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Neural Machine Unranking
Jingrui Hou, Axel Finke, and Georgina Cosma

Abstract—We tackle the problem of machine unlearning within
neural information retrieval, termed Neural Machine UnRanking
(NuMuR) for short. Many of the mainstream task- or model-
agnostic approaches for machine unlearning were designed for
classification tasks. First, we demonstrate that these methods
perform poorly on NuMuR tasks due to the unique challenges
posed by neural information retrieval. Then, we develop a
methodology for NuMuR named Contrastive and Consistent
Loss (CoCoL), which effectively balances the objectives of data
forgetting and model performance retention. Experimental results
demonstrate that CoCoL facilitates more effective and controllable
data removal than existing techniques.

Index Terms—machine unlearning, neural ranking, information
retrieval.

I. INTRODUCTION

Machine unlearning is the process of selectively removing
specific data points from a trained machine-learning model [1,
2]. This task has gained significant attention in recent years
as it addresses concerns regarding data privacy and model
adaptability [3, 1, 4, 2].

In this work, we focus on neural ranking models nowadays
used for information retrieval (IR), i.e., on neural IR. In this
context, machine unlearning may be needed for two main goals:

a. addressing data-privacy concerns, e.g., for deleting data of
a user who has exercised their ‘right to be forgotten’ [1, 5];

b. selectively deleting (e.g. outdated) information [6, 7]. For
instance, an IR system querying “What are the EU member
states?” might need to exclude “UK” from its results post-
2020 [8], illustrating a practical application of machine
unlearning in IR systems.

It is therefore important to design methods for machine
unlearning that can effectively deal with neural IR. Promi-
nent existing model- and task-agnostic unlearning methods
like Amnesiac Unlearning [9, 10] or Negative Gradient
Removal [11, 12] (NegGrad) could be employed. However,
these have been primarily designed for classification scenarios
where it is typically possible to unlearn a class by deliberately
damaging the model accuracy on the samples within that
class; and Figure 1 illustrates that such unlearning strategies
perform poorly in neural IR in the sense that reducing the
performance of these models on the ‘forget set’ (i.e. on
the data to be removed) incurs a severe performance loss
on the ‘retain set’ (i.e. on the remaining data) and on test
sets. We conjecture that this is due to strong dependencies
in neural IR models, where removing individual data points
disrupts learned patterns [13, 11, 14]. Another model-agnostic
unlearning method is the teacher–student framework [15, 16]
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which was likewise originally designed for classification tasks.
However, as we discuss in detail in Section II-C, a naïve
application of this approach to neural IR fails because the
relevance scores generated by neural ranking models cannot
easily be normalized.
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Fig. 1: Breakdown (in the sense of performance degradation
on retain and tests sets) of classical machine unlearning
baselines in neural information retrieval. The retrieval model
and dataset are Contextualized Late Interaction over BERT
(ColBERT) [17] and MircoSoft MAchine Reading COmpre-
hension (MS MARCO) [18].

An additional challenge is that unlearning solutions which
perform well on Goal a. may not be suitable for Goal b. and
vice versa. To see this, note that the ideal (though typically
prohibitively costly) solution for Goal a. would be to retrain
the model from scratch on the retain set. However, even if
such a ‘retrained’ model was available, there is no guarantee
that its performance on the forget set would be low enough to
satisfy Goal b.. Put differently, (re)training without the forget
set does not achieve controllable forgetting, i.e. the ability to
regulate the degree of performance loss on the forget set whilst
ensuring minimal loss in retention performance and inference
capability.

In this work, we introduce machine unlearning methodology
for both Goals a. and b.. Our methodology is loosely based on
the teacher–student framework from Chundawat et al. [15] and
Kurmanji et al. [16] but tailored to the challenges of neural
IR. Specifically, our contributions are as follows.

1) We formalise Neural Machine UnRanking (NuMuR) – the
task of unlearning queries or documents within neural IR.
We also provide two datasets to benchmark NuMuR.

2) We propose Contrastive and Consistent Loss (CoCoL) – a
machine unlearning method specifically designed for the
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NuMuR task.
3) We demonstrate that CoCoL improves upon baseline

methods in experimental validations. Specifically, CoCoL
achieves controllable forgetting, enabling variable scales
of data removal without markedly degrading the model’s
performance across both retain and test sets.

II. BACKGROUND AND PROBLEM DEFINITION

In this section, we provide, to our knowledge, the first
formalisation of the task of machine unlearning within neural
IR. We also explain why a naïve application of the teacher–
student framework does not work in this context.

