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Abstract

Speculative decoding has become a widely adopted as an effective technique for
lossless inference acceleration when deploying large language models (LLMs).
While on-the-fly self-speculative methods offer seamless integration and broad
utility, they often fall short of the speed gains achieved by methods relying on
specialized training. Cascading a hierarchy of draft models promises further ac-
celeration and flexibility, but the high cost of training multiple models has limited
its practical application. In this paper, we propose a novel Cascade Adaptive
Self-Speculative Decoding (CAS-Spec) method which constructs speculative draft
models by leveraging dynamically switchable inference acceleration (DSIA) strate-
gies, including layer sparsity and activation quantization. Furthermore, traditional
vertical and horizontal cascade algorithms are inefficient when applied to self-
speculative decoding methods. We introduce a Dynamic Tree Cascade (DyTC)
algorithm that adaptively routes the multi-level draft models and assigns the draft
lengths, based on the heuristics of acceptance rates and latency prediction. Our
CAS-Spec method achieves state-of-the-art acceleration compared to existing
on-the-fly speculative decoding methods, with an average speedup from 1.1×
to 2.3× over autoregressive decoding across various LLMs and datasets. DyTC
improves the average speedup by 47% and 48% over cascade-based baseline and
tree-based baseline algorithms, respectively. CAS-Spec can be easily integrated
into most existing LLMs and holds promising potential for further acceleration as
self-speculative decoding techniques continue to evolve.

1 Introduction

Large Language Models (LLMs), such as Llama [1], Mixtral [2], and Qwen [3] are rapidly evolving
and increasingly adopted in various applications. However, their autoregressive generation pro-
cess, where tokens are produced sequentially, coupled with their massive parameter sizes, leads to
substantial inference latency and high computational cost. To mitigate this bottleneck, speculative
decoding [4–6] has emerged as a highly effective and widely adopted approach, achieving significant
speedup without compromising the quality of the generated text. It operates by utilizing a smaller,
faster “draft” model to generate a sequence of multiple future tokens concurrently, which are then
verified by the larger, more accurate “target” model in parallel, thereby reducing the number of
expensive forward passes.

∗Work done during an internship at TeleAI
†Corresponding Author.
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Despite its promise, standard speculative decoding introduces a new burden: it requires training
and maintenance of a separate draft model. This not only demands additional training data and
computation resources, but also requires careful tuning to ensure compatibility and efficiency aligned
with the target model. To address these challenges, self-speculative decoding approaches, self-
speculative decoding methods [7–9] have been proposed. These techniques cleverly derive draft
predictions from the target model itself, typically by skipping certain blocks in the modules or
leveraging model compression techniques, thus eliminating the external training burden. While
self-speculation simplifies the deployment pipeline, it often provides limited acceleration. In contrast,
cascade speculative decoding [10] introduces a hierarchy of draft models, enabling a multi-stage
approach with higher potential speedups and greater flexibility. Yet it requires multiple distinct draft
models, making it largely impractical for widespread adoption in real-world systems.

In this paper, we aim to harness the potential of cascade speculation without the crippling overhead
of training multiple draft models. We introduce Cascade Adaptive Self-Speculative Decoding
(CAS-Spec), a novel framework that brings the performance benefits of cascade speculative decoding
without the overhead of training multiple draft models. CAS-Spec dynamically constructs a hierarchy
of speculative draft stages using the target model itself by leveraging Dynamically Switchable
Inference Acceleration (DSIA) strategies. These include techniques such as layer sparsity and
activation quantization, enabling the creation of multiple draft models embedded within the target
model’s inference process. To coordinate this hierarchy at runtime, we further introduce Dynamic
Tree Cascade (DyTC) algorithm to adaptively route the draft models, construct draft trees as well
as controlling the draft lengths. It leverages heuristics based on token acceptance rates and latency
prediction to maximize throughput.

Our contributions are summarized as follows:

• We propose CAS-Spec, a novel speculative decoding framework that creates multiple on-the-fly
draft stages from a single target model. CAS-Spec achieves lossless inference acceleration without
requiring additional draft model training.

• We introduce Dynamic Tree Cascade (DyTC), an adaptive routing algorithm that dynamically
manages the draft models and their lengths based on heuristics of acceptance rates and latency
predictions. DyTC provides 47% and 48% improvement in average speedup over the cascade-based
and tree-based baseline, respectively.

• We demonstrate through extensive evaluations that CAS-Spec achieves state-of-the-art (SOTA)
acceleration among on-the-fly speculative decoding methods, delivering speedups ranging from
1.1× to 2.3× over autoregressive decoding across various LLMs and datasets.

This work presents a practical and efficient approach to significantly accelerate LLM inference,
paving the way for wider deployment of powerful language models in latency-sensitive and resource-
constrained scenarios.

2 Preliminary

Autoregressive decoding, where each token depends on the previously generated ones, requires
sequential execution, limiting the inference speeds of LLMs. Speculative decoding [4–6] offers a
general framework to mitigate this issue by predicting multiple future tokens using a faster draft
modelMd and verifying them with the target modelMt in parallel. To address practical challenges
and unlock greater acceleration, various methods have been developed focusing on the nature and
utilization of the draft model, leading to approaches like Self-Speculative Decoding and Cascade
Speculative Decoding.

