
high compression ratios and model simplicity. That is to
say, the second VQ layer serves as a ”Virtual Class” (Chen
et al., 2018; Darcet et al., 2024), serving to regularize and
improve the compactness of the first layer.

Secondly, we adopt an asymmetric encoder–decoder archi-
tecture augmented with two critical enhancements: (1) a
dedicated attention mechanism for capturing long-range au-
dio dependencies, and (2) a dual-supervision scheme that
simultaneously operates in both Mel-spectrogram and audio
domains. This design leverages a more powerful decoder
and incorporates dual supervised signals operating within
both domains. To optimize training efficiency, we initial-
ize the decoder with a pre-trained BigVGAN and freeze its
weights during the initial training phase. Once the other
parts of the network converge to a compatible state, we un-
freeze and fine-tune the entire architecture to further refine
its performance. Extensive experiments demonstrate that
HH-Codec performs comparably to several state-of-the-art
speech tokenizers across diverse datasets with the lowest
tokens per second. Comprehensive ablation studies further
validate the necessity of each component in our design. and
validate its potential for spoken language modeling. Our
contributions can be summarized as follows:

• We introduce a discrete neural codec that achieves ex-
cellent speech reconstruction with the lowest cost—24
tokens for 24 kHz audio at a just 0.3 kbps bandwidth.

• We design a speech-specific SLM-VQ that incorporates an
asymmetric architecture, significantly enhancing stability
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and performance under high compression conditions.

• Experiments show that HH-Codec performs on par with
several leading speech tokenizers across various datasets.
Ablations further confirm the necessity of each component
and validate its potential for spoken language modeling.

2. Related Work
Neural acoustic codecs (Du et al., 2024; Kong et al., 2020;
Siuzdak, 2023), as an indispensable component of large-
scale speech models, are receiving widespread attention
from the community. Current contributions can be broadly
summarized into three categories: architecture, neural-
network design, and codebook construction.

Architectural Innovations SpeechTokenizer (Zhang
et al., 2024) integrates residual connections and knowledge
distillation to jointly model acoustic and semantic informa-
tion. In contrast, Moshi (Défossez et al., 2024) employs
parallel multi-vector quantization (multi-VQ) to improve re-
construction fidelity, demonstrating that diverse quantizers
can capture complementary signal characteristics.

Encoder–Decoder Designs Most recent methods use a
wave-to-wave fully convolutional encoder—drawing on
SEANet (Tagliasacchi et al., 2020) and SoundStream (Zeghi-
dour et al., 2021). Decoder designs vary—from progressive
upsampling schemes to attention-enhanced modules—but
there is broad consensus that encoder capacity chiefly deter-
mines system performance. For instance, VOCOS (Siuzdak,
2023) predicts Fourier spectral coefficients to better lever-
age time–frequency inductive biases and align with human
auditory perception, whereas BigVGAN (Lee et al., 2022)
integrates periodic nonlinearities and anti-aliasing filters to
embed inductive bias directly into waveform synthesis.

Codebook Engineering Borrowing ideas from image
compression, modern speech codebooks aim to maximize
representational capacity and utilization. WavTokenizer ex-
pands the VQ space and introduces tailored initialization
schemes to prevent cluster collapse and uneven code usage.
FSQ (Mentzer et al., 2023) takes a complementary route: it
enforces code vectors to lie on a uniform hypercube grid,
obviating commitment losses and exponential moving aver-
age (EMA) updates, and fully mitigating codebook collapse.
SimVQ (Zhu et al., 2024) a novel method which reparam-
eterizes the code vectors through a linear transformation
layer based on a learnable latent basis.

3. Method
As illustrated in Figure 1, Our High Compression High-
fidelity Codec (HH-Codec) builds on the VQ-GANs (Ji

et al., 2024) framework. We integrate an advanced encoder
for high-quality compression, an SLM-VQ for spoken lan-
guage modeling, and a BigVGAN-based decoder for high-
fidelity audio reconstruction. The complete architecture is
optimized through a dual-supervised progressive training
strategy. In the following sections, we will describe each
component and training strategies in detail.

3.1. Notation

Throughout this paper, we use the following math notation.

• z – input waveform sampled at 24 kHz;

• mel – Mel-spectrogram of z;

• e – latent code produced by the encoder;

• ê – quantized code reconstructed by SLM-VQ;

• melrec – Mel-spectrogram reconstructed by the de-
coder;

• ẑ – waveform reconstructed by BigVGAN;

• m̂elrec – Mel-spectrogram of ẑ.