A. Machine unlearning

Let W ⊆ Rd the parameter space and let S be the universe
of possible datasets. Let M : S → W be a learning algorithm
which maps a training set S ∈ S to a model w ∈ W . Learning
algorithms may be random but we do not make this explicit
in the notation. The trained model is then:

Mtrain = M(S) := argmin
w∈W

LS(w),

where LS(w) is some suitable loss which typically penalises
the discrepancy between the prediction by Model w and the
ground truth contained in the data set S.

Given the training set S, let F ⊆ S be the forget set which
contains a subset of data points in S to be unlearned; and let
R := S \F ∈ S be the retain set which contains the remaining
data points. This defines the retrained model

Mretrain := M(R).

Let U : W×S×S → W be a (potentially random) unlearning
algorithm for M which defines the unlearned model

Munlearn := U(Mtrain,F,R).

Unlearning algorithms are normally expected to ensure
that the unlearned model closely approximates the retrained
model, i.e., Munlearn ≈ Mretrain, whilst the computational cost
of unlearning – starting from Mtrain – should be less than
retraining from scratch on R [19, 20]. While mimicking Mretrain
aligns with Goal a., it does not enable controllable forgetting
(Goal b.). Therefore, we will base our unlearning approach
on the teacher–student framework (also known as knowledge
distillation) from Chundawat et al. [15], which can achieve
pre-specified degrees of forgetting by implementing different
distillation strategies.

Informally, the teacher–student framework specifies the
unlearning algorithm U as using stochastic gradient-descent –
initialised from Mtrain – to minimize (or at least decrease)

LMF,F(w) + LMR,R(w), (1)

where, for any dataset A, the objective LM,A(w) penalises
the difference between predictions made by the student model
w ∈ W (which is unlearning) and some fixed teacher model
M on A and is typically specified as follows.

• Since Munlearn should perform similarly to Mretrain on R
which in turn should perform similar to Mtrain (on R),

it is common to take MR := Mtrain in (1). This can be
interpreted as training w to obey the ‘competent’ teacher
model Mtrain on R [21, 22, 15, 16].

• Since Munlearn should achieve controllable forgetting, i.e.,
achieve a pre-specified performance δ that is worse than
Mtrain on F, it is common to take

LMF,F := −LMtrain,F,

in (1) which can be viewed as training w to disobey the
‘competent’ teacher Mtrain on F [16]; and then to stop
the gradient-descent iterations when the accuracy on the
forget set has dropped to the target level δ. Alternatively,
if the goals is that the unlearned model should perform
similarly to Minit := M(∅) on F, one could simply take
MF := Minit in (1), which can be viewed as training w
to obey the ‘incompetent’ teacher model Minit on F [15].
Of course, Minit could be replaced by another model,
e.g., by an adversarial model trained on with noisy data
[21, 12, 22].

B. Unlearning in neural information retrieval

The goal of information retrieval (IR) is to identify and
retrieve documents in response to a search query [23]. Let Q
be the universe of potential queries and let D be the universe
of potential documents. Queries are user inputs or requests for
specific information, typically in the form of words, phrases,
or questions; documents refer to units of content, such as web
pages or articles.

Then a dataset for (neural) IR S ∈ S consists of tuples
(x, y), where

• x = ⟨q, d⟩ ∈ Q ×D is a query–document pair;
• y ∈ {+, -} is the ground-truth relevance label of ⟨q, d⟩.

Here, ‘+’ indicates that d is considered relevant to q; ‘-’
indicates that d is irrelevant to q.

A neural-ranking model w ∈ W is then trained to predict
a relevance score fw(x) ∈ R of some query–document pair
x = ⟨q, d⟩. Relevance scores output by neural-ranking models
are used to rank documents. Each document associated with
a query is sorted by its score in (descending) order, so that
higher scores correspond to a higher rank and thus earlier
positions in the search results. Neural Machine UnRanking
(NuMuR) is then the task that this model unlearns either queries
or documents (or both):

• Query removal refers to deleting a set of queries Q′ (and
associated relevance scores) from the dataset. In this case,
F := {(⟨q, d⟩, y) ∈ S | q ∈ Q′}.

• Document removal refers to deleting a set of documents
D′ (and associated relevance scores) from the dataset. In
this case, F := {(⟨q, d⟩, y) ∈ S | d ∈ D′}.