Self-Speculative Decoding. Self-speculative decoding (SSD) aims to eliminate the need for external
draft models altogether, thereby reducing the overhead of training separate draft models. A common
approach of SSD is to derive draft token predictions directly from the target model Mt itself
during the inference process. Several strategies have been explored, including layer sparsity [7, 9,
11], early-exiting [8, 12, 13], efficient attention [14, 15], Jacobi decoding [16–18] and activation
quantization [19]. Other methods such as EAGLE [20–22] and Medusa [23] reuse the target model’s
hidden states to generate draft tokens efficiently. By leveraging parts of the target model’s own
information or computation, SSD avoids the burden of separate draft model training and extra
memory footprint for maintaining the key-value (KV) cache of the draft LLM.
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Cascade Speculative Decoding. Vanilla draft models are commonly autoregressive LLMs, which
means they can also be accelerated by speculative decoding. Further acceleration is promised
by employing multiple draft models, typically ordered by decreasing sizes and latency, e.g.,
{Md1

,Md2
, ...,Mdn

}. Applying this technique recursively leads to similar approaches known
as vertical cascade [10], hierarchical speculative decoding [15] or multi-level speculative decod-
ing [24]. In the direction of draft token generation, since rejecting a draft token means rejecting
all the following draft tokens, the acceptance of early draft tokens is more important than the later
ones. Cascade Speculative Drafting (CS-Drafting) [10] further proposes horizontal cascade which
generates early draft tokens using a slightly slower draft model with a high acceptance rate, and
subsequent draft tokens with progressively faster draft models. By leveraging vertical cascade and
horizontal cascade, CS-Drafting achieves further acceleration over the vanilla speculative decoding.
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Figure 1: (a) Comparison of on-the-fly SSD methods (Lookahead, SWIFT) and methods with
statistical draft models (e.g. PLD) on Spec-Bench, tested on NVIDIA H100 GPU. (b) Theoretical
effective bound of vertical cascade for a draft modelMd1 to be beneficial in the cascade speculative
decoding compared with vanilla speculative decoding ofMd2

alone. The x-axis is the expected
acceptance rate α(Mt,Md1

) and the y-axis is the cost coefficient c(Mt,Md1
). The SWIFT data

points are from the Spec-Bench results for Vicuna-7B-v1.3 model. (The acceptance rates of PLD
are between 0.1 and 0.5 in this setting.) (c) Theoretical effective bound of horizontal cascade, similar
to (b). In this case, we consider αt,d2, which is commonly similar to αt,d2 in practice.

3 Motivation and Analysis

Although self-speculative decoding methods like EAGLE [20–22], BiTA [18] and LayerSkip [8]
have shown promising speedups, these methods still require training for several days on a node of 8
common server GPUs like Nvidia A100. While the on-the-fly SSD methods like Lookahead [16]
and SWIFT [9] are training-free, they are superior in terms of speed, even falling short of minimal
retrieval-based drafting methods like prompt lookup (PLD) [25] on Spec-Bench [26], as shown in
Fig. 1a. Since retrieval-based methods like PLD utilize the repeating tokens in the generation process
to produce draft tokens, they are inherently lightweight and universally applicable, which weakens
the competitiveness of the current training-free SSD methods. To break this trade-off between
speed and ease of use, using a combination of multiple training-free SSD methods stands out as a
potential solution. Chen et al. [10] present provable improvements over the standard SSD methods by
cascading multiple draft models horizontally and vertically. However, not all LLMs have a series
of smaller draft models available like the FLAN-T5 [27] family used in CS-Drafting. Requiring
multiple draft models is a significant limitation for the practical application of cascade speculative
decoding (CSD). We note that the training-free SSD methods can be used to construct a cascade of
draft models for speculative decoding. Though it has been proven that a retrieval-based statistical
model with negligible cost (e.g. PLD) can almost always gain further speedup against the standard
speculative decoding [10], it is not guaranteed that such CSD can be faster than SD with the statistical
model alone. It thus leads to the first research question to be addressed:

RQ 1: Can existing training-free self-speculative decoding methods be used to construct an effective
cascade of draft models above retrieval-based methods for on-the-fly speculative decoding?

Firstly, we establish a theoretical effective bound for an intermediate draft model to bring a speedup
in CSD. We adopt the same notations as in CS-Drafting for the sake of clarity:
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Expected acceptance rate α(Mt,Md): The probability that a draft token from a draft modelMd

is verified as correct by the target modelMt.

Cost coefficient c(Mt,Md): We define c(Mt,Md) as the ratio of inference times, indicating how
much faster the draft modelMd is compared to the target modelMt for a single forward step.

Expected walltime improvement factor (EWIF) T : It represents the predicted gain in overall
execution speed (wall time) assuming that the acceptance of each token is an i.i.d. Bernoulli trial.

As proved by Chen et al. [10], the EWIF of speculative decoding is: TSD =
ϕ′
(α,k)(1)

(ck+1) = 1−αk+1

(1−α)(ck+1) ,

where ϕ(α,k)(x) = 1 + (x− 1) 1−αk+1xk+1

(1−αx) is the probability generating function of the probability
of generating i tokens pi and α = α(Mt,Md). The EWIF for a vertical cascade with two draft
models,Md1

(slower, higher quality) andMd2
(faster, lower quality), is [10]:

TV C(Md1
,Md2

) =
1− αϕn(α)

(1− α)(1 + ncd1 + nkcd2)
, (1)

where ϕ(x) = ϕ(α(Md1
,Md2

),k)(x), α = α(Mt,Md), and cd1
, cd2

are c(Mt,Md1
), c(Mt,Md2

)
respectively. Adapting from Chen et al. [10], Thm. 4.5, the EWIF of horizontal cascade for two draft
models is:

THC(Md1
,Md2

) =

1−α
kd1

+1

d1

1−αd1
+ α

kd1

d1

αd2
(1−α

kd2
d2

)

1−αd2

1 + kd1
cd1

+ kd2
cd2

, (2)

where αd1
= α(Mt,Md1

), αd2
= α(Mt,Md2

), cd1
= c(Mt,Md1

), cd2
= c(Mt,Md2

).