3.2. Encoder

Our encoder follows a convolutional architecture inspired
by prior works (Défossez et al.; Ji et al., 2024). The initial
layer consists of a 1D Convolution with a kernel size of 7,
followed by four Conv. blocks. Each block incorporates
a dilated convolution and a downsampling layer with skip
connections and strided Conv. The channel count doubles
after each downsampling operation. Following Zhang et al.
(2024), we enhance semantic modeling by replacing conven-
tional LSTM layers with BiLSTM after the Conv. blocks.
A final 1D convolution with a kernel size of 7 projects the
output into a 512-dimensional embedding space. To achieve
aggressive compression, we employ a stride configuration
of (8, 8, 4, 4) - significantly larger than previous approaches
- enabling the encoding of 24 kHz raw audio into a com-
pact sequence of 24 tokens per second. To improve training
stability and facilitate Mel-spectrogram domain learning,
we diverge from conventional acoustic codecs practices that
rely on randomly sampled one-second clips. Instead, we em-
ploy longer training windows, which enhance generalization
by preserving word-level contextual coherence.

3.3. SLM-VQ

To ensure sufficient modeling capabilities and prevent code-
book collapse, we first adopt SimVQ (Zhu et al., 2024)
as the foundational vector quantization (VQ) framework.
Next, we introduce a multiple VQ structure that uses mul-
tiple residual layers during training but only a single layer
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Figure 1. The architecture overview of HH-Codec. Different color lines indicate the data flow used in inference and only for training.
During inference, the audio is processed through the encoder and VQ1 to generate discrete quantization, which is then refined by the MLP.
The decoder and fine-tuned BigVGAN subsequently reconstruct the Mel-spectrogram and audio.

at inference. During training, the encoded output e of a
24 kHz input audio z is passed through multi-layer RVQ
to obtain the quantized output ê. Both quantizers are up-
dated via the VQ loss Lvq (Eq. 1), where sg denotes the
stop-gradient operator and β is a hyperparameter set to 1.
However, only the first-layer quantized output is propagated
through the decoder for audio reconstruction training and
inference. This design preserves the simplicity of single-
layer VQ during inference while enhancing representational
capacity to accommodate high compression ratios. Concep-
tually, this approach aligns with techniques such as “Virtual
Class” (Chen et al., 2018) and “Register Tokens” (Darcet
et al., 2024), where auxiliary learning objectives (such as
the second-layer VQ in our case) are introduced to alleviate
optimization challenges, thereby enhancing the compact-

ness and efficiency of the first layer. Additionally, instead of
using the conventional straight-through estimator (Bengio
et al., 2013) for gradient propagation through quantization,
we adopt the rotational trick introduced in Fifty et al. (2024).
This technique substantively improves reconstruction per-
formance, and increases codebook utilization.

Lvq = ∥sg[e]− ê∥22 + β∥sg[ê]− e∥22. (1)

Since this VQ space is designed to support spoken language
models, depending solely on the reconstruction loss for
learning explicit semantic and acoustic tokens is challeng-
ing. Moreover, the high compression ratio leads to instable
training and significant information loss in the early training
stages. To address this, we apply semantic model distillation
from a pre-trained HuBERT (Hsu et al., 2021) model to the
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first quantizer. The distillation objective is formalized in
Eq. 2, where σ(·) represents the sigmoid function, D de-
notes the HuBERT feature dimension,VQ1 represents the
output of the first-layer quantizer processed through a linear
projection, H signifies the semantic teacher representations
from HuBERT. The function cos(·, ·) computes the cosine
similarity between two vectors. By integrating semantic
distillation with reconstruction objectives, our approach sig-
nificantly enhances the process of minimizing information
loss, effectively preserving both semantic and acoustic fea-
tures. Other forms of supervision could be incorporated in
a similar framework, though we defer such extensions to
future research.

Ldistill = − 1

D

D∑
d=1

log σ
(
cos

(
VQ

(:,d)
1 ,H(:,d)

))
(2)

3.4. Decoder

To ensure consistency in distillation, our encoder takes raw
audios as input. However, directly reconstructing audio in a
highly compressed codebook presents significant challenges,
significantly increasing the difficulty of decoder training.
Instead, the Mel-spectrogram provides a more structured
representation than raw audio waveforms, as it reduces high-
frequency redundancy to enhance low-frequency fidelity
while aligning with human auditory perception (Li et al.,
2024). Consequently, our entire architecture employs an
asymmetric Audio-VQ-Mel-Audio architecture (i.e. more
complex decoder). Specifically, we adapt methodologies
from Siuzdak (2023) and Ji et al. (2024), incorporating
extra attention layers and ConvNeXt blocks to improve Mel-
spectrogram reconstruction. Each ConvNeXt block refines
input features for reconstruction through stacked 1D convo-
lutions and an inverted bottleneck, with GELU activations
and layer normalization further optimizing the decoding
process. The reconstructed Mel-spectrogram serves as a
structured intermediate output, which is then converted into
high-fidelity audio by the BigVGAN (Lee et al., 2022) mod-
ule. This approach yields superior results compared to alter-
native encoders using the inverse Fourier transform.

