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Abstract—MRI assumes a uniform Radio-Frequency (RF) field.
However, in Whole-Body (WB) MRI this is violated since the
smooth coils’ sensitivities differ, which results in discontinuities
of the intensity nonuniformities at the junctions between them
as well as in overall nonuniformity differences. A method is
presented for the joint intensity homogenization of two WB
anatomic images. The effect of the spatial intensity nonuniformity
on the co-occurrence statistics of the two images is modeled with
non-stationary Point Spread Functions (PSFs) and is deconvolved.
These statistics provide with Bayesian coring estimates of the
posterior Bayesian expectations of the nonuniformity fields. These
are processed with anisotropic filtering that enables piecewise
smooth restorations. The implementation is iterative. The method
has been validated with MRI datasets of forty-nine cancer
patients compared to isotropic filtering.

Index Terms—Whole-body MRI, intensity homogenization, co-
occurrence statistics, Bayesian coring, anisotropic smoothing.

I. INTRODUCTION

Whole Body (WB) MRI is informative for cancer metastasis
to the bones and other organs [1] as well as for asymptomatic
individuals with predisposition to cancer [2]. Its long-term
objective is to become a one-stop shop examination for the
WB. The stationary imaging of the WB involves multiple coils.
The resulting images suffer from intensity nonuniformities
discontinuous at the junctions between adjacent coils. This
artifact hampers computerized processing and even visual
examination. The physical calibration for coil nonuniformities
requires additional acquisitions that are sequence and anatomy
dependent [3].

Post-acquisition restorations are applicable to a range of
MRI contrasts. A non-parametric approach uses Bayesian cor-
ing with spatial smoothness of the nonuniformity throughout
an image [4]–[6]. In WB-MRI a simple method identifies
peaks and troughs in the histograms of different coils’ images
and fits a continuum to these features [7]. However, the
histogram can vary with organs and pathology. In another
method the joint histogram of pairs of novel images is non-
rigidly registered to the joint histogram of corresponding
reference images to give a correction vector field [8], [9].
Similarly, a method uses registration between histograms of
individual coils’ images ignoring the global histogram [10].
Other methods use the overlap between coils’ images for
single [11] and for multiple [12] contrasts.

This work represents spatial discontinuities of shading
nonuniformities with anisotropic diffusion [13]–[15] for piece-

wise smoothness with the Minimum Description Length
(MDL) principle [16]. It improves over current applications of
anisotropic diffusion for MRI denoising, which treat shading
discontinuities as tissue differences [17]–[19].

The assumed PSFs of the intensity nonuniformities are
deconvolved from the joint co-occurrence statistics of the two
images. Then, the method uses non-parametric Bayesian cor-
ing for statistical restoration [20]–[22]. The back-projections
of the estimates to the images give rough spatial nonuni-
formity corrections. These are smoothed anisotropically with
the MDL principle to give a piecewise smooth nonunifor-
mity correction [16]. The proposed method accommodates
discontinuous changes as well as overall differences between
smooth intensity nonuniformities. It is applied jointly to pairs
of anatomic WB images. Extending previous work of the
authors’ [23], this study validates the superior performance
of the methodology compared to restoration with isotropic
smoothing of the nonuniformity using forty-nine breast and
prostate cancer patients’ datasets.

II. PATIENT AND DATA DESCRIPTION

Breast and prostate cancer patients were examined with WB
imaging for bone metastases. Datasets of 49 patients were
selected randomly. They were 31 women, µ = 64.1 y.o., and
18 men, µ = 69.9 y.o. The imaging was at 1.5 T or 3.0 T
using a dStreamWholeBody coil (Philips, Germany) with two
coronal anatomic contrasts [24]. The first is a T1-weighted
(T1w) TSE image. The second is a T1w and T2w STIR image.