Then we get a theoretical bound by solving the inequalities TV C(Md1
,Md2

) ≥ TSD(Md2
) and

THC(Md1
,Md2

) ≥ TSD(Md2
), where TSD(Md2

) =
1−α

k0+1

d2

(1−αd2
)(cd2k0+1) . The solution of these inequali-

ties are presented in the Appendix B.

However, the solutions of the inequalities are highly dependent on the hyperparameters of the
speculative decoding scheduling, such as kd1

, kd2
, and n.

Thus, we should compare the EWIF of these methods with optimal hyperparameters to find a tighter
bound, i.e.

max
n,k

TV C(Md1
,Md2

) ≥ max
k0

TSD(Md2
), max

kd1
,kd2

THC(Md1
,Md2

) ≥ max
k0

TSD(Md2
) (3)

This inequality (Eq. 3) does not readily yield a closed-form expression for cd1
, as the maximization

over integer hyperparameters (k0, n, k, kd1, kd2) typically requires numerical evaluation of given
model parameters like the expected acceptance rates and cost coefficients. Therefore we conduct
a numerical simulation to find the theoretical effective bound forMd1 to be benificial in the CSD.
WhenMd2 is a retrieval-based statistical model with negligible cost, we assume cd2 = 0.01 and
α(Mt,Md2) = α(Md1 ,Md2). The simulation results of the borderline of cd1 and α(Mt,Md1)
are shown in Fig. 1b and Fig. 1c.

With the theoretical effective bound established, we can analyze the performance of existing training-
free SSD methods in the context of CSD. For instance, SWIFT [9] employs a layer sparsity strategy,
the distribution of its acceptance rates and cost coefficients on Spec-Bench are illustrated in Fig.
1b and Fig. 1c. As observed, most of the data points of SWIFT lie above the theoretical effective
bound, indicating that naive HC or VC cascade with SWIFT as the intermediate draft model does not
guarantee a speedup over using PLD alone for speculative decoding.

While it’s feasible to cascade multiple training-free SSD methods for CSD, more effective cascade
algorithms are necessary to fully leverage their potential, with tree-based structures being a promising
direction. Since the EWIF of CSD depends on the scheduling algorithm of different draft models, it
is possible to achieve a better speedup by adaptively routing the draft models and assigning the draft
lengths. This leads to our second research question:

RQ 2: Can we achieve further speedup by adaptively routing the draft models and assigning the draft
lengths, with regards to the characteristics of different DSIA strategies?

This question is explored in Section 4.2, where we introduce the Dynamic Tree Cascade (DyTC)
algorithm for online scheduling of CAS-Spec.
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4 Cascade Adaptive Self-Speculative Decoding

To address the outlined challenges and leverage the potential of training-free SSD methods, we
propose Cascade Adaptive Self-Speculative Decoding (CAS-Spec). CAS-Spec constructs a hierarchy
of draft models using various inference acceleration strategies applied to the target modelMt. It
then employs a dynamic mechanism to route through this hierarchy and determine draft lengths.

4.1 Construct Draft Models with Dynamically Switchable Inference Acceleration Strategies

Definition 4.1. A Dynamically Switchable Inference Acceleration (DSIA) strategy is a technique
that modifies the inference process of a model to accelerate the token generation, which can be
dynamically switched on or off during inference. These strategies can often be parameterized (e.g.,
by the degree of sparsity, quantization bit-width).

Each DSIA strategy, potentially with different parameter settings, can be viewed as creating a distinct
“virtual” draft modelMdi

derived fromMt. Examples of DSIA strategies include:
• Layer Sparsity: Skipping a subset of transformer layers or a subset of attention and FFN blocks in
Mt to generate draft tokens [7, 9, 11].

• Early-Exiting: Using predictions from intermediate layers ofMt as draft tokens [8, 12, 13].
• Activation Sparsity: Keeping only a subset of neurons (activations) in each layer to reduce compu-

tation and memory movement of weights. It commonly requires batch size to be 1 or small. 3

• Activation Quantization: Using lower precision (e.g., INT4) for activations and (partial) KV cache
of the model during draft generation, as explored by QSpec. It requires a weight-only quantized
target model for considerable speedup.

• Efficient Attention: Using an efficient attention mechanism like StreamingLLM [30] for draft
generation. This is explored in the context of SSD by TriForce and MagicDec. Such methods are
commonly more performant in long context generation.

To construct a hierarchy of draft models, there are three approaches in general:
• Mixing-DSIA Cascade: Using orthogonal DSIA strategies to create a series of draft models. For

example, Md1 could be a layer-sparse model, while Md2 could have both layer sparsity and
activation sparsity.

• Replacing-DSIA Cascade: Using conflicted DSIA strategies to create a series of draft models. For
example,Md1

could be a model with FP8 quantized SageAttention2 [31], andMd2
could be a

model with StreamingLLM attention.
• Scaling-DSIA Cascade: Using the same DSIA strategy with different parameter settings (e.g.,

different degrees of sparsity) to create a series of draft models {Md1
,Md2

, . . . ,Mdn
}.