One of the difficulties encountered in NuMuR is that certain
queries or documents may appear simultaneously in the retain
set R and in the forget set F. For example, assume that the
query: “The best one-week itinerary for a trip to London” is
associated with two recommended itineraries (i.e., documents).
If one itinerary’s owner recalls their answer, we must unlearn
one query–document pair whilst maintaining the other.
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To formalise this issue, we split the retain set R into an
entangled set E := {(⟨q, d⟩, y) ∈ R | ∃ (⟨q′, d′⟩, y) ∈ F :
(q ∈ Q′ or d ∈ D′)} containing queries or documents that also
appear in the forget set and a disjoint set D := R\E containing
all other queries and documents. Here, Q′ and D′ are again sets
of queries and documents that should be unlearned. Figure 2
provides detailed illustrations of entangled sets and disjoint
sets in both query removal and document removal.

1q 2q 3q 4q 5q

1d 2d 3d 4d 5d 6d

(a) Query removal. Here, queries Q′ = {q1, q2} are to be unlearned.
Thus, F = {(⟨q1, d1⟩, y1,1), (⟨q1, d2⟩, y1,2), (⟨q2, d2⟩, y2,2)},
E = {(⟨q3, d2⟩, y2,2), (⟨q4, d3⟩, y4,3)} and D =
{(⟨q4, d4⟩, y4,4), (⟨q5, d5⟩, y5,5)}.

1q 2q 3q 4q 5q

1d 2d 3d 4d 5d 6d

(b) Document removal. Here, documents D′ =
{d2, d3} are to be unlearned. Thus, F =
{(⟨q1, d2⟩, y1,2), (⟨q2, d3⟩, y2,3), (⟨q3, d2⟩, y3,2)}, (⟨q4, d3⟩, y4,3)},
E = {(⟨q1, d1⟩, y1,1), (⟨q4, d4⟩, y4,4)} and D = {(⟨q5, d5⟩, y5,5)}.

Fig. 2: Illustration of machine unranking for the dataset S =
{(⟨q1, d1⟩, y1,1), (⟨q1, d2⟩, y1,2), (⟨q2, d2⟩, y2,2), (⟨q3, d2⟩, y2,2),
(⟨q4, d3⟩, y4,3), (⟨q4, d4⟩, y4,4), (⟨q5, d5⟩, y5,5)}.

C. Breakdown of existing knowledge-distillation based unlearn-
ing algorithms in neural information retrieval

The teacher–student approach from Chundawat et al. [15]
(reviewed at the end of Section II-A) was primarily designed
for classification models where the objectives LM,A(w) in (1)
penalise the difference between class probabilities predicted by
the student model w and by the reference (‘teacher’) model M.
The teacher–student approach thus exploits the fact that the
outputs of neural classification models are class probabilities
which are always normalized, so that forgetting (e.g., of a class)
can always be ensured by simply lowering the associated class
probabilities. Unfortunately, the relevance scores generated
by neural ranking models cannot typically be normalized so
that the ranking implications of modifying relevance-score
distributions are unclear (see, e.g., Figure 8 in Appendix A);
and this, as well as the fact that classification tasks do not
involve entangled sets, causes the teacher–student approach to
break down in neural IR. More specifically, we identify the
following problems:

1) Minit cannot serve as ‘incompetent’ teacher. Due to the
lack of normalization, the relevance scores on F are not
necessarily lower under the ‘incompetent’ teacher model
(e.g., Minit) than under the trained model. For example, a
relevance score of 30, say, might imply a high rank under

the ‘competent’ teacher model, but a low rank under the
incompetent teacher model (see Figure 8 in Appendix A).
Therefore, using Minit as the teacher for the forget set
while employing Mtrain as a ‘competent’ teacher for the
retain set may be counterproductive.

2) Controllable forgetting is challenging in neural ranking.
In a k-class classification model, forgetting a specific
sample is achieved by adjusting the model output (i.e.,
class probabilities ∈ Rk) so that the probability of the
correct class falls below 1/k. This type of forgetting
can be quantitatively assessed using the Kullback–Leibler
divergence from the outputs of the teacher model to the
student model [21, 16, 22]. However, in neural ranking
models, achieving forgetting by manipulating the model
output (i.e., relevance score ∈ R, an unnormalized scalar)
is challenging, due to the absence of a clear threshold or
benchmark for adjusting these scores.

3) A naïve application of the teacher–student framework
overlooks the entangled set. A challenge in NuMuR is
that some queries or documents can appear in both the
retain and the forget set, as formalised by the entangled set.
Conventional teacher–student frameworks implement dis-
tinct strategies for the forget and retain sets, as summarized
in (1), without accounting for the entangled set. However,
effectively decoupling the learned relevance estimation
patterns between the forget set and the entangled set using
such unlearning methods is problematic. This issue will
be evidenced in Figure 6, where we illustrate that teacher–
student approach that ignores the entangled set yields
inferior performance on both the retain and test sets.