The volume and resolution of the datasets vary with patient
supine extent. The voxels at x = (x, y, z) are anisotropic.
Indicative values are coronal (x, y) resolution of (0.95 mm)2

and 66 sagittal, z, slices with thickness 3.0 mm and gap
0.3 mm [24]. The images from five coils along a patient were
concatenated axially (longitudinally), y. The junction planes
between the coils are transverse on (x, z) at patient dependent
locations. The smooth intensity nonuniformities of individual
coils differ between them. The two images are median filtered,
resampled to the lowest resolution of the two, cropped to the
smallest size of the two, and subsampled to two bytes per
pixel.
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III. METHODS

A. Spatial and Statistical Image Representation

The two images, Ivi(x), where i = 0, 1, are the voxel-
wise product, ·, of latent images Iui

(x) with spatial inten-
sity nonuniformities Ibi(x) with additive noise, ni, to give
Ivi = Ibi · Iui

+ ni. The distributions of Iu(x) and Ib(x),
pu(u(x)) and pb(b(x); 1, σ

2
b ), respectively, are independent.

The PSF of the intensity statistics is a non-stationary dis-
tribution p(v|u)(v|u) = pb (v − u|u) = pb(v − u; 0, (σbu)

2).
Thus, the intensity statistics of Iv , pv(v), result from the
convolution, pu(u) ∗ pb

(
v − u; 0, (σbu)

2
)
. The PSF of the

distortion is a Gaussian pb(b; 0, σ
2
b ) = G

(
b; 0, σ2

b

)
. The

statistics are the intensity, ηi, co-occurrences within spherical
neighborhoods Nρ of radius ρ of images vi [20]: pvivj =
Cvivj (ηi, ηj) =

∫∫
D
(∥x− x′∥2 ≤ ρ) dx′dx, where D ≡

x = I−1
vi (ηi)∩ x′ = I−1

vj (ηj). In auto-co-occurrences i = j gives
Cii and the joint-co-occurrences are C01. The diagonals of
the auto-co-occurrences are suppressed with sigmoid 1/(1 +
e−(k1|η0−η1|+k2)), where k1 and k2 are constants. Examples
of joint-co-occurrences are in Fig. (2) and Fig. (4).

B. Spatial Intensity Nonuniformities and Co-occurrences

The co-occurrences of the products Ibi .Iui are modeled
as the convolutions of Cuiui and Cu0u1 with the respective
PSF that are non-stationary due to the spatial multiplication.
The effect of Ibi in Nρ around x0 is approximated by a
PSF affecting Cuiui

radially, ri, with σri ∝ ri [20]. The
convolution of the PSF with assumed Cuiui

gives Cvivi(ri) =
Cuiui(ri) ∗ pb(ri; 0, σ

2
ri), i = 0, 1. The effects of Ibi on

Cu0u1 are in rectangular coordinates, ui. The separable PSFs
with ηi follow σηi

∝ ηi [21]. The convolution of the PSFs
with assumed Cu0u1

give Cv0v1(η0, η1) = Cu0u1
(η0, η1) ∗

pb(η0; (ση0
η0)

2) ∗ pb(η1; (ση1
η1)

2) that represents the joint-
co-occurrences. The relation between the two is diagonal,
σ2
ηi

= σ2
ri/2. The non-stationary deconvolutions use the

iterative Van Cittert algorithm [25]

pn+1
u = pnu + β(p0v − pb ∗ pnu), (1)

where β is for regularization and p0v are the original statistics.
It provides the estimates p̃u(u), which are C̃uiui

, i = 0, 1, and
C̃u0u1

.

C. Bayesian Posterior Expectation for the Restoration

The posterior expectation of latent û = E(u|v) with
Bayesian expansion gives:

û =

∫∫ ∞

0

p(u|v)(u|v)udu =

∫∫∞
0

p(v|u)(v|u)pu(u)udu∫∫∞
0

p(v|u)(v|u)pu(u)du
.

