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Abstract

Most previous few-shot action recognition works tend to process video temporal and spatial features separately, resulting in
insufficient extraction of comprehensive features. In this paper, a novel hybrid attentive prototypical network (HAPN) frame-
work for few-shot action recognition is proposed. Distinguished by its joint processing of temporal and spatial information, the
HAPN framework strategically manipulates these dimensions from feature extraction to the attention module, consequently
enhancing its ability to perform action recognition tasks. Our framework utilizes the R(2+1)D backbone network, coupling the
extraction of integrated temporal and spatial features to ensure a comprehensive understanding of video content. Additionally,
our framework introduces the novel Residual Tri-dimensional Attention (ResTriDA) mechanism, specifically designed to
augment feature information across the temporal, spatial, and channel dimensions. ResTriDA dynamically enhances crucial
aspects of video features by amplifying significant channel-wise features for action distinction, accentuating spatial details
vital for capturing the essence of actions within frames, and emphasizing temporal dynamics to capture movement over time.
We further propose a prototypical attentive matching module (PAM) built on the concept of metric learning to resolve the
overfitting issue common in few-shot tasks. We evaluate our HAPN framework on three classical few-shot action recognition
datasets: Kinetics-100, UCF101, and HMDB51. The results indicate that our framework significantly outperformed state-
of-the-art methods. Notably, the 1-shot task, demonstrated an increase of 9.8% in accuracy on UCF101 and improvements
of 3.9% on HMDB51 and 12.4% on Kinetics-100. These gains confirm the robustness and effectiveness of our approach in
leveraging limited data for precise action recognition.
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Introduction lenge in action recognition lies in the variability of human

activities, which poses significant demands on how to deal

Action recognition is an essential subtask in the field of
video understanding, which aims to classify a video con-
taining human actions [1, 2]. This task possesses significant
potential and broad application value across various practical
areas, such as robotic operations [3—6], public safety mon-
itoring of violent behaviors [7], and traffic flow detection
[8, 9]. Unlike tasks in the image domain, the main chal-
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with the video’s temporal information. With the continuous
improvement of large-scale datasets [10, 11] in the video field
and the development of excellent deep-learning large models
[12-14], the task of action recognition has witnessed notable
advancements in recent years. However, regular action recog-
nition tasks need significant quantities of annotated video
data as task support, which is time-consuming and difficult
to transfer to other dataset tasks. Few-shot action recogni-
tion occurs when the need to reduce reliance on large-scale
datasets emerges.

The goal of the few-shot action recognition task is to pre-
cisely categorize videos without labels into defined video
categories using just a tiny amount of data. The task of few-
shot action recognition is exceedingly challenging because
of the restricted quantity of available data. Existing method-
ologies for few-shot action recognition tasks can typically be
classified into two distinct categories, one is based on gener-
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ation [15, 16], and the other is based on metric learning [17,
18]. The main objective of generation-based approaches is
to enhance recognition accuracy by augmenting the dataset’s
sample size. The metric-based approach derives a sample
point vector space by processing the features, and the distance
between the query vector and the support vector determines
the classification result [19, 20]. The idea of metric learning
is used in the bulk of current mainstream approaches. For
instance, the Spatial-Temporal Relation Model (STRM) [21]
builds upon the foundation laid by the Temporal-Relation
CrossTransformer (TRX) [22], enhancing it with a spatio-
temporal enrichment module and a temporal relationship
modeling module. These additions aim to augment fea-
ture representation, resulting in STRM achieving the current
state-of-the-art performance in the domain. However, like
many preceding approaches [17, 21-24], STRM relies on a
2D network as its core feature extraction network. The main
limitation of 2D networks in video processing is that they
handle spatial and temporal information separately. Even
though STRM introduced Patch-Level Enrichment (PLE)
and Frame-Level Enrichment (FLE) to improve temporal and
spatial processing, these processes are still decoupled. PLE
focuses on enhancing local patch features within a frame,
which often fails to capture the dynamic progression of
actions over time. The action unfolds over time, and merely
enhancing patches within a frame can neglect the overarching
temporal dynamics. On the other hand, FLE averages global
frame features, potentially resulting in the loss of essen-
tial local spatiotemporal details. This decoupled approach
to enhancement struggles to effectively integrate spatiotem-
poral information, thereby impeding the model’s capacity
to fully grasp the complexity and continuity of actions in
videos. The widespread adoption of 2D networks in few-
shot action recognition methods, which typically involve the
separate extraction of features and a decoupled approach to
processing spatiotemporal information, significantly restricts
the ability to preserve the intrinsic continuity and complex
dynamics of actions within videos. This limitation hampers
the overall effectiveness and accuracy of these models.

In summary, current research in few-shot action recogni-
tion (FSAR) faces two primary challenges: (1) Insufficient
integration of information. Traditional few-shot action
recognition methods often process spatial and temporal infor-
mation separately in videos, which fails to effectively capture
the continuity and complexity of actions over time. (2) Few-
shot learning generalization issues. Given the reliance on
limited training samples typical of few-shot settings, mod-
els are prone to overfitting, making accurate recognition of
unseen categories or actions challenging. In this research
background, we propose the Hybrid Attentive Prototypical
Network (HAPN).

Addressing the first challenge, HAPN employs the R(2+1)D
backbone network, ingeniously integrating the extraction

@ Springer

of spatial and temporal features. This design allows the
network to delve deeply into the video content, precisely
capturing the subtle complexities of actions across both time
and space. Simultaneously, we introduce the Residual Tri-
dimensional Attention mechanism, significantly bolstering
our framework’s capability to integrate spatial, channel, and
temporal information comprehensively. ResTriDA adopts a
unified processing strategy, treating spatial, channel, and
temporal data as interconnected entities rather than isolated
dimensions, fundamentally transforming action recognition.
Within the spatial dimension, ResTriDA maps the context of
each frame, spotlighting areas of interest crucial for identify-
ing specific actions. Concurrently, it refines feature channels
along the channel dimension. By embedding a temporal
convolution layer into this architecture, ResTriDA extends
its influence into the temporal dimension, empowering the
model to comprehend the continuity and evolution of actions
across frames. ResTriDA enables a deep understanding of
videos by closely linking enhancements in space and chan-
nel aspects with time changes. This means it can catch the fine
details and the flow of movements within videos, leading to
aricher and more accurate analysis of actions. In response to
the second challenge, to address the risk of overfitting associ-
ated with limited data samples in few-shot learning tasks, we
introduce the Prototype Attention Matching (PAM) module.
This module employs metric learning principles to enhance
the model’s ability to generalize across different action cat-
egories, leveraging inherent similarities and ensuring robust
action recognition performance.

In general, the contributions of our research can be sum-
marized as follows:

e We propose a novel Hybrid Attention Prototyping Net-
work framework, which is highlighted by the joint
processing of temporal and spatial information. This joint
processing strategy starts from feature extraction and
extends to the final attention module.

e We incorporate the ResTriDA module and the PAM
module into our framework. The ResTriDA module
adeptly amplifies feature information throughout the
three-dimensional space, enriching the model’s repre-
sentational capacity. Concurrently, the PAM module
skillfully navigates the constraints of limited sample sizes
by leveraging inherent similarities across various action
categories, thereby enhancing the model’s ability to gen-
eralize and discern nuanced differences in actions.

e We evaluate HAPN on three classical few-shot action
recognition datasets, Kinetics-100 [11], HMDBS51 [25],
and UCF101 [26]. Comprehensive experiments demon-
strate that our model performs remarkably better than the
state-of-the-art on both 1-shot and 5-shot tasks.
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Related work

In this section, we provide a concise overview of the research
areas relevant to this paper, namely video understanding, pro-
totype network, and few-shot action recognition.

Video understanding

The research of video understanding has expanded signif-
icantly in recent years [13, 14, 27, 28]. Initially, utilizing
convolutional neural networks for video understanding tasks
does not yield better results than traditional methods relying
on manual feature extraction because videos possess tempo-
ral information and 2D networks are not adept at effectively
learning and utilizing this temporal information. To address
the issue of processing timing, researchers propose the two-
stream network [13] and the 3D network [14]. Two-stream
network imports the optical stream to process the temporal
features of the video, and the 3D network directly performs
convolutional processing on the input time axis. However,
the calculation takes time for both the two-stream and the
3D network. The R(2+1)D [28] network is derived from the
3D network. The R(2+1)D architecture splits the 3D convo-
lutional layer into two parts: a 2D convolutional layer that
handles spatial information, and a 1D convolutional layer
that handles temporal information. This operation reduces
the optimization difficulty of the network and achieves
superior performance in video understanding. The develop-
ment in video understanding marks a significant transition
from the initial separate processing of spatial and tempo-
ral information to later, more integrated approaches aimed
at comprehensively understanding video features. However,
in the research of few-shot action recognition, most existing
methods still rely on strategies that treat spatial and temporal
features separately, not fully exploiting the potential value of
the continuity in video data. Notably, although the R(2+1)D
network has made significant progress in handling spatial
and temporal information, its potential in scenarios requir-
ing high data efficiency, such as few-shot action recognition,
has not been fully explored. Future research should aim to
further optimize the video understanding network to suit the
needs of few-shot learning. Our work introduces the concept
of integrated processing for continuous video into the task of
few-shot action recognition. By employing the R(2+1)D net-
work as the feature extractor, we consider the joint extraction
of spatial and temporal information right from the first step.
Our method not only addresses the shortcomings of tradi-
tional methods, which typically handle spatial and temporal
features in isolation but also offers a new perspective for
exploration in the domain of few-shot action recognition.