III. PROPOSED NEURAL MACHINE UNRANKING
METHODOLOGY

In this section, we propose a new teacher–student framework
for NuMuR, called Contrastive and Consistent Loss (CoCoL).
To address the three challenges discussed at the end of
Section II, CoCoL introduces the following elements.

1) To overcome the problem of using an ‘incompetent’
teacher model (such as Minit) in the presence of un-
normalized relevance scores, we attempt to reduce the
relevance scores on the forget set (relative to the trained
model, Mtrain) whilst seeking to maintain the relevance
scores on the retain set.

2) Given that relevance scores are not normalized, to enable
controllable forgetting, we stop the unlearning iterations
when

1

#QF

∑
q∈QF

1

rankw(q)
, (2)

is approximately equal to some pre-specified target δ > 0
rather than basing the termination on the average relevance
score reaching a predefined target level. Here, QF := {q ∈
Q | ∃ (⟨q′, d⟩, y) ∈ F : q′ = q} is the set of distinct
queries in the forget set.
• In query removal, rankw(q) denotes the rank of the first

relevant document for query q among all documents
allocated to query q for ranking. evaluated by Model w.
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Here, (2) simplifies to the classical mean reciprocal
rank (MRR) as described by Liu et al. [24].

• In document removal, rankw(q) represents the rank
of the first document marked for removal. This may
differ from the rank of the first relevant document. For
example, if Model w ranks the documents for Query q
as [d1, d3, d4, d2, . . .], where d1 is the first relevant but
d2 is the first marked for removal, the reciprocal rank is
recalculated as 0.25. While this differs from the classical
MRR, we retain the ‘MRR’ notation for consistency in
evaluation metrics.

3) To ensure that reducing the model accuracy on the forget
set does not inadvertently damage the model performance
on the entangled set, we pair a ‘forgetting sample’ with
a random selection of a sample from the corresponding
entangled set, as explained in the next section.

A. Objective

CoCoL uses gradient steps, started from the trained model
Mtrain, to decrease an objective of the form

LMF∪EF∪E(w) + LMD,D(w),

were LM,A(w) is again some objective which penalises the
discrepancy between w and some reference model M on some
dataset A. Note that this objective differs from the standard
teacher–student framework (1) in that the entangled set is
moved into the first component. Note also that we say ‘decrease’
rather than ‘minimize’ because the unlearning is simply stopped
when a pre-defined level of forgetting has been achieved (see
below for details).

The components LMF∪EF∪E(w) and LMD,D(w) are implicitly
defined through update rules which we now specify, where for
some query–document pair x = ⟨q, d⟩:

∆α,β
w,M(x) = −αfM(x)− fw(x) + β

fM(x) + fw(x)
, (3)

measures the discrepancy between the relevance score fM(x)
returned by some fixed reference (‘teacher’) model M and
the relevance score fw(x) returned by the ‘student’ model w.
Specifically, note that (3) decreases if the relevance score of
the teacher model M is much higher than that of the student
model w. In (3), α > 0 and β ≥ 0 are tuning parameters
whose choice will be discussed in Section III-B.

The update rules are then as follows.
1) Contrastive loss: implicit definition of LMF∪EF∪E(w). We

employ a contrastive loss to modify the student model w
such that it generates lower relevance scores on the forget
set than the trained model Mtrain whilst ensuring that
the relevance scores on the entangled set are maintained.
Specifically, at each iteration, we randomly select a sample
(x, y) = (⟨q, d⟩, y) ∈ F from the forget set and a second
sample (x′, y′) = (⟨q′, d′⟩, y′) ∈ E⟨q,d⟩, where E⟨q,d⟩ :=
{(⟨q′′, d′′⟩, y′′) ∈ E | q′′ = q or d′′ = d} contains the
samples that are entangled with (x, y), and then take a
gradient step which reduces

ReLu(∆α,β
w,Mtrain

(x)) + |∆1,0
w,Mtrain

(x′)|. (4)

Here, ReLu(z) := max(0, z). If E⟨q,d⟩ = ∅ then we take
the second term in (4) to be zero.

