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ABSTRACT

Counterfactual risk minimization is a framework for offline policy optimization
with logged data which consists of context, action, propensity score, and reward for
each sample point. In this work, we build on this framework and propose a learning
method for settings where the rewards for some samples are not observed, and so
the logged data consists of a subset of samples with unknown-rewards and a subset
of samples with known rewards. This setting arises in many application domains,
including advertising and healthcare. While reward feedback is missing for some
samples, it is possible to leverage the unknown-reward samples in order to minimize
the risk, and we refer to this setting as semi-counterfactual risk minimization. To
approach this kind of learning problem, we derive new upper bounds on the
true risk under the inverse propensity score estimator. We then build upon these
bounds to propose a regularized counterfactual risk minimization method, where
the regularization term is based on the logged unknown-rewards dataset only; hence
it is reward-independent. We also propose another algorithm based on generating
pseudo-rewards for the logged unknown-rewards dataset. Experimental results
with neural networks and benchmark datasets indicate that these algorithms can
leverage the logged unknown-rewards dataset besides the logged known-reward
dataset.

1 INTRODUCTION

Offline policy learning from logged data is an important problem in reinforcement learning theory
and practice. The logged ‘known-rewards’ dataset represents interaction logs of a system with its
environment recording context, action, propensity score (i.e., probability of the action selection for a
given context under the logging policy), and reward feedback. This setting has been considered in the
literature in connection with contextual bandits and partially labeled observations, and is used in many
real applications, e.g., recommendation systems (Aggarwal et al., 2016; Li et al., 2011), personalized
medical treatments (Kosorok & Laber, 2019; Bertsimas et al., 2017) and personalized advertising
campaigns (Tang et al., 2013; Bottou et al., 2013). However, there are two main obstacles to learning
from logged known-rewards data: first, the observed reward is available for the chosen action only;
and second, the logged data is taken under the logging policy, so it could be biased. Counterfactual
Risk Minimization (CRM), a strategy for off-policy learning from logged known-rewards datasets,
has been proposed by Swaminathan & Joachims (2015a) to tackle these challenges.

CRM has led to promising results in some settings, including advertising and recommendation
systems. However, there are some scenarios where the logged known-reward dataset is generated in
an uncontrolled manner, and it poses a major obstacle, such as unobserved rewards for some chosen
context and action pairs. For example, consider an advertising system server where some ads (actions)
are shown to different clients (contexts) according to a conditional probability (propensity score).
Now, suppose that the connections between the clients and the server are corrupted momentarily such
that the server does not receive any reward feedback, i.e., whether or not the user has clicked on some
ads. Under this scenario, we have access to ‘unknown-rewards’ data, including the chosen clients,
the shown ads, and the probability of shown ads without any reward feedback; in addition to some
logged known-reward data from multiple clients. Likewise, there are various other scenarios where it
may be difficult to obtain reward samples for some context and action (and propensity score) samples
since it might be expensive or unethical, such as in robotics or healthcare.
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There are also real-world situations in which the logging policy is partially unknown, and using the
logged unknown-rewards and known-rewards datasets we need to create a target policy that performs
similarly to the partially unknown logging policy. For example, suppose that a company is working
on a recommendation system and planned to learn from another recommendation system without
knowing that system’s policy. Then, the company can use some logged data from the other system
and rebuild its policy by considering the system policy as logging policy.

We call Semi-CRM our approach to learning in these scenarios, where we have access to the logged
unknown-reward (no recorded feedback) dataset, besides the logged known-reward dataset.

This paper proposes algorithms that try to leverage the logged unknown-reward and known-reward
datasets in an off-policy optimization problem. The contributions of our work are as follows:

• We propose a novel upper bound on the true risk under the inverse propensity score (IPS) estimator,
in terms of different divergences, including KL divergence and Reverse KL, which is tighter than
the previous upper bound of Cortes et al. (2010) under some conditions.

• Inspired by the upper bound on the true risk under the IPS estimator, we propose regularization
approaches based on KL divergence or Reverse KL divergence, which are independent of rewards
and hence can be optimized using the logged unknown-reward dataset. We also propose a
consistent and unbiased estimator of KL divergence and Reverse KL divergence using the logged
unknown-reward dataset.

• Inspired by the pseudo-labeling approach in semi-supervised learning (Lee et al., 2013), we also
propose another approach based on estimating the reward function using the logged known-reward
dataset in order to produce pseudo-rewards for the logged unknown-reward dataset. This enables
us to apply the IPS estimator regularized by weighted cross-entropy to both logged known-reward
and unknown-reward datasets by leveraging the pseudo-rewards.

• We present experiments on suitable datasets to evaluate our algorithms, showing the versatility of
our methods for using logged unknown-reward data in different scenarios.

2 RELATED WORKS

There are various methods that have been developed to learn from logged known-reward datasets.
The two main approaches are the Direct method and CRM, discussed next. We also discuss below
some works on importance weighting, and inverse reinforcement learning. Other related topics, and
the corresponding literature, are discussed in Appendix A.

Direct Method: The direct method for off-policy learning from logged known-reward datasets is
based on estimation of the reward function, followed by application of a supervised learning algorithm
to the problem (Dudík et al., 2014). However, this approach fails to generalize well as shown by
Beygelzimer & Langford (2009). Another direct oriented method for off-line policy learning, using
the self-training approaches in semi-supervised learning, was proposed by Gao et al. (2022).

Counterfactual Risk Minimization: The mainstream approach for off-policy learning from logged
known-reward dataset is CRM (Swaminathan & Joachims, 2015a). In particular, Joachims et al.
(2018) proposed a new approach to train a neural network, where the output of the Softmax layer is
considered as the policy, and the network is trained using the available logged known-reward dataset.
Our work builds on the former, albeit proposing methods to learn from logged unknown-reward data,
besides the logged known-reward dataset. London & Sandler (2018) proposed another approach for
CRM, which leveraged PAC-Bayesian theory to derive an upper bound on the population risk of the
target policy in terms of KL divergence between prior and posterior distributions over the hypothesis
space. While there are similarities between the bound of London & Sandler and ours, the differences
are clarified in Appendix B.2. CRM has also been combined with domain adversarial networks by
Atan et al. (2018). Wu & Wang (2018) proposed a new framework for CRM based on regularization
by Chi-square divergence between target policy and the logging policy, and a generative-adversarial
approach is proposed to minimize the regularized empirical risk using the logged known-reward
dataset. Xie et al. (2018) introduced the surrogate policy method in CRM. The combination of causal
inference and counterfactual learning was studied by Bottou et al. (2013). Distributional robust
optimization is applied in CRM by Faury et al. (2020). A lower bound on the expected reward in
CRM under Self-normalized Importance Weighting was derived by Kuzborskij et al. (2021).
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Importance Weighting: This method has been proposed for off-policy estimation and learning
(Thomas et al., 2015; Swaminathan & Joachims, 2015a). Due to its large variance in many cases
(Rosenbaum & Rubin, 1983); some truncated importance sampling methods are proposed, including
the IPS estimator with truncated ratio of policy and logging policy (Ionides, 2008), IPS estimator
with truncated propensity score (Strehl et al., 2010) or self-normalizing estimator (Swaminathan &
Joachims, 2015b). A balance-based weighting approach for policy learning, which outperforms other
estimators, was proposed by Kallus (2018). A generalization of importance sampling by considering
samples from different policies is studied by Papini et al. (2019). The weights can be estimated
directly by sampling from contexts and actions using Direct Importance Estimation (Sugiyama et al.,
2007). A convex surrogate for the regularized true risk by the entropy of target policy is proposed in
Chen et al. (2019). In this work we consider IPS estimator based on truncated propensity score.

Inverse Reinforcement Learning: Inverse RL, an approach to learn reward functions in a data-driven
manner, has also been proposed to deal with unknown-reward datasets in RL (Finn et al., 2016;
Konyushkova et al., 2020; Abbeel & Ng, 2004). The identifiablity of reward function learning under
entropy regularization is studied by Cao et al. (2021). Our work differs from this line of research,
since we assume access to propensity score parameters, besides the context and action. Our logged
known-reward and unknown-reward datasets are under a fixed logging policy for all samples.