(2)
The likelihood p(v|u)(v|u) in Eq. (2) is the Gaussian PSF
as given in subsection (III-A), pb(v − u; (σbu)

2). The prior
distribution pu(u) = C̃u is estimated with Eq. (1). These

two terms are substituted in Eq. (2). They are also considered
within ∆u ∈ Nu in the discrete co-occurrence space to give:

û =

∑
∆u∈Nu

Pb(∆u; 0, (σbu)
2).C̃u(u+∆u).(u+∆u)∑

∆u∈Nu
Pb(∆u; 0, (σbu)2).C̃u(u+∆u)

.

(3)
The size of Nu increases linearly with intensity u. The
general Eq. (3) gives posterior expectation for the auto-
co-occurrences r̂i = E(ri|r′i) and for joint-co-occurrences
(η̂0, η̂1) = E((η0, η1)|(η′0, η′1)). Gain factors are precomputed
for the co-occurrences û from Eq. (3) with E

(
u
v

∣∣ v) =

E
(

u|v
v

)
= û

v in a 2D matrix. The gains for Cuiui
are

Rs
i (r, ϕ) =

r̂i
ri

and for Cu0u1
are Rb

i =
η̂i

ηi
, i = 0, 1.

D. Spatial Image Restoration

The intensity co-occurrences index the restoration matrices

W ′′
i (x) = 1/2E∆x∈Nρ

(
Rs

i (vi,x, vi,x+∆x) +Rb
i (v0,x, v1,x+∆x)

)
(4)

to give rough estimates of the spatial restoration fields. The
coil junctions are axial (x, z) planes, so nonuniformities on
such planes are smooth. The initial rough estimates W ′′

i (x) are
smoothed with a 2D anisotropic axial Gaussian G(x, z;σ2

s,i)
to give

W ′
i (x) = W ′′

i (x) ∗G(x, z;σ2
s,i), i = 0, 1, (5)

which are the intermediate rough restoration fields.
The nonuniformities are axially, y, piecewise smooth.

This is represented with a 3D extension of the Mini-
mum Description Length (MDL) based anisotropic smooth-
ing [16], [26]. The MDL corresponds to Bayesian Maxi-
mum (Minimum) a Posteriori (MAP) estimates, Ŵi,MAP =
argminWi

P (Wi|W ′
i ), i = 0, 1, where W ′

i are the inter-
mediate rough estimates and Wi are the final estimates of
the restoration fields. The Bayesian expansion Ŵi,MAP =
argminWi P (W ′

i |Wi)P (Wi)/P (W ′
i ) gives:

Ŵi,MAP = argmin
Wi

P (W ′
i |Wi)P (Wi), (6)

since the marginal likelihood P (W ′
i ) is constant.

The likelihood is a Gaussian distribution for the noise with
variance σ2

W , P (W ′
i |Wi) = G

(∑
x (W

′
i −Wi) ; 0, σ

2
W

)
. The

prior for piecewise constancy is a normal distribution of the
length of the boundary between the different regions,
P (Wi) = G

(∑
x,x′(1− δ(Wi(x)−Wi(x

′))); 0, 1
)

, where
x and x′ are neighboring locations with δ(·) functions.
The MAP estimates with logarithm become: Ŵi,MAP =

argminWi

(∑
x

(
W ′

i−Wi

σW

)2

+
∑

x,x′(1− δ(Wi(x)−Wi(x
′)))

)
[16], [26]. The optimization uses continuation for δ(·) in k
iterations with increasing smoothing. It gives a piecewise
smooth nonuniformity restoration field Wi(x). The images
are restored with Îui

(x)← Ivi(x)Wi(x).

E. Iterative Estimation of Cumulative Intensity Restoration

The restoration is iterative t = 0, . . . , ttot − 1, where
ttot = 10 is the total number of iterations. The variance of
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T1w TSE image T1w+T2w STIR image

(a) Initial (b) Initial

(c) Cumulative restoration field (d) Cumulative restoration field

(e) Restored (f) Restored

Fig. 1. First example of joint restoration of TSE and STIR images. The initial images are in (a-b), the cumulative restoration fields are in (c-d), and the
restored images are in (e-f), respectively.

