
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOMATIC TASK-AWARE INSTRUCTION OPTIMIZER
FOR BLACK-BOX LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated superior capabilities in terms
of solving various real-world tasks. However, their performance and generated
content quality heavily depend on task-relevant instructions, which makes instruc-
tion optimization a challenging but critical direction to explore. In particular, as
practitioners generally cannot access black-box (or API) LLMs’ internal parame-
ters and gradient information, it consequently makes instruction optimization for
black-box LLMs especially non-trivial. Existing methods for optimizing black-box
LLM instructions mainly focus on in-context learning using manually designed or
heuristic disciplines, which can be insufficient due to the extreme complexity of
modern black-box LLMs that can contain hundreds of billions of parameters. To
address these challenges, we propose a novel automatic instruction optimization
framework named Automatic Instruction Optimizer (AIO). AIO is designed to
perceive target task information and adaptively adjust its task-aware instructing
strategy for a task-solver black-box LLM. By leveraging a white-box LLM with
parameter fine-tuning for enhanced representation power, AIO can automatically
update its instructing strategy based on the feedback from task-solver black-box
LLM. To achieve this goal, AIO adopts a novel LLM parameter fine-tuning process
powered by zeroth-order gradient approximation and Contextual Bandit techniques,
which can effectively and efficiently help address the challenge of inaccessible
black-box LLM internal parameters and gradients, as well as help alleviate ex-
pensive API cost concerns by flexibly reusing collected black-box LLM feedback.
Extensive empirical evaluations are presented to demonstrate properties of our
proposed AIO, and its effectiveness in comparison with strong baselines.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive performance across various applica-
tion scenarios, such as knowledge graph reasoning (Pan et al., 2024). However, LLMs generally rely
on well-crafted instructions that provide accurate guidance and sufficient reference for high-quality
answer generation. Designing such instructions can be particularly challenging for more powerful
black-box (or API) LLMs (e.g., GPT-4 (Achiam et al., 2023), Claude-3 (Anthropic, 2024)), as their
parameters and gradients are commonly inaccessible. Meanwhile, effective instructing strategies can
vary significantly across different LLMs, distinct LLM versions, and downstream tasks (Zhou et al.,
2022; Khattab et al., 2023; 2022), while optimal instructing strategies generally require flexible adap-
tations tailored to target tasks or domains (Sun et al., 2024; Liu et al., 2024). In this case, designing
an optimal instructing strategy for a specific target task like knowledge reasoning can be non-trivial
and expensive. In addition, crafting proper instructing strategies for domain-specific tasks can be
difficult and time-consuming for human experts (Brown et al., 2020; Reynolds & McDonell, 2021;
Shin et al., 2020). For instance, assigning human labor to refine such task-specific instructions will be
expensive, and the cost can grow exponentially along with increasingly more task categories of higher
granularity levels (Scao & Rush, 2021; Shin et al., 2023; Amatriain, 2024). Thus, it is necessary and
valuable to develop automatic task-aware instructing mechanisms based on task information to enable
optimal performance of task-solver black-box LLMs, without intervention of human experts.

Regarding instruction optimization in terms of black-box LLMs, there is an emerging line of works
using an additional instruction-generating LLM as an "instruction engineer" (Zhou et al., 2022;
Pryzant et al., 2023; Fernando et al., 2023; Guo et al., 2024; Chen et al., 2024; Lin et al., 2024), in
order to leverage the strong representation power of LLMs in search of a good instructing strategy.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, existing works mainly focus on in-context learning aspects with frozen LLM parameters,
based on manually crafted or heuristic disciplines, which can limit the ability of LLMs in terms
of perceiving and utilizing target task information and black-box LLM feedback. On the other
hand, LLM fine-tuning alternatively offers more elasticity by involving trainable LLM parameters to
maintain an over-parameterization advantage (Allen-Zhu et al., 2019) with regard to exemplars from
target tasks, which can allow LLMs to adapt their interpretations to align task textual data with target
objectives (Han et al., 2024b) such as human preferences (Korbak et al., 2023; Rafailov et al., 2024),
along with parameter-efficient fine-tuning options (Hu et al., 2021a; Wu et al., 2024; Han et al., 2024b).
Meanwhile, as modern LLMs are commonly pre-trained to achieve good generalization abilities
instead of being optimized for specific downstream tasks (i.e., task-aware instruction optimization
in our case) out of the box, LLM parameter fine-tuning can generally offer more flexibility and
better performance than in-context learning techniques for various downstream applications (Liu
et al., 2022; Mosbach et al., 2023). However, as black-box LLM parameters and gradients are
generally inaccessible, it is impractical to directly fine-tune the "instruction engineer" LLM with
back-propagation based on chain rule and black-box LLM feedback.

In face of above motivations and challenges, we propose a novel framework named Automatic
Instruction Optimizer (AIO) to automatically optimize instructions for task-solver black-box LLM,
with regard to the target task. In particular, AIO composes and optimizes human-comprehensible
instructions fed into a black-box LLM to improve its performance on the target task, for reinforced
transparency and trustworthiness. To learn a good task-aware instructing strategy, distinct from
existing in-context learning approaches, AIO alternatively fine-tunes a white-box LLM (e.g., Llama
3 (Dubey et al., 2024)) into a capable automatic instruction optimizer, which is able to perceive
downstream task information and generate high-quality instructions accordingly. This formulation
aims to tackle the formidable complexity of modern black-box LLMs (i.e., with possibly hundreds of
billions of parameters involved). Here, with strong representation power and learning abilities of a
fine-tuned white-box LLM, AIO is capable of learning the complex relationship between task-aware
instructions and black-box LLM feedback. Intuitively, one significant obstacle is that black-box
LLM parameters and gradients are commonly inaccessible. To address this challenge and achieve
efficient gradient approximation for the black-box LLM, we propose a novel zeroth-order (ZO)
gradient approximation approach aided by Thompson Sampling (TS), by modeling the ZO gradient
approximation of the black-box LLM as a sequential decision-making process. In the meantime,
during instruction optimization, it is necessary to retrieve black-box LLM feedback, which requires
querying third-party APIs and incurs direct development costs. To alleviate API cost concerns, our
TS-based ZO gradient approximation adaptively reuses collected black-box LLM feedback, enabling
efficient instruction optimization through the rich representation power originated from white-box
LLM fine-tuning. Our contributions can be summarized as:

• Problem Formulation: We delve into the realm of automatic task-aware instruction optimization
for black-box LLMs, where existing in-context learning methods can fail to deliver optimal
performance due to insufficient representation power of their learning models or mechanisms.
Different from existing approaches, we alternatively transform the goal of instruction optimization
into an LLM fine-tuning objective, where a white-box LLM with sufficient representation power is
fine-tuned to generate high-quality task-aware instructions for a task-solver black-box LLM.

• Proposed Framework: Different from existing approaches where human experts are involved
to manually design instructions for downstream tasks, our proposed AIO does not require such
intervention of human experts, while finishing all the instruction optimization automatically through
LLM fine-tuning. To enhance the trustworthiness of our instruction optimization process, AIO is
able to optimize human-comprehensible instructions (i.e., instructions made up by concrete textual
tokens) to provide additional insights and transparency for practitioners. To tackle challenges of
inaccessible black-box LLM gradients and possibly expensive API costs of the black-box LLM,
AIO utilizes a novel zeroth-order gradient approximation approach aided by Thompson Sampling.
By inventively formulating ZO gradient approximation procedure as a sequential decision-making
process, this design enables us to approximate black-box LLM gradients effectively and efficiently,
which are essential for fine-tuning our instruction-generating white-box LLM.

• Experiments: Extensive experiments are conducted on real-world data sets, demonstrating the
superior performance of AIO compared with state-of-the-art baselines, as well as efficiency advan-
tages of AIO in terms of reducing API token costs. Furthermore, we perform additional analytical
experiments to explore characteristics and properties of AIO, such as instruction optimization
trajectory results that demonstrate how instructions evolve across the optimization process.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS
Instruction Optimization for API (Black-box) LLMs. In contrast to white-box LLM instruction
optimization (Shin et al., 2020; Li & Liang, 2021; Lester et al., 2021), as practitioners generally
have no access to black-box LLM parameters or gradients, a line of existing works (Zhou et al.,
2022; Prasad et al., 2022) perform instruction search based on manually defined criteria. Chen
et al. (2024); Lin et al. (2024); Hu et al. (2024) also apply another LLM with frozen parameters to
generate instructions for the black-box LLM, and gradually optimize the generated instruction based
on Bayesian Optimization (Frazier, 2018; Wang et al., 2023; Shahriari et al., 2015), Contextual Bandit
approaches (Chu et al., 2011; Li et al., 2010; Valko et al., 2013; Zhou et al., 2020; Agrawal & Goyal,
2013; Zhang et al., 2021), or localized instruction optimization guided by Gaussian Process (Schulz
et al., 2018). Since these works primarily rely on manually designed or heuristic principles focused
on in-context learning, they can result in sub-optimal black-box LLM performance. Alternatively, we
fine-tune a white-box LLM into an "instruction engineer", capable of adaptively perceiving target
task information and directly learning from black-box LLM feedback for instruction optimization.

LLM-based Instruction Generation. Instruction generation using LLMs is an emerging research
topic (Zhou et al., 2022; Ma et al., 2024; Schnabel & Neville, 2024), where LLMs are applied as
instruction optimizer and their instructing strategies are gradually refined based on environment
feedback or target model outputs. In particular, there are a series of works leveraging meta-prompts,
which can be manually designed by humans (Yang et al., 2024), or optimized by LLMs (Tang et al.,
2024). Meanwhile, Pryzant et al. (2023) perform in-context "Gradient Descent" on instructions based
on interactions with an instruction-generating LLM. Fernando et al. (2023); Guo et al. (2024) propose
evolutionary algorithms to refine LLM-generated instructions in an in-context learning manner.
Different from these works, our fine-tuned LLM can automatically perceive task-relevant information
and black-box LLM feedback, which can generally offer more flexibility than in-context learning
approaches and require no labor of human experts during the instruction optimization process.

3 PROBLEM FORMULATION

As mentioned in our Introduction, given a target task T , two LLMs are involved in our pipeline: (1)
black-box LLM FB(·) is applied for task-solving, i.e., generating answers for task queries. Here,
the black-box LLM is considered as part of our learning objective, as we aim to learn optimized
instructions to enable the black-box LLM to achieve optimal performance. (2) white-box LLM
FW (·;ΘW) with trainable parameters ΘW aims to generate and optimize human-comprehensible
instructions, based on task T and feedback from FB(·). Suppose that target task T is associated with
three data collections (i.e., query-label pairs (X,Y)) individually drawn from task T : (1) training
data DTrain, which can also be named as task exemplars, will be fed into the white-box LLM as
reference for generating high-quality task-specific instructions; (2) validation data DValid is applied
for performance evaluation during the optimization; and (3) final evaluation will be conducted on
a separate testing data set, which will remain unrevealed and inaccessible during the optimization
stage for instruction-generating white-box LLM. Meanwhile, we denote FW (DTrain;ΘW) as the
instruction generated based on exemplars DTrain and corresponding white-box LLM parameters ΘW .
With generated instruction, denote Ŷ = FB

(
[FW (DTrain;ΘW);X]

)
as the answer generated by

black-box LLM for query X , where [·; ·] operation embeds query X to the generated instruction.