Prototype network

The prototype network is a straightforward and efficient
method for learning from few-shot samples. The goal of a
prototype network is to learn a vector space to achieve a
sample classification task [29, 30]. ProtoNet [19] is based
on Matching Net [20], which uses a cosine function in the
embedding space to measure the degree of the match after
feature extraction. ProtoNet calculates the vector mean based
on the Euclidean distance metric and then determines the
distance from the test sample to each prototype. Relation-
Net [31] is also a prototype network, and the relationship
module structure is utilized in place of the cosine and
Euclidean distance metrics used in MatchingNet and Pro-
toNet. RelationNet employs a learnable nonlinear classifier
to identify the relationship between sample points. Although
traditional prototype networks offer a straightforward and
efficient approach to few-shot learning, they struggle with
the complexity of data features and variability within and
between classes. These networks typically compute the dis-
tance between samples and prototypes directly in the feature
space without fully leveraging the relational information
among samples. Moreover, when handling temporal-spatial
data such as videos, their ability to integrate temporal and
spatial features is limited, potentially failing to capture sub-
tle differences in actions or events. In response to these issues,
our Hybrid Attentive Prototypical Network framework intro-
duces an innovative improvement with the Prototypical
Attentive Matching module. By incorporating a multi-head
self-attention mechanism, the PAM module enhances the
model’s ability to capture relationships between features,
allowing it to consider the dynamic interactions among sam-
ple features when computing distances between samples and
prototypes. PAM not only addresses the inadequacies of tra-
ditional prototype networks in handling variability within
and between classes but also enhances the network’s ability
to integrate and utilize complex data features.

Few-shot action recognition

Action recognition is a branch task in video understanding
[32]. In contrast to the standard action recognition task, the
few-shot action recognition task only provides a tiny sample
size for training [33]. Some approaches use generation-
based ideas to carry out the task. For example, ProtoGAN
[16] creates a conditional generative adversarial network by
incorporating class prototype vectors to generate additional
instances of novel classes. AmeFu-Net [15] mainly proposes
introducing depth information as additional details regard-
ing the scene to alleviate the problem of a severe lack of
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Fig. 1 Schematic illustration of the proposed Hybrid Attentive Pro-
totypical Network method for solving a 3-way 1-shot problem. The
temporal feature embedding module analyzes the training video data,
which consists of a support set (3-way 1-shot) and a query set, to extract
the support features from the video data in the support set. The video
frame data in the query set is also processed by the embedding module
of the same structure to obtain the query feature. The ResTriDA module

annotation information under few-shot learning from a mul-
timodal perspective. Most methods are still based on metrics,
such as OTAM [23] using sparse sampling to get a sequence
fragment and utilizing a temporal alignment to leverage the
temporal information of features for metric matching. TRX
[22] proposes a tuple base to process the temporal sequences
separately while comparing the query and supporting video
subsequences in a partial-based manner. STRM [21], similar
to TRX [22], also utilizes a tuple base and uses the mlp-
mixer to process the temporal sequences. HyRSM [17] adds
an intra-relation function to the 2D network after extract-
ing features to capture the intra-relation function to capture
the temporal dependencies of video frames and proposes a
new metric. Current few-shot action recognition methods
typically process temporal and spatial features separately,
overlooking the continuity and interdependence between
time and space. This separation can lead to critical infor-
mation loss, particularly detrimental in few-shot learning
scenarios, impairing the model’s ability to accurately recog-
nize actions. Thus, future research should focus more on the
integration of temporal and spatial features, drawing inspi-
ration from the video understanding field’s deep exploration
of the continuous relationships in spatio-temporal data to
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then enhances the spatial and temporal features. Then, before match-
ing, we apply the standard multi-head self-attention layer to feature x,
enhancing its representation. Finally, the prototype network acquires
knowledge of a metric space where classification is accomplished by
calculating the distance between samples in the query set and their cor-
responding prototype representations in the support set

explore more efficient ways of utilizing information. Our
approach is based on this insight, proposing an end-to-end
joint coupling strategy. By employing the R(2+1)D network
as our backbone for feature extraction, our model avoids
the issue of information loss caused by separating temporal
and spatial processing right from the start. Additionally, the
hybrid attention mechanism we introduce integrates across
spatial, temporal, and channel dimensions, ensuring com-
prehensive use of all available information at every step.
This all-dimensional joint processing significantly enhances
action recognition accuracy under few-shot conditions.

Method

In this section, we start with the problem description of few-
shot action recognition. Then the proposed Hybrid Attentive
Prototypical Network framework is introduced.

Problem definition

Our task builds on the standard definition of few-shot action
recognition [23, 34]. We divide the data set on this basis
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into a training set Dyq4in, a validation set D,,;, and a test
set Dyes:. There is no data category overlap in any of these
three sets. Few-shot action recognition can be considered
an N ways K shots video classification problem. Using the
training process as an example, we sample from the dataset
Dyyqin according to the rules of episode training [35]. A sup-
port set S is created by randomly picking N data categories
and sampling K videos from each type. The query set Q is
formed by selecting C videos from the remaining unsampled
data of the selected N categories. The goal of the few-shot
action recognition task is to accurately classify a query set
0{q1, ..., qc} without labels into one of the N categories
in the support set S.

Overall architecture

Figure 1 illustrates the overall architecture of HAPN. To
clearly illustrate our approach, we set N = 3, K = 1,
and discuss only for a single query video. The support set
S{s1, ..., sy} contains N kinds of video actions. We extract
each video clip into L video frames and use the video frames
as input to the network. The temporal feature embedding
module processes the video frames in the support set to obtain
the support features E (s;). The video frame data in the query
set also undergoes processing by the embedding module with
the same structure to obtain the query feature E (g). Note
that the two embedding modules of the same structure share
parameters and weights. Then, the features are processed by
the ResTriDA module and the prototypical attentive match-
ing module. The support set’s features are mapped to the
vector space (D1, cdots, Dy). The same mapping function
is used to map the features in the query set to the vector
space G. Finally, we calculate the distance between G and
(D1, -+, Dy). Then we select the category corresponding
to the closest vector as the category of the query feature.

Embedding module

The most significant difference between video action and
standard picture data is that video incorporates temporal
information. One of the important aspects and challenges
in few-shot action recognition is extracting temporal infor-
mation from video data. The majority of available few-shot
action recognition methods extract video action features
using 2D CNN [17, 21-24]. Although the method for fea-
ture extraction using 2D CNN is concise and convenient, it
ignores the temporal elements of video actions, which causes
many previous methods to add additional modules to analyze
the temporal features, increasing the network’s complexity.
Some previous approaches [34, 36] use 3D CNN as a module
for feature extraction, but they often suffer from the problems
of slow network operation and insufficient recognition accu-
racy.

kxdxd 1xdxd kx1x1

Fig.2 R(2+1)D main module structure. R(2+1)D is obtained by evolv-
ing based on 3D CNN. The complete 3D convolution of size k x d x d
in the 3D CNN is split into a 2D convolution of size 1 x d x d and a
1D convolution of size k£ x 1 x 1. The 2D convolution deals with the
spatial information of the input data and the 1D convolution deals with
the temporal information of the data

After considering the above issues, our embedding mod-
ule adopts R(2+1)D [28]. As shown in Fig. 2, R(2+1)D is
obtained by evolving based on 3D CNN. The goal is to divide
the entire 3D convolution specification in 3D CNN into one
2D convolution and one 1D convolution. The spatial infor-
mation of the input data is processed using 2D convolution,
while the temporal information is processed using 1D con-
volution. The R(2+1)D convolution separates the processes,
making optimizing the network for better outcomes easier.
We obtain features with temporal information by utilizing
R(2+1)D to extract the features.

Residual tri-dimensional attention module

In this section, we dive into the ResTriDA module, which is
an integral component of our proposed model. ResTriDA is
designed to operate collaboratively to enhance spatial, chan-
nel, and temporal aspects of feature representations. This
comprehensively enriching approach enables the network to
concentrate specifically on the most important details in the
input video features. ResTriDA acts as a single integrated
unit that enhances spatial channel characterization while
strengthening the spatio-temporal relationships in the video
sequence. This holistic operation ensures a wider and more
complex understanding of the video content, which greatly
improves performance in action recognition tasks.