3 PRELIMINARIES

Notations: We adopt the following convention for random variables and their distributions in the
sequel. A random variable is denoted by an upper-case letter (e.g. Z), its space of possible values is
denoted with the corresponding calligraphic letter (e.g. Z), and an arbitrary value of this variable is
denoted with the lower-case letter (e.g. z). This way, we can describe generic events like {Z = z}
for any z ∈ Z , or events like {g(Z) ≤ 5} for functions g : Z → R. The probability distribution of
the random variable Z is denoted by PZ . The joint distribution of a pair of random variables (Z1, Z2)

is denoted by PZ1,Z2
. We denote the set of integer numbers from 1 to n by [n] ≜ {1, · · · , n}.

Divergence Measures: If P and Q are probability measures over Z , the Kullback-Leibler (KL)
divergence D(P∥Q) is given by D(P∥Q) ≜

∫
Z log

(
dP
dQ

)
dP when P is absolutely continuous1 with

respect to Q, and D(P∥Q) ≜ ∞ otherwise. It measures how much Q differs from P in the sense
of statistical distinguishability (Csiszár & Körner, 2011). The reverse KL divergence is given by
Dr(P∥Q) ≜

∫
Z log

(
dQ
dP

)
dQ = D(Q∥P ). The conditional KL divergence between PT |Z and QT

averaged over PZ is given by D(PT |Z∥QT |PZ) ≜
∫
Z D(PT |Z=z∥QT )dPZ(z). The chi-square

divergence is given by χ2(P∥Q) ≜
∫
Z(

dP
dQ )2dQ− 1.

Problem Formulation Let X be the set of contexts and A the finite set of actions, with |A| = k. We
consider policies as conditional distributions over actions given contexts. For each pair of context and
action (x, a) ∈ X ×A and policy π ∈ Π, where Π is the set of policies, the value π(a|x) is defined
as the conditional probability of choosing action a given context x under the policy π.

A reward function fr : X ×A → [−1, 0], which is unknown, defines the reward of each observed
pair of context and action. However, in a logged known-reward setting we only observe the reward
(feedback) for the chosen action a in a given context x, under the logging policy π0(a|x). We
have access to the the logged known-reward dataset S = (xi, ai, pi, ri)

n
i=1 where each ‘data point’

(xi, ai, pi, ri) contains the context xi which is sampled from unknown distribution PX , the action ai
which is sampled from (unknown) logging policy π0(·|xi), the propensity score pi ≜ π0(ai|xi), and
the observed reward ri ≜ fr(xi, ai) under logging policy π0(ai|xi). In this work, inspired by the
BanditNet method of Swaminathan & Joachims (2015b), we use a neural network with parameters θ
to model a stochastic policy πθ(a|x).
The true risk of a policy πθ is defined as follows:

R(πθ) = EPX
[Eπθ(A|X)[fr(A,X)]]. (1)

1P is absolutely continuous with respect to Q if P (A) = 0 whenever Q(A) = 0, for measurable A ⊂ X .
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Our objective is to find an optimal π⋆
θ which minimizes R(πθ), i.e., π⋆

θ = argminπθ∈Πθ
R(πθ),

where Πθ is the set of all policies parameterized by θ. We denote the importance weighted reward
function as w(A,X)fr(A,X), where w(A,X) = πθ(A|X)

π0(A|X) .

As discussed by Swaminathan & Joachims (2015b), we can apply the IPS estimator over logged
known-reward dataset S (Rosenbaum & Rubin, 1983) to get an unbiased estimator of the risk (an
empirical risk) by considering the importance weighted reward function as follows:

R̂(πθ, S) =
1

n

n∑
i=1

riw(ai, xi), (2)

where w(ai, xi) =
πθ(ai|xi)
π0(ai|xi)

. The IPS estimator as unbiased estimator has bounded variance if the
πθ(A|X) is absolutely continuouswith respect to π0(A|X) (Strehl et al., 2010; Langford et al., 2008).
For the issue of the large variance of the IPS estimator, many estimators are proposed, (Strehl et al.,
2010; Ionides, 2008; Swaminathan & Joachims, 2015b), e.g., truncated IPS estimator. In this work
we consider truncated IPS estimator with ζ ∈ [0, 1] as follows:

R̂ζ(πθ, S) =
1

n

n∑
i=1

ri
πθ(ai|xi)

max(pi, ζ)
, (3)

In our Semi-CRM setting, we also have access to the logged unknown-reward dataset, which we
shall denote as Su = (xj , aj , pj)

m
j=1 which is generated under the same logging policy for logged

known-reward dataset, i.e., pj = π0(aj |xj). We will next propose two algorithms to derive a policy
which minimize the true risk using logged unknown-reward and known-reward datasets.

4 BOUNDS ON TRUE RISK OF IPS ESTIMATOR

In this section, we provide an upper bound on variance of importance weighted reward function, i.e.,

Var (w(A,X)fr(A,X)) ≜ EPX⊗π0(A|X)

[
(w(A,X)fr(A,X))

2
]
−R2(πθ) (4)

where R(πθ) = EPX⊗π0(A|X) [w(A,X)fr(A,X)] = EPX⊗πθ(A|X) [fr(A,X)].
Proposition 1. (proved in Appendix B) Suppose that the importance weighted of squared reward
function, i.e., w(A,X)f2

r (A,X), is σ-sub-Gaussian2 under PX ⊗ π0(A|X) and PX ⊗ πθ(A|X),
the reward function, fr(A,X), is bounded in [c, b], and b ≥ 0. Then the following upper bound holds
on the variance of the importance weighted reward function:

Var (w(A,X)fr(A,X)) ≤
√
2σ2 min(D(πθ∥π0), Dr(πθ∥π0)) + b2u − c2l , (5)

where on the right-hand side the constants are cl = max(c, 0) and bu = max(|c|, b); and
D(πθ∥π0) = D(πθ(A|X)∥π0(A|X)|PX) and Dr(πθ∥π0) = Dr(πθ(A|X)∥π0(A|X)|PX).

Note that if sup(x,a)∈X×A w(a, x) = wm < ∞, then we have σ =
wmb2u

2 under both distributions,
PX ⊗ π0(A|X) and PX ⊗ πθ(A|X) in Proposition 1.

Using Cortes et al. (2010, Lemma 1), we can provide an upper bound on the variance of importance
weights in terms of chi-square divergence by considering fr(a, x) ∈ [c, b], as follows:

Var (w(A,X)fr(A,X)) ≤ b2uχ
2(πθ(A|X)∥π0(A|X)|PX) + b2u − c2l , (6)

where cl = max(c, 0), bu = max(|c|, b). In Appendix B.1, we discuss that under some conditions,
the upper bound in Proposition 1 is tighter than the upper bound based on chi-square divergence
in equation 6. An upper bound in terms of the total variation distance is also provided in Appendix E.
The upper bound in Proposition 1 shows that we can reduce the variance of importance weighted
reward function, i.e., w(A,X)fr(A,W ), by minimizing the KL divergence or reverse KL divergence
between πθ and π0. A lower bound on the variance of the importance weighted reward function in
terms of KL divergence between πθ and π0 is provided in Appendix B.

Using the upper bound on the variance of importance weighted reward function in Proposition 1, we
can derive a high-probability bound on the true risk under the importance weighting, IPS estimator.

2A random variable X is σ-subgaussian if E[eγ(X−E[X])] ≤ e
γ2σ2

2 for all γ ∈ R.
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Theorem 1. (proved in Appendix B) Suppose the reward function takes values in [−1, 0]. Then, for
any δ ∈ (0, 1), the following bound on the true risk of policy πθ(A|X) under the IPS estimator holds
with probability at least 1− δ under the distribution PX ⊗ π0(A|X):

R(πθ) ≤ R̂(πθ, S) +
2wm log( 1δ )

3n
+

√
(wm

√
2min(D(πθ∥π0), Dr(πθ∥π0)) + 2) log( 1δ )

n
(7)

where D(πθ∥π0) = D(πθ(A|X)∥π0(A|X)|PX) and Dr(πθ∥π0) = Dr(πθ(A|X)∥π0(A|X)|PX),
and sup(x,a)∈X×A w(a, x) = wm <∞.

