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ABSTRACT

Rendering highly realistic images from 3D assets is one of the most persistent
challenges of the graphics community, which is procedurally conducted by simu-
lating real-world geometry, material, and light transportation. However, such sim-
ulations are both burdensome and expensive. Recently, diffusion models have seen
great success in realistic image generation by leveraging priors from large datasets
of real-world images. Nonetheless, these generative models provide limited con-
trol over the output and, unlike graphic pipelines, cannot accurately integrate ma-
terials and geometric information for precise image synthesis. In this work, we
propose a generative rendering framework, Intrinsic-ControlNet, that enables the
generation of corresponding RGB images from 3D assets like a rendering engine
by taking intrinsic images, e.g., material, normal, and structural information, as
network inputs. We propose a novel multi-conditional control method that allows
the model to accept any number of intrinsic images as input conditions. To miti-
gate bias from synthetic training data, we propose a new model architecture that
allows appearance and structural conditions to be input separately into Control-
Net Zhang et al. (2023), preserving the realism of appearance generation from
real data while maintaining structural control capabilities from synthetic data. Ex-
periments and user studies demonstrate that our method can generate controllable,
highly realistic images based on the input intrinsic images.

1 INTRODUCTION

Despite decades of development, generating photorealistic images in computer graphics remains a
highly challenging and expensive task. Specifically, Modeling objects across different scales to cre-
ate scenes that closely align with the real world is highly challenging, especially given the diverse
material properties Cook & Torrance (1982); Ngan et al. (2005) that objects can exhibit. Addition-
ally, simulating light propagation within a scene to solve the rendering equation Kajiya (1986), i.e.,
the rendering process, requires a significant computational cost. Consequently, existing pipelines
struggle with tasks such as rendering highly realistic virtual scenes, inserting virtual objects into
real environments, or seamlessly blending and editing real and virtual scenes in a low-cost and ef-
ficient way, highlighting the need for a more lightweight solution. Recently, diffusion models (Ho
et al., 2020; Dhariwal & Nichol, 2021; Song et al., 2020) have achieved significant success in gen-
erating realistic images by utilizing priors from large real-world image datasets. This work inspired
us to develop a neural network-based generative rendering framework with two main features. First,
it uses neural networks to extract 3D information from input condition images, drawing on prior
knowledge from extensive real-world data, thus eliminating the need for explicit 3D modeling and
light transportation. Second, it enables flexible adjustment of geometric structure and material prop-
erties, similar to a graphics engine. However, current diffusion methods provide only limited control
over the generated images and lack the ability to adjust geometric structure and material properties
freely.

In this work, we propose Intrinsic-ControlNet, a novel framework that leverages intrinsic scene de-
scriptions commonly used by rendering engines, including properties like albedo, normal, depth,
metallicity, and roughness, among others, to generate controllable output images. Our method
presents a novel generative rendering approach that combines data-driven techniques with tradi-
tional rendering controls, allowing us to create highly realistic images without exhaustive physical
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Figure 1: We propose a generative rendering framework that synthesizes realistic images from 3D
assets, similar to a rendering engine, using intrinsic images like material, normal, and structural in-
formation as network inputs. This approach greatly simplifies intrinsic editing tasks for real images,
such as object insertion and removal, while achieving better results compared to existing methods.

modeling or computationally intensive rendering. Instead of relying on physics-based analytical
calculations, our approach utilizes a diffusion model to generate photorealistic images.

To realize our generative rendering framework, we need to address the following challenges. First,
it is challenging to obtain all the pairwise intrinsic images needed for training, and the same issue
arises during inference. This requires our model to support any combination of intrinsic images as
conditional control. To address this, we designed a switch structure that concatenates an uncertain
number of condition images along the channel, enabling the model to generate convincing images
under different input combinations. Additionally, the use of multiple modalities of condition image
inputs requires effective feature extraction to prevent diminished loss for individual modalities. To
address this, we introduced residual blocks into the encoder, allowing more detailed features to
be captured during the ControlNet Zhang et al. (2023) training process, thereby producing higher-
quality images.

Secondly, our goal is to generate highly realistic target images, but the existing pairwise intrinsic im-
ages are synthetic. There remains a domain gap between the target images in the data and real-world
images. To address this, incorporating real-world data into the training process is essential for en-
abling the model to generate realistic images. However, unlike synthetic data, there is a vast amount
of real-world images that lack corresponding pairwise intrinsic images. To address this, we utilized
a pre-trained diffusion model to predict the corresponding intrinsic images from real-world RGB
images. Obviously, the predicted intrinsic images are not entirely accurate. However, fortunately,
the advantages of synthetic data complement the limitations of real data, as synthetic data provides
accurate intrinsic images while real-world data offers highly realistic target images. Based on this
observation, we split the input condition images into two parts: appearance and structure, with each
being processed by separate ControlNets to provide appearance and structure control for the la-
tent diffusion model. During training, the appearance part is sourced entirely from the real image
dataset, while the structure part comes from both real and synthetic datasets. Through this design,
we eliminate the appearance bias in synthetic data and the inaccuracies in structural information
from real data, enabling the generated images to achieve high realism while maintaining control-
lable structures. Additionally, we observe that the convergence speeds of appearance and structure
in the diffusion model differ. Employing two distinct ControlNets to manage the conditional features
separately helps the model achieve stable convergence for both appearance and structure.