3.5. Training Strategies

To optimize the performance upper bound for this complex
architecture, we employ dual supervisions using both the
Mel-spectrogram and audio representations. Concretely,
we denote the middle Mel spectrogram reconstruction as
melrec, and the final reconstructed audio as ẑ with its cor-
responding Mel spectrogram m̂elrec. The reconstruction
loss Lrec is composed of three components: the Mel loss
Lmel, the adversarial loss Lg, and the feature matching
loss Lfeat. This approach provides explicit supervision at
both critical stages: the decoder-generated (middle) Mel-
spectrogram and the (final) Mel-spectrogram obtained from

the BigVGAN-synthesized waveform.

Lmel = ∥mel − melrec∥1 + ∥mel − m̂elrec∥1 (3)

Similar to Kong et al. (2020) , the adversarial loss is formu-
lated as the hinge loss of the discriminator logits:

Lg =
1

K

K∑
k=1

max(1−Dk(ẑ), 0) (4)

Besides, the Lfeat is computed as the mean of the distances
between the l-th feature maps of the k-th distriminator.

Lfeat =
1

KL

K∑
k=1

L∑
l=1

∥Dl
k(z)−Dl

k(ẑ)∥1
mean(∥Dl

k(z)∥1)
(5)

For the discrimination loss, we employ a comprehensive
multi-scale discriminator framework combining: (1) a multi-
period discriminator (Kong et al., 2020), (2) an STFT dis-
criminator at multiple time scales (Zeghidour et al., 2021),
and (3) a Multi-Scale Sub-Band CQT Discriminator (Gu
et al., 2024). The discrimination loss LD is defined in Eq. 6.

LD =
1

K

K∑
k=1

max(1 − Dk(z), 0) + max(1 + Dk(ẑ), 0) (6)

Directly fine-tuning pre-trained BigVGAN1 within this
paradigm leads to training divergence, as encoder-decoder
reconstruction errors in early stages negatively affect the
BigVGAN’s Mel-to-audio generation process. To miti-
gate this, we adopt a progressive training strategy consist-
ing of two distinct phases: (1) we initially optimize the
middle-stage Mel-spectrogram reconstruction using only
Lfeat +Lmel +Lg, without adversarial training, until the loss
value drops below a threshold of 1 (typically after around
20 epochs). (2) We then fine-tune the entire pipeline, with
a comprehensive weighted loss function incorporating all
previously mentioned objective terms.

L = λrec(Lfeat + Lmel + Lg) + λDLD + λdistillLdistill + λvqLvq (7)

4. Experiments
We utilize LibriSpeech train-clean 100/360 (Zen et al.,
2019), VCTK (Veaux et al., 2016), and a subset of the
Emilia (He et al., 2024) for our experiments. The Mel
spectrogram is computed with a hop length of 256 and a
window length of 1024. Our HH-codec model is trained for
30 epochs on 4 A100 GPUs, with a batch size of 6 and a
learning rate of 1× 10−4.

1https://huggingface.co/nvidia/bigvgan_
v2_24khz_100band_256x
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Table 1. Reconstruction Results. Nq denotes the number of quantizers. The origin human voice’s UTMOS (Saeki et al., 2022) of three
dataset (LibriTTS test-other / LibriTTS test-clean / Seed-TTS-eval) is 3.48 / 4.05 / 3.57.

Model Bandwidth ↓ Nq ↓ Tokens/s ↓ UTMOS ↑ STOI ↑ V/UV F1 ↑ SIM ↑
LibriTTS test-other (noise) (Zen et al., 2019)

DAC (Kumar et al., 2024) 9kbps 9 900 3.36 0.95 0.97 0.92
SpeechTokenizer (Zhang et al., 2024) 3kbps 8 600 3.28 0.87 0.92 0.79
Encodec (Défossez et al., 2022) 6kbps 8 600 3.02 0.91 0.93 0.68
DAC (Kumar et al., 2024) 4kbps 4 400 2.95 0.89 0.93 0.70
Vocos (Siuzdak, 2023) 3kbps 4 300 3.06 0.90 0.92 0.78
SpeechTokenizer (Zhang et al., 2024) 3kbps 4 300 3.01 0.86 0.83 0.64
Moshi (Défossez et al., 2024) 1.1kbps 8 104 3.06 0.85 0.88 0.68
WavTokenizer-Big Dataset (Ji et al., 2024) 0.5kbps 1 40 3.08 0.84 0.88 0.69
SpeechTokenizer (Zhang et al., 2024) 0.75kbps 1 75 1.27 0.73 0.60 0.38
HH-Codec 0.3kbps 1 24 3.21 0.86 0.86 0.71