The proof of Theorem 1 leverages the Bernstein inequality together with an upper bound on the
variance of importance weighted reward function using Proposition 1. Theorem 1 shows that we
can minimize the KL divergence between πθ and π0, i.e., D(πθ(A|X)∥π0(A|X)|PX), or reverse
KL divergence between πθ and π0, i.e., Dr(πθ(A|X)∥π0(A|X)|PX), instead of empirical variance
minimization in CRM framework (Swaminathan & Joachims, 2015a) which is inspired by the upper
bound in Maurer & Pontil (2009). We also compared our upper bound in Theorem 1 with the one
given in (London & Sandler, 2018, Theorem 1) in Appendix B.2.

5 SEMI-CRM ALGORITHMS

We now propose two approaches: reward-free regularized CRM and Semi-CRM via Pseudo-rewards,
which are capable of leveraging the availability of both the logged known-reward dataset S and the
logged unknown-reward dataset Su. The reward-free regularized CRM is based on the optimization
of a regularized CRM objective, where the regularization function is independent of the rewards. The
reward-free regularized CRM is inspired by an entropy minimization approach in semi-supervised
learning, where one optimizes a label-free entropy function using the unlabeled data. In the Semi-
CRM via pseudo-rewards, inspired by the Pseudo-labeling algorithm in semi-supervised learning,
a model based on the logged known-reward dataset is incorporated to assign pseudo-rewards to
logged unknown-reward dataset, and then the final model is trained using the logged known-reward
dataset and logged unknown-reward dataset augmented by pseudo-rewards. These two approaches
are described in the following two sections.

5.1 SEMI-CRM VIA REWARD-FREE REGULARIZATION

Note that the KL divergence and reverse KL divergence between logging policy, π0(A|X), and the
policy πθ(A|X) in Theorem 1 are independent from the reward function values (feedback). This
motivates us to consider them as functions which can be optimized using the logged unknown-reward
dataset. It is worthwhile mentioning that the regularization based on empirical variance proposed by
Swaminathan & Joachims (2015a) is dependent on reward. A similar approach for semi-CRM via
reward-free regularization based on total-variation distance is proposed in Appendix E.

Now, inspired by the semi-supervised frameworks in (Aminian et al., 2022; He et al., 2021), we
propose the following convex combination of IPS estimator and KL divergence or Reverse KL
divergence for Semi-CRM problem:

R̂KL(πθ, S, Su) ≜ αR̂(πθ, S) + (1− α)D(πθ(A|X)∥π0(A|X)|PX), α ∈ [0, 1], (8)

R̂RKL(πθ, S, Su) ≜ αR̂(πθ, S) + (1− α)Dr(πθ(A|X)∥π0(A|X)|PX), α ∈ [0, 1], (9)
where for α = 1, our problem reduces to traditional CRM that neglects the logged unknown-reward
dataset, whereas for α = 0, we solely optimise the KL divergence or reverse KL divergence using
logged unknown-reward dataset. More discussion for KL regularization is provided in Appendix H.

For the estimation of D(πθ(A|X)∥π0(A|X)|PX) and Dr(πθ(A|X)∥π0(A|X)|PX), we can apply
the logged unknown-reward dataset as follows:

L̂KL(πθ, Su) ≜
k∑

i=1

1

mai

∑
(x,ai,p)∈Su

πθ(ai|x) log(πθ(ai|x))− πθ(ai|x) log(p), (10)

L̂RKL(πθ, Su) ≜
k∑

i=1

1

mai

∑
(x,ai,p)∈Su

−p log(πθ(ai|x)) + p log(p), (11)
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where mai
is the number of context, action and propensity score tuples, i.e., (x, a, p) ∈ Su, with the

same action, e.g., a = ai (note we have
∑k

i=1 mai
= m). It is possible to show that the estimations

of KL divergence and reverse KL divergence are unbiased in asymptotic regime.

Proposition 2. (proved in Appendix C) Suppose that the KL divergence and reverse KL divergence be-
tween πθ and π0 are bounded. Assuming mai

→∞ (∀ai ∈ A), L̂KL(πθ, Su) and L̂RKL(πθ, Su) are
unbiased estimations of D(πθ(A|X)∥π0(A|X)|PX) and Dr(πθ(A|X)∥π0(A|X)|PX), respectively.

Note that another approach to minimize the KL divergence or reverse KL divergence is the generative-
adversarial approach in (Wu & Wang, 2018) which is based on using logged known-reward dataset
without considering rewards and propensity scores. It is worthwhile to mention that the generative-
adversarial approach will not consider propensity scores in the logged known-reward dataset and also
incur more complexity, including Gumbel soft-max sampling (Jang et al., 2016) and discriminator
network optimization. We proposed a new estimator of these information measures considering
our access to propensity scores in the logged unknown-reward dataset. Since the term p log(p) in
equation 11 is independent of policy πθ, we ignore it and optimize the following quantity instead
of L̂RKL(πθ, Su) which is similar to cross-entropy by considering propensity scores as weights of
cross-entropy:

L̂WCE(πθ, Su) ≜
k∑

i=1

1

mai

∑
(x,ai,p)∈Su

−p log(πθ(ai|x)), (12)

In the following, we also provide another interpretation for KL divergence and reverse KL divergence
between πθ and π0.

Proposition 3. (proved in Appendix C) The following upper bound holds on the absolute difference
between risks of logging policy, π0(a|x), and the policy, πθ(a|x):

|R(πθ)−R(π0)| ≤ min

(√
D(πθ∥π0)

2
,

√
Dr(πθ∥π0)

2

)
(13)

where D(πθ∥π0) = D(πθ(A|X)∥π0(A|X)|PX) and Dr(πθ∥π0) = Dr(πθ(A|X)∥π0(A|X)|PX).

Based on Proposition 3, the minimization of KL divergence and reverse KL divergence would lead to
a policy close to the logging policy in KL divergence or reverse KL divergence. This phenomena,
which happens also observed in the works by Swaminathan & Joachims (2015a); Wu & Wang (2018);
London & Sandler (2018), is aligned with the fact that the target policy should not diverge too much
from the logging policy (Schulman et al., 2015). It is worthwhile to mention that as the regularization
by KL divergence and reverse KL divergence will also result in the variance reduction where solves
the propensity Overfitting issues as mentioned by Brandfonbrener et al. (2021) and Swaminathan &
Joachims (2015b).

For improvement in regularization with KL divergence in the scenarios where the propensity scores
in the logged unknown-reward dataset are zero, we use the propensity score truncation in equation 10
as follows:

L̂τ
KL(πθ, Su) ≜

k∑
i=1

1

mai

∑
(x,ai,p)∈Su

πθ(ai|x) log (πθ(ai|x))− πθ(ai|x) log(max(τ, p)) (14)

where τ ∈ [0, 1]. For τ = 1, we actually do not consider the propensity scores, and for τ = 0 we
actually consider the true value of propensity scores. Note that, in a case of pi = 0 for a sample
(xi, ai, pi) ∈ Su, we have L̂KL = −∞, hence considering τ in L̂KL, will help to solve these cases.
A complete training algorithm, i.e., WCE-CRM algorithm, based on reward-free regularization CRM
via truncated weighted cross-entropy is proposed in Algorithm 1. The KL-CRM algorithm as a
regularized CRM based on estimation of KL divergence between πθ and π0 is similar to Algorithm 1
by replacing L̂WCE(θ

tg ) with L̂τ
KL(θ

tg ) defined as:

L̂τ
KL(θ

tg ) =

k∑
i=1

1

mai

∑
(x,ai,p)∈Su

πθtg (ai|x) log
(
πθtg (ai|x)
max(τ, p)