ST
IR

TSE
(a) Initial

TSE
(b) Restored

Fig. 2. Joint-co-occurrence statistics of the TSE and STIR images of the
example in Fig. (1). In (a) are for the original image set and in (b) are for
the restored image set. The restored statistics are sharper.

the anisotropic axial Gaussian smoothing decreases with t:
σs = 2σs0

(
1− t

ttot−1

)
, where σs0 is a constant. Smoothing

as in Eq. (5) gives W ′
i,incr,t(x). At t = 0, σs|t=0 = 2σs0 is

maximal, and at t = ttot − 1, σs|t=ttot−1 = 0 is zero. This
is smoothed with anisotropic MDL with k iterations to give
Wi,incr,t(x).

The initial incremental restoration, W ′′
i,inc,t=0(x), is given

from Eq. (4). This is first smoothed with anisotropic Gaussian
of σs,incr, G(x, z; 0, σ2

s,incr), to give W ′
i,incr,t(x), with a low

value for σ2
s,incr. It is then smoothed with anisotropic MDL

with limited iterations kincr to give the final incremental
restoration, Wi,incr,t(x). The cumulative restoration fields
are initialized to Wi,cum,t=0(x) = 1, ∀x. At t > 0 the
cumulative restoration is multiplied with incremental restora-
tion Wi,incr,t−1>0(x) to give W ′′

i,cum,t = Wi,cum,t−1 ×
Wi,inc,t−1. These estimates are smoothed with a Gaussian to
give W ′

i,cum,t(x) = W ′′
i,cum,t(x) ∗ G(x, z;σ2

s,cum), i = 0, 1,
where σs,cum > σs,incr. MDL anisotropic smoothing with
kcum > kincr gives Wi,cum,t that multiplies Ivi,t−1

to provide
latent Ivi,t = Îui,t−1

. The optimal iteration out of ttot for
the restored images is selected retrospectively as the one that
minimizes the entropy, Hij,t, of Cij , topt = mintHij,t.

F. Valid Domains in Image Space and Statistics

The sum of the two images with Otsu’s method [27] gives a
foreground, which is morphologically closed to give a Region
of Interest, IROI . Intensities of high cumulative percentage,
90%, of the dynamic ranges are set as references, ηi,ref . The
noise ranges are up to intensities, ηi,min = 0.1 × ηi,ref . The
dynamic ranges are preserved only up to ηi,upp = 1.5×ηi,ref
to avoid bright artifacts. Beyond these ranges the intensities
are compressed linearly to ηi,max = 3.0 × ηi,ref in range
[1.5 × η0.9i , 3.0 × η0.9i ]. The Cii and Rs

i are computed over
([ηi,min, ηi,max]

2) else Rs
i = Rb

i = 1.
The estimates of W ′′

i,inc in Eq. (4) are over IROI else
W ′′

i,inc = 1. These estimates are spatially smoothed with
an axial Gaussian of standard deviation σs to give W ′

i with
Eq. (5). The smoothing of the nonuniformities in Eq. (5) uses
a spatial multiplicative field of unity over IROI,i = 1 else
it is much less than unity. The valid domain, IROI , and the
dynamic ranges are preserved with t. The reference intensi-
ties are preserved, ηi,ref,t>0 = ηi,ref,t=0, by the rescaling
Wi,t ←Wi,t × ηi,ref,t=0

ηi,ref,t>0
.

TABLE I
STATISTICS OF ENTROPY RATIO GAIN VALUES Hratio FOR VALIDATION.

Mean St.Dev. Median Min. Max.

Hratio 8.5% 9.0% 8.9% -8.9% 30.4%

IV. EXPERIMENTAL RESULTS

The co-occurrences use ρ = 24mm. From subsec-
tion (III-B) the PSFs follow σri ∝ ri and σηi

∝ ηi.
The maximum size of the deconvolution filters is 6% of
the dynamic ranges. The transverse Gaussian filtering of the
nonuniformities is separable with σs,cum = 107mm and the
MDL smoothing with kcum = 15. Incremental smoothing is
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T1w TSE image T1w+T2w STIR image

(a) Initial (b) Initial

(c) Cumulative restoration field (d) Cumulative restoration field

(e) Restored (f) Restored

Fig. 3. Second example of joint restoration of TSE and STIR images. The initial images are in (a-b), the cumulative restoration fields are in (c-d), and the
restored images are in (e-f), respectively.