Ablation experiments confirm that our network design and training strategy significantly enhances
the generation of highly realistic images. Furthermore, experiments and user studies demonstrate
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that our framework can produce controllable, editable, and highly realistic images, even surpassing
graphics engines in terms of realism. In summary, our contributions are as follows:

• We propose a generative rendering framework, Intrinsic-ControlNet, which allows for the
controllable and editable generation of highly realistic RGB images from 3D assets, similar
to a rendering engine, by using intrinsic images as network inputs.

• We propose a novel multi-conditional control method that allows the model to accept any
number of intrinsic images as input conditions.

• We introduce a new model architecture that separates appearance and structural conditions
in ControlNet, enabling the preservation of realistic appearance from real data while retain-
ing precise structural control from synthetic data.

2 RELATED WORK

Separating appearance and structure. In tasks involving multi-condition control, many existing
methods separate the conditions that control appearance and structure to guide the generation of
results, significantly improving the flexibility and quality of control. For example, Ye et al. (2023)
combines ControlNet (Zhang et al., 2023) and T2I-Adapter (Mou et al., 2024) to separately control
structure and appearance style. Mo et al. (2024) uses structural guidance in the subspace to en-
force alignment with input conditions, while applying appearance guidance at the same image level
for appearance transfer. Lin et al. (2024a) achieves appearance transfer and strict structural control
during inference through feature injection and self-attention correspondence. Although these meth-
ods can achieve appearance transfer while maintaining structural features, their control conditions
are relatively singular, i.e., a single style image and a single structure image as input conditions.
Our method, however, introduces a multi-way switch and two separate appearance and structure
branches, enabling the generation of images guided by up to six intrinsic images.

Neural image editing. Advancements in generative models, particularly Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014; Karras et al., 2019; 2020) and diffusion models (Ho
et al., 2020; Nichol & Dhariwal, 2021; Rombach et al., 2022), have substantially enhanced various
image editing capabilities, including style transfer , image-to-image translation, and manipulation
within latent spaces (Huang & Belongie, 2017; Phillip et al., 2017; Schuhmann et al., 2022). The
introduction of text-guided diffusion frameworks (Nichol et al., 2021; Saharia et al., 2022) has fur-
ther expanded the scope of image modifications by allowing users to influence edits through natural
language prompts, thereby improving both control and user experience. In the area of object inser-
tion, more recent works have harnessed deep generative models to predict realistic object locations,
as seen in Compositing GAN (Azadi et al., 2020) and OBJect3DIT (Michel et al., 2024), which ad-
dress the complexities of integrating objects into diverse and intricate real-world scenes. However,
existing methods often perform editing operations in the pixel space. In contrast, our method takes
multiple intrinsic images as input and leverages the latent diffusion model to extract underlying 3D
scene, generating images at the scene level rather than merely performing pixel-level editing.

Conditional image generation. GANs (Creswell et al., 2017) are generative models capable of con-
ditional control, but their training processes are relatively unstable and require significant amounts
of training time and resources. The emergence of diffusion models (Ho et al., 2020; Dhariwal &
Nichol, 2021; Song et al., 2020) has reduced training complexity and improved generation qual-
ity. Early studies (Ho et al., 2020) primarily focused on unconditional generation tasks, where the
models generated images solely based on the initial noise. However, with the growing demand for
more precise generation tasks, researchers started investigating how to incorporate additional infor-
mation during the generation process to achieve more accurate control over the results. The initial
text-to-image diffusion models (Ramesh et al., 2022; Gu et al., 2022; Podell et al., 2023; Ding et al.,
2021; Zhou et al., 2022; Ramesh et al., 2021b; Mou et al., 2024) attracted significant attention by
allowing control over the appearance of generated images through text prompts. Furthermore, some
models (Zhang et al., 2023; Ye et al., 2023; Zhao et al., 2024; Wang et al., 2024) have extended the
control conditions from purely text prompts to include one or more images, thereby further enhanc-
ing control over the generated results and expanding the applications range of the model. Zeng et al.
(2024) encodes multiple conditions into the latent space and then inputs them into a latent diffusion
model to control image generation. However, existing methods still face some challenges when us-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

ing multiple control conditions as inputs. Our method successfully handles multiple intrinsic images
as input conditions to generate controllable, photorealistic images.