Learning Objective. With task exemplars DTrain and an evaluation function (e.g., loss function)
L(·, ·), we transform the instruction optimization process into a white-box LLM fine-tuning objective,
to leverage the sufficient learning and representation power of LLM fine-tuning for instruction
optimization. Here, we aim to find the optimal white-box parameters ΘW that minimize:

min
ΘW

[
E(X,Y)∼T

[
L
(
Ŷ , Y

)]]
= min

ΘW

[
E(X,Y)∼T

[
L
(
FB

(
[ϕ(ΘW);X], Y

))]]
(1)

in observation of task exemplars DTrain, where we apply a shorthand for generated instruction:
ϕ(ΘW) := FW (DTrain;ΘW). (2)

Intuitively, we utilize the above fine-tuning process to guide how white-box LLM comprehends task
exemplars and composes task-specific instructions, based on task-solver black-box LLM feedback.

4 PROPOSED FRAMEWORK: AUTOMATIC INSTRUCTION OPTIMIZER (AIO)
Recall that we aim to fine-tune the white-box LLM parameters ΘW to minimize our learning
objective by optimizing generated instructions. An intuitive approach is to update the white-box LLM

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Pipeline of AIO. The white-box LLM generates an instruction from exemplars DTrain, which is evaluated to produce validation
loss. The gradient flow towards white-box LLM parameters is then decomposed into: (1) TS-aided ZO gradient approximation for black-box
LLM gradients, and (2) back-propagation for white-box LLM gradients. Finally, white-box LLM parameters are updated via Gradient Descent.

parameters ΘW using gradients derived from the instruction evaluation results (Eq. 1). However, the
nested black-box LLM makes direct back-propagation towards ΘW via the chain rule infeasible.

Brief summary of AIO pipeline. To address this challenge, we propose the AIO framework for
efficient and effective white-box LLM fine-tuning, aimed at instruction optimization. As illustrated
in Figure 1, the pipeline of AIO involves two major parts: (1) Instruction Generation & Evaluation:
Given the exemplars DTrain, the white-box LLM with parameters ΘW generates an instruction
ϕ(ΘW) := FW (DTrain;ΘW) as in Eq. 2. This instruction is then evaluated based on the black-box
LLM output, which produces validation loss. (2) White-box Instruction-generating LLM Fine-
tuning: Based on the validation loss, we can decompose the gradient flow towards ΘW into two
multiplicative components via the chain rule: (i) white-box LLM gradients that can be obtained
with back-propagation, and (ii) inaccessible black-box LLM gradients that are approximated with
our proposed TS-aided ZO approximation method. Different from existing methods with randomly
sampled ZO directions (e.g., Spall (1992); Malladi et al. (2023)), we apply TS here to adaptively
determine the ZO directions for efficient and effective gradient approximation (Subsec. 4.1.2). We
elaborate on technical details in Subsec. 4.1 and provide AIO pseudo-code in Algorithm 1.

Validation loss. Given the original optimization objective in Eq. 1, since a comprehensive overview
of the task distribution T can be inaccessible, we alternatively evaluate the quality of generated
instructions using validation data DValid. This leads to our validation loss:

LValid
(
ϕ(ΘW)

)
:=

1

|DValid|
∑

(X,Y)∈DValid
L
(
FB

(
[ϕ(ΘW);X]

)
, Y

)
, (3)

where the validation loss is evaluated on the instruction ϕ(ΘW), which is generated by the white-box
LLM FW (·;ΘW) as in Eq. 2. Consequently, the gradient flow towards white-box LLM parameters
ΘW will become ∂

[
1

|DValid|
∑

(X,Y)∈DValid
L
(
FB

(
[ϕ(ΘW);X]), Y

)] /
∂ΘW . Given the nested black-

box LLM, we are unable to directly back-propagate towards ΘW through the chain rule.

4.1 THOMPSON SAMPLING (TS) AIDED ZEROTH-ORDER (ZO) GRADIENT APPROXIMATION

To deal with the challenge of inaccessible black-box LLM gradients, by applying chain rule on Eq. 3,
we first can decompose the gradient flow with respect to white-box LLM parameters ΘW into two
separate multiplicative parts: (1) gradients involving the black-box LLM; (2) and white-box LLM
gradients that can be obtained by back-propagation, as

∂

[
1

|DValid|
∑

(X,Y)∈DValid
L
(
FB

(
[ϕ(ΘW);X]), Y

)]/
∂ΘW

=

∂

[
1

|DValid|
∑

(X,Y)∈DValid
L
(
FB

(
[ϕ(ΘW);X]), Y

)]
∂ϕ(ΘW)︸ ︷︷ ︸

Black-box LLM Gradients

· ∂ϕ(ΘW)

∂ΘW︸ ︷︷ ︸
White-box LLM Gradients

.

(4)

On one hand, while our white-box LLM gradients can be obtained by conventional back-propagation
in a straightforward way, we can also readily integrate back-propagation with Parameter-efficient
Fine-tuning (PEFT) techniques, such as LoRA (Hu et al., 2021a), to enhance the efficiency of
white-box LLM fine-tuning while still maintaining promising performance. One the other hand, as
we have mentioned, it is not plausible to directly derive the first term on the right-hand side with
back-propagation, since black-box LLM FB(·) parameters and gradients are inaccessible. In this
case, we propose to tackle this challenge with the zeroth-order gradient approximation technique.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1.1 ZEROTH-ORDER GRADIENT APPROXIMATION FOR BLACK-BOX LLM GRADIENTS

Zeroth-order gradient approximation has been proved effective and efficient for LLM fine-tuning
(Malladi et al., 2023), yielding satisfactory results with only a few forward (i.e., inference) passes
of LLMs. This makes zeroth-order gradient approximation a promising solution for approximating
inaccessible black-box LLM gradients. To begin with, analogous to existing ZO approximation works
(e.g., Nesterov & Spokoiny (2017); Ghadimi et al. (2016); Duchi et al. (2015); Shu et al. (2023);
Malladi et al. (2023)), we can first suppose a linear optimization landscape around each white-box
LLM output ϕ. With notation from Eq. 3, it leads toLValid(ϕ+z) ≈ [∇ϕLValid(ϕ)]

⊺·z+LValid(ϕ); and
z is a small perturbation applied to the predicted next-token distribution, for all tokens in the output ϕ,
specifically on LLM-header output probabilities (i.e., predicted distribution over the vocabulary). We
also include supplementary explanations for auto-regressive generation and perturbation in Appendix
C.1. Here, we slightly abuse the notation by using operations "+" and "−" to impose perturbation z
onto token-level output probabilities of each token from ϕ. This formulation holds because gradients
∇ϕLValid(ϕ) := ∂LValid(ϕ)/∂ϕ will stay uniform for all ϕ within the linear landscape.

Here, these small token-level perturbations are imposed to collect information of the optimization
landscape, as small perturbations on token-level outputs can effectively change the auto-regressive
generation process (Han et al., 2024a). Inspired by Malladi et al. (2023), we can formulate an
approximation for black-box LLM gradients as

∂
[
LValid

(
ϕ(ΘW)

)]
∂ϕ(ΘW)

≈
[
LValid

(
ϕ(ΘW) + ϵz

)
− LValid

(
ϕ(ΘW)− ϵz

)]
2ϵ

· z (5)

by deeming LValid(·) as the validating evaluation function for generated instruction ϕ from Eq. 3.
Here, z ∼ N (0, I) ∈ Rd stands for a random Gaussian perturbation vector, imposed on each token
of the output ϕ, thereby maintaining the same dimensionality as the token-level dimensionality of
the output. z also satisfies the isotropic condition E[zz⊺] = Id. Consequently, d will correspond
to the vocabulary size of the white-box LLM. The scaling parameter ϵ ∈ R+ is used to control the
perturbation intensity. This formulation intuitively follows the idea of bi-directional estimation of
optimization landscape to perceive the optimization landscape from both directions (Spall, 1992;
Malladi et al., 2023). In this way, the first term on the RHS of Eq. 4 can be approximated with only
black-box LLM forward passes, without accessing its internal gradients or parameters.

Remark 1. We only approximate black-box LLM gradients, instead of using ZO method to directly
estimate whole gradient flow ∂

[
1

|DValid|
∑

(X,Y)∈DValid
L
(
FB

(
[ϕ(ΘW);X]), Y

)]/
∂ΘW . The reason

is that the error of zeroth-gradient method tends to grow along with the target dimensionality (Malladi
et al., 2023). Since the size of white-box LLM parameters ΘW is generally much larger than white-
box LLM output dimensionality, we choose to approximate ∂

[
LValid(FB(ϕ(ΘW)), Y)

]
/ ∂ϕ(ΘW)

instead for a lower approximation error. Related ablation study is presented in Appendix B.6.

However, one potential drawback is that as perturbation vectors z are randomly sampled (Eq. 5),
gradient perturbation directions within the optimization landscape will be random and potentially
inefficient (Cai et al., 2022). Thus, we propose to reuse collected feedback, by formulating above ZO-
based fine-tuning process as an online sequential decision-making problem; and utilize Contextual
Bandit techniques to effectively determine which perturbation directions are informative, beneficial
and worth exploring, in terms of improving instruction quality and black-box LLM performance.

4.1.2 TS-AIDED SELECTION OF GRADIENT PERTURBATION DIRECTIONS

Recall that for ZO-based gradient approximation methods (e.g., Nesterov & Spokoiny (2017);
Ghadimi et al. (2016); Duchi et al. (2015); Malladi et al. (2023)), it is common to suppose that we
have a linear optimization landscape around the current optimization objective as in Eq. 5. In this
case, as illustrated in Figure 2, with random Gaussian perturbation vector z, we have the radius of
the supposed linear optimization landscape following a Chi-squared distribution with expected radius
being E[Radius] = E

[
∥ϵz∥2

]
= ϵ
√
d.