2) Consistent loss: implicit definition of LMD,D(w). We
employ a consistent loss to modify the student model
w such that it generates relevance scores on the disjoint
set that are similar to those from the trained model Mtrain.
Specifically, at each iteration, we randomly select a posi-
tive (i.e., relevant) sample (x+, y+) = (⟨q+, d+⟩, y+) ∈
D and a negative (i.e., irrelevant) sample (x−, y−) =
(⟨q−, d−⟩, y−) ∈ D from the disjoint set and then take a
gradient step which reduces

|∆1,0
w,Mtrain

(x+)|+ |∆1,0
w,Mtrain

(x−)|. (5)

In summary, our CoCoL unranking approach is illustrated
in Figure 3.
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Fig. 3: Illustration of the proposed CoCoL method.

B. Choice of tuning parameters

The efficacy of CoCoL depends on the appropriate setting
of parameters α and β in (4). From our empirical studies,
we have found that α = 1 and β = 0 works as a suitable
default for most neural ranking models and datasets. However,
adjusting α to a smaller value and β to a larger one can expedite
forgetting, with minimal impact on the retain set. Specifically,
for pretrained models, we recommend α ≈ 1 and β as a small
integer, such as 5. For methods based on word embeddings,
a significant reduction in α – for example, to 0.01 – can be
beneficial. Detailed experimental results pertaining to various
neural ranking models will be discussed in the subsequent
sections.

C. Stopping criteria of unranking

With appropriate settings of α and β in (4), alternating
between (4) and (5) ensures stable performance on both
entangled and disjoint datasets, while performance on the forget
set will progressively decline. Therefore, the optimal time to
stop unlearning is when the performance on the forget set as
measured by (2) reaches the pre-specified level δ > 0.
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IV. EXPERIMENTS

A. Datasets

Currently, there are no existing IR datasets specifically
designed for machine unlearning research. To address this, we
propose curating datasets derived from established benchmark
IR datasets. In selecting the appropriate datasets for NuMuR,
our selection criteria focused on datasets that feature extensive
one-to-many relevant query–document and document–query
pairings, essential for evaluating NuMuR methodologies. An
in-depth review of resources listed on ir-datasets.com identified
two sources that fulfil these requirements: MS MARCO [18]
and TREC Complex Answer Retrieval (TREC CAR) [25].
These sources were selected due to their large sample sizes
and the presence of overlapping queries and documents. The
sample ratio of the forget set, entangled set, and disjoint set is
approximately 1 : 1 : 2. Table I summarises the datasets.

TABLE I: Datasets created for this study.

Task Item MS MARCO TREC CAR

Document
Removal

Queries with multiple positive documents 2782 220271
Positive documents per query 2.19 3.42
To-be-ranked documents per query 2153 100
Pairwise samples for training 5983761 1945509
Pairwise samples for test 6668967 4710706

Query
Removal

Positive passages with multiple queries 4035 19455
Associated queries per positive documents 2.1 3.33
To-be-ranked documents per query 1986 100
Pairwise samples for training 8005618 752003
Pairwise samples for test 6668967 4710706

B. Evaluation metrics

1) Unlearning performance: To evaluate ranking perfor-
mance, we use the MRR metric as defined in (2) on the forget
set. For the retain and test sets, MRR is similarly computed
as the average of the reciprocals of the rank positions of the
first retrieved relevant document for the queries in each set.

2) Unlearning efficiency: Unlearning efficiency is measured
by the unlearn and relearn times.

a) Unlearn time: To ensure consistent measurement
across different neural ranking models and unlearning methods
we report the normalized unlearn epoch duration:

(normalized unlearn epoch duration)

:=
(avg time per unlearning epoch of Munlearn)

(avg time per learning epoch of Mtrain)
,

as well as the total unlearn time:

(total unlearn time) := (normalized unlearn epoch duration)
× (no of unlearn epochs).

b) Relearn time: The relearn time measures the number
of epochs required for the model to restore its pre-unlearning
performance level. A longer relearn time is indicative of a
more thorough unlearning process [13, 12, 22].

C. NIR models and unlearning baselines

We evaluate the proposed method alongside baseline ap-
proaches on multiple neural ranking models including two
cutting-edge pretraining-based models, ColBERT [17] and
BERT with Dot Productions (BERTdot) [26], along with two
sophisticated word-embedding-based models, Duet [27], and
MatchPyramid [28]. Table II lists the empirically chosen values
of the tuning parameters α and β used for each model based
on performance.

TABLE II: Values of (α, β) used in the experiments.