3 METHODOLOGY

We first describe the target problem addressed in this paper in Section 3.1, followed by a detailed
explanation of how our framework solves this problem in the subsequent sections. The core of our
method is shown in Figure 2. Intrinsic-ControlNet accepts any combination of intrinsic images as
input, including albedo, metallicity, roughness, normal, depth, and semantic segmentation. They are
integrated via a multi-way structure (Section 3.2) to form a comprehensive control condition, then
extract features through a tailored encoder. Notably, the input condition conditions are split into
two groups, i.e., appearance and structure, and are then sent separately to the respective ControlNets
responsible for managing appearance and structure control. Various factors, such as biases in the
training data and differences in the convergence speeds of different conditions, led us to adopt this
design (Section 3.3). Furthermore, we will introduce the training procedure for Intrinsic-ControlNet
(Section 3.4).

(a)

Appearance

Roughness

Metallicity

Albedo Conditional

Encoder
+

𝑍𝑡 … 𝑍0 

Output

ControlNet Latent Diffusion

Structure

Normal

Depth

Semantic 

Segmentation

Conditional

Encoder+

Latent DiffusionControlNet

(b)

𝑍𝑡

F
eatu

re

In
jectio

n

𝑛

𝑑

𝑟

𝑚

𝑎

𝑓𝑠

𝑓𝑎

𝑠

Figure 2: Overview of our pipeline. Given the intrinsic images from the graphic engine (a) and
the other predicted from Kocsis et al. (2023) (b), they are divided into two groups, appearance, and
structure, and processed through a multi-way switch to form the comprehensive control conditions
(Section 3.2). Then, a tailored conditional encoder is employed to extract the diverse condition fea-
tures. The features are fed separately into two ControlNets Zhang et al. (2023), which individually
control the latent diffusion model to generate the appearance and structure information in the final
realistic images (Section 3.3).

3.1 PROBLEM STATEMENT

Our goal is to achieve a novel generative rendering framework that leverages intrinsic scene de-
scriptions commonly used by rendering engines, including properties like albedo, normal, depth,
metallicity, and roughness, among others, to generate controllable and highly realistic images. Tra-
ditional graphics engines have long been dedicated to solving similar problems:

I = R(a, r,m, n, d, o, l), (1)
where R represents the rendering layer, and a, r,m, n, d correspond to albedo, roughness, metallic,
normal, and depth within the current viewport. o represents the structural information of the entire
scene outside the viewport, and l corresponds to the lighting in the scene. However, traditional
engines rely entirely on manually simulating the physical world, including geometry, materials,
and lighting, without incorporating real-world data into the final image generation. As a result, it
remains an in-domain generation problem where realism is within the limit of input 3D models. In
fact, the goal of the synthesis task is to generate photo-realistic images, which involves tackling a
cross-domain generation problem as shown in Figure 3. The input condition intrinsic images are
derived either from synthetic data produced by modeling engines in the unreal domain while the
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target is a photorealistic image in the real domain. In our framework, knowledge from the real world
is introduced into the image generation process through the latent diffusion model:

I = D(fa, fs, ft | ϵθ(·)), fa = E(a, r,m), fs = E(n, d, s), ft = C(t), (2)

where fa and fs represent the appearance information and structure information, respectively, ex-
tracted from the intrinsic images using the condition encoder E. s corresponds to the segmentation
map, while t represents the text prompt. In addition, ft represents the global structural information
and C denotes the text encoder of the latent diffusion model, which aligns with the information
contained in o, l in Equation (2). Specifically, D represents our framework, and ϵθ(·) refers to the
latent diffusion model, or more precisely, the prior knowledge it contains from the real world. In the
upcoming sections, we will explain in detail how to resolve the problem outlined in Equation (2).

3.2 IMAGE ENCODING AND MULTI-CONTROL WITH MULTI-WAY SWITCH

Real-world

Intrinsic Images

Real-world

RGB Images

IntrinsicImageDiffusion Engine Rendering

Intrinsic-ControlNet Structure Feature Injection

Synthetic

RGB Images

Synthetic

Intrinsic Images

In-domain

In-domain

Figure 3: Our cross-domain rendering.

Condition image encoder. Extracting effec-
tive condition features from various modalities
of intrinsic images is crucial for controlling im-
age generation. The image encoder of the orig-
inal ControlNet Zhang et al. (2023) consists
of eight convolution layers. While this sim-
ple design excels at extracting high-level, holis-
tic features from images, it struggles to capture
the detailed features in condition images, hin-
dering our framework from producing realistic
images that can rival those generated by tradi-
tional graphics pipelines. Inspired by Luo et al.
(2024), We replace the convolution layers in
the original image encoder with residual blocks
E(·) (He et al., 2016). Therefore, the output
of the image encoder, c∗I = E(I), serves as the
condition for ControlNet. The residual blocks gradually extract abstract, high-level features from
the input condition image while preserving and integrating fine details into the final features. This
ensures that the condition features can precisely control the detailed aspects of the generated image.