To more comprehensively extract spatial context infor-
mation from videos and discern category differences across
different spatial locations, we begin by integrating the Polar-
ized Self-Attention mechanism (PSA) [37] into our model.
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PSA serves to enhance feature extraction within both the
spatial context and the channel of each video frame. How-
ever, acknowledging the limitation of PSA in capturing only
spatial and channel-specific information, we further innovate
by introducing ResTriDA. ResTriDA not only maintains the
benefits of PSA but also integrates a temporal convolution
operation, allowing us to capture crucial temporal dynamics
within the video sequences. This innovative augmentation to
the PSA transforms it into a tri-dimensional feature extractor,
with robust capabilities across spatial, channel, and, criti-
cally, temporal dimensions. As a result, ResTriDA provides
a more comprehensive view of the video content and also
enables joint processing of the video information.

The processing outputs E(s;), E(q) € REXTXCxHxW
obtained from the embedding module are given as the input
to our innovative ResTriDA. Here, B represents the size of
the batch, T represents the temporal dimension of the feature,
C represents the number of channels, and H and W represent
the height and width of the feature, respectively.

As shown in Fig. 3, the ResTriDA module is a tripar-
tite system, with distinct channel, spatial, and temporal
branches. The channel and spatial branch are designed to
compress information along one dimension while maintain-
ing high-resolution features across the remaining orthogonal
dimensions. This approach ensures that while the model con-
denses critical information to a more manageable form, it
simultaneously preserves the granularity and richness of the
data along other axes.

First, we introduce the Channel Attention Branch. This
branch begins by transforming the input feature map, denoted
as x, through two different convolution layers, generating two
sets of features V., and Q.j, which materialize as follows:

Vor = CY (). Qe = Ch (), ()

where Cj and Cg represent the convolutional operations with
parameters 6 and ¢. V., denotes the process of converting
the input x by applying the convolutional layer, resulting in
the extraction of features with half the number of channels.
Q_, represents the transformation of input x through the con-
volutional layer, compressing the number of channels to 1,
which is used to compute the attention weights. Next, a Soft-
max operation is performed on the reshaped Q. to obtain
the attentional weight 2.5 on the channel.

Qepn =7 (T(Qehs B, %)), 2

where 7 denotes the reshape transformation. . represents
the Softmax function, the formula can be expressed in the
following way:

@ Springer

exp(z;)

L) = =,
Zf:l exp(z;)

3

here, z is a vector of real numbers. K is the total number of
elements in vector z. exp(-) denotes the exponential function.
Thenreshape V., for matrix multiplication, which is noted
as Z.,. The computed attention weights are then applied to
Z.}, to obtain the weighted feature A ;. Finally, the weighted
features are convolved and layer normalized, and then the
final channel attention output X is generated by the Sigmoid
function o. The above process can be represented as:

Zor = T(Van, B, 5.9, @
Ach = Zch © Wcha (5)
X, =0 (cN (cg (Ach))> . 6)

The formula for the Sigmoid function o is:

)

ox) = .

14+e*
In summary, the whole process of channel attention

branching can be summarized in a more compact formula:

X, =0 <£N <CS><5 <R<va(x) 0 (R (Cwq(x)a B, x, 1)) s

5nv)))

Next, we introduce the Spatial Attention Branch. Based on
the feature X, the spatial attention branch further performs
a sequence of operations similar to the channel branch but
focusing on the spatial dimension.

Vsp = Cé’(X), Qsp = Cg (%), 9

where Vj,, represents the feature X, after transforming the
channel attention processing through the convolutional layer
Cy, generating spatial features with half the number of chan-
nels. And Q) represents the base features for generating
spatial attention weights by transforming X, through the con-
volutional layer C;.

The spatial attention weight W, is then obtained by
applying adaptive average pooling G and Softmax function

to Qsp.
Wy =7 (G(T(Qyp, B, %, 1)) (10)

The formula for G is as follows:

1 H W o
GQuk = 7 ;;Qw(z, j. k), (11)
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Fig.3 Residual tri-dimensional attention module. The ResTriDA mod-
ule is composed of three branches, the channel branch, the spatial
branch, and the temporal branch. Built upon the Polarized Self-
Attention (PSA) mechanism, ResTriDA expands the feature extraction

where G(Qsp )« is the k-th element of the output of the adap-
tive average pooling operation, corresponding to the k-th
channel. Qy, (i, j, k) is the value at position (i, j, k) in the
input feature map Q. The sum is taken over all spatial loca-
tions (i, j) for each channel k, and then divided by the total
number of spatial locations H x W to compute the average.

Finally, spatial attention is applied and the formula is
shown below:

Asp :T(VS,,,B, §*> O Wy, (12)
X; =0 (LN (Csx5 (Agp))) - (13)

where Aj), is the weighted feature obtained by applying Wy,
to Vp, a process that includes matrix multiplication and
reshaping operations. The X; is the final spatial attention
output, obtained by convolution and layer normalization fol-
lowed by Sigmoid function processing.

In short, the whole process of branching spatial attention
can be represented by a complete formula:

X5 =0 (LN (Csx5 (Vsp © Wyp))) - 14

The temporal residual branch in our model is a key compo-
nent in capturing and enhancing temporal dynamics in video
sequences. This branch operates on the spatially enhanced
feature mapping X; and applies a series of convolution and

N Channel
X s
CxXHxW 1xHxW

> >

.z g .2 ._._ f ._CD_
X s 8 @ 0 E et
Exlxl J

CXHXW ngxW
Spatial

to a tri-dimensional level, covering spatial, channel, and temporal
information. It not only retains the spatial and channel feature enhance-
ment of PSA but also captures essential temporal dynamics in video
sequences, offering a more holistic understanding of video content

normalization operations to extract and refine temporal fea-
tures. First, an initial spatial convolution is performed on Xj:

Ytemp = Clxdxd(xs)» (15)
this step focuses on the spatial dimension while keeping the
temporal dimension constant.

Then layer normalization is performed and processed with
the ReLU activation function:
Yiorm =R (EN (Ytemp)) . (16)

Next, temporal convolution is performed to emphasize the
temporal dimension of the feature mapping, and layer nor-
malization and ReL.U activation are performed again to refine
the temporal features further. The temporal information is
then integrated using adaptive average pooling to obtain a
compact and efficient representation of the temporal dynam-
ics. The process mentioned above can be expressed as:
Y finat = G (R (LN (Crx1x1 (Ynorm)))) - (17)

Finally, the original input of this branch X is added back
to the output of the adaptive pooling step to establish a
residual connection that mitigates the potential degradation
in performance as the network depth increases. This con-
nection facilitates the integration of original spatial features
with the newly refined temporal features, thereby enriching
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the feature representation without losing the initial informa-
tion. This step helps to preserve the original spatial channel
information while integrating the newly extracted temporal
features.

Xour = Xy + Yfinal- (18)

The computation process of channel attention is similar
to that of spatial attention. Channel attention is realized by
utilizing two convolutional layers to create two sets of fea-
ture maps, and then using the Softmax function to compute
the channel attention weights. Spatial attention is realized by
applying similar convolution and attention mechanisms to
the features processed by channel attention. The difference
is thatit uses adaptive global pooling to generate spatial atten-
tion weights. The channel attention branch focuses on which
channels are more important, the spatial attention branch
focuses on which regions in the image are more important,
and the temporal residual branch focuses on which tempo-
ral information in the video is more important. These three
mechanisms work together to make the network more effi-
cient and accurate in processing complex visual information.

In conclusion, our ResTriDA module presents an innova-
tive approach to attention mechanisms by catering to channel,
spatial, and temporal dimensions, addressing the shortcom-
ings of existing systems, and ultimately, providing superior
feature recognition (Fig. 4).

Prototypical attentive matching

General classification algorithms display overfitting in few-
shot classification situations because of limited training data,
resulting in large discrepancies between classification predic-
tions and real results [38]. To mitigate the effect of overfitting
caused by insufficient data, we employ a metric-based pro-
totype network [19] to metrically classify the characteristics
learned by the prior network which is called the prototypical
attentive matching. We denote the feature obtained after pro-
cessing by the above module as x € R"*¢, where n denotes
the length of the input sequence and d represents the hidden
dimension. Before the feature vector is classified, we process
the feature x by using the standard multi-head self-attention
layer [39], as shown in Fig . 4. We use the projection matri-
ces Wy, Wi, W, of the three learnable parameters to compute
the query, key, and value in the multi-head self-attention. The
mapping relationship is expressed as:

xXg = Wyx, xp = Wix, xy = Wyx. (19)
After obtaining the output of the mapping of query, key, and
value, the results x,, xk, x, are further divided into & equal

parts according to the number of heads used. Each head calcu-
lates the self-attention separately and then concatenates the
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results. Then the spliced results are fused by the learnable
parameter matrix W°. After that, we get the attention scores
between the samples and then concat the initial feature inputs
and the attention scores. The above process can be expressed
as Egs. (20) and (21), where dy denotes the dimension of xg,
and .¥ denotes the Softmax function.