In the spectrum of the trade-off between speed and accuracy, each intermediate draft modelMdi

typically satisfies α(Mt,Mdi
) ≥ α(Mt,Mdi+1

) and c(Mt,Mdi
) ≤ c(Mt,Mdi+1

). The last
model in the hierarchy is expected to be the fastest and least accurate, such as an extremely fast, often
non-neural or retrieval-based method.
Definition 4.2. In a hierarchy fo draft models {Md1 ,Md2 , . . . ,Mdn}, the bottom draft modelMdn

is a model that serves as the final stage in a cascade of draft models, which means it cannot be further
accelerated by speculative decoding.

Prompt Lookup Decoding (PLD) [25] is a prime example. Statistical n-gram models or small, fixed
draft heads like those in EAGLE [20–22] and Medusa [23] could also serve this role. However, since
EAGLE and Medusa require the hidden states of the target model, their performance will be greatly
affected when using the hidden states from DSIA draft models. For simplicity and considering its
proven efficacy in CS-Drafting [10], we often consider PLD as a defaultMdn

.

TheMdi
are inherently training-free if the DSIA strategies are training-free. By choosing a training-

free bottom draft model and DSIA strategies, CAS-Spec can be implemented without training multiple
draft models and thus more easily integrated into a wide range of LLMs. Among the listed DSIA
strategies, layer sparsity does not require special condition to gain speedup. We choose it for easy

3There are no existing works on SSD with activation sparsity yet, but it is a promising direction with recent
advances in this technique [28, 29]
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comparison with other speculative decoding methods. CAS-Spec with other DSIA strategies like
activation sparsity and quantization is discussed in the Appendix C.

4.2 Dynamic Tree Cascade (DyTC)

Tree attention allows for more flexible and efficient speculative decoding by enabling the parallel
verification of different branches of draft tokens [23, 32]. Similarly, early tokens in a draft token tree
should also be prioritized for more accepted tokens.
Proposition 4.3. Tree Cascade (TC) assigns the different draft models in the draft token tree to
maximize the expected acceptance rate of the early draft tokens.

Given a set of available DSIA strategies and a bottom draft model, there are many possible configura-
tions for the cascade of draft models, forming a set of candidate draft models.

In CAS-Spec systems, the challenge is to determine where to start generating tokens (in the draft
token tree), which draft models to use, and when to switch between them. Since the dimensions of
the search space are large, it is impractical to use global optimization methods, which are commonly
used in vanilla speculative decoding to find the optimal draft length. Instead, we propose to use
a heuristic-based approach to dynamically adapt the hyperparameters of the scheduling algorithm
during inference. This dynamic adaptation is guided by heuristics based on continuously updated
estimates of acceptance rates and latency predictions. Inspired by the idea of dynamic draft tree
expansion [33], we propose to leverage online optimization to adapt the expansion of Tree Cascade:
Proposition 4.4. Dynamic Tree Cascade (DyTC) is a dynamic scheduling algorithm that adaptively
selects the draft models and their configurations in a tree structure based on the online acceptance
rates and latency predictions.

Acceptance Rate for Draft Configurations. For each potential draft model configurationMdi

(including DSIA variants ofMt and vertical cascade combinations), DyTC maintains an online esti-
mate α̂(Mt,Mdi) of its acceptance rate. This estimate is continuously updated using an Exponential
Moving Average (EMA) mechanism:

α̂new = λ · α̂prev + (1− λ) · α̂recent (4)

where α̂prev is the estimate from the previous step, α̂recent is the acceptance rate computed from
a local history window of the most recent H generation steps (we use H = 20 and λ = 0.7 in our
experiments), and λ controls the balance between stability and responsiveness to changing generation
contexts.

Critically, for computing α̂recent, we focus on the acceptance of the first draft token generated by
each configuration, rather than the overall ratio of accepted to drafted tokens. Specifically, if the local
history contains outcomes {o1, o2, . . . , oH} where oi ∈ {0, 1} indicates whether the first drafted
token was accepted, then: α̂recent =

1
H

∑H
i=1 oi.

The EMA-based update ensures that α̂ adapts to the dynamic nature of text generation, where accep-
tance probability can vary significantly across different tasks (e.g., translation vs. summarization)
and even within a single sequence. For cold starts initialization, a brief calibration phase can be
performed at the beginning of generation to gather initial acceptance statistics for each configuration,
detailed in Appendix D.

Token-Level Information for Drafted Tokens. While the configuration selection in
FindBestConfigurationForStep (Algorithm 2) relies on the aggregate acceptance rate estimates
described above, the calculation of accumulated acceptance rate

∏ls
j=1 α̂j for already-drafted but

not-yet-verified tokens does incorporate token-level information. Specifically, we consider:
• For neural draft models: the normalized probability (logit) of the drafted token, which is positively

correlated with acceptance likelihood [33].
• For non-neural drafts (e.g., PLD): longer length of the n-gram match indicating higher confidence.
This token-level refinement allows DyTC to more accurately estimate the quality of different candidate
branches in the draft tree when selecting the next leaf node to expand. However, for future tokens
(those not yet generated), we cannot access such token-level information without actually running the
draft model, which would be prohibitively expensive for all candidate configurations. Therefore, the
configuration selection relies on the historical acceptance rate estimates.
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Figure 2: Illustration a example of the Dynamic Tree Cascade (DyTC) algorithm when n = 3.

Hardware-Aware Latency Prediction (ĉ): The cost coefficient c(Mt,Mdi
) depends on the

specific DSIA strategy and the hardware platform. DyTC utilizes a latency model to predict these
costs. We predicted the roofline latency of the hardware platform with Bayesian linear regression.