Multi-way condition switch. Equipped with the features extracted from multiple condition images,
we need to design a structure that utilizes them to guide the latent diffusion model in generating
images that align with the specified conditions. One straightforward approach is to train a separate
ControlNet for each condition image, then combine the control features from all the ControlNets
before injecting them into the latent diffusion model. We refer to this approach as Multi-ControlNet
in the following sections. However, this approach requires manually assigning blending weights for
each condition when mixing the condition features, depending on the influence of each condition on
the final generated image, which is a highly complex task. Secondly, training a ControlNet for each
intrinsic image significantly increases training time and the network size, especially when working
with six intrinsic images in our task. To address this, we designed a multi-way switch that enables
the use of any combination of intrinsic images as conditions during both training and inference.
Specifically, each intrinsic image has two possible states, when selected, the original image is used
in subsequent processing, and when not selected, it is replaced with a black image of the same
size as a placeholder. The intrinsic images are then concatenated to form a multi-channel condition
input cmulti−way∗

I . Due to the presence of placeholders, the number of channels in cmulti−way∗
I

remains fixed. This multi-channel condition input is then fed into the condition encoder, generating
a fully integrated condition feature, which is subsequently passed to the corresponding ControlNet
to produce the control features for the latent diffusion model. With the multi-way switch, multiple
intrinsic image conditions can be controlled by a single ControlNet, avoiding the need for multiple
ControlNets. Additionally, condition weights are automatically optimized using pairwise training
data, removing the bias from manual weight mixing.
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3.3 APPEARANCE AND STRUCTURE CONTROL

To address the cross-domain rendering, we split the control paths of Intrinsic-ControlNet into two
branches, appearance and structure (referred to as A&S for brevity), and introduced a structure
feature injection design to tackle the problem. The following sections will explain the rationale and
detail behind these designs.

Cross-domain training data. As shown in Figure 3, our task is to generate photo-realistic images
from synthetic intrinsic images, but it is clear that we cannot obtain such pairwise data. The existing
pairwise intrinsic images are synthetic data, and if we train the network using them directly, the
generated images will exhibit a significant domain gap from real-world images as shown in Figure
10. Incorporating real-world data into the training process is crucial to ensure the model can produce
realistic images. However, unlike synthetic data, while there is a vast amount of real-world images,
they lack corresponding pairwise intrinsic images. To address this, we utilized a pre-trained diffu-
sion model Kocsis et al. (2023) to predict the corresponding intrinsic images from real-world RGB
images. Similarly, since it is impossible to obtain real intrinsic images paired with real target images
for training, the intrinsic images predicted by the diffusion model also contain biases. Training the
model directly with such data would lead to generated images with many structural inaccuracies as
shown in Figure 10. Fortunately, the advantages of synthetic data complement the limitations of real
data, as synthetic data provides accurate intrinsic images while real-world data offers highly realistic
target images. Based on this observation, we divide the input condition images into two parts, i.e.,
appearance and structure, and feed them into separate control branches. During training, the appear-
ance part is sourced entirely from the real image dataset, while the structure part comes from both
real and synthetic datasets. The final image is generated directly by the appearance branch, with
the structure branch sharing its features via structure feature injection without directly contributing
to the final output. Through this design, we eliminate the appearance bias in synthetic data and the
inaccuracies in structural information from real data, enabling the generated images to achieve high
realism while maintaining controllable structures.

Structure feature injection. As mentioned earlier, to avoid introducing appearance bias from syn-
thetic data into the final generated image, we prevent the structure branch from directly contributing
to the image generation. However, we still aim to maintain precise structural control over the images
produced by Intrinsic-ControlNet. Previous work Tumanyan et al. (2023); Kim et al. (2023); Mo
et al. (2024) has observed that diffusion features contain rich layout information. By performing
feature and self-attention injection during the diffusion denoising steps, it is possible to control the
appearance and structure of generated images without additional training. Inspired by Lin et al.
(2024a), we apply structure feature injection during both the training and inference processes. At
each time step t, we replace the appearance feature f l

a with the corresponding structure feature f l
s at

the l layer of the latent diffusion model. The features f l
a and f l

s are derived from the appearance and
structure branches, respectively. This approach ensures that the structure in the image generated by
the appearance branch aligns with the structure predicted by the structure branch.

Independent convergence of A&S. ControlNet Zhang et al. (2023) introduced the sudden conver-
gence phenomenon observed during training, where the model does not gradually learn the control
conditions but instead abruptly succeeds in following the input conditioning image, followed by
slow convergence thereafter. Moreover, we observe that the convergence speeds of appearance and
structure in the diffusion model differ. Structural control information is generally easier to learn and
tends to converge earlier than appearance control. This further motivates us to feed the appearance
and structure control information from the intrinsic images into two ControlNets with independent
network weights. This approach ensures that each ControlNet converges independently to its opti-
mal point. The results of the convergence comparison between our method and ControlNet can be
found in Figure 13.