Leveraging the linear optimization landscape. Within the supposed linear landscape, we can
intuitively formulate this ZO optimization problem into a sequential decision-making process, where
collected information can help choose perturbation directions z in Eq. 5, rather than applying
completely random z. As a natural solution, Contextual Bandit algorithms (Li et al., 2010; Agrawal
& Goyal, 2013) are designed to identify the optimal choice among a set of candidate arms (i.e.,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

actions) based on arm contextual information and historical records, while addressing the exploration-
exploitation dilemma in sequential decision-making processes Auer et al. (2002). Under Contextual
Bandit settings, and based on the gradient approximation formulation from Eq. 5, we define the arm
reward r ∈ R for each perturbation direction z ∈ Rd (i.e., candidate arm in Contextual Bandit) as

r :=
[
∇ϕLValid(ϕ)

]⊺ · z ≈ LValid(ϕ+ ϵ · z)− LValid(ϕ− ϵ · z)
2ϵ

, (6)

with respect to current white-box LLM output ϕ. Intuitively, our formulation of arm reward echoes
with our bi-directional ZO approximation formulated in Eq. 5. This formulation aims to quantify the
benefit of descending towards perturbation direction z (i.e., updating output ϕ towards direction −z).

Figure 2: Linear optimization landscape
(illustrated as a sphere) around white-box
LLM output ϕ. With the sampled pertur-
bation direction z ∼ N (0, I), expected
radius will be ϵ

√
d, in terms of L2 distance

between averaged output token-level prob-
abilities. Updated outputs ϕ′, ϕ′′ can stay
within the linear landscape, motivating our
TS-based approximation.

With our arm reward formulation enabled by the supposed linear
optimization landscape, we apply a linear TS model to select pertur-
bation directions (i.e., arms) accordingly. Here, TS model parameters
with dimensionality d are denoted by lowercase θ ∈ Rd. Analogous
to (Agrawal & Goyal, 2013; Zhang et al., 2021), we considerN (0, I)
as the initial prior for TS model parameters. Then, starting from the
prior, we gradually refine the corresponding TS parameter posterior
distribution with collected optimization landscape information, and
sample updated TS parameters θ from the refined posterior.

Regarding our arm reward formulation in Eq. 6 and the nature of
linear TS, the parameters θ essentially serve as an estimate of the
uniform gradients∇ϕLValid(ϕ) within the optimization landscape. In
this way, we gradually refine our arm selection strategy by effectively
reusing collected black-box LLM feedback. Notably, the linear
optimization landscape allows us to employ a highly efficient linear
TS algorithm for rapid arm selection and parameter refinement. Next,
we proceed with arm (perturbation direction) selection for the ZO
gradient approximation procedure.

TS-aided perturbation direction (arm) selection. We consider a T -round fine-tuning process,
and denote the initial white-box LLM parameters without fine-tuning as Θ0 := ΘW , with initial
generated instruction ϕ0 := ϕ(Θ0). We also let Θt−1, t ∈ [T] refer to white-box LLM parameters
before t-th round fine-tuning. Here, in each round t, we first sample K ∈ N+ candidate arms (i.e.,
perturbation directions) Zt for selection, from the standard Gaussian distribution, as

Zt :=
{
zt,1, zt,2, . . . ,zt,K

}
∼ N (0, I). (7)

This design controls the arm context norm magnitude with the isotropic formulation, while ensuring
randomness in terms of candidate arm context directions. Before the fine-tuning process, initial
TS model parameters are instantiated as θ0 by sampling from the prior N (0, I). Here, we let
θt−1 represent the TS model parameters in round t before the refinement. We will discuss later
how to update TS parameters using a refined TS parameter posterior in Eq. 9. Next, for these K
candidate arms, we formulate estimated rewards as the inner product z⊺

t,kθt−1,∀zt,k ∈ Zt, and select

the top-B arms with the highest estimated rewards to form collection Z̃t ⊂ Zt, with cardinality
|Z̃t| = B,B ≪ K. The chosen arms Z̃t are considered perturbation directions that can lead to
potential benefits for reducing the validation loss. Calculation details are in lines 5-7 of Algorithm 1.

Querying arm rewards. Next, we query the black-box LLM (i.e., reward oracle) for validation loss
results LValid to obtain rewards for the chosen arms Z̃t. Using the shorthand ϕt−1 := ϕ(Θt−1), for
each chosen arm zt,k ∈ Z̃t, we calculate its arm reward by following Eq. 6, leading to

rt,k =
LValid(ϕt−1 + ϵ · zt,k)− LValid(ϕt−1 − ϵ · zt,k)

2ϵ
, (8)

which measures the benefit of involving direction (arm) zt,k for gradient approximation. Naturally,
with each chosen arm (perturbation direction), the queried validation loss results are recycled to
derive the black-box LLM gradient approximation according to Eq. 5. Finally, by plugging in the
estimated black-box LLM gradients, white-box LLM parameters can be updated via Gradient Descent
through the gradient flow (Eq. 4) and estimated black-box LLM gradients (Eq. 5). Gradient estimation
results from the B chosen perturbation direction vectors (arms) are averaged for a more accurate
approximation, analogous to existing ZO approximation methods (Malladi et al., 2023).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Validating optimization landscape. After querying arm rewards with Eq. 8 and performing white-
box LLM parameter fine-tuning, we proceed to update the TS model parameters. Recall that we
operate within a linear optimization landscape, if generated instructions do not significantly deviate
from previous ones. In this case, we apply a threshold parameter β > 0 to quantify the landscape
magnitude. For the optimized instruction ϕt in round t, we use the condition ∥ϕt − ϕCheck∥ > β to
verify whether the assumed linear landscape remains valid. The initial checkpoint ϕCheck is set as the
instruction ϕ0 prior to optimization. We calculate the L2 distance between the averaged token-level
probabilities of the output ϕt and the checkpoint ϕCheck, inspired by prior works (e.g., Joshi et al.
(2023); Manakul et al. (2023)). Collected records are initialized as an empty set Ω0.

Updating TS parameters. In each optimization round t ∈ [T], we have Scenario (1): If white-box
LLM output becomes far enough from the checkpoint, s.t. ∥ϕt−ϕCheck∥ > β, our current knowledge
can be invalid because current white-box LLM output has significantly deviated from the checkpoint.
In this case, we set the new checkpoint as ϕt and discard collected records. Then, reinitialize TS
parameters θt from the prior N (0, I). Scenario (2): Otherwise, if the distance is small enough s.t.,
∥ϕt − ϕCheck∥ ≤ β, the chosen arms and their true rewards from this round will be integrated into
collected records Ωt. Afterwards, analogous to existing TS methods (Agrawal & Goyal, 2013; Zhang
et al., 2021), with an exploration parameter ν ≥ 0, covariance matrix Σt := I +

∑
(z,r)∈Ωt

z · z⊺,
and reward vector bt :=

∑
(z,r)∈Ωt

z · r, we update the posterior of TS parameters as

N (Σ−1
t bt, ν ·Σ−1

t). (9)

Finally, we update TS parameters θt by sampling from the updated posterior, and proceed to the next
optimization round. Additional calculation details are presented in lines 12-19 of Algorithm 1.
Remark 2. To reduce computational costs of matrix inversion and sampling from high-dimensional
Gaussian distribution, motivated by Johnson-Lindenstrauss (JL) Lemma (Johnson & Lindenstrauss,
1984), we adopt random Gaussian projection to map d-dimensional arm contexts into a lower-
dimensional space (Matoušek, 2008; Larsen & Nelson, 2017), where we perform the TS-aided
selection of candidate arms Zt. Comparable ideas are also applied in existing works for reducing
the dimensionality of tunable soft prompt vectors (Chen et al., 2024; Lin et al., 2024). To efficiently
compute the inversion of the covariance matrix Σt in each round t, we utilize the Sherman-Morrison
formula (Bartlett, 1951; Maponi, 2007), avoiding direct matrix inversion operations. Details will be
elaborated in Appendix C.2 due to page limit.

4.2 WORKFLOW SUMMARY AND PSEUDO-CODE FOR AIO FRAMEWORK

The pseudo-code of AIO is in Algorithm 1. For each optimization round t ∈ [T], we first sample a
pool of K candidate arms (gradient approximation directions) Zt (line 5, Algorithm 1). Then, we
apply a TS-based bandit model to estimate arm rewards, which quantify the benefit of including the
corresponding arms as perturbation directions. To reduce API costs, we only select B ≪ K arms as
the chosen arms Z̃t ⊂ Zt (lines 6-7). Next, we query the black-box LLM to obtain rewards of the
chosen arms (line 9) and perform Gradient Descent to fine-tune the white-box LLM parameters with
the gradient flow described in Eqs. 4 and 5 (line 10). Afterwards, we check if the white-box LLM
output after fine-tuning differs sufficiently from the checkpoint. If so, we reset the records and the TS
parameter distribution (line 13). Otherwise, we update the parameter posterior with the chosen arms
and their true rewards (lines 16-17). TS parameters θt are updated accordingly (lines 14, 18).

5 EXPERIMENTS

Our empirical analysis mainly aims to show that AIO can effectively optimize task-specific black-box
LLM instructions compared with strong baselines, as well as provide insights on AIO behaviours and
properties. In terms of LLM implementations, we apply Llama-3-8B-Instruct (Dubey et al.,
2024) as our tunable white-box LLM FW (·;ΘW), and adopt Claude-3-Sonnet (Anthropic,
2024) as our black-box LLM FB(·). As an outline for our empirical results in the main body, we have:
(1) zero-shot instruction induction experiments on 15 tasks in Subsec. 5.1; (2) empirical analysis on
API token costs and performance in Subsec. 5.2; (3) a case study that provides analysis and examples
for AIO instruction optimization trajectories in Subsec. 5.3. Due to page limit, we include experiment
and implementation details in Appendix A. Meanwhile, we also conduct additional experiments
presented in Appendix B, including but not limited to few-shot instruction induction results, ablation
study on AIO, applying AIO under Chain-of-Thought (CoT) settings, as well as empirical results
with different combinations of white-box LLMs and black-box LLMs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1 Automatic Instruction Optimizer (AIO)

1: Input: Optimization rounds T . Exemplars DTrain, validation data DValid. Number of candidate
arms K. Number of chosen arms B. Exploration parameter ν ≥ 0. Threshold parameter β > 0.

2: Initialization: TS Model Parameters θ0 ∼ N (0, I). White-box LLM parameters Θ0 ← ΘW .
Instruction checkpoint ϕCheck ← ϕ(Θ0). TS model records Ω0 ← ∅.

3: for each round t ∈ [T] do
4: ▷ TS-aided ZO Perturbation Direction Selection
5: Sample candidate perturbation directions (i.e., candidate arms) Zt (Eq. 7), with |Zt| = K.
6: Calculate arm reward estimations r̂t,k = z⊺

t,kθt−1,∀zt,k ∈ Zt, with TS parameters θt−1.