DyTC Algorithm. Firstly, we start by generating tokens at the leaf node where the accumulated
acceptance rate

∏l
j=1 α̂j is the highest. Here l is the path length from the root node to the leaf node

and α̂j is the estimated acceptance rate of the j-th node in the path. At each decoding step, DyTC
evaluates different cascade configurations. A “configuration” involves a selection of DSIA models,
their draft lengths, and their arrangement. For simplicity, we consider a round of vertical cascade as
a holistic step. For example, at the s-th step of generation, DyTC considers:
• Generate with a single modelMdi

, with a draft length of ks (commonly small for finer control).
• A vertical cascade: V C(Mdi

, (. . . ,Mdn
)), with an expected draft length of ks (the draft length

cannot be strictly controlled since it depends on the acceptance of the low-level draft tokens).
• End the generation of the draft tokens (if the accumulated acceptance rate

∏ls
j=1 α̂j is too low).

The decision-making process aims to maximize the overall EWIF, choosing proper configurations
Mds

and ks. Firstly, we start with a Greedy Search that optimize the predicted local speedup
t̂s =

α̂(1−α̂ks )
(1−α̂)ĉks

∏ls
j=1 α̂j of the current step. However, the speedup of CSD may not obey the Greedy

Choice Property, that is, choosing the locally optimal solution at each step does not guarantee a
globally optimal EWIF. For instance, if there are two draft models: Md1

with α̂d1
= 0.9 and

ˆcd1
= 0.4, andMd2

with α̂d2
= 0.8 and ˆcd2

= 0.3, the local speedup when ks = 1 is t̂s(Md1
) =

0.9
0.4 ≈ 2.25 and t̂s(Md2

) = 0.8
0.3 ≈ 2.67 at the first step. The Greedy Search algorithm would select

Md2
at every step, with a suboptimal overall EWIF of 1.554. On the other hand, if we use the

horizontal cascade ofMd1
andMd2

, we can achieve an overall EWIF of 1.615.

Dynamic programming could be used to find the optimal global solution, but the computational
overhead is prohibitive for online scheduling since the search space grows exponentially with the
number of steps. Inspired by the concept of “admissible heuristic” from the A* algorithm[34], we
propose to adjust the local optimization target considering not only the estimated speedup brought by
the current step, but also the estimated least future speedup to address this issue. We define the least
future speedup as the EWIF of using the Bottom Draft modelMdn

for the following draft step. So
the subproblem of the s-th step is to maximize the following objective function:

Ts(Mds
, ks)

ls∏
j=1

α̂j , where Ts(Mds
, ks) =

α̂(1−α̂ks )
1−α̂ + α̂ks ˆαdn

ĉks + ˆcdn

(5)

Since
∏ls

j=1 α̂j only depends on the chosen leaf node, we first find the best leaf node with the highest

accumulated acceptance rate. We stop the generation of the draft tokens if ˆαdn

ˆcdn

∏ls
j=1 α̂j < tmin,
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Algorithm 1: Dynamic Tree Cascade (DyTC) Draft Generation
Input : Initial prefix x0, Maximum tree size Mtree_max

Set of candidate draft model configurations S, Bottom draft modelMdn
with α̂dn

, ĉdn

Minimum overall speedup threshold tmin, Maximum draft length per expansion step kmax

Top-K token selection K, Top-P tree probability threshold Ptree

Output :Generated draft token tree Tr

1 Initialize Tr with Nroot representing the last bonus token x0

2 Dictionary tracking accumulated acceptance rate Pacc[Nroot]← 1.0
3 Dictionary tracking active nodes Dactive[Nroot]← True // Mark Nroot as active leaf
4 while Tr.size() < Mtree_max do
5 Nleaf ← argmaxN∈Tr{Pacc[N ] | Dactive[N ] = True}
6 if Nleaf is null then
7 break // No more active leaves to expand
8 (S∗, k∗)← FindBestConfigurationForStep(S, α̂dn

, ĉdn
, kmax)

9 if S∗ is null then
10 Dactive[Nleaf ]← False
11 break // No beneficial configuration, stop expansion
12 x← GetSequenceToNode(Nleaf )
13 xsiblings ← GetSiblingTokens(Nleaf )
14 if S∗ is notMdn And xsiblings is not empty then
15 x← concat(x, xsiblings) // Tree-based sequence parallelism

16 y ∈ Nk∗×K ← GenerateDraftTokens(S∗, x, k∗)
17 α̂S∗ ← current estimate α̂(S∗)
18 for i← 1 to k∗ do
19 for j in arg topPy[i, :] do
20 Nparent ← GetSiblingNode(Nleaf , j) // returns Nleaf if j = 0
21 Nnew ← Tr.add_child(Nparent,y[i, j], info from S∗)
22 if j == 0 then
23 Nfirst ← Nnew

24 Pacc(Nnew)← Pacc(Nparent)× α̂S∗

25 Dactive[Nnew]← True

26 Nparent ← Nfirst

27 if Tr.size() ≥Mtree_max then
28 return Tr // Tree size limit reached

29 return Tr

where tmin is a threshold for the minimum local speedup, or the total tree size exceeds the maximum
size m. Then we get the best configurationMds

and ks by solving the optimization problem in Eq. 5:
Mds

, ks = argmax
Mds ,ks

Ts(Mds
, ks), s.t. ks ∈ [1, kmax] (6)

Tree-based Parallel Draft Generation. Draft models constructed with DSIA strategies are them-
selves an LLM variant, with memory-bounded inference process. Tree attention allows for not only
parallel verification of multiple candidate draft paths, but also parallel generation of draft paths.
Following the idea of tree-based parallel decoding in SpecInfer [32], we can generate draft tokens
for multiple sibling leaf nodes in parallel. Given the TOP-K selected siblings Ns1 , Ns2 , . . . , Nsm
(m = K−1) of the selected leaf node Nleaf , we select TOP-P sibling nodes based on the normalized
probability of the drafted candidate tokens. In memory-bounded decoding process, a slightly larger
sequence of input tokens each step is acceptable and does not significantly affect the overall latency
of draft generation. Thus, we use the same draft length ks for all selected sibling nodes to simplify
the implementation.