Vi

Xmha = X + Concat(Attn(x;), ...,

Xg X}
Attn(xg, xi, Xy) =& Xy, (20)

Attn(xp))We. (21

The multi-head self-attention module described above
processes the query and support sets. It is worth mention-
ing that the support set provides key and value input during
query set processing, which can be defined as:
xgry Wyxd"Y, ery = Wix*P, x4V = W,x*P. (22)

After the treatment of multi-head attention, the prototype
network acquires knowledge of a metric space G in which
the features in the query set can be classified by computing
the cosine distance between the features in the query set and
the corresponding prototype representations of the features
in the support set of classes. The prototype representation

is judged by the closest distance to classes. Specifically, the
distance function D can be formed as:

D QG eSc 23)

lloslsail’

where [T refers to the total number of sample points, Qg
denotes the sample point in the query set, and Sg denotes
the sample points in the support set. The cross-entropy loss
function [40] is used to calculate the loss of the network,
where y is the predicted label and y is the true label. The loss
function £ of the whole model can be simply formulated as:

1 N M
L= > vielog(ic), (24)

i=1 c=1

where N represents the sample number in the dataset or batch
and M is the class number. y;. serves as a bool indicator (0 or
1) whether class label c is correctly classified for observation
i. Jic is the predicted probability of observation i being of
class c.

Compared with current few-shot learning methods [15,
17, 18, 21, 23, 24, 34], our method reflects a more super-
ficial induction bias that facilitates using such limited data
ranges with excellent results. The main algorithm of HAPN
is presented in Algorithm 1.
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Fig.4 Multi-head self-attention
(MHA) module. We use the
projection matrices to compute
the O, K, and V in the attention.
After obtaining the output of the
mapping of query, key, and
value, the results are further
divided into & equal parts
according to the number of
heads used. Each head
calculates the self-attention
separately and then concatenates
the results. Then the spliced
results are fused by the learnable
parameter matrix. After that, we
obtain the attention scores
between the samples and then
concat the initial feature inputs
and the attention scores

Algorithm 1 Main algorithm of HAPN

Require: S = {s, ..., sy}: Set of N video clips, each representing a
different action category

Require: Q: A query video clip

Require: 0: Parameters of R(2+1)D network

Require: o: Learning rate for both task-level and meta-level updates

1: Initialize 6 randomly

2: while not converged do

3:  Sample batch of tasks 7; from p(7")
4:  for each task 7; do
5: E(S) < R2+1)Dy(S) > Embed support set
6: E(Q) < R2+1HDy(Q) > Embed query set

> Apply Residual Tri-Dimensional Attention (ResTriDA)
7: E'(S) < ResTriDA(E(S), 0)
8: E’(Q) < ResTriDA(E(Q), 0)

> Apply Prototypical Attentive Matching (PAM)

9: D; < VectorSpaceMapping(E’(S)) > Map support features
10: G <« VectorSpaceMapping(E’'(Q)) > Map query features
11: Category <— argmin; D(G, D;) > Assign category to query
12: Evaluate gradient Vo L7; (9)
13: Adapt 0 using gradient descent: 6 < 6 — aVyL7; (0)
14:  end for
15:  Update 6 using aggregated gradients: 0 <— 6 —a'Vy ZT,- L7 (0)

16: end while

Experiments
Datasets

To validate the effectiveness of our method, experiments
are conducted on three popular standard datasets: Kinetics-
100 [11], HMDB51 [25], and UCF101 [26]. These datasets
are widely recognized benchmarks within the few-shot
action recognition field and are particularly well-suited for
validating the effectiveness of our method for several rea-
sons. Firstly, Kinetics-100, derived from the comprehensive
Kinetics-400, presents a distilled challenge with a varied
assortment of action classes, each represented by 100 videos.
This balanced composition enables a robust assessment of
our model’s ability to learn and generalize from a consis-

Q

N heads

a|eos
XeNYOS

N heads

ndinQ

N heads

tent number of examples per class. Secondly, the HMDBS51
dataset, with its 51 action classes spanning 6849 videos,
is valued for its complex, real-world action scenarios. This
dataset challenges our HAPN framework to accurately dis-
cern subtle nuances of human actions across a breadth of
less controlled, more naturally occurring settings. Lastly,
UCF101 is included for its extensive volume and diversity
of actions, encapsulating a broad spectrum of human activ-
ities and presenting varied scenarios in terms of lighting,
background, and camera angles. This variability is crucial
to evaluate the adaptability and robustness of the hybrid
attention mechanism at the core of HAPN, ensuring that
the framework is not only learning specific patterns but also
adapting to different visual contexts. We utilize the dataset
splits proposed by CMN [33] for Kinetics-100 and ARN [34]
for both HMDBS51 and UCF101 to ensure that our evaluation
is grounded in a recognized and reproducible experimen-
tal setup. The non-overlapping nature of the classes in the
training, validation, and test sets across these datasets fur-
ther guarantees that our evaluation is stringent and that the
model’s performance truly reflects its generalization capabil-
ities to unseen data.

Details of implementation

Following the episode training strategy [19, 35], we employ
the pre-trained R(2+1)D-18 [28] as the model’s backbone
network. We employ a random sampling technique to select
8 frames from each video, which are then used as input to
the network. Each frame is resized to 112 x 112, cropped,
and subjected to random brightness and contrast adjustments.
We employ a 70-epoch training assignment and train 200
episodes in each epoch cycle. It is worth noting that after each
training epoch, the model is validated with 200 validation
rounds. Before the feature data enters the ResTriDA module,
we set a random dropout with a parameter of 0.1, mindful of
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the delicate balance between overfitting and underfitting risks
inherent in few-shot tasks. Overfitting restricts the model’s
ability to generalize beyond the training data, while under-
fitting limits its capacity to capture underlying data patterns.
A high dropout rate risks further underfitting, reducing the
learnable information, and possibly degrading training per-
formance. Thus, a lower dropout rate of 0.1 helps retain
sufficient model capacity for learning from limited data,
ensuring an optimal balance between model complexity and
generalizability.

Regarding the learning rate, we employ distinct settings
for the Kinetics-100 dataset versus UCF101 and HMDBS51
to address the varying characteristics and challenges posed
by these datasets. For UCF101 and HMDBS51, where the
datasets include a broader range of simpler and more com-
plex motions, a lower learning rate of 0.0001 is utilized. This
conservative approach helps in navigating the optimization
landscape smoothly, avoiding the pitfalls of rapid conver-
gence to suboptimal local minima, which is crucial given
the diverse and noisy nature of these datasets. In contrast,
Kinetics-100, being a subset of a larger dataset, is more
homogeneous and has been structured to focus on specific
types of actions. Therefore, a higher learning rate of 0.1, com-
bined with a decay factor of 0.1, is appropriate as it allows for
faster convergence without bypassing the global minimum.

The SGD optimizer is adopted to optimize the network,
decaying the learning rate every 10 epochs. In the matching
classification stage, we find that using the cosine function to
calculate the distance between the query set and support set
can make the model achieve optimal performance. We train
HAPN on three Tesla P100 GPUs.

Experimental results

We conduct a series of experiments on three different
datasets, UCF101, HMDB51, and Kinetics-100, and thor-
oughly evaluate the model performance under the settings
of 5-way I-shot, 5-way 3-shot, and 5-way 5-shot. Here, 5-
way means that each round of testing involves 5 different
categories, while 1-shot, 3-shot, and 5-shot refer to the num-
ber of instances—1, 3, and 5-used for testing each category,
respectively. To fully evaluate the model performance, we
record six key performance metrics: Accuracy, Recall, Pre-
cision, F1 Score, AUC, and mAP.

Taking the 5-way 1-shot task as an example, assume that
the model generates a probability matrix P for N query sam-
ples, where P; ; represents the predicted probability that the
i-th query sample belongs to the j-th class. First, define Y as
the true label vector, where Y; indicates the true class index
of the i-th query sample. Let Y represent the predicted label
vector, where IA’,- = argmax; P; ;, indicating that the model
predicts the i-th query sample is most likely to belong to
the class index j. First, we calculate the Accuracy metric.
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Accuracy directly reflects the model’s correct prediction rate
across all query samples, serving as a key indicator of the
model’s generalization ability. The formula for calculating
accuracy is as follows:

N
1 ”
Accuracy = v E 1[Y; = vil, (25)
i=l

where 1[-] is the indicator function that takes the value 1
when the predicted class matches the true class, and O oth-
erwise. The recall for class j, R;, measures the proportion
of query samples correctly predicted as class j against the
total number of query samples that actually belong to class j.
The macro-averaged recall R,,,¢ro provides an overall per-
formance indicator:

SN A =jAY =]
SN Y =]

Rj = (26)

R;. 27)
1

5
Rmacro =

J

For class j, precision P; is defined as the ratio of the number
of query samples correctly predicted as class j to the total
number of query samples predicted as class j. The macro-
averaged precision Pp,cro, €valuates the model’s overall
performance across all classes:

SN Y, =AY =]