7: Choose B arms of highest estimated rewards Z̃t ← argmaxZ̃t⊂Zt:|Z̃t|=B

[∑
zt,k∈Z̃t

r̂t,k
]
.

8: ▷ White-box LLM Parameter Fine-tuning
9: Query rewards for chosen arms Z̃t (Eq. 8). ▷ Only query chosen arms to reduce API cost.

10: With B chosen perturbation directions (arms) Z̃t and their queried rewards, fine-tune white-
box LLM parameters to Θt with Gradient Descent, based on gradient flow decomposition (Eq.
4 and Eq. 5) and validation loss (Eq. 3). Generate updated instruction ϕt := ϕ(Θt).

11: ▷ Updating Linear TS Model
12: if ∥ϕt − ϕCheck∥ > β then
13: Reset prior as N (0, I), new checkpoint ϕCheck ← ϕt, and collected records Ωt ← ∅.
14: Sample updated TS parameters θt ∼ N (0, I).
15: else
16: With chosen arms z ∈ Z̃t and their rewards r, update Ωt ← Ωt−1 ∪

[⋃
z∈Z̃t

(z, r)
]
.

17: Update the posterior for TS parameters by N (Σ−1
t bt, νΣ

−1
t) (Eq. 9).

18: Sample updated TS parameters from the posterior distribution θt ∼ N (Σ−1
t bt, νΣ

−1
t).

19: end if
20: end for

5.1 EXPERIMENTS ON ZERO-SHOT INSTRUCTION INDUCTION

We first experiment on zero-shot instruction induction performance of AIO. Analogous to existing
works for LLM instruction optimization (Zhou et al., 2022; Chen et al., 2024; Lin et al., 2024), our
empirical analysis involves 15 different tasks including instruction induction tasks from Honovich
et al. (2022), as well as more challenging reasoning tasks from BigBench (bench authors, 2023).
Consequently, evaluation criteria will vary depending on specific tasks, such as "Multiple Choice"
where the white-box LLM needs to choose the right option out of several candidates, and "Exact
Match" where black-box LLM answers needs to be identical to ground-truth labels. We defer detailed
task descriptions and evaluation criteria to Appendix A.1.

Baseline methods. We involve four baselines, including two kinds of LLM-based instruction
optimization methods. The first two baselines leverage black-box LLM for instruction generation:
(1) APE (Zhou et al., 2022), (2) ProTeGi (Pryzant et al., 2023). We also include baselines that
utilize white-box LLM for instruction generation: (3) InstructZero (Chen et al., 2024), (4) INSTINCT
(Lin et al., 2024). Detailed baseline descriptions are included in Appendix B. Here, we apply
Claude-3-Sonnet as the black-box instruction generation LLM for APE and ProTeGi, while
adopting white-box LLM Llama-3-8B-Instruct for InstructZero and INSTINCT.

Two PEFT variants of AIO. Apart from the original AIO framework in Algorithm 1, recall that
AIO is also compatible with many existing PEFT methods for efficient white-box LLM fine-tuning.
Therefore, to reinforce fine-tuning efficiency, we further include empirical results of incorporating
Linear Probing (LP) (Kumar et al., 2022) and LoRA (Hu et al., 2021a) to our proposed AIO. These
two variants are denoted as "AIO + LP" and "AIO + LoRA" respectively. In particular, we note that
"AIO + LP" only fine-tunes ∼ 6.54% of white-box LLM parameters, while "AIO + LoRA" merely
needs to fine-tune ∼ 0.04% of white-box LLM parameters.

Empirical results. Our empirical results are shown in Table 1. We notice that our proposed AIO
can generally achieve better performance in comparison with strong baselines, in the presence of
the challenging reasoning tasks from BigBench (bench authors, 2023). In particular, our light-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Tasks \Methods

Black-box LLM White-box LLM White-box LLM w/ FT (Ours)

APE ProTeGi InstructZero INSTINCT AIO AIO + LP AIO + LoRA

antonyms 0.893 0.861 0.843 0.881 0.901 0.857 0.898
sentiment 0.911 0.928 0.941 0.920 0.949 0.967 0.947
larger_animal 0.914 0.932 0.827 0.857 0.912 0.945 0.950
taxonomy_animal 0.491 0.970 0.598 0.782 0.983 0.979 0.935
object_counting 0.319 0.550 0.522 0.537 0.543 0.401 0.479
navigate 0.580 0.624 0.556 0.577 0.644 0.623 0.627
winowhy 0.022 0.703 0.671 0.725 0.622 0.646 0.635
implicatures 0.806 0.826 0.816 0.837 0.811 0.836 0.849
logical_fallacy 0.820 0.826 0.790 0.826 0.868 0.824 0.836
hyperbaton 0.515 0.499 0.467 0.502 0.538 0.518 0.527
epistemic_reasoning 0.604 0.459 0.667 0.580 0.766 0.784 0.719
movie_recommendation 0.348 0.847 0.895 0.866 0.902 0.857 0.883
timedial 0.532 0.718 0.786 0.712 0.814 0.734 0.759
presuppositions_as_nli 0.458 0.488 0.503 0.482 0.523 0.486 0.493
question_selection 0.712 0.667 0.718 0.605 0.648 0.628 0.622

Average Rank 3.87 2.80 3.13 3.20 2.00

Table 1: Zero-shot Instruction Induction Results. For each task (row), bold number refers to the best result,
while underlined number refers to the second-best one. AIO and its two variants can outperform four baselines
on 12 out of a total of 15 tasks. We average results of AIO and its two variants task-wise, and treat these three
methods as a unified baseline for ranking comparisons.

weight variants "AIO + LP" and "AIO + LoRA", which fine-tune significantly less white-box LLM
parameters, can also achieve promising performance, or outperform other baselines on tasks like
"epistemic reasoning". To perform a more comprehensive ranking comparison, we present ranking
results by averaging the performance of AIO and its two variants for each task, and applying averaged
performance for comparing against baselines to derive ranking. As in Table 1, AIO and its variants
as a unity can still enjoy relatively higher ranking results compared with baselines. We also include
additional complementary experiments, such as few-shot instruction induction and an ablation study
of AIO components, so that interested readers can refer to Appendix B for details.

5.2 OPTIMIZATION PERFORMANCE VERSUS API TOKEN EFFICIENCY

Figure 3: Token consumption vs. performance (accu-
racy results). Token consumption results are normalized
into [0, 1] range. In the below figure, we include token
consumption vs. best accuracy results till certain token
consumption levels on four tasks, with two instruction
fragments for "Implicatures" task at different stages.

Recall that we apply Claude-3-Sonnet as our black-
box LLM FB(·) for experiments, where API query costs
are charged on a token-basis for end users. In Figure 3,
we show an illustration in terms of token consumption,
with input and output token quantities combined, versus
instruction induction performance on four different tasks.
From Figure 3, we see that AIO can relatively maintain
a good balance between token costs and induction per-
formance, starting from early optimization stages when
small amounts of tokens are consumed. Compared with
ProTeGi, the performance of APE tends to be inferior as
ProTeGi can optimize generated instructions with higher-
granularity error feedback in terms of specific training
samples, although it can lead to additional token consump-
tion costs. On the other hand, we observe that the baselines
InstructZero and INSTINCT generally have higher token
consumption compared to AIO. While these two baselines
also leverage white-box LLMs for instruction optimiza-
tion, their methods primarily rely on in-context learning,
by tuning a prefix soft prompt with kernel-based learner
or small neural model. Given the extreme complexity of
black-box LLMs, their representation power can be in-
sufficient for effectively learning from black-box LLM
feedback, leading to more interactions with the black-box
LLM and, consequently, higher token costs. Alternatively,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: In left Figure, we show three instructions generated for "Sentiment" task: w/o FT, during FT, and after FT. Instructions with FT
generalize to task contexts instead of over-fitting task exemplars. Middle and right figures shows the normalized distance vs. accuracy for tasks
"Larger Animal", "Question Selection" (middle figure with fitted lines), "Navigate" (right radar plot). For radar plot, instruction (i.e., point)
accuracy increases clock-wisely starting from 0◦. Point distances to circle center are corresponding distances from ϕ0.

to tackle the complexity of the black-box LLM, we fine-tune a white-box LLM to leverage its
rich representation power, enabling efficient instruction optimization with adequate utilization of
black-box LLM feedback.

5.3 CASE STUDY: INSTRUCTION OPTIMIZATION TRAJECTORY ANALYSIS

In this subsection, we present analysis on how AIO generated instructions evolve across optimization
rounds. From the left figure in Figure 4, we provide some examples in terms of how fine-tuning
changes the way our white-box LLM FW comprehends exemplars and composes instructions. These
examples all originate from our experiment data. Without fine-tuning, FW can over-fit exemplars
by searching specific keywords to judge sentiment outcomes, which can clearly fail to generalize
to unseen task data points and lead to low accuracy. During and after fine-tuning, FW perceives
black-box LLM feedback and corrects its way in terms of interpreting task exemplars as well as
generating instructions. During fine-tuning, instruction gets improved by considering signal words
from exemplars (e.g., "entertainingly") as examples instead of sole indicators. Moreover, after
fine-tuning, FW further generalizes the concept "positive connotations = positive sentiment" to a
more comprehensive view, by mentioning "use sentiment analysis" to analyze outcome directly.

In addition, we also present visualization results in terms of induction performance as well as distances
between generated instructions ϕ and the initial instruction ϕ0 := ϕ(ΘW). Instruction distances
are measured by averaged token probabilities as in Algorithm 1. With the middle line chart, we
individually plot a fitting line for instruction points of each task. For tasks like "Question Selection",
our optimization trajectory tends to fit well with the supposed linear optimization landscape where
small residuals are observed. On the other hand, for tasks like "Larger Animal", we can observe
relatively higher fluctuations when generated instructions deviate from ϕ0. In this case, as it still
obeys a relatively fitting linear trend until the normalized distance reaches 0.7 ∼ 0.8, we can supposed
a smaller linear landscape in terms of TS-aided optimization. Shown in the radar plot, regarding
the "Navigate" task, we see that good instructions are not necessarily far away from the initial ϕ0,
while the best instructions tend to fall into a sub-area within the optimization landscape, instead of
consistently deviates from the starting point ϕ0 as accuracy results increase. Due to page limit, we
will include additional instruction optimization trajectory examples in Appendix B.12.