The algorithm is summarized in Alg. 1. The detailed algorithms for functions FindBestLeafNode,
FindBestConfig, and GenerateDraftToks are presented in Appendix D.
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Table 1: Overall speedup compared to Autoregressive Decoding on Spec-Bench. Models:
Vicuna-7B-v1.3, Vicuna-13B-v1.3, and Vicuna-33B-v1.3. [36] Bold indicates the best perfor-
mance among training-free methods. Underlined indicates the best overall performance, including
methods with training. CAS-Spec† denotes CAS-Spec with Kangaroo and PLD

Model Method MT-Bench Trans Summary QA Math RAG Overall

7B

Lade 1.386 1.172 1.173 1.253 1.567 1.078 1.274
PLD 1.563 1.046 2.276 1.109 1.603 1.642 1.539

SWIFT 1.073 1.075 1.096 1.019 1.067 1.055 1.064
CAS-Spec 1.598 1.103 2.268 1.145 1.664 1.676 1.578
Kangaroo 1.698 1.307 1.548 1.409 1.658 1.581 1.534

CAS-Spec† 1.727 1.312 2.327 1.407 1.701 1.695 1.696

13B

Lade 1.281 1.065 1.132 1.128 1.480 1.068 1.196
PLD 1.418 1.020 2.104 1.035 1.577 1.673 1.458

SWIFT 1.155 1.087 1.196 1.040 1.106 1.142 1.119
CAS-Spec 1.562 1.134 2.063 1.107 1.582 1.691 1.524
Kangaroo 1.652 1.244 1.483 1.340 1.652 1.508 1.482

CAS-Spec† 1.732 1.251 2.337 1.401 1.719 1.689 1.673

33B

Lade 1.295 1.085 1.159 1.165 1.535 1.114 1.229
PLD 1.431 1.047 1.891 1.061 1.523 1.396 1.385

SWIFT 1.218 1.187 1.244 1.152 1.218 1.221 1.206
CAS-Spec 1.547 1.176 1.862 1.186 1.563 1.490 1.481

5 Experiments

We conduct comprehensive experiments to evaluate the effectiveness of our proposed Cascade
Adaptive Self-Speculative Decoding (CAS-Spec) algorithm. We aim to answer the two research
questions posed in Section 3.

5.1 Experimental Setup

We evaluate CAS-Spec on a range of widely-used open-source LLMs, including Llama-2-7B [35]
and Vicuna-v1.3 [36] family. These models represent different architectures and training objectives,
allowing us to assess the generalizability of CAS-Spec. All experiments ensure lossless decoding,
meaning that the output is identical to that of standard autoregressive decoding. We choose Spec-
Bench [26] and for evaluation. Spec-Bench is a comprehensive benchmark including various tasks
such as multi-turn conversations, mathematical reasoning, and summarization. For all datasets, we
measure the generation speed for producing 1024 new tokens. To demonstrate the versatility of
CAS-Spec, we conduct experiments on server-grade GPU (NVIDIA H100 80GB). The primary
metric is Speedup, defined as the wall time of autoregressive decoding divided by the wall time of
the speculative decoding method.

CAS-Spec Configuration. For CAS-Spec, we construct a hierarchy of draft models using the
following DSIA strategies, chosen for their training-free nature and effectiveness:
• DSIA (Layer Sparsity): Skip every other Transformer layer inMt, following SWIFT [9].

• DSIA (Early Exiting): Exit after a subset of Transformer layers, then decode with a trained
adapter, following Kangaroo [13]. (Kangaroo is a non-training-free method and only provides the
adapter weights for 7B and 13B models.)

• bottom draft model (Mdn ): Prompt Lookup Decoding (PLD) is used as the final, fastest stage, as
it has negligible computational cost.

Our CAS-Spec implementation primarily uses a three-level DSIA cascade: Md1 andMd2 , followed
byMdn (PLD). The DyTC algorithm dynamically selects between these options and adjusts draft
lengths (kmax set to 5, tmin set to 1.1). Detailed configurations and hyperparameters for CAS-Spec
are provided in Appendix E.
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5.2 Main Results

Table 1 summarizes the main speedup results. CAS-Spec consistently outperforms all baseline on-
the-fly (training-free) speculative decoding methods across all tested models, and datasets. CAS-Spec
achieves speedups ranging from 1.10× to 2.27×. This significantly surpasses individual training-
free methods like PLD and SWIFT. Notably, CAS-Spec’s performance is competitive with, and in
some cases exceeds, reported numbers for Kangaroo, despite CAS-Spec being entirely training-free.
With trained methods like Kangaroo, which leverage a small tuned head for early exiting, we can
achieve more substantial gains over both PLD and Kangaroo. The detailed comparison between
training-free and not-training-free methods is provided in Appendix F.1. As shown in Figure 3, for
Vicuna-7B-v1.3, CAS-Spec achieves an average speedup of 47% over CS-Drafting [10](VC+HC)
and 48% over tree algorithm in SWIFT [9].