P = : (28)
! YL =]
1 5
Pracro = g Z Pj~ (29)
j=1

The F1 score combines precision and recall through their
harmonic mean for each class j. The macro-averaged F1
score F'l,,4cro averages the F1 scores across all classes:

PjXRj

Fl:=2x . (30)
! Pj+R;
1 5
Flpaero = gZFlj. (31)
j=1

For each class j in the 5-way classification setup, the task is
treated as a binary classification problem to calculate the area
under the Receiver Operating Characteristic (ROC) curve,
denoted as AUC;. This metric assesses the model’s ability
to distinguish between class j (positive class) and all other
classes (negative class). The average AUC, which provides
a summary measure of the model’s binary classification per-
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Table 1 Multl—metr.lc Dataset Setting Accuracy (%) Recall Precision F1 score AUC mAP
performance analysis of the

HAPN method UCF101 S-way I-shot  93.1 0931  0.929 0.930 0992 0977

5-way 3-shot 96.6 0.966 0.966 0.966 0.998 0.994

5-way 5-shot 97.9 0.979 0.981 0.980 0.999 0.996

HMDB51 5-way 1-shot 64.2 0.642 0.644 0.643 0874  0.712

5-way 3-shot  74.0 0.739 0.740 0.740 0.941 0.839

5-way 5-shot  77.9 0.775 0.778 0.776 0.937 0.853

Kinetics-100 5-way 1-shot 86.1 0.872 0.873 0.873 0.978 0.933

5-way 3-shot ~ 94.2 0.942 0.942 0.941 0.994  0.980

5-way 5-shot ~ 97.4 0.974 0.974 0.974 0.997 0.982

Experiments are conducted on three mainstream video recognition datasets, UCF101, HMDBS51 and Kinetics-
100, and record six evaluation metrics

formance across all classes, is computed as follows:

5
1
AUCarg = 5 > Auc;. (32)

j=1

The mean average precision (mAP) for each class j is
calculated by averaging precision across different recall
thresholds. The model’s mAP is the average of the APs across
all classes:

5
1
mAP = ng_;AP,.

(33)

These detailed metrics enable a comprehensive understand-
ing of the model’s performance.

The experimental results for the HAPN model are shown
in the Table 1. For all three datasets, UCF101, HMDBS51, and
Kinetics-100, we observe a common trend: as the number of
shots in the experimental setup increases, the model shows
a significant improvement in almost all performance met-
rics. This phenomenon indicates that increasing the number
of samples can significantly improve the performance of the
model. In particular, HAPN performs well on the UCF101
and Kinetics-100 datasets, compared to the slightly inferior
performance of HMDBS51. This difference may stem from
the characteristics of the dataset itself, such as the higher
diversity of samples in HMDBS51 and different lighting con-
ditions, which increase the difficulty of identification.

In addition, we note that both AUC and mAP values are
relatively high regardless of dataset or experimental setup,
especially on Kinetics-100 and UCF101, suggesting that the
HAPN model has a strong overall classification ability on
these datasets.

It is worth mentioning that experimental results also indi-
cate that the values of the metrics Accuracy, Recall, F1
Score, and Precision are almost the same, which means that

the HAPN model achieves a balanced performance in rec-
ognizing the positive classes (True Positives) and avoiding
the misclassification of the negative classes (False Pos-
itives) and avoiding misclassification of negative classes
(False Positives). Ideally, an efficient model should have high
precision-reducing misclassification of negative samples as
well as high recall-being able to accurately identify most
of the positive samples. HAPN is just such a model that
performs well with the different categories shows good bal-
ance and no significant bias, nor does it exhibit any extreme
performance bias. Although we discuss multiple metrics in
this section to thoroughly understand the model’s multi-
faceted performance, previous FSAR methods mainly used
accuracy as the sole performance indicator. Therefore, to
maintain a fair comparison with existing literature, most of
our subsequent experiments primarily focus on accuracy as
the benchmark metric.

Robustness analysis

To assess the robustness of HAPN, various robustness exper-
iments under the HMDBS51 dataset using the 5-way 1-shot
setting, using classification accuracy as a comparison metric
are constructed. Figure 5 accurately shows the fluctuation of
the model’s accuracy performance under a series of condi-
tion changes. Under standard environmental conditions, the
HAPN model demonstrates a baseline accuracy of 64.2%,
providing a solid foundation for subsequent comparisons.
To verify the adaptability and stability of the model under
complex lighting conditions, a series of simulation experi-
ments are specifically designed and implemented. First, we
simulate scenarios of bright lighting, where the intensity of
light far exceeds that of the standard environment. The results
indicate that under bright light conditions, the accuracy of
the model decreases slightly to 62.80%. This minor decline
suggests that although strong light can interfere with image
features, the model has a certain capacity to resist intense
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Fig.5 Comparison of recognition accuracy in different scenarios. We construct robustness experiments under the HMDBS51 dataset using the 5-way
1-sho t setting. The HAPN model maintains a stable recognition in different scenarios

light disturbance, managing to suppress noise from overex-
posure and thus maintaining stable recognition performance.
Subsequently, we simulate low-light environments, with illu-
mination intensity falling below standard levels. The results
show a slight increase in accuracy to 63.60% under low-
light conditions. This implies that the HAPN model retains
inherent robustness in extracting action features from video
content, capable of adapting to feature extraction even with
insufficient lighting.

In practical applications, such as surveillance cameras and
autonomous vehicles, the actions captured in videos often
face random changes in perspective due to factors like the
positioning of the devices and the trajectories of moving
targets, posing significant challenges for action recognition
tasks. To investigate the robustness of our model against such
scenarios of perspective transformation, we subject video
frames to random rotations and affine transformations, sim-
ulating these complex conditions. The experimental result
shows that even under such extreme and challenging condi-
tions of perspective distortion, the accuracy of the model
only drops slightly but still maintains a level of 60.70%.
Although random changes in perspective indeed increase the
difficulty of recognition, the model does not experience a
significant decline in performance, effectively resisting the
adverse effects brought about by perspective distortion.

To comprehensively evaluate our model’s adaptability to
changes in action speed, we design experiments that vary
the sampling frequency of video frames. During the exper-
iments, we use a high sampling frequency of 35 frames to
simulate fast actions, incorporating more motion details and
shorter intervals within the same timeframe, to test whether
the model can accurately capture the rapidly changing infor-
mation stream. The results show that at this high sampling
frequency, the model maintains an accuracy of 65.20%,
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demonstrating its ability to keep a high recognition effi-
ciency in fast dynamic scenes and effectively address the
challenges brought by increased action speeds. On the other
hand, we also reduce the video frame sampling frequency to 8
frames to simulate slow-motion scenarios, where each action
unit spans a longer duration, placing higher demands on the
model’s long-term dependencies and understanding of action
coherence. Under this low sampling frequency condition, the
model’s accuracy stabilizes at 64.20%, close to the accuracy
under the original baseline conditions. Combining the exper-
imental results under these two conditions, we observe that
the model’s accuracy fluctuates only slightly, exhibiting good
robustness. This indicates that whether the action speed is fast
or slow, the model can adapt well and maintain stable recog-
nition performance. However, it is important to note that most
current mainstream methods typically sample only 8 frames.
To make a fair comparison and improve experimental effi-
ciency, we also adopt the same frame sampling number in
our experiments.

In summary, after a series of detailed and in-depth exper-
imental analyses, we have observed that although changes
in external environmental conditions such as light intensity,
perspective variations, and the speed of action impact the
performance of the model to varying degrees, the overall per-
formance of the model still demonstrates strong adaptability
and robustness.

Comparison with state-of-the-art

Our model is evaluated in comparison to seven excellent
algorithms, and our method demonstrates outstanding perfor-
mance on three selected datasets, achieving state-of-the-art
performance for each setting. As shown in Table 2, we
highlight in red the improvement over the state-of-the-art
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Table 2 Accuracy comparison with state-of-the-art few-shot action recognition approaches on three standard datasets
Method Reference UCF101 HMDB51 Kinetics-100
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoGAN [16] ECCV2018 57.8 £3.0 802+13 347+£92 54.0£39 - -
ARN [34] ECCV2020 62.1 £ 1.0 84.8 +£0.8 44.6+0.9 59.1+£0.8 63.7 82.4
OTAM [23] CVPR2020 79.9 88.9 54.5 68.0 73.0 85.8
HF-AR [24] IJCAI2021 58.6 £ 1.2 864+ 1.6 434 4+0.6 622+0.9 - -

Workshop
TRX [22] CVPR2021 78.2 96.1 75.6 63.6 85.9
HyRSM [17] CVPR2022 83.9 94.7 60.3 76.0 73.7 86.1
STRM [21] CVPR2022 - 96.9 - 77.3 - 86.7
HAPN - 93.1 (+ 9.8) 97.9 (+ 1.0) 64.2 (+3.9) 77.9 (+ 0.6) 86.1 (+ 12.4) 97.4 (+ 10.7)