6 CONCLUSION

In this paper, we propose a novel framework named Automatic Instruction Optimizer (AIO) to
adaptively customize instructions for various downstream tasks. By applying a task-solver black-box
LLM for query answering, AIO fine-tunes a white-box LLM into a task-aware instruction optimizer
that learns from high-level task-relevant information and black-box LLM feedback, to generate high-
quality instructions for the task-solver black-box LLM. Distinct from existing in-context learning
approaches, our framework is designed to address the formidable complexity of modern black-box
LLMs with possibly hundreds of billions of parameters involved. To overcome the challenges of
inaccessible black-box LLM gradients and mitigate concerns related to expensive black-box LLM
API costs, our AIO framework leverages a novel TS-aided zeroth-order gradient approximation
method, enabling effective and efficient learning of task-aware instructing strategies. Extensive
experiments demonstrate the superiority of our proposed framework in terms of performance and API
token efficiency, along with additional analyses that highlight AIO’s properties and specifications.
Additional discussions on AIO future extensions are presented in Appendix E.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In
ICML, pp. 127–135. PMLR, 2013.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Xavier Amatriain. Prompt design and engineering: Introduction and advanced methods. arXiv
preprint arXiv:2401.14423, 2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. Techni-
cal report, Anthropic, 2024. URL https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

Maurice S Bartlett. An inverse matrix adjustment arising in discriminant analysis. The Annals of
Mathematical Statistics, 22(1):107–111, 1951.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79:151–175, 2010.

BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

HanQin Cai, Daniel McKenzie, Wotao Yin, and Zhenliang Zhang. Zeroth-order regularized optimiza-
tion (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization,
32(2):687–714, 2022.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Efficient in-
struction optimization for black-box large language models. In Forty-first International Conference
on Machine Learning, 2024.

Qi Chen, Changjian Shui, and Mario Marchand. Generalization bounds for meta-learning: An
information-theoretic analysis. Advances in Neural Information Processing Systems, 34:25878–
25890, 2021.

Alexandra Chronopoulou, Matthew E Peters, and Jesse Dodge. Efficient hierarchical domain adapta-
tion for pretrained language models. In Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
1336–1351, 2022.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In AISTATS, pp. 208–214, 2011.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=uyTL5Bvosj

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
täschel. Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Noa Garcia, Chentao Ye, Zihua Liu, Qingtao Hu, Mayu Otani, Chenhui Chu, Yuta Nakashima, and
Teruko Mitamura. A dataset and baselines for visual question answering on art. In Computer
Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pp.
92–108. Springer, 2020.

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation methods
for nonconvex stochastic composite optimization. Mathematical Programming, 155(1):267–305,
2016.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun, Nan Jiang, Tarek Abdelzaher, and Heng Ji.
Word embeddings are steers for language models. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 16410–16430, 2024a.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024b.

Or Honovich, Uri Shaham, Samuel R Bowman, and Omer Levy. Instruction induction: From few
examples to natural language task descriptions. arXiv preprint arXiv:2205.10782, 2022.

Yutai Hou, Hongyuan Dong, Xinghao Wang, Bohan Li, and Wanxiang Che. Metaprompting: Learning
to learn better prompts. In Proceedings of the 29th International Conference on Computational
Linguistics, pp. 3251–3262, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021a.

Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiangqiang Lin, Zhongxiang Dai, See-Kiong
Ng, and Bryan Kian Hsiang Low. Localized zeroth-order prompt optimization. arXiv preprint
arXiv:2403.02993, 2024.

Yifan Hu, Xin Chen, and Niao He. On the bias-variance-cost tradeoff of stochastic optimization.
Advances in Neural Information Processing Systems, 34:22119–22131, 2021b.

William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into hilbert space.
Contemporary mathematics, 26:189–206, 1984. URL https://api.semanticscholar.
org/CorpusID:117819162.

Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Verbruggen, and Ivan Radiček.
Repair is nearly generation: Multilingual program repair with llms. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 5131–5140, 2023.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive NLP. arXiv preprint arXiv:2212.14024, 2022.

12

https://api.semanticscholar.org/CorpusID:117819162
https://api.semanticscholar.org/CorpusID:117819162

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
self-improving pipelines. arXiv preprint arXiv:2310.03714, 2023.

Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Vinayak Bhalerao, Christopher Buckley, Jason
Phang, Samuel R Bowman, and Ethan Perez. Pretraining language models with human preferences.
In International Conference on Machine Learning, pp. 17506–17533. PMLR, 2023.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054,
2022.

Kasper Green Larsen and Jelani Nelson. Optimality of the johnson-lindenstrauss lemma. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 633–638. IEEE,
2017.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In WWW, pp. 661–670, 2010.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
Jaillet, and Bryan Kian Hsiang Low. Use your instinct: Instruction optimization for llms using
neural bandits coupled with transformers. In Forty-first International Conference on Machine
Learning, 2024.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia Tsvetkov, Yejin Choi, and Noah A Smith. Tuning
language models by proxy. arXiv preprint arXiv:2401.08565, 2024.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Ruotian Ma, Xiaolei Wang, Xin Zhou, Jian Li, Nan Du, Tao Gui, Qi Zhang, and Xuanjing Huang.
Are large language models good prompt optimizers? arXiv preprint arXiv:2402.02101, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. arXiv preprint arXiv:2305.17333,
2023.

Potsawee Manakul, Adian Liusie, and Mark Gales. Selfcheckgpt: Zero-resource black-box hallucina-
tion detection for generative large language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 9004–9017, 2023.

Pierluigi Maponi. The solution of linear systems by using the sherman–morrison formula. Linear
algebra and its applications, 420(2-3):276–294, 2007.

Jiří Matoušek. On variants of the johnson–lindenstrauss lemma. Random Structures & Algorithms,
33(2):142–156, 2008.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar. Few-shot fine-
tuning vs. in-context learning: A fair comparison and evaluation. arXiv preprint arXiv:2305.16938,
2023.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and Data
Engineering, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with "gradient descent" and beam search. arXiv preprint arXiv:2305.03495, 2023.

Ruizhong Qiu and Hanghang Tong. Gradient compressed sensing: A query-efficient gradient
estimator for high-dimensional zeroth-order optimization. In Forty-first International Conference
on Machine Learning, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond
the few-shot paradigm. In Extended abstracts of the 2021 CHI conference on human factors in
computing systems, pp. 1–7, 2021.

Teven Le Scao and Alexander M Rush. How many data points is a prompt worth? arXiv preprint
arXiv:2103.08493, 2021.

Tobias Schnabel and Jennifer Neville. Prompts as programs: A structure-aware approach to efficient
compile-time prompt optimization. arXiv preprint arXiv:2404.02319, 2024.

Eric Schulz, Maarten Speekenbrink, and Andreas Krause. A tutorial on gaussian process regression:
Modelling, exploring, and exploiting functions. Journal of mathematical psychology, 85:1–16,
2018.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Jiho Shin, Clark Tang, Tahmineh Mohati, Maleknaz Nayebi, Song Wang, and Hadi Hemmati. Prompt
engineering or fine tuning: An empirical assessment of large language models in automated
software engineering tasks. arXiv preprint arXiv:2310.10508, 2023.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980, 2020.

Yao Shu, Zhongxiang Dai, Weicong Sng, Arun Verma, Patrick Jaillet, and Bryan Kian Hsiang
Low. Zeroth-order optimization with trajectory-informed derivative estimation. In The Eleventh
International Conference on Learning Representations, 2023.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

Haotian Sun, Yuchen Zhuang, Wei Wei, Chao Zhang, and Bo Dai. Bbox-adapter: Lightweight
adapting for black-box large language models. arXiv preprint arXiv:2402.08219, 2024.

Xinyu Tang, Xiaolei Wang, Wayne Xin Zhao, Siyuan Lu, Yaliang Li, and Ji-Rong Wen. Unleashing
the potential of large language models as prompt optimizers: An analogical analysis with gradient-
based model optimizers. arXiv preprint arXiv:2402.17564, 2024.

Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time analysis
of kernelised contextual bandits. In Uncertainty in Artificial Intelligence, 2013.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
optimization. ACM Computing Surveys, 55(13s):1–36, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma, and Liang He. A survey of
human-in-the-loop for machine learning. Future Generation Computer Systems, 135:364–381,
2022.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Manning,
and Christopher Potts. Reft: Representation finetuning for language models. arXiv preprint
arXiv:2404.03592, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.
03409.

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. In
International Conference on Learning Representations, 2021.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
In International Conference on Machine Learning, pp. 11492–11502. PMLR, 2020.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

15

https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A COMPLEMENTARY DETAILS FOR IMPLEMENTATION AND EXPERIMENTS

A.1 DESCRIPTIONS FOR TASKS INVOLVED IN OUR EXPERIMENTS

Task Metric Descriptions

antonyms Exact Match Find the antonym for the given word.

sentiment Binary Choice Judge the sentiment preference of the given review.

larger_animal Binary Choice Identify which of the input animals is larger.

taxonomy_animal Exact Set Identify all the animal words out of input word sequence

object_counting Exact Match Enumerate objects of different types and output the total number.

navigate Binary Choice Given a series of navigation instructions,
determine whether one would end up back at the starting point.

winowhy Binary Choice Evaluate the reasoning in answering Winograd Schema Challenge questions.

implicatures Binary Choice Predict whether Speaker 2’s answer to Speaker 1 counts as a yes or as a no.

logical_fallacy Binary Choice Detect informal and formal logical fallacies.

hyperbaton Binary Choice Order adjectives correctly in English sentences.

epistemic_reasoning Binary Choice Determine whether one sentence entails the next.

movie_recommendation Multiple Choice Recommend a movie that is similar to the given list of movies.

timedial Multiple Choice Pick the correct choice for a masked (temporal) span given the dialog context.

presuppositions_as_nli Multiple Choice Determine whether the first sentence entails or contradicts the second.

question_selection Multiple Choice Given a short answer along with its context,
select the most appropriate question which has the given short answer as its answer.

Table 2: Task descriptions and corresponding metrics.

For evaluation metrics: we have (1) Exact Match: the generated answer needs to exactly match the
label; (2) Multiple Choice: task-solver LLM needs to choose one correct option out of several given
candidate choices; (3) Binary Choice: task-solver LLM needs to choose one correct option out of two
candidate choices; (4) Exact Set: whether the predicted set of items (e.g., animals) exactly matches
the label set in both content and size, regardless of the item order.

A.2 TEMPLATES APPLIED FOR AIO INSTRUCTION GENERATION AND BLACK-BOX LLM
INFERENCE (ZERO-SHOT INDUCTION AND FEW-SHOT INDUCTION)

For zero-shot instruction induction and few-shot instruction induction, after obtaining generated
instructions, we follow analogous ideas as in Zhou et al. (2022); Chen et al. (2024); Lin et al. (2024)
when designing the instruction induction templates.