5.3 Discussion

0.75

0.97
0.91

1.07 1.06

1.17

1.57

LS VC HC VC+HC Tr VC+Tr DyTC
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Speculation Algorithms

S
pe

ed
up

 R
at

io AR

PLD

Figure 3: Speedup of different meth-
ods relative to baseline. AR (1.0) and
PLD (1.54) reference lines are shown.
The vertical line separates two groups of
methods.

The experimental results robustly demonstrate that CAS-
Spec achieves SOTA speedups among on-the-fly specula-
tive decoding methods. Addressing RQ1: Our findings
confirm that training-free self-speculative methods can be
effectively layered to construct a cascade that significantly
outperforms a single, strong statistical draft model like
PLD under proper cascade scheduling. Addressing RQ2:
The ablation study on DyTC clearly shows its superiority
over static cascade scheduling. The ability to dynamically
route through the draft model hierarchy and assign draft
lengths based on runtime heuristics (acceptance rates and
latency predictions) is crucial for maximizing performance.
This adaptability allows CAS-Spec to handle variations
in generation difficulty and hardware characteristics more
effectively, boosting real-world applications [37, 38].

The training-free nature of CAS-Spec, combined with its
high performance, makes it a practical and attractive solu-
tion for accelerating LLM inference in diverse deployment
scenarios. It can be readily integrated with existing LLMs
without the need for costly retraining or maintaining sepa-
rate draft model weights and KV caches (beyond the DSIA
modifications to the target model’s inference path).

6 Conclusion

In this paper, we introduced Cascade Adaptive Self-Speculative Decoding (CAS-Spec), a novel
algorithm for lossless LLM inference acceleration that eliminates the need for training separate draft
models. CAS-Spec constructs a hierarchy of speculative draft models by leveraging dynamically
switchable inference acceleration (DSIA) strategies, applied to the target model. This approach offers
significant flexibility and ease of integration.

A core contribution of our work is the Dynamic Tree Cascade (DyTC) method. DyTC adaptively
routes generation through the multi-level draft models and assigns draft lengths based on online
heuristics of acceptance rates and latency predictions. This dynamic scheduling allows CAS-Spec to
optimize its performance continuously during inference.

Our experiments demonstrate that CAS-Spec achieves state-of-the-art acceleration among on-the-fly
speculative decoding methods. The results validated our hypotheses that (1) training-free DSIA
strategies can form effective cascades over fast bottom draft models, and (2) dynamic scheduling via
DyTC further enhances these gains.

CAS-Spec offers a compelling solution for practical LLM deployment by providing substantial
speedups without the overheads associated with training and maintaining external draft models. Its
adaptability and ease of integration make it a valuable tool for a wide range of LLMs.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper includes only some computations, which are quiet simple in
mathematics. We found that the provided equations and explanations may fit the readers
well in understanding.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have illustrate all the important experimental settings in Experiments.
Other information, such as training and evaluation details, is included in the Appendix E.
Our results can be fully reproduced by following all the information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

15



• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will submit the code of the full project following the NeurIPS code and
data submission guidelines. Meanwhile, the training dataset and evaluation benchmarks we
used in this paper are all open-access, and related settings and processing codes are also
included in the submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details in the Appendix E. The
related codes are also submitted.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We do conduct extensive experiments that support the main claims of the paper
and report all the results in Section 5 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We implement experiments on H100 80GB for different backbone LLMs. We
have displayed the detailed information of setting in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
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Justification: We have reviewed the code to confirm with the NeurIPS Code Ethics..
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no direct societal impact from our work. Our contribution focuses
solely on improving the inference efficiency of large language models through a decoding
speedup technique. The content or accuracy of the generated responses—including any
potential misinformation or ethical concerns—is entirely determined by the underlying
backbone model, which our method does not modify or influence.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Part of our training code and the used data and benchmark datasets are from
open-access projects and works. We have cited the responding works and authors.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have included a tutorial of our released
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations and Future Work

While CAS-Spec demonstrates promising performance, its effectiveness is inherently tied to the
quality and efficiency of the chosen DSIA strategies. The online estimation for DyTC, though
lightweight, introduces some computational overhead and require a short warm-up period for optimal
performance. Moreover, since dynamic scheduling depends on the heuristics of the generation of a
certain token sequence, its improvement is lessened when the batch size is large. Other limitations
include the incompatibility of CAS-Spec with current SOTA speculative decoding methods like
EAGLE3 due to their reliance on hidden states of the verify model.

Future research could explore integrating more sophisticated or newly developed training-free SSD
techniques as DSIA components within the CAS-Spec framework. Further refinement of the DyTC
algorithm, potentially incorporating more advanced online learning for scheduling, could yield
additional improvements. Investigating the application of CAS-Spec to even larger models or
different modalities, and exploring hardware co-design to optimize DSIA strategy execution, are also
promising avenues for future work. As the field of self-speculative decoding continues to evolve,
CAS-Spec provides a flexible and powerful framework to leverage these advancements.

B Theoretical Analysis

For certain hyperparameters (k0, n, k, kd1, kd2), we can derive the theoretical bounds for the cost
coefficient ofMd1

, such that the speedup of the cascade is greater than the speedup of standard
speculative decoding withMd2

alone.