MSMARCO
query
removal

MSMARCO
document
removal

TREC CAR
query
removal

TREC CAR
document re-
moval

COLBERT (1, 5) (1, 5) (0.9, 0) (0.9, 0)
BERTdot (1, 5) (1, 5) (0.9, 0) (0.9, 0)
DUET (0.005, 0) (0.01, 0) (0.005, 0) (0.01, 0)
MatchPyramid (0.1, 0) (0.1, 0) (0.01, 0) (0.01, 0)

Given the limited studies that exist in NuMuR, identifying
comparable baselines is challenging. Therefore, the following
task- and model-agnostic unlearning methods were selected as
baselines:

1) Amnesiac [9, 10] continues training on Mtrain but with
mislabeled samples in the forget set1. To adapt this idea to
NuMuR, we intentionally score several ⟨q, d⟩ pairs marked
as ‘negative’ higher than those labelled as ‘positive’ in
the forget set and then keep training Mtrain on the revised
forget set and the original entangled set.

2) NegGrad, short for ‘negative gradient’, updates a learned
model in the reverse direction of the original gradient on
forget-set samples [11, 12].

We also report results for retrain, i.e., for retraining from scratch
on only the retain set [19, 1, 20, 2] as this can be considered the
‘idealised’ approach (unless ‘controllable forgetting’ is sought).
However, recall that as explained in Section II-A, obtaining
Mretrain is typically prohibitively costly.

D. Experimental results

1) Unlearning performance comparison: The unlearning
efficacy of the proposed CoCoL method compared to estab-
lished baseline techniques is illustrated in Figure 4. Given this
study’s focus on controllable forgetting, we conducted multiple
experiments using CoCoL with various settings of (2).

First, aligning with Goal a., we set (2) to match the test
performance of the Mretrain. Additionally, aligning with Goal b.,
we set (2) to two other values:
(1) the performance of Mretrain on the forget set (typically

higher than Goal a.) to verify efficiency of CoCoL in
achieving similar performance to the Mretrain;

(2) half of the performance of the Mretrain on the test set, to
evaluate unlearning performance when requiring lower
performance on the forget set.

1Graves et al. [9] proposed two unlearning methods: the first method is as
described, while the second requires gradient storage during the training of
Mtrain and is challenging to apply in neural ranking tasks. Following Foster
et al. [10], we use only the first method and refer to it as ‘Amnesiac’.

https://ir-datasets.com/
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Fig. 4: Unlearning performance. The upper and lower bounds of each error bar denote the maximum and minimum MRR
scores of the four tasks. See Figure 9 for detailed performance metrics for each task. Ours(1), Ours(2), and Ours(3) correspond
to setting δ (i.e., the target for (2)) to half of the performance on the test set, the full performance on the test set, and the
performance on the forget set, under Mretrain, respectively. This figure illustrates that the proposed CoCoL method achieves
controllable forgetting, maintaining varying degrees of performance on the forget set while maintaining performance close to
the retrained model on the retain and test sets.

Notably, in the absence of the Mretrain, we can use the Mtrain
as a surrogate for evaluating performance on the retain and
test sets.

For a detailed examination across four tasks and four
neural ranking models, see Figure 9 in Appendix A. Pertinent
to Goal b., additional details on the degrees of unlearning
performance can be found in Figure 10 in Appendix A.

In terms of performance on the forget set, Amnesiac and
NegGrad demonstrated the most substantial decreases. Aligning
with Goal a., CoCoL consistently mirrored the performance
metrics closest to the test set performance of Mretrain.

Ideal unlearning performance on entangled and disjoint sets
should mirror that of a retrained model. Therefore, we focus
on Amnesiac, NegGrad, and CoCoL. As shown in Figure 4,
NegGrad and Amnesiac consistently exhibited a decline in
performance on both entangled and disjoint sets compared to
the benchmark. In contrast, CoCoL, with different values of
(2), maintained performance close to the benchmark across
both sets, distinguishing it from NegGrad and Amnesiac,
demonstrating controllable forgetting capacity.

For tet sets (unseen data), the performance of the retrained
models serves as the benchmark, with higher performance
indicating better inference ability. As shown in Figure 4, both
Amnesiac and NegGrad exhibited significantly lower MRR
scores compared to the benchmark, indicating their inability
to maintain effective inference on unseen data. In contrast,
CoCoL demonstrated not only controllable forgetting but also
robust performance on unseen data.

2) Unlearning efficiency: The unlearning time for each
experimental group is presented in Figure 5. When emulating
the Mretrain (with (2) set to the performance of Mretrain on
forget set), CoCoL consumed less time than Retrain in 13 out
of 16 cases (four neural ranking models across four tasks).