)
. (15)
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Algorithm 1: WCE-CRM Algorithm
Data: S = (xi, ai, pi, ri)

n
i=1 sampled from π0, Su = (xj , aj , pj)

m
j=1 sampled from π0,

hyper-parameters α, ζ and τ , initial policy πθ0(a|x), and max epochs, tg for the whole
algorithm M

Result: An optimized neural network π⋆
θ(a|x) which minimize the regularized risk by truncated

weighted cross-entropy
while tg ≤M do

Sample n samples (xi, ai, pi, ri) from S and estimate the re-weighted loss as
R̂ζ(θtg ) = 1

n

∑n
i=1 ri

π
θ
tg (ai|xi)

max(ζ,pi)

Get the gradient with respect to θtg as g1 ← ∇θtg R̂ζ(θtg )

Sample m samples from Su and estimate the weighted cross-entropy loss (
∑k

i=1 mai
= m)

L̂WCE(θ
tg ) =

∑k
i=1

1
mai

∑
(x,ai,p)∈Su

−p log(πθtg (ai|x))
Get the gradient with respect to θtg as g2 ← ∇θtg L̂WCE(θ

tg )
Update θtg+1 = θtg − (αg1 + (1− α)g2)
tg = tg + 1

end

5.2 SEMI-CRM VIA PSEUDO-REWARDS

In this section, we introduce a Semi-CRM approach that leverage pseudo-rewards, inspired by the
pseudo-label mechanism in semi-supervised learning and also the work by Konyushkova et al. (2020).

The logged known-reward dataset can help to learn a reward-regression model to predict the rewards
of the logged unknown-reward dataset. For this purpose, we can use the least square objective
function over a linear class (Cl) of regressors to train the reward regression model using the logged
known-reward dataset, S, as follows:

f̂r(x, a) = arg min
f̂r∈Cl

1

n

n∑
i=1

(ri − f̂r(xi, ai))
2 (16)

The Neural networks can also be applied to estimate the reward function as a regression problem.
Now, the reward regression model f̂r(x, a) can be applied to the unknown-reward dataset to predict
the pseudo-reward r̂i given the context xi and action ai, leading up to augmenting each sample
(xi, ai, pi, r̂i). It is worthwhile to mention that, as the underlying policy of the unknown-reward
dataset is the same as the known reward dataset, i.e., logging policy π0, we do not have the bias
problem in dataset (Dudík et al., 2014). Using the known reward dataset, S, and augmented logged
unknown-reward dataset by pseudo-rewards, we can then train the model by applying the CRM
approach, which is regularized by WCE over unknown-reward dataset to reduce the variance of the
IPS estimator. The Pseudo-reward risk function, i.e., R̂PR(πθ, S, Su) ≜, is as follows:

α

n+m

(
n∑

i=1

ri
πθ(ai|xi)

max(ζ, pi)
+

m∑
j=1

r̂j
πθ(aj |xj)

max(ζ, pj)

)
+ (1− α)L̂WCE(πθ, Su) (17)

The training algorithm for semi-CRM based on the pseudo-reward approach, PR-CRM, is proposed
in Appendix D.

6 EXPERIMENTS

We evaluated the performance of the algorithms WCE-CRM, KL-CRM, and PR-CRM by using the
output of a Softmax layer in a neural network, to define as a stochastic policy as follows:

πθ(ai|x) =
exp(hθ(x, ai))∑k
i=1 exp(hθ(x, ai))

, (18)

where hθ(x, ai) is the i-th input to Softmax layer for context x ∈ X and action ai ∈ A.
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We apply the standard supervised to bandit transformation (Beygelzimer & Langford, 2009) on two
image classification datasets: Fashion-MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky et al.,
2009). This transformation assumes that each of the ten classes in the datasets corresponds to an
action. Then, a logging policy stochastically selects an action for every instance in the dataset. Finally,
if the selected action matches the actual label assigned to the instance, then we have r = −1, and
r = 0 otherwise. Similar to the work of London & Sandler (2018), we evaluated the performance of
the different algorithms in terms of expected risk and accuracy. The expected risk is the average of
the reward function over the test set, while the accuracy is simply the proportion of times where the
action with r = −1 is equal to the action with a deterministic argmax policy.

To learn the logging policy, we trained the first seven convolutional and the two last fully connected
layers of the VGG-16 architecture (Simonyan & Zisserman, 2014) with 5% of the available training
data in each dataset. The last hidden layer contained 25 neurons, while the output layer contained
ten neurons and used a soft-max activation function. Once learned, we used the logging policy to
create the logged known-reward datasets using the remaining 95% of the instances in the datasets.
We trained the model for five epochs for the Fashion-MNIST dataset and 50 epochs for the CIFAR-10
datasets. Each instance in the logged known-reward datasets is a 4-tuple (x, a, p, r), where x is the
output of the last hidden layer of the network used to compute the logging policy. In this case, it is a
25-dimensional vector representing the embedding of an image, and a is a stochastically selected
action, p is the value of the output layer of the selected action, and r is the reward.

To simulate the absence of rewards for logged known-reward datasets, we pretended that the reward
was not available in 90% of the instances in each dataset, while the reward of remaining 10% was
known. The policy πθ(a | x) was implemented using a fully connected neural network with 2 hidden
layers and ReLU activation functions, and an output layer with softmax activation function. The
network for both Fashion-MNIST and CIFAR-10 has 20 neurons per layer. We trained the networks
using the WCE-CRM, KL-CRM and PR-CRM algorithms with M = 1000, n = 5700,m = 51300.
In PR-CRM, the pseudo rewards are generated using the estimation of reward function equation 16.

Figure 1 shows the average expected risk, over 10 runs, of applying PR-CRM, WCE-CRM and
KL-CRM algorithms to the Fashion-MNIST and CIFAR-10 datasets using different values for the
regularization parameter α by considering τ = ζ = 0.001 as truncation hyper-parameters (chosen
via cross validation). The error bars represent the standard deviation over the 10 runs. Figure 2 shows
similar graphs, but in terms of accuracy.

Baselines: We included the results for BanditNet trained based on 10% of each dataset by assuming
reward is known, and the supervised approach, where the network is trained by access to full
supervised dataset.
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Figure 1: Expected risk of WCE-CRM, PR-CRM, KL-CRM, BanditNet and Fully-supervised
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Figure 2: Accuracy of WCE-CRM, PR-CRM, KL-CRM, BanditNet and Fully-supervised

Note that when α = 0, all the algorithms use only the logged unknown-reward dataset and when α =
1, all the algorithms use only the logged known-reward dataset. We compare the best performance of
WCE-CRM, KL-CRM, PR-CRM and BanditNet in Table 1.
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BanditNet: As shown in Joachims et al. (2018), the BanditNet needs a huge amount of known
reward dataset to achieve a better target policy. The BanditNet is trained using 10% of the dataset in
our experiment, and it cannot reach the logging policy performance if the logging performance is
sufficient. It can be seen that in the case of restricted access to the known-reward dataset, employing
the unknown-reward dataset in WCE-CRM or PR-CRM can assist in achieving a slightly better
policy.

Table 1: Comparison of different algorithms (Expected risk and accuracy) for Fashion-MNIST
(FMNIST) and CIFAR-10 by considering standard deviation.

WCE-CRM KL-CRM PR-CRM BanditNet
Risk (FMNIST) −0.76± 0.003 −0.72± 0.033 −0.75± 0.021 −0.51± 0.094
Acc. (FMNIST) 0.77± 0.005 0.74± 0.004 0.76± 0.009 0.51± 0.094
Risk (CIFAR-10) −0.45± 0.005 −0.41± 0.034 −0.45± 0.003 −0.30± 0.064
Acc. (CIFAR-10) 0.46± 0.005 0.43± 0.011 0.46± 0.004 0.30± 0.064

Logging policy: For comparison purposes, we estimated the expected risk of the logging policy in
both datasets. The expected risk of the Fashion MNIST dataset under the logging policy is −0.71,
while the expected risk for the CIFAR-10 dataset was −0.42. As shown in Table 1, our algorithms,
WCE-CRM and PR-CRM, can achieve a slightly better policy compared to the logging policy in
different scenarios if we have access to logged unknown-reward dataset and limited number of
logged known-reward data.