3.4 TRAINING STRATEGY

The typical diffusion process of the latent diffusion model Rombach et al. (2022) and Control-
Net Zhang et al. (2023) is mathematically represented as follows:

zt =
√
αtz0 +

√
1− αtϵ, ϵ ∼ N (0, I), (3)

where zt is the noisy latent feature at time step t, z0 is the initial data in latent space, ϵ is the Gaussian
noise, and αt is the parameter of noise strength at time step t. In our framework, we employ the V-
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Figure 4: Our framework uses predicted multiple intrinsic images to generate realistic images that
resemble the original. We put other intrinsic images, like normals, in the appendix to save space.

prediction strategy and enforce Zero Terminal SNR Lin et al. (2024b) during the sampling processes
to make sure the training behavior is aligned with inference:

vt =
√
αtϵ−

√
1− αtz0, ϵ ∼ N (0, I). (4)

During this denoising process, our framework learn to predict the noise at time step t, with the MSE
loss:

L = Ez0,y,ϵ,t,c
multi−way∗
I

[
∥∥∥vt − ṽθ(zt, t, τθ(y), c

multi−way∗
I )

∥∥∥2
2
], (5)

where cmulti−way∗
I is the selected condition embeddings after the multi-way switch, and velocity

vt is predicted in diffusion model at time step t instead of the predicted noise. A text prompt y is
converted into a sequence of vectors using a text encoder τθ(·) and mixed with the attention layers
of the U-Net ϵθ(·).

4 EXPERIMENTS

4.1 DATASETS

Our model is trained on a mix of datasets: (1) 5K real-world indoor (”home or hotel”) images and
5K outdoor (”nature landscape” and ”urban”) images from ADE dataset (Zhou et al., 2017); (2) 4K
synthesized indoor images from InteriorVerse (Zhu et al., 2022); (3) 3K synthesized outdoor images
from GTA-V dataset (Richter et al., 2016). For real-world data, we generated its intrinsic images
(albedo, metallicity, roughness, normal, and depth) by using the pre-trained diffusion models pro-
vided by Kocsis et al. (2023) and generated its semantic segmentation by using the model provided
by Wang et al. (2022). For each image, we resize it to the resolution of 512 × 512 pixels and use
BLIP model (Li et al., 2022) to generate the corresponding text prompt.

Table 1: Quantitative comparison of different methods and different intrinsic images.

Intrinsic All A. M.+R. A.+N.+D.+S.

Scores CLIP ↑ L2 ↓ CLIP ↑ L2 ↓ CLIP ↑ L2 ↓ CLIP ↑ L2 ↓
GT 0.2733 - - - - - - -

Ours 0.3137 128.1 0.3011 136.7 0.3048 148.6 0.3088 133.3
Multi. 0.2891 151.5 0.2984 185.0 0.2960 180.5 0.3037 149.2
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Figure 5: Comparison results of using various combinations of intrinsic conditions as input on real
data. ’Multi.’ refers to Multi-ControlNet, while A., M., R., N., D., and S. represent albedo, metallic,
roughness, normal, depth, and segmentation, respectively.

Table 2: Quantitative comparison of different methods on synthetic datasets.

Scene Buildings Corner Street Kitchen Park Alley

Scores CLIP ↑User ↑CLIP ↑User ↑CLIP ↑User ↑CLIP ↑User ↑CLIP ↑User ↑CLIP ↑User ↑
Ours 0.266 96.4 0.258 100 0.261 60.7 0.270 75.0 0.294 82.1 0.307 89.3

Multi. 0.251 0.00 0.239 0.00 0.253 14.3 0.269 3.57 0.282 14.3 0.247 0.00
UE 0.252 3.57 0.230 0.00 0.251 25.0 - - - - - -

Falcor - - - - - - 0.239 21.4 0.286 3.57 - -
Blender - - - - - - - - - - 0.245 10.7

4.2 EVALUATION RESULTS

Evaluate on synthetic datasets. For synthetic data, we compared our method to several popular
graphics engines, including UE (Epic Games), Falcor (Benty et al.), and Blender (Blender Foun-
dation), to evaluate image synthesis results. For our method, we employ the GT intrinsic images
as input conditions to generate the target image, while for rendering engines, we utilize complete
3D scenes to render the target images. As shown in 6, various methods produced highly realistic
photorealistic images. However, compared to the images generated by various engines, our method
produces images that more closely align with the realism of human cognition. To better quantify the
realism of the generated images, we additionally computed the CLIP (Contrastive Language-Image
Pre-training) score Radford et al. (2021); Ramesh et al. (2021a) and conducted a user study for gen-
erated results(The detail can be found in Section A.3). We present the quantitative analysis results
in Table 2, showing that our method outperforms others in both CLIP scores and user studies.