ST
IR

TSE
(a) Initial

TSE
(b) Restored

Fig. 4. Joint-co-occurrence statistics of the TSE and STIR images of the
example in Fig. (3). In (a) are for the original image set and in (b) are for
the restored image set. The restored statistics are sharper.

a third of the cumulative, σs,incr = σs,cum/3 and kincr =
kcum/3. Both Gaussian and MDL smoothing account for voxel
anisotropy.

Low quality datasets with extensive misregistrations as well
as overlap between signal and noise over coils’ images are
excluded. From the 49 image sets, 40 were included. The
implementation is in C++ using ITK [28] and in Python
[29]. A laptop with Intel Core i7-10750H, 2.60GHz CPU and
16.0GB of RAM was used. The WB images are subsampled
along each of their axes with factor α = 0.5 for efficiency.
Parameters ρ and σs0 are scaled by the same α.

Two representative examples for restoration of pairs of TSE
and STIR images are in the figures below. The images for the
first pair are in Fig. (1) and their statistics are in Fig. (2). The
images for the second pair are in Fig. (3) and their statistics are
in Fig. (4). They demonstrate the effectiveness of the method.
Some limited residual nonuniformity remains.

The methodology is compared with restoration obtained
by replacing anisotropic spatial smoothing with isotropic
Gaussian smoothing. The performance of the two methods
is compared using the entropy of the joint co-occurrence
statistics of the two restored images, CAniso

ij,topt
and CIso

ij,topt
to

give HAniso
ij,topt

and HIso
ij,topt

, respectively. The improvement of
the restoration is measured with the sharpening of the statistics
and a corresponding percentage decrease of the exponential of

the entropy with ratio,

Hratio = −100× e
HAniso

ij,topt − e
HIso

ij,topt

e
HAniso

ij,topt

%.

A relative improvement of the anisotropic restoration sharpens
the statistics to a greater extent and hence decreases the
entropy HAniso

ij,topt
< HIso

ij,topt
. This gives positive values for the

restoration measure, Hratio > 0. The statistics of Hratio over
all datasets are in Table (I). The mean and median values
over all image set restorations is indeed positive, which shows
the improvement of the anisotropic restoration. The minimum
value over all restorations shows that there is at least one image
for which isotropic smoothing is better, perhaps due to low
image quality along nonuniformity discontinuities. However,
the best performance with the maximum value of the measure
shows that when necessary anisotropic smoothing improves
performance significantly.

V. DISCUSSION AND CONCLUSION

WB MRI is useful and promising particularly for imaging
cancer in various organs and for metastases. However, it
suffers from overall intensity nonuniformities discontinuous
at the junctions between coils. An openly available tool to
deal with these artifacts does not exist. The proposed method
homogenizes the intensities of a pair of anatomic images.
The co-occurrence statistics increase the contrast between
dominant distributions. The non-stationary PSF of the statistics
are deconvolved to estimate the Bayesian conditional expecta-
tion for the restoration. These estimates are back-projected to
the images to give rough restorations. Their smoothing with
anisotropic Gaussian and MDL [19], [26] accommodates the
discontinuities of the nonuniformities. The superiority of the
proposed method for WB images compared to conventional
isotropic restoration was demonstrated with an entropy ratio
metric. Overall, the proposed method is novel, robust to WB
and cancer as well as general.
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VI. COMPLIANCE WITH ETHICAL STANDARDS

The data are from the database of Whole Body (WB)
imaging examinations of the Suedharz Hospital Nordhausen.
They were analyzed retrospectively, fully anonymized, in
accordance with the Declaration of Helsinki as well as with
the guidelines of the Institutional Review Board (IRB) of the
University of Jena.
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