The experiments are conducted in a 5-way setup and report results under 1-shot and 5-shot tasks. Our method outperforms the previous state-of-the-art
methods. The underline indicates the best results of the previous methods in the available records

Bold font represents the best result

method. In the 1-shot setting on the UCF101 dataset, the
HyRSM model previously achieved the best performance
with an accuracy of 83.9%. Our HAPN model surpasses
this, achieving an accuracy of 93.1% in the same setting,
marking a significant increase of 9.8%. In the 5-shot setting
on UCF101, HAPN outperforms the best-performing STRM
model with an accuracy of 97.9%, an improvement of 1.0%.
On the HMDBS51 and Kinetics-100 datasets, HAPN similarly
demonstrates exceptional performance, further affirming the
effectiveness and generalizability of our model. The ARN
[34] in Table 2 also uses a 3D network to extract features,
but its subsequent temporal attention and spatial attention still
treat the features separately. Our proposed hybrid attention
module jointly enhances feature information across multi-
ple dimensions. We incorporate an attention mechanism for
selectively sampling points to learn inter-class relationships
before the prototype network classifies, resulting in improved
classification performance. Note that our model performs
exceptionally well on Kinetics-100 because it uses the offi-
cial R(2+1)D model provided by PyTorch that is pre-trained
on Kinetics-400. Our model demonstrates superior perfor-
mance on the 1-shot task, showing that it can effectively
identify with a limited set of examples.

Ablation study
Impact of the backbone

ResNet [41] is the backbone of most current few-shot action
recognition algorithms [17, 21, 22]. To investigate the influ-
ence of various backbone networks on the final recognition
results, we replace the backbone network of the model.
No gain modules are added for the experiments. As shown
in Table 3, We can observe that the performance of all
three datasets is superior when using a ResNet50 backbone
compared to a ResNet18 backbone. However, the accuracy

Table 3 Performance comparison when varying the backbone

Method Backbone 1-shot 5-shot
UCF101 ResNet18 61.9 81.5
ResNet50 68.5 83.1
R(2+1)D 729 90.7
HMDB51 ResNet18 33.8 52.5
ResNet50 35.0 54.4
R(2+1)D 409 593
Kinetics-100 ResNet18 414 64.2
ResNet50 45.7 69.7
R(2+1)D 545 76.1

We conduct the experiment without incorporating any gain modules
Bold font represents the best result

Table 4 TImpact of the proposed components on HMDBS51

ResTriDA MHA 1-shot 5-shot

X X 40.9 59.3

X v 41.6 61.2

v X 61.5 773

v v 64.2 (+23.3) 77.9 (+ 18.6)

The results of the ablation experiments show the effectiveness of the
components presented in our HAPN
Bold font represents the best result

of model recognition is lower than when the backbone is
R(2+1)D [28] network. As an example, consider the UCF101
dataset results. The discrepancy can be explained by the pres-
ence of temporal correlations in videos, which the ResNet
architecture does not take into account when processing
information. Previous studies [21, 22] have also attempted to
address this limitation by incorporating additional methods
for processing temporal information. In contrast, R(2+1)D
includes a processing step for the temporal information,
which extracts features from the input information in time
and space in one step.
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Table 5 TImpact of the

: a) Activation function ablation
ResTriDA module parameters @

Branch Activation function Top-1 accuracy (%) Top-3 accuracy (%)

Channel&Spatial ReLU 27.60 68.30
LeakyReLU 33.30 75.30
PReLU 24.20 64.50
ELU 32.10 71.60
Tanh 33.60 72.00
Sigmoid 61.20 89.20

Temporal ReLU 61.20 89.20
LeakyReLU 47.85 82.11
PReLU 39.24 73.07
ELU 28.55 69.43
Tanh 37.10 75.80
Sigmoid 44.83 79.50

(b) Kernel size ablation

Branch Kernel size Top-1 accuracy (%) Top-3 accuracy (%)

Channel&Spatial I1x1 59.20 89.20
2x2 54.00 86.40
3x3 57.20 88.00
5x5 61.20 89.20
7x17 53.60 84.80

Temporal 1 x1 61.20 89.20
2x2 60.00 87.30
3x3 55.80 87.50
5x5 55.10 86.10
7x7 51.70 78.33

(c) Normalization ablation

Branch Normalization Top-1 accuracy (%) Top-3 accuracy (%)
Channel&Spatial Non 57.60 86.00
LayerNorm 61.20 89.20
InstanceNorm 60.80 88.70
Temporal Non 53.10 75.80
LayerNorm 61.20 89.20
InstanceNorm 59.50 85.40
(d) Pooling ablation
Branch Pooling Top-1 accuracy (%) Top-3 accuracy (%)
Channel&Spatial AdaptiveAvgPool 61.20 89.20
AdaptiveMaxPool 60.00 88.40
Temporal AdaptiveAvgPool 61.20 89.20
AdaptiveMaxPool 59.30 86.72

(e) Attention branch ablation

Attention branch Top-1 accuracy (%) Top-3 accuracy (%)
Channel only 46.40 79.60
Spatial only 48.80 83.60
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Table 5 continued (e) Attention branch ablation

Attention branch

Top-1 accuracy (%) Top-3 accuracy (%)

Temporal only
Channel + spatial
Channel + temporal
Spatial + temporal
ResTriDA (no residual)
ResTriDA

51.20 84.27
49.20 82.10
52.30 83.00
56.00 85.20
58.30 86.50
61.20 89.20

We investigate the impact of various parameters on the ResTriDA module, with the underline indicating the
optimal results. The experiments use the HMDBS51-Small dataset with a 5-way 1-shot setting
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Fig. 6 Impact of the head number on UCF101. Experiment results demonstrate that the model performs optimally when utilizing eight attention

heads

Impact of the proposed components

Here, The impact of the residual tri-dimensional module
and the prototypical attentive matching module on recog-
nition performance are analyzed. The prototypical attentive
matching module contains both multi-head attention [39]
and prototypical matching modules. Since the prototypical
matching module involves the final classification of the net-
work and cannot be removed separately for the experiments,
we only chose multi-head attention (MHA) for the ablation
experiments. The ablation experiments of the components
are performed based on HMBDS5 1. The base backbone of the
network is a prototype R(2+1)D network. As shown in Table
4, the results show that each of our proposed components is
effective. In particular, the residual tri-dimensional module
has an extremely significant gain effect on the network. This
is because the action recognition task is highly dependent
on temporal information. Our ResTriDA module precisely
processes the temporal information and enhances spatial and
channel features. We observe that jointly processing temporal
and spatial features can substantially increase the recogni-
tion accuracy. The final HAPN framework achieves 23.3%
higher recognition accuracy than the baseline under 1-shot

and 18.6% higher under 5-shot. Our proposed components
greatly improve recognition accuracy.

Impact of the ResTriDA module parameters

In this section, exhaustive parameter ablation experiments on
the ResTriDA module are conducted to explore in depth the
specific effects of various parameters on the performance of
the module. The results of the experiment are shown in Table
5. To optimize the computational efficiency, and consider
the similarity between the Channel branch and the Spatial
branch in processing spatial context information, we choose
to merge these two branches for the ablation experiments. We
uniformly extract 30% of the data in the original HMDBS51
dataset to form the HMDB51-Small dataset, on which we
construct the experiments. For performance estimation, we
adopt Top-1 Accuracy and Top-3 Accuracy as the key met-
rics. Top-1 Accuracy reflects the accuracy of the model in
predicting the most probable categories, while Top-3 Accu-
racy evaluates the probability that the model contains the true
categories among the top three most probable categories in
its prediction.
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The 5 x 5 convolutional kernel size in the Channel& Spa-
tial branch achieves the highest performance, showing that a
slightly larger convolutional kernel can strike a good balance
between capturing detail and preserving context when deal-
ing with spatial-level features. The 1x1 convolutional kernel
size in the Temporal branch achieves the best performance,
suggesting that a smaller convolutional kernel is more effec-
tive when dealing with temporal-series data, and can acutely
capture subtle changes in the action.

Finally, through ablation experiments with the attention
branch, we found that the highest accuracy can be achieved
using the full ResTriDA branch containing the channel, spa-
tial, and temporal attention mechanisms. In particular, there is
anotable enhancement in model performance with the incor-
poration of the Temporal branch, highlighting the importance
of temporal features in few-shot action recognition tasks.
These findings not only confirm the necessity of integrating
multiple attentional mechanisms to improve model perfor-
mance but also emphasize the value of appropriately tuning
model parameters according to different data features.