Across the four neural ranking models evaluated, CoCoL

demonstrated a shorter unlearning time than Retrain for the
pretrained models ColBERT and BERTdot in most cases.
Conversely, CoCoL was less efficient with the Duet and
MatchPyramid models, indicating potential areas for improving
the efficiency of CoCoL in unlearning time for conventional
models.

The relearn time for each model across different tasks is
detailed in Figure III, considering only (2) set to meet Goal a..
The relearn process involves iterative training the unlearned
model, Munlearn, with the forget set until the performance on
this set matches the level of the originally trained model, Mtrain.
Consequently, the number of epochs in this iterative training
is used to represent the relearn time.

Among the four neural ranking models examined, two
pretraining-based models (ColBERT and BERTdot) and Duet
could be relearned within two epochs. Specifically, for the
TREC CAR query removal task, the relearn time of CoCoL
was two epochs, compared to one epoch for the Retrain method.
For the other three task groups, both CoCoL and Retrain
demonstrated a relearn time of one epoch. In the case of
MatchPyramid, CoCoL outperformed Retrain in two tasks of
the MS MARCO dataset, whereas Retrain excelled in the two
TREC CAR tasks.

E. Loss component effectiveness and parameter sensitivity
analysis

This section describes the impact of individual loss com-
ponents and parameter settings in CoCoL on the unlearning
performance.

To assess the effectiveness of each component in contrastive
and consistent loss, we conducted an experiment with both
query removal and document removal tasks from the MS
MARCO dataset using the state-of-the-art ColBERT neural-
ranking model.
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Fig. 5: Unlearn time (shorter is better). For advanced pretrained neural ranking models (ColBERT and BERTdot), CoCoL
consumed significantly less time than Retrain when (2) was set to the performance on the forget set (Ours(3)), and took longer
only in some groups for low forget set performance (Ours(1)). CoCoL was less efficient on pre-BERT models (MatchPyramid
and Duet) compared to pretrained models. However, the former are less popular [29] and less effective (see Figure 9) than the
latter.

TABLE III: Relearn time (higher is better).

Model MS MARCO query removal MS MARCO document removal TREC CAR query removal TREC CAR document removal
CoCoL Retrain CoCoL Retrain CoCoL Retrain CoCoL Retrain

COLBERT 1 1 1 1 2 1 1 1
BERTdot 1 1 1 1 2 1 1 1
DUET 1 1 1 2 2 1 1 1
MatchPyramid 12 3 9 8 1 8 6 25

Figure 6 illustrates that omitting the consistent loss led to
a more rapid decline in MRR scores on the forgetting set for
both tasks, indicating that the consistent loss played a role
in moderating the forgetting speed. The absence of consistent
loss had a minimal impact on disjoint data: in query removal,
the performance slightly underperformed the baseline model,
whereas in document removal, it marginally surpassed the
baseline.

The removal of the entangled component also resulted in an
accelerated forgetting rate. However, this removal significantly
diminished the performance of the unlearned model on all
retained and unseen data, particularly in the document removal
task, where there was a marked decline in model performance
across all forget, retain, and test sets after just two epochs.

The second experiment examined the impact of parameters α
and β in contrastive loss, which influenced the forgetting speed
and the balance between forgetting and retaining performance.
Using the ColBERT model tested on the MS MARCO
dataset, the results, as depicted in Figure 7, provide intuitive
observations. As α was progressively reduced from 1 to 0.1
in document removal or from 1 to 0.5 in query removal, the
model exhibited a quicker forgetting speed without significantly
damaging the performance on the retain and test sets. However,
smaller values of α (e.g., 0.05, 0.01) resulted in a dramatic
decline in MRR scores in the forget set and failed to maintain
performance on the retain and unseen sets. The sensitivity
analysis of β closely mirrored that of α. An optimal setting
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Fig. 6: The impact of omitting different loss components. The
‘benchmark’ indicates the benchmark performance using all
loss components; ‘without entangled component’ and ‘without
consistent loss’ denote the performance curves when excluding
loss components associated with the entangled set in (4) and
the disjoint set in (5), respectively. This figure demonstrates
that both the entangled and consistent loss components are
crucial for balancing forgetting performance with retention and
inference capabilities.
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Fig. 7: The impact of parameters α and β in the contrastive loss. The figure shows that appropriate settings for α and β
(specifically, α ≥ 0.1 or β ≤ 20) enable effective forgetting while maintaining performance on the retain and test sets.

of β effectively accelerated forgetting.