Evaluate on real-world datasets. We evaluated Intrinsic-ControlNet with untrained real-world data
from the ADE dataset, including indoor and outdoor data. Specifically, we first predicted intrinsic
images from real-world images and used them as inputs to generate new images, then compared
the generated images with the original ones to evaluate their similarity. As shown in figure 4, even
though the input intrinsic images are biased due to prediction, Intrinsic-ControlNet can still generate
photorealistic images that closely resemble the originals. In addition, we compare our method with
the Multi-ControlNet approach. To ensure a fair comparison, we train a separate ControlNet Zhang
et al. (2023) for each intrinsic image type, namely albedo, normal, depth, metallicity, roughness,
and semantic segmentation, on our entire mixed dataset. Then, We separately use our model and
the Multi-ControlNet approach to generate images with various combinations of condition inputs.
We report the quantitative results of different methods in Table 1. The L2 is the metrics introduced
by Meng et al. (2021) to quantify faithfulness, which calculates the L2 distance summed over all
pixels between the guide and the edited output image normalized to [0,1]. As shown in Figure 5
and Table 1, our model performs better than Multi-ControlNet in both single condition control and
multiple condition combinations.

Table 3: Quantitative ablation study. Discussion and visualization are in the Appendix.

Ours Only synthetic Only real w/o seperate S.& A. w/o encoder w/o 0-SNR

CLIP ↑ 0.3137 0.2933 0.2953 0.2975 0.2954 0.2997
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Figure 6: Comparing results of our framework and graphics engines on synthetic datasets.

Ablation study. We conducted ablation experiments on our framework design to validate its ef-
fectiveness. The quantitative results are shown in Table 3, and more visual qualitative analysis and
discussion can be found in the appendix Section A.2.

RGB

Addition

Normal 

Addition

OursInserted

Object

Albedo 

Addition

Original

Scene

AnyDoor

Figure 7: Object insertion, the blue boxes in the first column represent real-world images, while the
red boxes represent synthesized images.

4.3 APPLICATION

Once our model is fully trained, thanks to comprehensive control conditions, we can perform various
editing tasks by modifying intrinsic images, such as changing the material and color of objects or
inserting new objects into the scene, while generating highly realistic images. Notably, the entire
process does not require 3D scene reconstruction, as it only involves simple modifications to the
intrinsic images. The intrinsic images for real-world scenes involved here are all generated by
approach Kocsis et al. (2023).

Object insertion. In Figure 7, we show the results of various forms of object insertion tasks using
our framework, including inserting new real objects into real-world scenes, inserting real objects into
synthetic scenes, and inserting virtual objects into real-world scenes. We concatenate the albedo
and normal images of two different scenes or objects and then feed them into our framework as
condition inputs, generating the corresponding realistic image. We compare our method with the
AnyDoor Chen et al. (2024). As shown in Figure 7 and Table 4, our method achieves better results
in both qualitative and quantitative evaluations. The inserted objects in our generated images display
lighting effects that are consistent with the original scene, such as highlights and shadows, rather
than appearing out of place as would happen with simple copying in RGB images.
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Figure 8: Edition results of real-world and synthetic scenes.

Scene editing. In Figure 8, we present the results of scene editing using our method. We can
modify the color or texture in the albedo, adjust the structure in the normal, or change roughness
values. For example, in the third column of Figure 8, changing the roughness of the floor from
rough to smooth creates highlights when light hits it. In the fourth column, we removed the lamp
from the albedo image, and we were surprised to find that in the generated RGB image, not only
was the lamp itself removed, but its lighting effects on the environment were also eliminated. This
demonstrates that our network can implicitly extract information about the entire 3D scene from the
intrinsic images, rather than simply performing pixel-level stitching. We compare our method with
InstructPix2Pix Brooks et al. (2023), a text-guided editing diffusion model. As shown in Figure 8
and Table 4, our method achieves better results in both qualitative and quantitative evaluations.

Table 4: Quantitative comparison of object insertion and scene editing tasks in different methods.

Application Object insertion Scene editing

Methods RGB addition Ours AnyDoor Ours InstructPix2Pix

CLIP ↑ 0.282 0.296 0.289 0.299 0.282

5 CONCLUSION

In this paper, we present Intrinsic-ControlNet, a novel generative rendering framework that accepts
synthetic intrinsic images as input and generates photo-realistic images. To tackle this cross-domain
rendering task, we introduce an encoder with a residual structure and a multi-way switch to effec-
tively extract and integrate control features from the condition images. To address the cross-domain
issue in the data, we separate appearance and structure, using two distinct ControlNet branches to
control the generation. Additionally, a feature injection mechanism ensures that the appearance
branch remains unaffected by the appearance features from the structure branch while still produc-
ing images with controllable structural details. Experiments demonstrate that our method can render
high-quality photorealistic images from intrinsic images while also being effective for various down-
stream applications such as scene material editing, object insertion, and removal.
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A APPENDIX