Impact of the head number

To verify the effect of different head numbers in multi-
head self-attention [39] on the experimental effects, relevant
experiments are conducted on the UCF101 and the results are
shown in Fig. 6. Our results show an increase in recognition
accuracy with more attention heads in both 1-shot and 5-shot
tasks. The use of multiple attention heads allows for paral-
lel processing of input data, where each head independently
examines the input from different angles. This enhances the
model’s understanding of the data, leading to an improve-
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ment in accuracy. Note that while utilizing multiple attention
heads improves recognition accuracy, an excessive number of
heads can have a detrimental effect on performance. Specif-
ically, when the number of attention heads exceeds 8, the
recognition accuracy tends to decline. This could be due to
the fact that a large number of heads increases the complex-
ity of the model, leading to longer training times, reduced
generalization ability, and a higher likelihood of overfitting.
Experiments show that when the number of attention heads
is 8, the model has the highest recognition accuracy, reaching
97.9% at the 5-shot task.

Comparison at N-way task

As shown in Fig. 7, we set different N ways to test the robust-
ness of the proposed method. More ways mean more kinds
of samples for each task and more difficulty to recognize.
We can observe from the results that recognition accuracy
decreases as the way number increases. Our result shows
that regardless of the specific conditions and settings used,
the accuracy of our proposed method consistently surpasses
the results of HyYRSM [17], OTAM [23], and TRX [22], which
demonstrates the robustness and reliability of our results
under various conditions and settings.

Visualization and analysis

To further validate the effect of the ResTriDA module, the
experimental process of ablation of the ResTriDA module is
visualized during the classification process. Figure 8 illus-
trates a series of confusion matrices to compare the effect
on the model classification accuracy before and after adding
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Fig.8 Visualization of the Confusion Matrix
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the ResTriDA module. The experiments are constructed on
the HMDBS51 dataset using the 5-way 1-shot setting. In
these matrices, the values on the diagonal represent correctly
recognized instances, while the other elements indicate mis-
classification. We can see a significant increase in correct
classifications after adding the ResTriDA module.

Figure 9 provides an illustrative way to visualize the effect
of the ResTriDA module. By observing the class activa-
tion map (CAM), we can understand intuitively how the
model focuses on specific regions of the video at different

0200000

Class 2 0200000 0400000 0,000000 0200000 0200000
04
Class3- 0000000 0000000 0.400000 0.400000 0200000 03

0000000

00
Class 5

o6

0200000
os

0200000
04
0,000000 03
-02

0200000

Class 5

06
0000000
05
0200000
04
0000000 o3
-02
0000000

Class 5

—

+38%

True Labels

—

+24%

True Labels

—

+36%

.

Class 2

Class 3-

Class 4

Class 5 -

.

Class 2-

Class 3-

Class 4

Class 5 1

True Labels

0.000000

0000000

0.000000

0.000000

Class 1

0.000000

0.000000

0.000000

Class 1

Confusion Matrix

0000000

0600000

08

0200000 0.000000 0200000

0.000000 0000000

0200000 - 0.000000 0000000 04

0000000

0000000

Class 2

0200000

03
0000000 0200000
-02

o1
0200000 0.000000 0800000
i v 00
! Class 4 Class 5
Predicted Labels
Confusion Matrix
08
0000000 0000000 0200000
07

06
0600000 0000000 0200000 0200000

05
0200000 0.000000 0200000 “o0a

0000000

0000000

Class 2

PN 0200000 0000000 0200000 0.000000 0000000
Class2- 0000000 0600000 0000000 0.400000 0000000

Class3- 0000000 0000000 . 0,000000 0000000
Class4- 0000000 0000000 0.000000 0200000

Class 5 -

0200000

Class 1

0000000

Class 2

-03
0200000 0000000
-02
01
0000000 0000000 0600000
\ , g -00
Class 3 Class 4 Class 5
Predicted Labels:
Confusion Matrix
0.000000 0000000 0800000
Class 3 class 4 Class 5

Predicted Labels

Acc = 80%
(+ResTriDA)

points in time. For the Fencing example on the left side of
Fig. 9, the class activation mapping shows that the baseline
model spreads its attention over the time series, with atten-
tion including not only the athletes but also the audience
and the background. This shows that the baseline model is
more generalized in capturing features spatially and does
not clearly distinguish between key features of the action.
However, when the MHA mechanism is introduced, attention
begins to focus on the interactions between the athletes, in
particular the fencing gestures and the movement of the tip of
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Fencing
(two players)

+MHA

+ResTriDA

Kick ball
(one player)

Fig. 9 Class activation graph visualization. By looking at the class activation graph visualization, we can visualize the effect of the module. We
give single and two-player examples to show that our model can handle multi-target character scenarios

the sword. Further, when ResTriDA is added, we notice that
the class activation mapping not only continuously focuses
on specific movement regions of the athletes when changing
over time, but this focus becomes more obvious and consis-
tent between continuous frames.

For example, when an athlete performs an attacking
action, the model’s focus can move with the tip of the sword,
capturing the start, middle, and end positions of the attacking
action. It demonstrates that our model can identify spatially
critical features and capture the dynamics of these features
over time, which is crucial for understanding the flow of the
entire fencing action. For the Kickball example, the class
activation mapping reveals that the baseline model recog-
nizes the kicking action while also incorrectly focusing on
the rest of the field. Augmented with MHA and ResTriDA,
the CAM shows that the model’s attention is more focused
on the player’s legs and the ball about to be touched, i.e., spa-
tially critical points of the action. In addition, as the sequence
proceeds, the model’s attention moves following the ball’s
trajectory, showing sensitivity to temporal dynamics.

Overall, the detailed visualization of these class activa-
tion mappings allows us to explicitly see how the model
accurately integrates the spatial localization and temporal
evolution of actions in a few-shot learning setting. These
visualizations not only demonstrate the model’s high sensi-
tivity to identifying nuances in actions but also highlight the
important role of temporal continuity in understanding and
tracking critical phases of actions. It is this nuanced detec-
tion and analysis, even with limited samples, that underpin
the model’s robust performance in action recognition.

Training performance curve

Figure 10 shows the Loss and Accuracy curves of the
model throughout the training process. From these two
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graphs, the training process of the model is effective and
the loss decreases with time while the accuracy increases
accordingly. The smoothness of the curves and their gradual
convergence to a steady state indicate good learning progress
and stable convergence of the model. There is no overfitting
situation where the loss rises or the accuracy drops sig-
nificantly. Therefore, it can be concluded that the training
process is healthy and the model exhibits a strong capacity
to fit the training data.

Exploring the impact of GFPGAN super-resolution
on experimental performance

Within this subsection, we first explore the possibility of
using generative models to expand the sample set in a few-
shotlearning environment. As shown in Fig. 11, our approach
first generates action descriptions for a specific category (e.g.,
‘fencing’) using GPT-3 [42], and then feeds these descrip-
tions into the Text2Video [43] model to generate new video
samples. With this strategy, the number of samples is gradu-
ally increased from 5-way 1-shot to 5-way 5-shot. As shown
in Table 6, the model’s performance in distinguishing dif-
ferent categories is significantly improved after increasing
the number of generated samples. The accuracy increased
from 44.0 to 60.0%, while the AUC and mAP values also
increased. However, it is worth mentioning that the cost of
generating these additional samples is relatively high. For
example, generating a video containing only 8 frames takes
200 to 300s. In addition, we note that the quality of the
sample generation process is somewhat randomized, which
means that manual screening is required to obtain high-
quality samples. Therefore, although the generative model
is theoretically effective in enhancing samples, this approach
still has its limitations in real-world application scenarios that
require fast responses or limited resources. Nevertheless, the
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Fig. 11 The process of generating samples. Since the output of a generative model may sometimes deviate from the target category or fail to
accurately reflect the desired action scenario, we must carefully filter the generated content to ensure that it is consistent with the original labels

and matches the actual scenario

Table 6 Comparison of

recognition results after adding Setting Accuracy AUC mAP Precision Recall F1 score

generated samples as support et 5_ay |_ghot 44.0 0.6815 0.4743 0.4912 0.4400 0.4472
5-way 2-shot 482 0.6865 0.4471 0.4884 0.4800 0.4768
5-way 3-shot 48.0 0.7115 0.5419 0.4969 0.4800 0.4823
5-way 4-shot 54.0 0.8430 0.6546 0.5769 0.5400 0.5465
5-way 5-shot 60.0 0.8000 0.7500 0.5000 0.6000 0.5333

As the support sample increases, the model shows significant improvement in all metrics

exploration of this approach is still important for few-shot
action recognition tasks.