KL-CRM: As shown in Table 1, the KL-CRM can achieve a policy close to logging policy. As the
current estimator of KL divergence in equation 10 contains two terms of target policy, πθ(A|X), the
estimator performance degrades in comparison with WCE-CRM.

More discussions and experiments on the quality of logging policy and also unobserved action in
logged known-reward dataset are provided in Appendix F.

7 CONCLUSION AND FUTURE WORKS

We proposed two new algorithms, including reward-free regularized CRM and Pseudo-reward CRM
for Semi-Counterfactual Risk Minimization. The main take-away in reward-free regularized CRM is
proposing regularization terms, i.e., KL divergence and reverse KL divergence, independent of reward
values, and also the minimization of these terms results in a tighter upper bound on true risk. In the
pseudo-reward CRM algorithm, we estimated the reward function using the logged known-reward
dataset and applied the estimated reward function to samples in the logged unknown-reward dataset
to produce the pseudo-rewards and train the model using logged known-reward and pseudo-reward
datasets. Experiments revealed that these algorithms can reach a target policy performance that
is marginally superior than that of the partially unknown logging policy by exploiting the logged
unknown-reward dataset and the small size logged known-reward dataset.

The main limitation of this work is the assumption of access to a clean propensity score relating to
the probability of an action given a context under the logging policy. We also use propensity scores in
both the main objective function and the regularization term. However, we can estimate the propensity
score using different methods, e.g., logistic regression (D’Agostino Jr, 1998; Weitzen et al., 2004),
generalized boosted models (McCaffrey et al., 2004), neural networks (Setoguchi et al., 2008), or
classification and regression trees (Lee et al., 2010; 2011). Therefore, a future line of research is to
investigate how different methods of propensity score estimation can be combined with our algorithm
to optimize the expected risk using logged known-reward and unknown-reward datasets. Likewise,
we believe that the idea of KL-CRM and WCE-CRM can be extended to semi-supervised reward
learning and using unlabeled data scenarios in reinforcement learning (Konyushkova et al., 2020; Yu
et al., 2022). We can also apply KL-CRM and WCE-CRM or PR-CRM to other CRM frameworks,
e.g., Bayesian-CRM (London & Sandler, 2018) and BanditNet (Joachims et al., 2018), in order to
utilise the logged unknown-reward dataset.
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A OTHER RELATED WORKS

In this section, we discuss more related works.

Individualized Treatment Effects: The aim of individual treatment effect is the estimation of the
expected values of the squared difference between outcomes (rewards) for control and treated contexts
(Shalit et al., 2017). In the individual treatment effect scenario, the actions are limited to two actions
(treated/not treated) and the propensity scores are unknown (Shalit et al., 2017; Johansson et al.,
2016; Alaa & van der Schaar, 2017). Our work differs from this line of works by considering more
actions, and also we are focused on leveraging the availability of the logged unknown-reward dataset
(in addition to the logged known-reward dataset).

Regularized Reinforcement Learning with KL Divergence: The KL divergence regularization
between behaviour policy and another policy is studied in off-policy reinforcement learning Wu et al.
(2019); Levine et al. (2020); Rudner et al. (2021); Jaques et al. (2019). Our work differs from this
line of works by considering counterfactual risk minimization framework. Our datasets also contain
propensity scores which are not available in off-policy reinforcement learning.

Semi-Supervised Learning: There are some connections between our scenario, and semi-supervised
learning (Yang et al., 2021) approaches, including entropy minimization and pseudo-labeling. In
entropy minimization, an entropy function of predicted conditional distribution is added to the main
empirical risk function, which depends on unlabeled data (Grandvalet et al., 2005). The entropy
function can be viewed as an entropy regularization and can lower the entropy of prediction on
unlabeled data. In Pseudo-labeling, the model is trained using labeled data in a supervised manner
and is also applied to unlabeled data in order to provide a pseudo label with high confidence (Lee et al.,
2013). These pseudo labels would be applied as inputs for another model, trained based on labeled
and pseudo-label data in a supervised manner. Our work differs from semi-supervised learning as
the logging policy biases our logged data, and the rewards for other actions are not available. In
semi-supervised learning, the label is unknown for some of the data. In comparison, in our setup, the
reward is unknown.

B PROOFS OF SECTION 4

We first prove the following Lemma:
Lemma 1. Suppose that f(x) is σ-sub-Gaussian under distribution PX . Then, the following upper
bound, holds on the difference of expectation of function f(x) respect to two distributions, i.e., PX

and QX ,

|EPX
[f(X)]− EQX

[f(X)]| ≤
√

2σ2D(PX∥QX) (19)

Proof. From the Donsker-Varadhan representation of KL divergence (Polyanskiy & Wu, 2014), for
λ ∈ R we have:

D(PX∥QX) ≥ EPX
[λf(X)]− log(EQX

[eλf(X)]) (20)

≥ λ(EPX
[f(X)]− EQX

[f(X)])− λ2σ2

2
(21)

where equation 21 is the result of sub-Gaussian assumption. We have:
λ2σ2

2
− λ(EPX

[f(X)]− EQX
[f(X)]) +D(PX∥QX) ≥ 0, (22)

As we have a parabola in λ equation 22 which is positive and it has non-positive discriminant, then
the final result holds.

Proposition 1. (restated) Suppose that the importance weighted of squared reward function, i.e.,
w(A,X)f2

r (A,X), is σ-sub-Gaussian under PX ⊗ π0(A|X) and PX ⊗ πθ(A|X), and the reward
function is bounded in [c, b] with b ≥ 0. Then the following upper bound holds on the variance of the
importance weighted reward function:

Var (w(A,X)fr(A,X)) ≤
√
2σ2 min(D(πθ∥π0), Dr(πθ∥π0)) + b2u − c2l , (23)

where on the right-hand side the constants are cl = max(c, 0) and bu = max(|c|, b); and
D(πθ∥π0) = D(πθ(A|X)∥π0(A|X)|PX) and Dr(πθ∥π0) = Dr(πθ(A|X)∥π0(A|X)|PX).
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Proof. Note that c2l ≤ R2(πθ) ≤ b2u where cl = max(c, 0) and bu = max(|c|, b).

Var (w(A,X)fr(A,X)) = EPX⊗π0(A|X)

[
(w(A,X)fr(A,X))

2
]
−R2(πθ) (24)

≤ EPX⊗π0(A|X)

[
(w(A,X)fr(A,X))

2
]
− c2l (25)

where cl = max(c, 0). We need to provide an upper bound on EPX⊗π0(A|X)

[
(w(A,X)fr(A,X))

2
]
.

First, we have:

EPX⊗π0(A|X)

[
(w(A,X)fr(A,X))

2
]
= EPX⊗π0(A|X)

[(
πθ(A|X)

π0(A|X)
fr(A,X)

)2
]

(26)

= EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(fr(A,X))

2

]
(27)

Using Lemma 1 and assuming sub-Gaussianity under PX ⊗ π0(A|X) we have:∣∣∣∣EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(fr(A,X))

2

]
− EPX⊗π0(A|X)

[
πθ(A|X)

π0(A|X)
(fr(A,X))

2

]∣∣∣∣ ≤ (28)√
2σ2D(πθ(A|X)∥π0(A|X)|PX),

and fr(A,X) ∈ [c, b], we have:

EPX⊗π0(A|X)

[
πθ(A|X)

π0(A|X)
(fr(A,X))

2

]
= EPX⊗πθ(A|X)

[
(fr(A,X))

2
]
≤ b2u (29)

Considering equation 29 and equation 28, the following result holds:

EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(fr(A,X))

2

]
≤
√

2σ2D(πθ(A|X)∥π0(A|X)|PX) + b2u, (30)

Using the same approach by assuming sub-Gaussianity under PX ⊗ πθ(A|X), we have:

EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(fr(A,X))

2

]
≤
√

2σ2D(π0(A|X)∥πθ(A|X)|PX) + b2u, (31)

And the final result holds by considering equation 30, equation 31, Dr(πθ(A|X)∥π0(A|X)|PX) =
D(π0(A|X)∥πθ(A|X)|PX), and equation 26.