A.1 LIMITATION AND FAILED CASE

Our model generates RGB images with the desired features from intrinsic images in most cases,
but it does show some limitations and failure cases. For real-world images, where accurate intrinsic
images are unavailable, we generate them using the pretrained model IntrinsicImageDiffusion (Koc-
sis et al., 2023). If the normal or depth maps generated by IntrinsicImageDiffusion lose structural
information, as shown in the first two rows of Figure 9, our results may have similar overall colors to
the ground truth but show disorganized local structures. Fortunately, this component can be updated
and replaced with a more advanced model to produce more accurate intrinsic images. Additionally,
the last two rows of Figure 9 show that when adjacent colors in the albedo map are very similar, our
model has difficulty distinguishing between them, causing the generated output to be rendered as a
single color.
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Figure 9: Some failure cases of our framework.

A.2 ABLATIVE STUDY

Effect of cross-domain training data. To evaluate the impact of cross-domain training data on the
generated results, we trained our framework separately on synthetic data and real data and show
the results in Figure 10. Note that all intrinsic images were used in the training process without
excluding the appearance data from the synthetic dataset, and the network structure remained con-
sistent with the full model. As shown in the third column of Figure 10, the model trained without
real data tends to produce overall darker images. While the structure is maintained, the results look
highly unrealistic, with harsh highlights and a noticeable loss of realism compared to our method.
In contrast, when training solely on real data, the model generates more realistic images, but many
structural details in the scene are either incorrect or blurred. For example, in the fourth column of
the first row in Figure 10, the chandelier frame is distorted, and various objects on the stove appear
blurred. Only our approach enables the generated images to achieve high realism while preserving
precise, controllable structures.
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Ground-truth
Trained on

synthetic datasets
Trained on
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Our Results
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Figure 10: Ablation results of our framework design, with further discussion available in Section
A.2.

Ground-truth Ours w/o encoder w/o 0-SNR

Figure 11: Ablation study on image encoder and 0-SNR strategy.

Effect of the separate design of appearance and structure. As mentioned in Section 3.3, to
address the cross-domain training challenge, we divided the input intrinsic images into two groups
and used two separate branches to manage each group. To validate the effectiveness of this design,
we train a model on the same dataset as ours but with a single branch. In this model, all intrinsic
images pass through the same ControlNet to control the latent diffusion model. As shown in the fifth
column of Figure 10, removing our separation design leads to errors in both color and structure in
the generated images, such as the color of the sky in the fourth row and the second-floor windows
of the building in the second row.
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Zero terminal SNR strategy. As shown in Figure 11. The results without using zero SNR strategy
in the last column have a significant color discrepancy compared to the ground truth in the first col-
umn, appearing overall darker and redder, whereas the results using the zero terminal SNR strategy
(Ours) show almost no color deviation. The zero terminal SNR strategy ensures consistency in the
diffusion process between training and inference by fully adding noise during training. This closely
matches the initial step of the inference process, resulting in generated images that align with the
original data distribution.

Image encoder. We compare the inference results obtained with and without using the condition
image encoder mentioned in Section 3.2 and show the results in Figure 11. With the original image
encoder from ControlNet (Zhang et al., 2023), there are clear structural and appearance inaccuracies
compared to the ground truth, as shown in the third column. However, our results in the second
column preserve the local structures present in the ground truth. The experiment shows that our
improved image encoder has a clear advantage in extracting fine structures from intrinsic images,
allowing our network to learn more precise control over the details in the synthesized images.

A.3 METRICS AND USER STUDY

CLIP score. The CLIP score is determined by calculating the cosine similarity between the image
embedding and the text embedding, which is particularly useful for tasks requiring cross-modal
comprehension. For our task, we use the BLIP model (Li et al., 2022) to extract the text prompt from
the image synthesized by the graphics engine and then incorporate the prompt with the keywords
’photo-realism’ to generate a complete text description. Furthermore, we calculate the CLIP score
between the generated text description and the images produced by each method. As shown in
the Table 2, compared to the rendering outputs from graphics engines and images generated by
Multi-ControlNet. This demonstrates that our method is capable of generating images that more
closely align with the semantic label of ’photo-realism.’

User study. We conducted a user study to evaluate the realism of the images produced by various
methods. For each graphics engine, we collect 3 scenes, render 8 images from different viewpoints
for each scene, and employ both Intrinsic-ControlNet and Multi-ControlNet to generate correspond-
ing images, resulting in a total of 72 image pairs. For each paired image, we ask the participants
to rate which image is the most realistic. We collect a total of 28 valid questionnaires and obtain
the results shown in Table 2. The table shows the percentage of participants who found the images
generated by each method to be the most realistic. The results indicate that images generated by
our method are more likely to be perceived as real photographs rather than engine-rendered images.
In addition, Multi-ControlNet, due to significant distortions like color shifts, is perceived as having
lower realism.