Insights are provided into the GFPGAN (Generative
Facial Prior-Generative Adversarial Network) super-resolution
algorithm [44] as a strategy to enhance the picture quality of
the dataset. The aim is to enhance the image quality through
this technique, thus potentially enhancing the performance of
the dataset. Experiments are conducted using the HMDBS51

dataset and a visual comparison of image quality before and
after using GFPGAN is shown in Fig. 12. The numerical
results are shown in Table 7, revealing that the performance
of the super-resolution processed dataset does improve at the
5-shot setting, but the enhancement is limited. This limita-
tion may stem from the fact that GFPGAN mainly targets
spatial quality enhancement of images, whereas temporal
features may be more critical for few-shot action recognition

“Somersault”

Fig. 12 Comparison of the effects of super-resolution reconstruction using GFPGAN. Although GFPGAN focuses on the detail enhancement of
faces, it also has the function of background reconstruction, making it suitable for action recognition datasets where people are the main subject
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Table 7 Comparison of

o . Metric Original Super-resolution

recognition accuracy using the

original dataset and the 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

super-resolution reconstructed

dataset Accuracy 64.2 77.9 63.6 (—0.6%) 78.8 (+0.9%)
Recall 0.642 0.775 0.636 0.788
Precision 0.644 0.778 0.645 0.8
F1 score 0.643 0.776 0.640 0.793
AUC 0.874 0.937 0.87442 0.93794
mAP 0.712 0.853 0.712 0.8537

Although a super-resolution reconstruction technique is used to enhance the frame quality of the dataset, the
observed results show that this treatment does not bring significant improvement in recognition performance

Table 8 Detailed results of 10-fold cross-validation under different settings for each dataset

Dataset Setting Fold Mean SD Variance Min Max
1 2 3 4 5 6 7 8 9 10
UCF101 5-way 1-shot 902 91.7 945 941 907 942 934 928 939 929 929 1.4 21 902 945
5-way 5-shot  97.6 98.0 982 983 974 981 982 980 985 975 980 04 0.1 974 985
HMDBS51 5-way 1-shot 644 656 639 646 652 616 63.6 621 649 655 64.1 1.3 17 61.6 65.6
5-way 5-shot 779 782 775 715 785 783 775 788 781 781 780 04 02 715 788
Kinetics-100  5-way 1-shot 86.1 87.1 87.6 84.7 849 851 845 878 864 827 857 1.5 23 82.7 878
5-way 5-shot  97.5 98.1 965 975 963 97.1 96.8 979 981 968 973 06 04 96.3 98.1

We only record the accuracy to compare the previous method fairly

tasks that focus on temporal analysis. Although the results
fall short of the expected significant improvement, this work
provides valuable insights and a basis for exploring more
suitable dataset enhancement methods in the future.

Cross-validation experiments

To comprehensively assess the robustness of the overall
performance of the proposed model, we conduct extended
experiments on three datasets: UCF101, HMDBS51, and
Kinetics-100. Specifically, we set up two experimental modes
for each dataset-5-way 1-shot and 5-way 5-shot-and employ
10-fold cross-validation to ensure the comprehensiveness
and reliability of the evaluations. This method involves ran-
domly dividing the dataset into ten subsets, using nine for
training and the remaining one for testing. This process cycles
ten times, each time selecting a different test subset.

Table 8 shows the 10-fold cross-validation experimen-
tal results under different datasets and settings, including
the accuracy rate of each experiment and statistical analysis
metrics such as mean, standard deviation, variance, mini-
mum, and maximum values. For example, under the 5-way
1-shot setting of the UCF101 dataset, our model HAPN
achieves an average accuracy of 92.85% with a standard
deviation of 1.44%, demonstrating high consistency and
low volatility. Overall, the variances and standard deviations
obtained are relatively small, indicating that the proposed
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model maintains good stability and reliability across various
experimental settings. As shown in Fig. 13, by comparing
the performance under different datasets and settings, it is
evident that the maximum and minimum values in all exper-
iments exceed the performance of the existing state-of-the-art
(SOTA) models, highlighting the superiority of HAPN. Addi-
tionally, the gap between the maximum and minimum values,
although present, is not significant, further confirming the
model’s robustness.

Based on the above experimental design and statistical
analysis, it is clear that the proposed model not only out-
performs existing SOTA models in standard benchmark tests
but also demonstrates excellent stability and reliability across
various test configurations.

Discussion

Few-shot action recognition tasks draw inspiration from the
human ability to quickly grasp and categorize new things,
successfully freeing themselves from reliance on large-scale
annotated datasets. Some existing advanced methods, such
as STRM, often process the temporal and spatial features of
videos separately. While this decoupling strategy simplifies
the computation process, it weakens the intrinsic connec-
tion between time and space in the video data, thereby
leading to loss of information. To address this issue, we
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Fig. 13 Visualization of accuracy trends and SOTA comparisons across datasets in 10-fold cross-validation. We mark the maximum and minimum
values, and the improvements of these values over the SOTA method are highlighted with dashed lines

propose the Hybrid Attentive Prototypical Network model.
The core innovation of the HAPN model lies in its inte-
grated approach to processing time and space information.
It couples the handling of temporal and spatial features
from feature extraction to prototype classification, signifi-
cantly enhancing the model’s comprehensive understanding
of video content. Specifically, in the feature extraction phase,
we use the R(2+1)D network to extract integrated spa-
tiotemporal features, followed by the ResTriDA network
that comprehensively enhances spatial channels and tempo-
ral dimensions. Finally, in the classification phase, the PAM

module skillfully leverages the inherent similarities of lim-
ited samples, enhancing the model’s ability to generalize and
discern subtle differences.

We systematically test the HAPN model on three standard
few-shot action recognition datasets, covering various shot
settings from 1-shot to 5-shots, and employing six different
evaluation metrics to comprehensively assess the model’s
performance. Experimental results confirm that HAPN con-
sistently outperforms existing top methods across all test
datasets, demonstrating its exceptional performance. Addi-
tionally, we assess the model’s robustness under various
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environmental conditions, including changes in lighting,
angles, and sampling frequencies. Through module ablation
studies, we validate the importance of each component in
enhancing model performance. We also explore the poten-
tial of using generative models to expand the sample set
within the few-shot learning environment. While this method
significantly boosts model performance, the high cost and
randomness of generating high-quality video samples may
pose challenges in practical applications requiring rapid
response or limited resources. Moreover, we attempt to
enhance the image quality of the dataset using the GFPGAN
super-resolution algorithm, aiming to improve the model’s
performance with this technology. Although there is some
improvement in the 5-shot setting, the impact remains limited
because GFPGAN primarily enhances the spatial quality of
images, whereas few-shot action recognition tasks require a
more detailed analysis of temporal features. Furthermore, we
thoroughly investigate how the parameters of the ResTriDA
module affect experimental outcomes and further demon-
strate the model’s interpretability and effectiveness through
the visualization of confusion matrices and attention mod-
ules.

Our HAPN model is inspired by the evolutionary trends of
traditional action recognition tasks and introduces the con-
cept of deep coupled processing of videos into the domain of
few-shot action recognition for the first time. This pioneer-
ing strategy not only showcases the model’s forward-looking
vision but also highlights its innovative value, providing
new research perspectives for subsequent studies in few-shot
action recognition.

Conclusion and future work

In this work, we introduce a novel and innovative framework
named HAPN for few-shot action recognition. Uniquely, our
proposed network does not separate the processing of tem-
poral and spatial information. Instead, it focuses on the joint
handling of these dimensions, enhancing the model’s capac-
ity for action recognition tasks. Our framework employs
the R(2+1)D backbone network to extract rich features
from video sequences and integrates our uniquely designed
ResTriDA module, which enriches feature representation
across three crucial dimensions: channel, spatial, and tempo-
ral. To overcome the overfitting issue prevalent in scenarios
with limited samples, we bring in the concept of metric
learning and present the prototypical attentive matching
module. This module employs the architecture of the pro-
totype network and further integrates a multi-head attention
mechanism to discern correlation across sample points of
different classes within the vector space, thereby improving
the classification task. Numerous experiments confirm that
our model sets a new benchmark for robust state-of-the-art
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performance across three classical datasets used in few-shot
action recognition: Kinetics-100, HMDBS51, and UCF101.
Specifically, in the 5-way 1-shot configuration, our model
achieves substantial performance improvements of 9.8%,
3.9%, and 12.4% for UCF101, HMDB51, and Kinetics-100,
respectively. These significant enhancements highlight the
model’s effectiveness and versatility, demonstrating its abil-
ity to adeptly handle varied and complex video data with
minimal training samples.

However, some limitations require further exploration.
Firstly, the model’s effectiveness is reliant on the R(2+1)D
backbone network, which might limit its capability to
address more complex action recognition tasks. Secondly,
the computation-intensive nature of the prototypical atten-
tive matching module may affect efficiency when processing
large-scale datasets. Despite these limitations, our research
showcases a unique approach to addressing few-shot action
recognition challenges by leveraging the domain knowledge
of video understanding. In our future work, we intend to
refine and expand our few-shot action recognition approach
by leveraging the cross-modal capabilities of the CLIP model
[45]. We plan to initially create detailed textual descrip-
tions (prompts) based on video categories, then use the
text encoder of the CLIP model to encode these textual
prompts. Leveraging the zero-shot learning capabilities of
CLIP, we will identify textual descriptions that best match
the video features. Subsequently, we will integrate these
textual descriptions with video features to obtain enhanced
feature representations. Following this, we will design cor-
responding models based on these richly integrated feature
representations. Through this approach, we aim to not only
utilize visual information but also extensively exploit the
rich semantic information contained in the text, effectively
addressing the challenges of scalability and limited labeled
data inherent in few-shot learning scenarios.
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