For vertical cascade, the solution of the inequality TV C(Md1
,Md2

) ≥ TSD(Md2
) gives the bound:
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For horizontal cascade, the solution of the inequality THC(Md1
,Md2

) ≥ TSD(Md2
) gives the bound:
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C DSIA

Other than the layer sparsity, we also consider the activation quantization and activation sparsity as
two candidates of CAS-Spec framework. For activation quantization, we refer to the implementation
of QSpec. While for activation sparsity, we adopt the TEAL’s method of this DSIA strategy.

Furthermore, since the activation quantization and activation sparsity are both orthogonal to the layer
sparsity, we can construct draft models with Mixing-DSIA Cascade. For instance, we can construct
Md1

as the W4A4 quantized model, andMd2
as the W4A4 model with layer sparsity and activation

sparsity.

However, using these two DSIA strategies inherently requires a weight-only quantized draft model
with batch size of 1. This configuration is suitable for edge inference, but not general enough for
large-scale inference scenarios. Therefore, we do not include the experiments on these two DSIA
strategies in our CAS-Spec framework by now.

D Dynamic Tree Cascade Algorithm

Maintaining Estimates for Inactive Configurations. For draft configurations not currently selected
in a given step, their acceptance rate estimates are preserved and do not decay. When a previously
unused configuration becomes active again (e.g., due to changing generation context), its estimate is
updated based on actual verification outcomes. In cold-start scenarios or for configurations that have
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never been used, we initialize estimates using either: (1) brief offline profiling on representative tasks,
or (2) heuristic priors based on the DSIA strategy’s aggressiveness (e.g., higher layer sparsity implies
lower expected acceptance rate).

Note that for vertical cascade configurations like V C(Mdi
,Mdn

), we maintain a single acceptance
rate estimate corresponding to the highest-level draft modelMdi

, since all draft tokens are ultimately
verified by this model before proceeding toMt.

The detailed functions mentioned in the Algorithm 1 are as follows:

Algorithm 2: Dynamic Tree Cascade (DyTC) Functions

1 Function FindBestConfigurationForStep(Scandidates, α̂dn , ĉdn , kmax):
2 Mbest_choice ← null; kbest_choice ← 0; max_obj_val← −∞
3 foreach configuration S ∈ Scandidates do
4 α̂S ← current estimate α̂(S)
5 ĉS ← current estimate ĉ(S)
6 for k ← 1 to kmax do
7 if ĉSk + ĉdn

≈ 0 then
8 continue
9 float Eaccepted; if α̂S ≈ 1.0 then

10 Eaccepted ← k

11 else
12 Eaccepted ← (α̂S(1− α̂k

S))/(1− α̂S)

13 float Tval ← (Eaccepted + α̂k
Sα̂dn)/(ĉSk + ĉdn)

14 if Tval > max_obj_val then
15 max_obj_val← Tval
16 Mbest_choice ← S
17 kbest_choice ← k

18 if max_obj_val ≤ 0 then
19 return (null, 0)
20 return (Mbest_choice, kbest_choice)

E Experimental Details

In this section, we provide the details of our experimental setup, specifically for CAS-Spec configura-
tion in the main experiment. Our draft models are constructed using mainly layer sparsity based on
SWIFT, which is a training-free and on-the-fly DSIA strategy. The hierarchy is got by Scaling-DSIA
Cascade, which tunes the layer sparsity to get different draft models. We also consider the Prompt
Lookup Decoding (PLD) as the bottom draft model. The configuration of CAS-Spec is as follows:
Md1

has around 0.4 layer sparsity, whileMd2
has around 0.6 layer sparsity. Thus it leads to multiple

candidateMds
for each step:

• basic model:Md1(LS = 0.4),Md2(LS = 0.6),Md3 (PLD)
• 2-Level VC: V C (Md1

,Md3
), V C (Md2

,Md3
)

• 3-Level VC: V C (Md1 , V C(Md2 ,Md3))

However, due to the insufficient gap between the layer sparsity ofMd1
andMd2

, the 3-Level VC
configuration turns out to be less efficient and hence rarely used in the DyTC algorithm. Therefore,
we present the results of 2-Level VC in the main experiment.

F Additional Experimental Results

Figure 3 shows the speedup of different methods on Vicuna-7B-v1.3 model. LS refers to the layer
sparsity only drafting without tree attention. VC,HC,VC+HC are the framework of using the vertical
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cascade and horizontal cascade with PLD, based on the implementation of CS-Drafting. Tr is the
standard SWIFT implementation with Tree Attention. Tr+VC follows the same implementation of
CS-Drafting, but with the tree attention. DyTC is the version with Dynamic Tree Cascade algorithm.
Compared to VC+HC configuration, DyTC achieves a 73% improvement in average speedup. Compared
to Tr (SWIFT), DyTC achieves a 47% improvement in average speedup.

F.1 Comparison with Trained Methods

Table 2: Comparison with trained methods on Vicuna-7B-v1.3 model.
Method Training-Free #Mean accepted tokens Speedup

PLD Yes 1.75 1.54x
SWIFT Yes 3.01 1.06x
CAS-Spec (SWIFT,PLD) Yes 3.43 1.58x
Speculative Decoding (Vicuna 68m) No 2.27 1.44x
Medusa No 2.39 1.69x
EAGLE No 3.57 2.05x
EAGLE2 No 4.36 2.21x

In comparison with trained speculative decoding methods, our CAS-Spec framework with SWIFT
and PLD achieves higher speedup than vanilla speculative decoding methods with Vicuna 68m, while
being training-free. The gap between training-free and not-training-free methods is significant, as
trained methods like Medusa and EAGLE achieve higher acceptance rates and speedups, leveraging
the full model’s capabilities.
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