LibriTTS test-clean (clean) (Zen et al., 2019)
DAC (Kumar et al., 2024) 9kbps 9 900 4.03 0.97 0.97 0.94
SpeechTokenizer (Zhang et al., 2024) 3kbps 8 600 3.87 0.91 0.94 0.82
Encodec (Défossez et al., 2022) 6kbps 8 600 3.46 0.94 0.95 0.71
DAC (Kumar et al., 2024) 4kbps 4 400 3.41 0.91 0.95 0.72
Vocos (Siuzdak, 2023) 3kbps 4 300 3.54 0.93 0.94 0.81
SpeechTokenizer (Zhang et al., 2024) 3kbps 4 300 3.49 0.87 0.86 0.69
Moshi (Défossez et al., 2024) 1.1kbps 8 104 3.57 0.88 0.91 0.72
WavTokenizer-Big Dataset (Ji et al., 2024) 0.5kbps 1 40 3.58 0.88 0.91 0.72
SpeechTokenizer (Zhang et al., 2024) 0.75kbps 1 75 1.26 0.74 0.64 0.33
HH-Codec 0.3kbps 1 24 3.61 0.89 0.90 0.73

Seed-TTS-eval (out-of-domain) (Anastassiou et al., 2024)
DAC (Kumar et al., 2024) 9kbps 9 900 3.46 0.96 0.99 0.91
SpeechTokenizer (Zhang et al., 2024) 3kbps 8 600 3.34 0.88 0.91 0.72
Encodec (Défossez et al., 2022) 6kbps 8 600 2.76 0.90 0.93 0.75
DAC (Kumar et al., 2024) 4kbps 4 400 2.67 0.90 0.93 0.74
Vocos (Siuzdak, 2023) 3kbps 4 300 3.25 0.85 0.91 0.81
SpeechTokenizer (Zhang et al., 2024) 3kbps 4 300 3.11 0.88 0.87 0.70
Moshi (Défossez et al., 2024) 1.1kbps 8 104 3.23 0.89 0.87 0.74
WavTokenizer-Big Dataset (Ji et al., 2024) 0.5kbps 1 40 3.23 0.84 0.88 0.68
SpeechTokenizer (Zhang et al., 2024) 0.75kbps 1 75 1.26 0.75 0.61 0.28
HH-Codec 0.3kbps 1 24 3.33 0.85 0.88 0.73

4.1. Baselines

We compare the reconstruction performance of HH-Codec
with state-of-the-art codec models, including Vocos (Siuz-
dak, 2023), Encodec (Défossez et al., 2022), SpeechTo-
kenizer (Zhang et al., 2024), DAC (Kumar et al., 2024),
Moshi, and WavTokenizer (Ji et al., 2024). Additionally,
for SpeechTokenizer (Zhang et al., 2024) and DAC (Kumar
et al., 2024), we evaluated the results using different num-
bers of quantizers. The reported scores are derived from the
official open-source weights provided by each work.

4.2. Evaluation Metrics

For evaluation metrics, we employ UTMOS (Saeki et al.,
2022) alongside speech-enhancement measures such as
Short-time Objective Intelligibility (STOI) (Taal et al., 2010)
and the F1 score for voiced/unvoiced classification (V/UV
F1). Additionally, we utilize WavLM-large fine-tuned for
speaker verification (Anastassiou et al., 2024) to extract

speaker embeddings and compute the cosine similarity
(SIM) between reconstructed and original audio.

4.3. Main Results

We evaluate our method on three datasets—LibriTTS test-
other (Zen et al., 2019), LibriTTS test-clean (Zen et al.,
2019), and Seed-TTS-eval (Anastassiou et al., 2024)—to
demonstrate its performance under in-domain noisy condi-
tions, in-domain clean conditions, and out-of-domain sce-
narios. Table 1 shows that, across noisy, clean, and out-of-
domain test sets, our codec operating at just 0.3 kbps not
only outperforms a model using ten times the bandwidth
in UTMOS (Saeki et al., 2022) but also matches its STOI,
V/UV F1, and SIM scores. Moreover, when compared with
other codecs at similar bitrates, our method exhibits a clear
and decisive performance advantage.
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Model UTMOS ↑ V/UV F1 ↑ SIM ↑
Trained on a subset of LibriTTS, tested on LibriTTS test-other