• Few-shot instruction induction settings:

<examples>
Exemplary data: [Exemplar data ([DEMO_DATA])]
</examples>.
Instruction: [INSTRUCTION]\n\n
Input: [Query INPUT]\n Output: [OUTPUT Placeholder]

• Zero-shot instruction induction settings:

Instruction: [INSTRUCTION]\n\n
Input: [Query INPUT]\n Output: [OUTPUT Placeholder]

Obviously, the main difference between these two templates is that few-shot template will also involve
task exemplars during the inference stage, which can provide additional reference for the task-solver
black-box LLM.

B COMPLEMENTARY EXPERIMENTS

Due to strict page limit for the main body, we choose to include complementary experiments here in
this section. As an outline, we have (1) few-shot experiments on our 15 tasks located in Subsec. B.3;

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(2) Chain-of-Thought (CoT) experiments in Subsec. B.4; (3) experiments with different combinations
of white-box and black-box LLMs in Subsec. B.5; (4) an ablation study on AIO components in
Subsec. B.6; (5) Parameter study for β and B in Subsec. B.7; (6) Empirical results with additional
kinds of white-box LLMs in in Subsec. B.8; (7) Effects of exemplar quantity in Subsec. B.9; (8)
Transferability across black-box LLMs in Subsec. B.10; (9) Empirical comparison with an additional
baseline EvoPrompt in Subsec. B.11; (10) Additional optimization trajectory results in Subsec. B.12.

B.1 BASELINE DESCRIPTIONS.

Recall that we involve four baselines for comparison, including two kinds of methods that utilize
LLMs for instruction optimization. The first kind methods leverages black-box LLM for instruction
generation: (1) APE (Zhou et al., 2022) which generates instruction using another black-box LLM
with designated templates and instruction search mechanism; (2) ProTeGi (Pryzant et al., 2023)
applies a black-box LLM for instruction generation, and optimizes "Gradient Descent" on the
generated instruction by integrating with another black-box LLM. Meanwhile, we also include (ii)
Methods that utilize white-box LLM for instruction generation: (3) InstructZero (Chen et al., 2024)
generates instructions using a white-box LLM, while controlling the generation process by optimizing
a prefix soft prompt, based on a kernel-based Bayesian Optimization approach; (4) INSTINCT (Lin
et al., 2024) adopts an analogous approach as InstructZero, but alternatively applies a neural bandit
model in replace of the kernel-based Bayesian Optimization for soft prompt selection.

B.2 IMPLEMENTATION DETAILS

For our zero-shot and few-shot instruction induction experiments, we consider each task is associated
with 20 task exemplars denoted as DTrain as well as 100 validation samples DValid, which will remain
the same for AIO and all other baseline methods. For AIO, when choosing our threshold parameter
β, we initially set β as an infinitely large value to enable all collected black-box LLM feedback
to be reused. Afterwards, we will experiment with β = O(ϵ

√
d) and choose the constant for O(·)

notation with grid search {1, 10, 100}. We perform the fine-tuning process for T = 10 rounds, as
well as set the exploration parameter ν = 0.1 for all experiments For the perturbation magnitude
parameter ϵ, we choose its value with grid search from {10−3, 10−4, 10−5}. In each optimization
round, we will draw K = 10000 arms from N (0, I) where we choose B = 3 arms for fine-tuning
white-box LLM as well as update the TS model parameters. Regarding our TS model, after applying
JL-Lemma and random Gaussian matrix projection (Matoušek, 2008; Larsen & Nelson, 2017) for
dimension reduction, we will have the reduced dimension of TS model to be approximately d′ ≈ 104,
which leads to ∼ 0.4 seconds for selecting chosen arms Z̃t and ∼ 3 seconds for TS model parameters
update in each round t. For "AIO + LoRA", we set its "intrinsic rank" of low-rank approximation to
8. As we mentioned in the main body, we apply Llama-3-8B-Instruct (Dubey et al., 2024)
as our tunable white-box LLM FW (·;ΘW), and adopt Claude-3-Sonnet (Anthropic, 2024) as
our black-box LLM FB(·). All experiments are performed on a server with Intel Xeon CPU and
NVIDIA V100 GPUs.

B.3 COMPLEMENTARY EXPERIMENTS WITH FEW-SHOT AIO

In this subsection, we include experiment results that examine AIO performance under few-shot
settings, where training samples (or exemplars) will be provided to black-box LLM for reference.
In this case, generated instructions will need to provide high-level reference and guidance, to assist
the answer generation of task-solver black-box LLM in observation of task exemplars. The template
applied for experiment is also shown in Subsec. A.2.

The experiment results are shown in Table 3. Here, we see that under few-shot settings, there exist
performance improvements for most baselines compared with zero-shot settings, due to the help of
additionally available task exemplars. By leveraging the sufficient representation power of fine-tuned
white-box LLM, AIO can still generally maintain the best performance compared with baseline
methods. Similar to our zero-shot experiment settings, we average performance of AIO and its PEFT
variant "AIO + LoRA" as a unity to obtain the ranking results.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Tasks \Methods

Black-box LLM White-box LLM White-box LLM w/ FT (Ours)

APE ProTeGi InstructZero INSTINCT AIO AIO + LoRA

antonyms 0.901 0.889 0.894 0.905 0.912 0.895
sentiment 0.932 0.944 0.940 0.933 0.950 0.946
larger_animal 0.939 0.915 0.922 0.874 0.961 0.957
taxonomy_animal 0.708 0.972 0.835 0.869 0.967 0.976
object_counting 0.511 0.583 0.520 0.541 0.555 0.473
navigate 0.734 0.724 0.701 0.757 0.776 0.772
winowhy 0.563 0.674 0.673 0.682 0.628 0.621
implicatures 0.846 0.826 0.859 0.847 0.836 0.867
logical_fallacy 0.850 0.892 0.877 0.881 0.880 0.885
hyperbaton 0.556 0.595 0.580 0.641 0.634 0.660
epistemic_reasoning 0.712 0.802 0.622 0.765 0.774 0.884
movie_recommendation 0.930 0.948 0.955 0.960 0.979 0.963
timedial 0.760 0.820 0.748 0.784 0.779 0.832
presuppositions_as_nli 0.557 0.564 0.591 0.598 0.619 0.594
question_selection 0.879 0.882 0.781 0.822 0.916 0.887

Average Rank 4.20 2.73 3.67 2.67 1.73

Table 3: Few-shot Instruction Induction Results. For each task (row), bold number refers to the best result, while
underlined number refers to the second-best one. Similar to our zero-shot instruction induction experiments in
Table 1, we average numerical results of AIO and its LoRA variant for each task, and treat these two methods as
a unified baseline for ranking comparisons.

B.4 CHAIN-OF-THOUGHT (COT) RESULTS

We also include additional Chain-of-Thought (CoT) experiments on three data sets including GSM8K
(Cobbe et al., 2021), AQUA (Garcia et al., 2020), and SVAMP (Patel et al., 2021), where results
are shown in Table 4. For comparison, we include a baseline instruction "Let’s think carefully step
by step", which is commonly applied for solving CoT tasks, following the settings from Chen et al.
(2024); Lin et al. (2024).

Data set Method Instruction Accuracy Result

GSM8K CoT Let’s think carefully step by step 0.724

AIO Use your math skills and logic to break down
the problem into manageable parts. 0.862

AQUA CoT Let’s think carefully step by step 0.317

AIO Think critically and break down the problem
into smaller parts to solve it. 0.410

SVAMP CoT Let’s think carefully step by step 0.766
AIO Let us think critically and break it down! 0.898

Table 4: Chain-of-Thought (CoT) results.

With results in Table 4, we see that AIO can significantly improve black-box induction performance
under CoT reasoning settings compared with the task-agnostic instruction "Let’s think carefully step
by step", where AIO’s performance improvements can be credited to the utilization of task-aware
instructions. For instance, since GSM8K is a math reasoning task, AIO choose to introduce additional
background information by asking the task-solver black-box LLM to "use your math skills" and
decompose the target math problem into "manageable parts". This can help the black-box LLM
determine which part of or what kinds of learned knowledge should be applied for problem solving,
with higher levels of clarity than task-agnostic instructions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.5 DIFFERENT COMBINATIONS OF WHITE-BOX AND BLACK-BOX LLMS

Recall that for our previous experiments, we have applied Llama-3-8B-Instruct (Dubey et al.,
2024) as our tunable white-box LLM FW (·;ΘW), and adopt Claude-3-Sonnet (Anthropic,
2024) as our black-box LLM FB(·). Here, for two tasks "navigate" and "larger animal", we in-
clude experiments with one more recent white-box LLM Llama-3.1-8B-Instruct, as well
as a relatively light-weight black-box LLM Claude-3-Haiku for comparisons. Meanwhile,
we also include experiments by substituting our black-box LLM with a powerful white-box LLM
Llama-3-70B-Instruct for comparisons.

Task White-box LLM Black-box LLM Accuracy Result

navigate

Llama-3-8B-Instruct Claude-3-Sonnet 0.644
Llama-3.1-8B-Instruct Claude-3-Sonnet 0.689
Llama-3-8B-Instruct Claude-3-Haiku 0.612

Llama-3.1-8B-Instruct Claude-3-Haiku 0.643

Task White-box LLM Black-box LLM Accuracy Result

larger_animal

Llama-3-8B-Instruct Claude-3-Sonnet 0.912
Llama-3.1-8B-Instruct Claude-3-Sonnet 0.927
Llama-3-8B-Instruct Claude-3-Haiku 0.935
Llama-3.1-8B-Instruct Claude-3-Haiku 0.887

Table 5: Different combinations of white-box LLMs vs black-box LLMs.

Task White-box LLM Task-solver LLM Best Instruction Accuracy Result

navigate Llama-3-8B-Instruct Llama-3-70B-Instruct
If the instructions are able to return to the starting position
after following all the instructions, then the output is True.

Otherwise, the output is False.
0.567

larger_animal Llama-3-8B-Instruct Llama-3-70B-Instruct

First identify the animals in the input. Then,
sort the animals in descending order based on their average adult body mass.

If there are multiple animals with the same average adult body mass,
sort them in alphabetical order.

Finally, return the first animal in the sorted list as the output.

0.872

Table 6: Applying a white-box LLM (Llama-3-70B-Instruct) as problem-solving LLM.

Results are shown in Tables 5 and 6. Here, we see that using a more recent and capable white-box
LLM can generally lead to slightly better performance. However, during our experiments, we also
notice that fine-tuning Llama-3.1-8B-Instruct can be slightly more time consuming then
tuning Llama-3-8B-Instruct. On the other hand, during our experiments, using a more light-
weight black-box LLM can significantly accelerate the inference speed in terms of answer generation
with relatively less API token costs. It can still achieve relatively good performance on "larger animal"
task with a slightly inferior performance on "navigate" task. We also notice that the large white-box
LLM Llama-3-70B-Instruct tends to perform slightly inferior compared with Claude family
black-box LLMs, when using AIO as the instruction optimizer.