Remark 1. Under Bounded importance weights sup(x,a)∈X×A w(a, x) = wm < ∞, assuming
fr(A,X) ∈ [c, b], and considering 0 ≤ w(a, x) ≤ wm, then function w(a, x)f2

r (A,X) is bounded
in [0, b2uwm] where bu = max(|c|, b), and this function is wmb2u

2 -sub-Gaussian under any distribution.

We now provide a novel lower bound on the variance of weighted reward function in the following
Proposition.

Proposition 4. (proved in Appendix B) Suppose that q ≤ eEPX⊗πθ(A,X)[log(|fr(A,X)|)], fr(a, x) ∈
[c, b], b ≥ 0 and consider bu = max(|c|, b). Then, following lower bound holds on the variance of
importance weighted reward function,

Var (w(A,X)fr(A,X)) ≥ q2eD(πθ(A|X)∥π0(A|X)|PX) − b2u. (32)

Proof. Note that c2l ≤ R2(πθ) ≤ b2u where cl = max(c, 0) and bu = max(|c|, b).

Var (w(A,X)fr(A,X)) = EPX⊗π0(A|X)

[
(w(A,X)fr(A,X))

2
]
−R2(πθ) (33)

≥ EPX⊗π0(A|X)

[
(w(A,X)fr(A,X))

2
]
− b2u (34)

First, we have:

EPX⊗π0(A|X)

[
(w(A,X)fr(A,X))

2
]
= EPX⊗π0(A|X)

[(
πθ(A|X)

π0(A|X)
fr(A,X)

)2
]

(35)
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= EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(fr(A,X))

2

]
(36)

Considering equation 36, we provide a lower bound on EPX⊗πθ(A|X)

[
πθ(A|X)
π0(A|X) (fr(A,X))

2
]
, as

follows:

EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(fr(A,X))

2

]
= EPX⊗πθ(A|X)

[
e
log(

πθ(A|X)

π0(A|X)
)+2 log(|fr(A,X)|)

]
(37)

≥ e
EPX⊗πθ(A|X)[log(

πθ(A|X)

π0(A|X)
)+2 log(|fr(A,X)|)] (38)

= eD(πθ(A|X)∥π0(A|X)|PX)(eEPX⊗πθ(A|X)[log(|fr(A,X)|)])2

(39)

≥ q2eD(πθ(A|X)∥π0(A|X)|PX), (40)

Where equation 38 is based on Jensen-inequality for exponential function.

Remark 2. If we consider fr(a, x) ∈ [c, b] with b ≥ 0, then we can consider q = max(0, c).

The lower bound on the variance of importance weights in Proposition 4 can be minimized by
minimizing the KL divergence between πθ and π0.

Theorem 1. (restated) Suppose the reward function takes values in [−1, 0]. Then, for any δ ∈ (0, 1),
the following bound on the true risk of policy πθ(A|X) under IPS estimator holds with probability at
least 1− δ under the distribution PX ⊗ π0(A|X):

R(πθ) ≤ R̂(πθ, S) +
2wm log( 1δ )

3n
+

√
(wm

√
2min(D(πθ∥π0), Dr(πθ∥π0)) + 2) log( 1δ )

n
(41)

where D(πθ∥π0) = D(πθ(A|X)∥π0(A|X)|PX) and Dr(πθ∥π0) = Dr(πθ(A|X)∥π0(A|X)|PX),
and sup(x,a)∈X×A w(a, x) = wm <∞.

Proof. The main idea of the proof is based on (Cortes et al., 2010, Theorem 1). Let us consider
Z = πθ(A|X)

π0(A|X)fr(A,X)−R(πθ) and |Z| ≤ wm. Now, we have:

Var(Z) = EPX⊗π0(A|X)

[(
πθ(A|X)

π0(A|X)
fr(A,X)

)2
]
−R2(πθ) (42)

≤ wm

√
min(D(πθ∥π0), Dr(πθ∥π0))

2
+ 1,

where D(πθ∥π0) = D(πθ(A|X)∥π0(A|X)|PX) and Dr(πθ∥π0) = Dr(πθ(A|X)∥π0(A|X)|PX).
Using Bernstein inequality (Boucheron et al., 2013), we also have:

Pr
(
R(πθ)− R̂(πθ, S) > ϵ

)
≤ exp

(
−nϵ2/2

Var(Z) + ϵwm/3

)
(43)

Now, setting δ = −nϵ2/2
Var(Z)+ϵwm/3 to match the upper bound in equation 43 and using the variance

upper bound equation 42, the following upper bound with probability at least (1− δ) holds under
PX ⊗ π0(A|X):

R(πθ) ≤ (44)

R̂(πθ, S) +
wm log( 1δ )

3n
+

√
w2

m log2( 1δ )

9n2
+

(wm

√
2min(D(πθ∥π0), Dr(πθ∥π0)) + 2) log( 1δ )

n

By Considering
√
x+ y ≤

√
x+
√
y, the final result holds.
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B.1 PROPOSITION 1 COMPARISON

Without loss of generality, let us consider fr(a, x) ∈ [−1, 0]. Then, we have σ = wm

2 , bu = 1 and

cl = 0 in Proposition 1. The upper bound in Proposition 1 for sup(x,a)∈X×A
π(a|x)
π0(a|x) = wm < ∞

and considering the KL divergence between πθ and π0 is as follows:

EPX⊗π0(A|X)

[(
πθ(A|X)

π0(A|X)
fr(A,X)

)2
]
≤ wm

√
D(πθ(A|X)∥π0(A|X)|PX)

2
+ 1, (45)

And the upper bound on second moment of importance weighted reward function in (Cortes et al.,
2010, Lemma 1) is as follows:

EPX⊗π0(A|X)

[(
πθ(A|X)

π0(A|X)
fr(A,X)

)2
]
≤ χ2(πθ(A|X)∥π0(A|X)|PX) + 1 (46)

It can be shown that χ2(πθ(A|X)∥π0(A|X)|PX) ≤ wm. It is shown by Sason & Verdú (2016) that:

D(πθ(A|X)∥π0(A|X)|PX) ≤ log(χ2(πθ(A|X)∥π0(A|X)|PX) + 1) (47)

Using equation 47 in equation 45 and comparing to equation 46, then for wm < e2−1, ∃C ∈ [0, wm],
e.g. if wm = 2 we have C ≈ 1.28, where if χ2(πθ(A|X)∥π0(A|X)|PX) ≥ C, then we have:

log(χ2(πθ(A|X)∥π0(A|X)|PX) + 1) ≤ 2(χ2(πθ(A|X)∥π0(A|X)|PX))2

w2
m

(48)

Therefore, the upper bound in Proposition 1 is tighter than (Cortes et al., 2010, Lemma 1) for
χ2(πθ(A|X)∥π0(A|X)|PX) ≥ C if wm < e2−1 and C is the solution of log(1+x)−2x2/w2

m = 0.

B.2 THEOREM 1 COMPARISON

The upper bound on true risk in (London & Sandler, 2018, Theorem 1) is derived by using
PAC-Bayesian approach and it is based on reverse KL divergence between πθ and π0, i.e.,
Dr(πθ(A|X)∥π0(A|X)|PX). Our upper bound in Theorem 1, is tighter as follows:

• Our upper bound is based on the minimum of KL divergence and reverse KL divergence
and the upper bound in (London & Sandler, 2018, Theorem 1) is based on reverse KL
divergence.

• The upper bound in (London & Sandler, 2018, Theorem 1) has the dominate term with rate

O(
√

log(n)
n ) and our upper bound contains a term with rate O( 1√

n
) which dominates the

bound.

Note that the parameter wm will reduce as the KL divergence between πθ and π0 reduces.