F. Discussion

Our proposed method, CoCoL, was able to achieve con-
trollable forgetting of targeted information while preserving
the overall performance of neural ranking models on retained
and unseen data. However, some limitations remain. Firstly,
in the unlearning performance evaluation, CoCoL exhibited
shortcomings in some TREC CAR groups, indicating an
inconsistency in its effectiveness across different datasets and
tasks. Secondly, the necessity of manual setting for parameters
α and β poses a challenge. While these parameters influence
the balance between forgetting and retaining performance, we
provide experiential guidelines to streamline their tuning pro-
cess. Finally, CoCoL does not differentiate between document
removal and query removal, treating them as equivalent. A
more tailored approach that recognizes and accommodates
these differences could enhance the method’s precision and
effectiveness. Addressing these limitations in future iterations of
the method is crucial to improve its robustness and adaptability.

The exploration of CoCoL capabilities has opened avenues
for future research in NuMuR. One critical area of focus
should be on model-specific approaches, especially for models
where CoCoL underperformed, such as MatchPyramid. CoCoL
demonstrates proficiency with pretraining-based neural ranking
models but the underperformance in other models suggests a
need for strategies tailored to the unique characteristics of each
model. Understanding and leveraging the specific features and
mechanisms of different models can lead to more effective
unranking approaches.

Additionally, future research should aim to distinguish
between query removal and document removal more precisely.
Recognizing and addressing the subtle differences between

these two sub-tasks could lead to the development of more
nuanced and targeted unranking methods, enhancing the overall
effectiveness and accuracy of the NuMuR task.

Another significant area for advancement is the automation
of parameter settings, specifically for α and β. Automating
these settings would not only streamline the unranking process
but also potentially optimize the balance between forgetting
and retaining performance, making the method more accessible
and flexible.

Lastly, considering that neural ranking models typically
comprise both embedding and ranking modules, it is imperative
to investigate how unranking methods interact with these
components differently. Future research should delve into the
distinct impacts of unranking on embedding and ranking mod-
ules, and accordingly, develop improved unranking methods
that treat these modules differently. Such an approach could
lead to more effective unranking techniques, further advancing
NuMuR.

V. CONCLUSION

In an era where data privacy and dynamic information
landscapes are paramount, this study focuses on the field of
machine unlearning, specifically within the context of neural
ranking models for information retrieval (IR) systems. This
research introduced the concept of Neural Machine UnRanking
(NuMuR), presenting a novel method (Contrastive and Consis-
tent Loss (CoCoL)) that effectively balances the delicate trade-
off between controllable forgetting specific information and
maintaining the overall performance of neural ranking models.
CoCoL is particularly effective with pretraining-based neural
ranking models, representing an advancement in addressing the
unique challenges posed by machine unlearning in IR systems.
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APPENDIX

RELEVANCE SCORE INTERVAL COMPARISON

This section provides examples showing that relevance
score distributions vary across different neural ranking models.
Figure 8 illustrates differences in the scale of relevance scores.
Both BERTdot and ColBERT exhibit relatively lower relevance
score ranges after training. Using Minit as the ‘incompetent’
teacher may result in higher relevance scores on forgetting
samples. Additionally.
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Fig. 8: Comparison between Minit and Mtrain. The figure
shows that neural ranking models trained on certain datasets
may experience shifts in relevance score intervals.

DETAILED UNLEARNING PERFORMANCE

Figure 9 provides detailed unlearning performance (MRR
scores of various neural ranking models across different tasks.

Figure 10 illustrates the unlearning performance of various
neural ranking models across different tasks. The ‘Ideal epochs’
correspond to the stopping points that satisfy Goal a.. A
clear trend is observed, where forgetting scores decline while
performance on both entangled and disjoint sets remains
stable (from Figure 10a to Figure 10l). Even when forgetting
performance significantly diverges from test performance,
CoCoL consistently maintains the stability of the retain set.
This observation underscores the effectiveness of CoCoL in
achieving Goal b..

In certain scenarios, CoCoL even enhances the convergence
of retain sets throughout the unlearning process (as shown in
Figure 10m and Figure 10n). Nevertheless, there are instances
where it faces challenges in striking a precise balance between
forgetting and retaining performances, evident in Figure 10o
and Figure 10p.

DATA AVAILABILITY

To access the dataset and reproduce the experiments,
please refer to the paper’s GitHub repository located at
github.com/[whitespace].
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Fig. 10: Unlearning performance of CoCoL across various neural ranking models on different tasks.
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