B.6 ABLATION STUDY ON AIO COMPONENTS

Recall that AIO has two main components: white-box back-propagation and TS-aided ZO gradient
approximation, to derive the gradients for white-box LLM and black-box LLM respectively, based
on the decomposed gradient flow in Eq. 4. Here, we include an ablation study for these two
components for gradient derivation: (1) the first baseline is "AIO w/ MeZO" which directly use
MeZO (Malladi et al., 2023) for approximating white-box LLM parameter gradients instead of our
gradient decomposition formulation (Remark 1); (2) the second baseline is "AIO w/o TS Scheduling"
where we do not apply Thompson Sampling for selecting perturbation directions and use completely
random perturbation vectors z ∼ N (0, I) for white-box gradient approximation in Eq. 5.

Experiment results are shown in Table 7. We can see that our proposed AIO with TS-aided ZO
Gradient Approximation can still maintain superior performance compared with the other two
baselines with substituted modules. This helps to reinforce our claim that our proposed gradient
flow decomposition approach (Eq. 4) as well as the ZO black-box LLM gradient approximation
method guided by Thompson Sampling are necessary for AIO to achieve optimal performance.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Methods antonyms sentiment l_animal t_animal navigate implicatures logical_fallacy e_reasoning

AIO 0.901 0.949 0.912 0.983 0.644 0.811 0.868 0.766
AIO w/ MeZO 0.852 0.930 0.847 0.279 0.654 0.675 0.812 0.748
AIO w/o TS Scheduling 0.870 0.929 0.760 0.957 0.604 0.787 0.832 0.742

Table 7: Ablation study on AIO with two variants: (1) "AIO w/ MeZO" directly applies MeZO
for fine-tuning white-box LLM FW instead of using our proposed gradient flow decomposition
with TS-aided ZO gradient approximation; (2) "AIO w/o TS Scheduling" refers to a variant where
perturbation directions z are sampling randomly from N (0, I) instead of chosen by our TS model.

In particular, the supposed linear optimization landscape enables us to utilize a linear Thompson
Sampling model for ZO perturbation direction selection, which is effective and computationally
efficient for perturbation direction selection.

B.7 PARAMETER STUDY FOR β AND B

We include additional study for parameters β and B of AIO. Here, additional experiment results for
zero-shot instruction induction, on the "Larger animal" and "Navigate" tasks with the LoRA module,
are presented in the two tables below.

Parameter B
Task \ B value 1 2 3 4

Larger Animal 0.915 0.931 0.950 0.941
Navigate 0.610 0.632 0.627 0.664

Table 8: Experiment results with different B values.

Parameter β
Task \ β value 1 10 100 ∞

Larger Animal 0.922 0.915 0.932 0.950
Navigate 0.611 0.634 0.676 0.627

Table 9: Experiment results with different threshold β values.

Results are shown in Tables 8 and 9. For parameter B, we observe that setting B = 3 can achieve
promising performance, which can help balance computational (and token) costs with performance.
For parameter β, it is recommended to start the tuning process with a large β, as suggested in our
Appendix B.2, to effectively leverage past received records of the optimization landscape. On the
other hand, a sufficiently small threshold β will cause the method to degenerate into "AIO w/o TS
Scheduling", as in our ablation study (Subsec. B.6). In this case, the TS model will be excluded from
selecting ZO approximation directions, leading to relatively inferior performance.

B.8 COMBINATIONS OF DIFFERENT WHITE-BOX LLMS

We include additional experiments with other types of white-box LLMs can benefit the audience. We
conduct experiments with the LoRA module on two additional types of white-box LLMs: Mistral-
7B-Instruct-v0.2 and Qwen2.5-7B-Instruct. With black-box LLM being Claude-3-Sonnet, we have
zero-shot instruction induction results shown in Table 10. We see that our proposed AIO framework
achieves promising performance with other types of white-box LLMs other than the Llama family.
Meanwhile, we also would like to mention that Llama 3 (Llama-3-8B-Instruct) generally retains a
slight advantage over the other two white-box LLMs. One possible reason is that Llama 3 consists of
8 billion parameters, slightly more than the other two 7-billion-parameter models. This can provide
an advantage in terms of the representation power to some extent.

B.9 DIFFERENT NUMBERS OF EXEMPLARS

As mentioned in our experimental settings (Appendix Subsec. B.2), we use 20 training exemplars,
a reasonably small amount of training data, as the reference for the white-box LLM to generate

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Method \ Task larger animal navigate sentiment movie recommendation
Llama + Claude 3 0.950 0.627 0.947 0.883
Mistral + Claude 3 0.890 0.634 0.907 0.874
Qwen + Claude 3 0.919 0.682 0.922 0.835

Table 10: Experiment results with different kinds of white-box LLMs.

and optimize instructions. We also include additional zero-shot instruction induction experiments
with varying exemplar quantities and the LoRA module. This is to investigate how the performance
changes when altering the number of exemplars |DTrain| for AIO, in terms of instruction generation
and optimization.

Different numbers of exemplars |Dtrain|
Task \ |Dtrain| 5 10 20 30

Larger Animal 0.868 0.921 0.950 0.947
Navigate 0.622 0.634 0.627 0.681

Table 11: Experiment results with different numbers of exemplars |Dtrain|.

From the results in Table 11, we observe that the "larger animal" task can be more sensitive to
the number of exemplars |DTrain|. However, providing as few as |DTrain| = 10 query-label pairs as
exemplars, which is a modest quantity, will allow AIO to achieve relatively promising performance.
Meanwhile, we see that for the "navigate" task, a small number of |DTrain| = 5 exemplars can lead to
promising results, which shows that it is more stable under the sparse data settings. Therefore, when
fine-tuning AIO from scratch, the overall performance of AIO can possibly be influenced by data
scarcity, with its impact varying based on the specific application scenarios of practitioners.

B.10 TRANSFERABILITY OF FINE-TUNED INSTRUCTION OPTIMIZERS ACROSS DIFFERENT
BLACK-BOX TASK-SOLVING LLMS

In this subsection, we investigate if the optimized instruction can generalize to different black-box
LLMs. We transfer our optimized white-box LLM with the LoRA module, which is fine-tuned under
the settings of Llama 3 + Claude 3 Sonnet, to other black-box task-solving LLMs. They include
Claude 3.5 Sonnet and two OpenAI black-box LLMs (GPT-3.5-Turbo and GPT-4o).

Method \ Task epistemic logical hyperbaton movie-recommendation
Claude 3 Sonnet 0.719 0.836 0.527 0.883
Claude 3.5 Sonnet 0.844 0.886 0.562 0.924
GPT-3.5-Turbo 0.737 0.811 0.556 0.825
GPT-4o 0.768 0.854 0.540 0.910

Table 12: Experiment results with different kinds of black-box LLMs.

The accuracy results in terms of zero-shot instruction induction are shown in Table 12. Here, we can
observe that the optimized instruction-generating white-box LLM can maintain strong performance
when being applied to other black-box LLMs. Meanwhile, we also notice that the latest language
models (Claude 3.5 and GPT-4o) can generally outperform the older ones (Claude 3 and GPT-3.5-
Turbo), due to their stronger reasoning capabilities.

B.11 ADDITIONAL BASELINE: EVOPROMPT

In this subsection, we included an additional baseline EvoPrompt (Guo et al., 2024), which alterna-
tively utilizes evolutionary algorithms to refine LLM-generated instructions in an in-context learning
manner. Different from our original problem settings, where instructions are generated from scratch,
EvoPrompt requires initial instructions. In this case, we follow the settings in the original paper (Guo
et al., 2024) and the official source code of EvoPrompt, by using instructions generated by APE
(Zhou et al., 2022) as the initial instructions. We compare AIO with EvoPrompt, in terms of zero-shot
instruction induction on four BigBench (bench authors, 2023) tasks, as BigBench is also utilized in
(Guo et al., 2024).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Method \ Task hyperbaton navigate movie-recommendation object-counting
AIO 0.538 0.644 0.902 0.543
EvoPrompt 0.526 0.627 0.895 0.466

Table 13: Experiment results in comparison with EvoPrompt (Guo et al., 2024).

Based on the results in Table 13, we see that our proposed AIO can manage to achieve generally
better performance compared with EvoPrompt. Meanwhile, comparing with the two black-box LLM
baselines in our initial submission: APE (Zhou et al., 2022) and ProTeGi (Pryzant et al., 2023),
EvoPrompt can achieve relatively better performance than them, by utilizing task prior knowledge
provided by initial instructions as the starting point for optimization.

B.12 ADDITIONAL INSTRUCTION OPTIMIZATION TRAJECTORY RESULTS

To provide additional insights for our instruction optimization process, apart from our instruction
optimization trajectory results from Subsec. 5.3, we include complementary results on extra tasks, in
terms of how generated instructions evolve over the fine-tuning process, as well as how their accuracy
results change with the instruction optimization.

B.12.1 "SENTIMENT" TASK

• Accuracy: 46%

IF the input contains any of the following words: "fun", "entertainingly", "splen-
did", "exquisite", "brilliantly", "impeccable", "likeable", "engrossing", "psycho-
logically", "slyly" THEN output is positive.,
ELSE IF the input contains any of the following words: "worst", "dislikable",
"backlash", "mess", "pastiche", "warmed" THEN output is negative.

• Accuracy: 91%

The output is positive if the input contains words with positive connotations,
such as "fun", "entertainingly", "brilliantly", "exquisite", "likeable", "gentle", and
"engrossing".
The output is negative if the input contains words with negative connotations,
such as "worst", "low", "pretentious", "dislikable", "mess", "warmed over", and
"backlash".

B.12.2 "NAVIGATE" TASK

• Accuracy: 33%

To determine if a robot will return to the starting point after a series of movements,
follow these steps:
1. Count the total number of steps taken by the robot.
2. If the robot turns around at any point, it will change direction. So, count the
number of turns and subtract 2 from the total number of steps for each turn.
3. If the robot always faces forward, it will not change direction. So, do not count
the turns.
4. If the total number of steps minus the adjustments for turns is a multiple of the
initial number of steps, the robot will return to the starting point. Example: If the
robot takes 10 steps forward and then 5 steps backward, the total number of steps
is 15. If the robot turns around at some point, adjust the total number of steps
by subtracting 2 for each turn. If the robot always faces forward, do not adjust
the total number of steps. If the total number of steps minus the adjustments is a
multiple of the initial number of steps, the robot will return to the starting point.

• Accuracy: 71%

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

To determine if a robot will return to its initial position after a series of instruc-
tions, follow these steps:
1. Initialize the robot’s position and direction to the starting point.
2. Iterate through the instructions: - If the instruction is "Turn around", update the
robot’s direction to the opposite direction. - If the instruction is "Turn right" or
"Turn left", update the robot’s direction accordingly. - If the instruction is "Take
x steps", update the robot’s position by moving x steps in the current direction.
3. After iterating through all instructions, check if the robot’s final position is the
same as the initial position.
4. If the final position is the same as the initial position, the output is True;
otherwise, the output is False.