HH-Codec 3.07 0.87 0.64
w/ Classic VQ 2.76↓ 0.31 0.81↓ 0.06 0.61↓ 0.03

w/ Single SLM-VQ 2.94↓ 0.13 0.83↓ 0.04 0.62↓ 0.02

w/ Fourier decoder 2.84↓ 0.23 0.85↓ 0.02 0.62↓ 0.02

w/ Single supervision 1.85↓ 1.22 0.74↓ 0.13 0.33↓ 0.31

w/o Progressive Training 1.88↓ 1.19 0.72↓ 0.15 0.32↓ 0.32

w/ Simple Network 2.99↓ 0.08 0.85↓ 0.02 0.62↓ 0.02

w/o Long windows 2.94↓ 0.13 0.84↓ 0.03 0.62↓ 0.02

Table 2. Evaluation of different HH-Codec variants. These ablations support the effectiveness of designs in HH-Codec.

Codebook Size 1024 2048 4096 8192 16384

Classic VQ 99% 95% 90% 56% 42%
Single SLM-VQ 99% 98% 95% 92% 87%
SLM-VQ 99% 98% 98% 98% 94%

Table 3. Codebook utilization of different quantizers under varying
codebook sizes. SLM-VQ works well in all settings.

4.4. Ablation Study

Due to limited computational resources, we conduct abla-
tion studies by training HH-Codec only on the LibriTTS
train-100/360 set. Table 2 reports its reconstruction perfor-
mance evaluated on the LibriTTS test-other set, measured
through three metrics, V/UV F1, and SIM. Our systematic
ablation experiments demonstrate the necessity of each com-
ponent and training strategy in our algorithm. The concrete
experimental configurations are as follows:

• SLM-VQ. We experiment with w/ Classic VQ and w/ Sin-
gle SLM-VQ—the latter using a single VQ layer for both
training and inference—and report codebook utilization
versus codebook size in Table 3.

• Asymmetric Architecture & Dual-Supervision & Pro-
gressive Training . Similar to most encoder-decoder ar-
chitectures, we replace the asymmetric framework with
a vocoder-like decoder using inverse Fourier transform,
denoted as w/ ·Fourier decoder. To assess dual supervi-
sion stability, we also experiment with supervising only
the final audio, denoted as w/ Single supervision. We con-
duct cold-start experiments without Progressive Training,
denoted as w/o Progressive Training.

• Neural Network Design. We replace the decoder’s BiL-
STM with an LSTM and substitute the discriminator with
a simpler version, denoted w/ Simple Network. We set
the input time window to one second and remove the
encoder’s attention module, denoted w/o Long windows.
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Figure 2. Efficient downstream audio-LLM training loss.

4.5. Downstream Task: Spoken Language Modeling

To validate the effectiveness of our HH-Codec for spoken
language modeling, we conduct ablation studies by inte-
grating this discrete codec with downstream large audio-
LLM training. Here we combine HH-Codec with Qwen2.5-
7B (Team, 2024). Our experiments systematically compare
three state-of-the-art audio tokenization approaches: (1) the
proposed HH-Codec, (2) WavTokenizer (Ji et al., 2024), and
(3) CosyVoice (Du et al., 2024), under identical training
hyper-parameters and model architectures. As shown in
Figure 2, several key findings emerge: at a codebook size
of 8192, our method achieves the fastest loss reduction at
the lowest cost compared to alternatives, highlighting its
effectiveness as a codec for downstream training.

5. Conclusion and Discussion
In this work, we present HH-Codec, a novel neural codec
architecture that achieves extreme speech compression at
24 tokens per second using single-quantizer inference effi-
ciency. By introducing a SLM-VQ space and an asymmetric
encoder-decoder architecture, HH-Codec delivers state-of-
the-art speech reconstruction at a remarkably low bandwidth
of 0.3 kbps. Comprehensive ablation studies validate the ef-
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fectiveness of each neural network design and training tech-
nique. Most significantly, the codec’s efficient tokenization
scheme and preserved linguistic properties make it particu-
larly suitable for large-scale spoken language model, where
it could enable: (1) unified speech-text foundation models
through joint embedding spaces, (2) real-time interactive
agents with low-latency speech understanding and genera-
tion capabilities, and (3) memory-efficient multi-modal sys-
tems that maintain conversational context across extended
interactions. These directions position HH-Codec not just as
an audio compression tool, but as a potential enabler for the
next generation of interactive speech-enabled AI systems.
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