A.4 MORE COMPARSION

Comparison with Multi-ControlNet. We compare our method with the Multi-ControlNet ap-
proach. To ensure a fair comparison, we train a separate ControlNet Zhang et al. (2023) for each
intrinsic image type, namely albedo, normal, depth, metallicity, roughness, and semantic segmen-
tation, on our entire mixed dataset. Then, We separately use our model and the Multi-ControlNet
approach to generate images with various combinations of condition inputs. The comparison results
are shown in Figure 12.

Comparison with graphics engines. As mentioned in Section 4.2 and Section A.3, we compared
our method to several popular graphics engines using the CLIP score. Since the calculation of
the CLIP score depends on the provided text prompt, we test a wider variety of prompts here to
provide more comprehensive quantitative comparison results. As shown in the Table 5, when we
used ’engine rendering style’ as the text prompt, the results generated by various graphics engines
achieved higher CLIP scores. Conversely, when we used ’photorealism’ as the text prompt, our
results achieved better scores.

A.5 TRAINING DETAIL

Our model is trained using 4 NVIDIA A6000 GPUs with a batch size of 24 for 280 iterations based
on Stable Diffusion v2.1 pre-trained model (Rombach et al., 2022). For the inference process, we
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Building(UE5) Kitchen&Park(Falcor) Alley(blender)

Prompt a ↑ a+b ↑ a+c ↓ a ↑ a+b ↑ a+c ↓ a ↑ a+b ↑ a+c ↓

Reference 0.2629 0.2529 0.2798 0.2651 0.2630 0.2850 0.2508 0.2801 0.2747

Ours 0.2773 0.2703 0.2717 0.2836 0.2822 0.2779 0.2997 0.3036 0.2611

Table 5: Comparison of the results of our method and different graphic engines.
a: BLIP prompt; b: “photorealism”; c:“engine rendering style”.
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Figure 12: Results of different combination of intrinsic conditions between Intrinsic-ControlNet and
Multi-ControlNet.

adopt the DDIM sampler (Song et al., 2020) with 50 sampling steps by using a single NVIDIA
A6000 GPU. We use the AdamW optimizer with a fixed learning rate of 1e−5 (Loshchilov, 2017)
and weight decay of 0.01. During training, we center-croped the image with 512 × 512 resolution.

A.6 CONVERGENCE SPEED OF STRUCTURE AND APPEARANCE

Figure 13 shows the intermediate results during the training process for both ControlNet Zhang
et al. (2023) and our model. We attempt to use a single branch to control both the structure and
appearance of the generated images using ControlNet. During the training process of ControlNet,
we can observe that the convergence speeds of appearance and structure differ. As shown in Figure
13, the structure tends to converge much faster than appearance. At an early training stage, the
structural features of the generated results are already globally well-controlled, but the color and
style are still not precisely managed, with noticeable color errors in the details. As the training
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progresses, the structure continues to refine locally, but the slow convergence of appearance causes
the color and style to lag behind the ground truth. Since structural control has been achieved, the
network as a whole tends to stabilize. This results in the final generated images having issues like
being too dark or too magenta. To avoid this issue, we separated the appearance and structure
features by using two ControlNet branches with non-shared parameters as mentioned in Section 3.3,
which prevents interference between the optimization of appearance and structure.

C
o
n
tr

o
lN

et
O

u
rs

Figure 13: Comparison of the convergence between ControlNet Zhang et al. (2023) and our frame-
work, where ControlNet uses a single branch to control both appearance and structure generation.

A.7 LIGHT CONTROL WITH PROMPT

In Figure 14, we demonstrate the results of controlling relighting using text prompts. By adding
keywords such as weather and time, we can alter the lighting in the generated images. The results
not only maintain the structural and appearance features from before the change but also exhibit new
lighting effects that are highly realistic and consistent with the real world.

“on a cloudy day” “on a sunny day” “at dusk” “late at night”

Engine Rendering

Intrinsic-ControlNet (Ours)

Intrinsic Images

“in sandstorm conditions”

Figure 14: The relighting results of our method. By modifying the condition text prompt, our method
can quickly adjust the lighting of the scene to generate realistic relit images.

A.8 VISUALIZATION OF ENTIRE INTRINSIC IMAGES

We show the entire intrinsic image input achieved from real-world photos in Figure 15, and compare
the generated images of our methods with the original photos in Figure 4.

A.9 MORE DETAILS OF NETWORK ARCHITECTURE

We show the details of network architecture in the Figure 16.
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Figure 15: Our framework uses predicted multiple intrinsic images to generate realistic images that
resemble the original. Here we show all intrinsic images with the results.
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Figure 16: Details of our network architecture.
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