C PROOFS OF SECTION 5

Proposition 2. (restated) Suppose that the KL divergence and reverse KL divergence between πθ and
π0 are bounded. Assuming mai

→ ∞ (∀ai ∈ A), L̂KL(πθ, Su) and L̂RKL(πθ, Su) are unbiased
estimations of D(πθ(A|X)∥π0(A|X)|PX) and Dr(πθ(A|X)∥π0(A|X)|PX), respectively.

Proof. First we have the following decomposition of KL divergence and reverse KL divergence as
follows:

D(πθ(A|X)∥π0(A|X)|PX) =

k∑
i=1

EPX
[(πθ(A = ai|X) log(

πθ(A = ai|X)

π0(A = ai|X)
)] (49)

Dr(πθ(A|X)∥π0(A|X)|PX) =

k∑
i=1

EPX
[π0(A = ai|X) log(

π0(A = ai|X)

πθ(A = ai|X)
] (50)
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It suffices to show that:

R̂KL(πθ, Su) ≜
k∑

i=1

1

mai

∑
(x,ai,p)∈Su

πθ(ai|x) log(
πθ(ai|x)

p
), (51)

R̂RKL(πθ, Su) ≜
k∑

i=1

1

mai

∑
(x,ai,p)∈Su

−p log(πθ(ai|x)) + p log(p), (52)

As we assume KL divergence and reverse KL divergence are bounded, then
EPX

[π0(ai|X) log(π0(ai|X)
πθ(ai|X) )] and EPX

[πθ(ai|x) log(πθ(ai|x)
π0(ai|x) )] ∀i ∈ [k] exist and they are

bounded. Now, by considering Law of Large number Hsu & Robbins (1947), we have that:

1

mai

∑
(x,ai,p)∈Su

π0(ai|x) log(
π0(ai|x)
πθ(ai|x)

)
mai

→∞
−−−−−→ EPX

[π0(ai|X) log(
π0(ai|X)

πθ(ai|X)
)], (53)

and
1

mai

∑
(x,ai,p)∈Su

πθ(ai|x) log(
πθ(ai|x)
π0(ai|x)

)
mai

→∞
−−−−−→ EPX

[πθ(ai|x) log(
πθ(ai|x)
π0(ai|x)

)]. (54)

By considering equation 51, equation 52 and mai →∞, ∀i ∈ [k], the final results hold.

Proposition 3. (restated) The following upper bound holds on the absolute difference between risks
of logging policy, π0(a|x), and the policy, πθ(a|x):

|R(πθ)−R(π0)| ≤ min

(√
D(πθ∥π0)

2
,

√
Dr(πθ∥π0)

2

)
(55)

where D(πθ∥π0) = D(πθ(A|X)∥π0(A|X)|PX) and Dr(πθ∥π0) = Dr(πθ(A|X)∥π0(A|X)|PX).

Proof. We have:

R(πθ) = EPX
[Eπθ(A|X)[fr(A,X)]]. (56)

R(π0) = EPX
[Eπ0(A|X)[fr(A,X)]]. (57)

As the reward function is bounded in [−1, 0], then it is 1
2 -sub-Gaussian under all distributions. Now,

by considering Lemma 1, the final result holds.

D SEMI-CRM VIA PSEUDO-REWARDS

The PR-CRM algorithm is proposed in Algorithm 2.

E REGULARIZED SEMI-CRM VIA TOTAL VARIATION

Preliminaries: The total variation distance for two probability measures, P and Q, is defined as

TV(P,Q) =
1

2

∫
Z
|dP − dQ| (58)

and the conditional total variation distance is defined as TV(PT |Z , QT |PZ) =
1
2

∫
Z TV(PT |Z=z, QT )dPZ(z). The variational representation of total variation distance is

as follows Polyanskiy & Wu (2014):

TV(P,Q) =
1

2L
sup
g∈GL

{E[g(P )]− E[g(Q)]} (59)

where GL = {g : Z → R, ||g||∞ ≤ L}. Note that the total variation is bounded, TV(P,Q) ≤ 1.

We provide a tighter upper bound in comparison to Proposition 1, in terms of total variation distance
in the following Proposition.
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Algorithm 2: PR-CRM Algorithm
Data: S = (xi, ai, pi, ri)

n
i=1 sampled from π0, Su = (xj , aj , pj)

m
j=1 sampled from π0,

hyper-parameters ζ and τ , initial policy πθ0(a|x), and max epochs, tg , for the whole
algorithm M

Result: An optimized neural network π⋆
θ(a|x) which minimize the risk

while epoch ≤M do
Sample n real samples (xj , aj , pj , rj) from S

Estimate f̂r(x, a) using the regression with squared loss function: 1
n

∑n
i=1(ri − f̂r(xi, ai))

2

end
for i = 1, · · · ,m do

Sample (xi, ai, pi) from Su

Produce the pseudo-reward r̂i = f̂r(xi, ai)
end
while tg ≤M do

Sample m samples (xi, ai, pi, r̂i) and n samples (xj , aj , pj , rj) from Su and S, resp.
Estimate the re-weighted loss as

R̂τ,ζ(θtg ) =
α

n+m

 n∑
i=1

ri
πθtg (ai|xi)

max(ζ, pi)
+

m∑
j=1

r̂j
πθtg (aj |xj)

max(ζ, pj)


+ (1− α)

k∑
i=1

−1
mai

∑
(x,ai,p)∈Su

p log(πθtg (ai|x))

Get the gradient as g1 ← ∇θtg R̂(θtg )
Update θtg+1 = θtg − g1
tg = tg + 1

end
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Proposition 5. Suppose that importance weights are bounded, i.e., sup(x,a)∈X×A w(a, x) = wm <

∞, and the reward function is bounded in [c, b] with b ≥ 0. Then we have:

Var (w(A,X)fr(A,X)) ≤ 2wmb2uTV(πθ(A|X), π0(A|X)|PX) + b2u − c2l , (60)

where cl = max(c, 0) and bu = max(|c|, b).

Proof. By using the variational representation of total variation distance equation 59 instead of
the Donsker-Varadhan representation of KL divergence in proof of Lemma 1, Proposition 1 and
considering L = wmb2u in equation 59, the final results holds.

Using the proposition 5, we can provide an upper bound on true risk under IPS estimator in a
similar approach to Theorem 1. Inspired by the facts that total variation is independent from reward
values and the minimization of total-variation distance reduces the variance of weighted reward
function Proposition 5, we propose the following regularized IPS estimator minimization based on
total variation distance:

R̂TV(πθ, S, Su) ≜ αR̂(πθ, S) + (1− α)TV(πθ(A|X), π0(A|X)|PX) (61)

Now, for estimating the total variation distance using logged unknown-reward dataset, we propose
the following estimator:

R̂TV(πθ, Su) =

k∑
i=1

1

2mai

∑
(x,ai,p)∈Su

|p− πθ(ai|x)| (62)

Proposition 6. Suppose that the total variation distance between πθ and π0 is bounded. Assuming
mai
→∞ ∀i ∈ [k], R̂TV(πθ, Su) is unbiased estimations of TV(πθ(A|X), π0(A|X)|PX).

Proof. It suffices to show that
k∑

i=1

1

2mai

∑
(x,ai,p)∈Su

|p− πθ(ai|x)| (63)

would converge TV(π0(A|X), πθ(A|X)|PX) for mai → ∞, ∀i = 1, · · · , k. Considering Law of
Large number Hsu & Robbins (1947), it says that

1

mai

∑
(x,ai,p)∈Su

|π0(ai|x)− πθ(ai|x)|
mai

→∞
−−−−−→ EPX

[|π0(ai|X)− πθ(ai|X)|] (64)

Now, consider the decomposition of TV(π0(A|X), πθ(A|X)|PX) as follows:

TV(π0(A|X), πθ(A|X)|PX) =
1

2

k∑
i=1

EPX
[|π0(ai|X)− πθ(ai|X)|] (65)

By considering equation 65 and mai
→∞, ∀i = 1, · · · , k, the final result holds.

It can be shown that the total variation distance, TV(π0(A|X), πθ(A|X)|PX), is also an upper bound
on the absolute difference between the target and logging policy risks.
Proposition 7. Suppose that The following upper bound holds on the absolute difference between
risks of logging policy and target policy:

|R(π⋆)−R(π0)| ≤ 2TV(π0(A|X), πθ(A|X)|PX) (66)

Proof. The proof is similar to Proposition 3 by considering equation 59 instead of Lemma 1.

We propose the truncated version of R̂TV(πθ, Su) to mitigate the effect of noisy propensity scores in
total variation estimation as follows:

R̂ζ
TV(πθ, S, Su) ≜ αR̂ζ(πθ, S) + (1− α)

k∑
i=1

1

2mai

∑
(x,ai,p)∈Su

|p− πθ(ai|x)|. (67)

The TV-CRM algorithm is presented in Algorithm 3.
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Algorithm 3: TV-CRM Algorithm
Data: S = (xi, ai, pi, ri)

n
i=1 sampled from π0, Su = (xj , aj , pj)

m
j=1 sampled from π0,

hyper-parameters α, ζ and τ , initial policy πθ0(a|x), and max epochs for the whole
algorithm M

Result: An optimized neural network π⋆
θ(a|x) which minimize the regularized risk by truncated

total variation
while tg ≤M do

Sample n samples (xi, ai, pi, ri) from S

Estimate the re-weighted loss as R̂ζ(θtg ) = 1
n

∑n
i=1 ri

π
θ
tg (ai|xi)

max(ζ,pi)
and get the gradient with

respect to θtg as g1 ← ∇θtg R̂ζ(θtg )
Sample m samples from Su and estimate the weighted cross-entropy loss

RTV(θ
tg ) =

k∑
i=1

1

2mai

∑
(x,ai,p)∈Su

|p− πθtg (ai|x)|

and get the gradient as
g2 ← ∇θtgRTV(θ

tg )
Update θtg+1 = θtg − (αg1 + (1− α)g2)

end

F EXPERIMENTS

Considering the same experiment assumptions and parameters in Section 6, we implement the
algorithm 3, TV-CRM. The final results in comparison to WCE-CRM, KL-CRM and PR-CRM are
shown in Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0
α

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

E−
pe

ct
ed

 R
isk

Fashion MNIST WCE_CRM
PR_CRM
KL_CRM
TV_CRM
BanditNet
Fully Supervised

0.0 0.2 0.4 0.6 0.8 1.0
α

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

Ex
pe
ct
ed
 R
isk

CIFAR-10 WCE_CRM
PR_CRM
KL_CRM
TV_CRM
BanditNet
Fully supervised

Figure 3: Expected risk using of WCE-CRM, PR-CRM, KL-CRM and TV-CRM

We compare the best performance of all algorithms in Table 2. As shown, WCE-CRM and PR-CRM
have the best performance in FMNIST and CIFAR-10, respectively.

Table 2: Comparison of different algorithms for Fashion-MNIST (FMNIST) and CIFAR-10 by
considering standard deviation.

WCE-CRM KL-CRM PR-CRM TV-CRM
Expected Risk (FMNIST) −0.76± 0.003 −0.72± 0.033 −0.75± 0.021 −0.65± 0.057

Accuracy (FMNIST) 0.77± 0.005 0.74± 0.004 0.76± 0.009 0.74± 0.015
Expected Risk (CIFAR-10) −0.45± 0.005 −0.41± 0.034 −0.45± 0.003 −0.41± 0.019

Accuracy (CIFAR-10) 0.46± 0.005 0.43± 0.011 0.46± 0.004 0.44± 0.021

Quality of the logging policy: The boost in performance depends on the quality of the logging policy
on the first place. Figure 4 shows the expected risk as a function of the percentage of the training
set used to learn the logging policy. Note that more data leads to a better logging policy, i.e., better
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training loss, which in turn leads to a lower expected risk. We can observe that as the logging policy
improves, WCE-CRM can achieve a target policy which is slightly better than logging policy by
exploiting logged unknown-reward dataset and small size of logged known-reward dataset.

A second important remark is that the WCE-CRM is much more stable than the KL-CRM, as shown
by the error bars in Figures 4 (which represent the standard deviation over the 10 runs).
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Figure 4: Effect of the logging policy on the expected risk

Unobserved action in logged known-reward dataset: In another experiment, we ran our WCE-
CRM under a scenario where one action is not observed in the logged known-reward dataset; however,
we have some samples with respect to this action in the logged unknown-reward dataset. The expected
risk for the Fashion-MNIST dataset was -0.75, while the expected risk for CIFAR-10 was -0.44. This
result shows that WCE-CRM is robust against unknown actions in the logged known-reward dataset.
This result is consistent with the results of Figure 1. Note that in the case of α = 0 we have an
extreme case where the rewards of all actions are missing.

G CODE DETAILS

The supplementary material includes a zip file named CODE_CRM.zip with the following files:

• requirements.txt: It contains the python libraries required to reproduce our results.
• CRM_Lib: A folder containing an in-house developed library with the algorithms described

in the main manuscript, as well as helper functions that were used during our experiments.
• Algorithm_Comparison.ipynb A jupyter notebook that has the code needed to reproduce

the experiments described in the main manuscript.
• Classification_2_Bandit.ipynb This jupyter notebook contains the code to transform the

Fashion MNIST dataset to a Bandit datset.
• Classification_2_Bandit-CIFAR-10.ipynb This jupyter notebook contains the code to

transform the CIFAR-10 dataset to a Bandit datset.

To use this code, the user needs to first download the CIFAR-10 dataset from https://www.cs.
toronto.edu/~kriz/cifar.html and make sure that the the folder cifar-10-batches-py is
inside the folder CODE_CRM. Then, the user needs to install the python libraries included in the file
requirements.txt. After that, the user needs to run the jupyter notebooks Classification_2_Bandit.ipynb
and Classification_2_Bandit-CIFAR-10.ipynb. Finally, the user should run the jupyter notebook
Algorithm_Comparison.ipynb. There, the user might modify the different parameters and settings of
the experiments.

All our experiments were run using the Google Cloud Platform, using a virtual computer with 4
N1-vCPU and 10 GB of RAM.

H TRUE RISK REGULARIZATION

We can choose the KL divergence instead of square root of KL divergence as a regularizer for IPS
estimator minimization. In this section, we study the true risk regularization using KL divergence
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between target and logging policy, i.e., D(πθ(A|X)∥π0(A|X)|PX), as follows:

min
πθ

αR(πθ) + (1− α)D(πθ(A|X)∥π0(A|X)|PX), α ∈ [0, 1] (68)

It is possible to provide the the optimal solution to regularized minimization equation 68.
Theorem 2. Considering the true risk minimization with KL divergence regularization,

min
πθ

αR(πθ) + (1− α)D(πθ(A|X)∥π0(A|X)|PX), α ∈ (0, 1], (69)

the optimal target policy is:

π⋆
θ(A = a|X = x) =

π0(A = a|X = x)e−
α

(1−α)
fr(a,x)

Eπ0
[e−

α
(1−α)

fr(a,x)]
(70)

Proof. The minimization problem equation 68 can be written as follows:

min
πθ

EPX
[Eπθ(A|X)[fr(A,X)]] +

(1− α)

α
D(πθ(A|X)∥π0(A|X)|PX), α ∈ (0, 1] (71)

Using the same approach by Zhang (2006); Aminian et al. (2021) and considering α
(1−α) as the

inverse temperature, the final result holds.

The optimal target policy under KL divergence regularization, i.e.,

π⋆
θ(A = a|X = x) =

π0(A = a|X = x)e−
α

(1−α)
fr(a,x)

Eπ0
[e−

α
(1−α)

fr(a,x)]
(72)

provide the following insights:

• The optimal target policy, π⋆
θ(A|X), is a stochastic policy similar to the Softmax policy.

• The optimal target policy is invariant with respect to constant shift in the reward function.
• For asymptotic condition, i.e., α→ 1, the optimal target policy will be deterministic policy.
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