B.12.3 "OBJECT COUNTING" TASK

• Accuracy: 27%

To infer the output for a given input, count the number of items in the input that
are not fruits or vegetables. Then, return the count. For example, if the input
is "I have a violin, a piano, an accordion, a clarinet, an apple, a trumpet, and a
banana.", you would count the number of non-food items, which are 7 (violin,
piano, accordion, clarinet, trumpet), and return 7. If the input is "I have a yam, a
carrot, a cabbage, two garlics, a potato, a stalk of celery, a head of broccoli, and a
cauliflower.", you would count the number of non-food items, which are 0, and
return 0.

• Accuracy: 52%

To infer the output for a given input, follow these steps:
1. Identify the types of items in the input. For example, if the input contains
"violin", "piano", "accordion", "clarinet", "apple", "trumpet", and "banana", the
types of items are musical instruments and fruits.
2. Count the number of items of each type. For example, there is 1 violin, 1
piano, 1 accordion, 1 clarinet, 1 apple, 1 trumpet, and 1 banana.
3. Add the counts of all types of items together to get the total number of items.
4. The output is the total number of items.
For example, if the input is "I have a violin, a piano, an accordion, a clarinet, an
apple, a trumpet, and a banana.", the output would be 7.

B.12.4 "TAXONOMY ANIMAL" TASK

• Accuracy: 0%

Sort the input list in descending order based on the length of the words. Then,
select the words that are animals. Finally, sort the remaining words in descending
order based on the length of the words.

• Accuracy: 95%

1. First, identify all the words that are not animals. These words are usually
nouns that are not animals, such as food items, colors, objects, etc.
2. Sort the remaining animal words in alphabetical order.
3. The output is the list of animal words in alphabetical order, excluding the
non-animal words.

B.12.5 "LARGER ANIMAL" TASK

• Accuracy: 50%

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

1. Take the first animal from the input.
2. If the first animal is a predator, compare it with the second animal.
3. If the first animal is a predator and the second animal is not a predator, then
the output is the second animal.
4. If the first animal is not a predator, compare it with the second animal.
5. If the first animal is not a predator and the second animal is a predator, then
the output is the first animal.
6. If neither of the animals is a predator, compare their sizes.
7. If the first animal is larger than the second animal, then the output is the first
animal.
8. If the first animal is smaller than the second animal, then the output is the
second animal.
9. If the first animal and the second animal are of the same size, then the output
is the first animal.

• Accuracy: 92%

If the input consists of two animals, compare their sizes. If the first animal is
larger, output the first animal. If the first animal is smaller, output the second
animal. If both animals have the same size, output the first animal.

B.12.6 "IMPLICATURES" TASK

• Accuracy: 62%

Given two speakers’ dialogue, analyze the context and sentiment of the speakers’
statements to determine if the second speaker is thanking the first speaker (output:
’yes’) or not (output: ’no’). To do this, consider the following factors:
1. **Gratitude tone**: If the second speaker’s statement conveys gratitude,
appreciation, or a positive sentiment towards the first speaker, infer ’yes’.
2. **Question-answer format**: If the first speaker’s statement is a question and
the second speaker’s response is an affirmative answer or a statement that implies
agreement, infer ’yes’.
3. **Contrast**: If the first speaker’s statement is a negative or neutral statement,
and the second speaker’s response is a contrasting positive statement, infer ’yes’.
4. **Contextual understanding**: Consider the context of the conversation and
the speakers’ intentions. If the second speaker’s statement seems to be responding
to the first speaker’s action or suggestion in a positive manner, infer ’yes’.
When applying these factors, consider the nuances of language, idioms, and
figurative expressions. If the analysis is ambiguous or unclear, default to ’no’.

• Accuracy: 84%

To infer the output for a given input, follow these steps:
1. Identify the speaker’s tone and intention in the input. Are they expressing
gratitude, surprise, or skepticism?
2. Look for words or phrases that convey a positive or negative sentiment. If the
sentiment is positive, the output is likely to be ’yes’. If the sentiment is negative,
the output is likely to be ’no’.
3. Check for words or phrases that indicate a question or a request. If the input
contains a question, the output is likely to be ’yes’ if the speaker is seeking
confirmation or agreement. If the input contains a request, the output is likely to
be ’yes’ if the speaker is seeking permission or approval.
4. Consider the context of the conversation. Is the speaker discussing a specific
event, situation, or decision? If so, the output may be influenced by the speaker’s
perspective or attitude towards the topic.
5. Use your judgment and common sense to make an educated guess about the
output. If you’re still unsure, try re-reading the input and re-evaluating the tone,
sentiment, and context.
By following these steps, you can make an informed decision about the output
for a given input.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B.12.7 "EPISTEMIC REASONING" TASK

• Accuracy: 41%

For each input, check if the premise and hypothesis are about the same individual
or group of individuals. If they are, the output is entailment. If they are not, the
output is non-entailment.

• Accuracy: 76%

Given a premise and a hypothesis, determine the entailment relationship between
them. For a premise, identify the main clause and the subordinate clause (if
present). For the hypothesis, identify the main clause and the subordinate clause
(if present). If the main clause in the premise is identical to the main clause in
the hypothesis, and the subordinate clause (if present) is also identical, then the
output is entailment. If the main clause in the premise is identical to the main
clause in the hypothesis, but the subordinate clause (if present) is different, then
the output is non-entailment. If the main clause in the premise is not identical to
the main clause in the hypothesis, then the output is non-entailment.

B.12.8 "TIMEDIAL" TASK

• Accuracy: 41%

1. Read the context carefully and identify the main idea or topic of the conversa-
tion.
2. Identify the speaker and the listener.
3. Determine the purpose of the conversation.
4. Identify the key information or events mentioned in the conversation.
5. Analyze the conversation to determine the relationship between the speakers
and the context.
6. Based on the analysis, infer the output for the given input.

• Accuracy: 79%

To infer the output for a given input, follow these steps:
1. Identify the context and the entities mentioned in the input, such as people,
places, and times.
2. Look for keywords and phrases that indicate the type of information being
requested or discussed, such as dates, times, quantities, or specific events.
3. Analyze the relationships between the entities and the context, and try to
identify the most relevant and important information.
4. If the output is a date or time, check if it is a specific date or time, or if it is a
range or duration.
5. If the output is a quantity, check if it is a specific number, or if it is a range or
interval.
6. Finally, use the inferred output to generate a response that is relevant and
accurate to the input and the context.

B.12.9 "QUESTION SELECTION" TASK

• Accuracy: 39%

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

To infer the output for a given input, follow these steps:
1. Identify the context of the input, which typically consists of a passage of text.
2. Determine the type of question being asked, which is usually indicated by the
choice options provided.
3. Look for specific keywords or phrases in the input that are related to the
question being asked.
4. Identify the relevant information in the input that answers the question, which
may be a specific fact, statistic, or quote.
5. Match the relevant information to the corresponding choice option in the
question.
6. Select the choice option that best answers the question based on the information
provided in the input.

• Accuracy: 64%

To infer the output for a given input, follow these steps:
1. Identify the context of the input, which is typically a passage of text.
2. Determine the type of question being asked, which is usually indicated by the
format of the choices provided.
3. Scan the context to identify relevant information, such as key phrases, names,
and dates.
4. Match the context to the corresponding choices, considering the question type
and the information gathered.
5. Select the most likely output based on the context and the choices.
For example, if the input is a passage about a football game, the output might
be a question about the teams involved, the score, or the MVP. If the input is a
passage about a historical event, the output might be a question about the date,
location, or significance of the event.

B.12.10 "MOVIE RECOMMENDATION" TASK

• Accuracy: 48%

1. Identify the most frequent genre or theme in the given context.
2. Compare the given context with the choices and find the one that best matches
the identified genre or theme.
3. Output the matching choice.

• Accuracy: 88%

The output is the choice that is most commonly associated with the given context,
based on the frequency of co-occurrences of movies in the input list with each
choice.

C SUPPLEMENTARY TECHNICAL DETAILS

C.1 DETAILS FOR AUTO-REGRESSIVE GENERATION AND PERTURBATION

Analogous to existing works (e.g., Li & Liang (2021)), we formulate the LLM generation process of
a token sequence x. Beginning with an initial input context x<1 that can be empty or contain special
tokens like start-of-sequence token. Then, the language model will sequentially generate each token
in the output, by sampling each generated token xi from the conditional distribution pΘ(xi | x<i).
In particular, the probability distribution for the i-th token will go through a softmax function, after
applying a language model header (with weight Θheader from language model parameters Θ) to map
i-th token hidden representation to the vocabulary distribution, as

pΘ(xi | x<i) = softmax(Θheader · hi),

where hi represents the transformer-embedded hidden representation of i-th generated token. Each
token xi will be sampled from the vocabulary, based on pΘ(xi | x<i). The generation process will
complete if special tokens (e.g., an EOS token) is encountered, or the maximum length is met.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Following our gradient approximation formulation in Eq. 5, with random perturbation vector (gradient
approximation vector) z ∼ N (0, I) and perturbation magnitude ϵ > 0, we recall that the perturbation
is imposed on LLM-header output probabilities (i.e., distribution over the vocabulary) of each i-
th generated token. This leads to the positively perturbed generation process pΘ(xi | x<i) ←
softmax(Θheader · hi + ϵz), as well as the negatively perturbed generation process pΘ(xi | x<i)←
softmax(Θheader · hi − ϵz). Consequently, the perturbation z ∈ Rd will be of the same as the
vocabulary dimension d.

C.2 DETAILS FOR EFFICIENT COVARIANCE MATRIX INVERSION UPDATE WITH
SHERMAN-MORRISON FORMULA

Recall that in Remark 2, for updating covariance matrix inversion Σ−1
t efficiently in each round t,

we apply Sherman-Morrison Formula (Bartlett, 1951; Maponi, 2007) by updating matrix inversion
incrementally. Here, suppose that current white-box LLM output ϕ is close enough to the checkpoint
ϕCheck, which means that we can update currently possessed covariance matrix inversion Σ−1

t−1 to
obtain Σ−1

t . Then, we recall that the arm context covariance matrix in each round t is constructed by
Σt = I +

∑
(z,r)∈Ωt

z · z⊺ = Σt−1 +
∑

z∈Z̃t
z · z⊺, where Z̃t refers to the collection of chosen

arms in round t. Since we have each zz⊺ being a rank-one matrix for every z ∈ Z̃t, we can follow
Sherman-Morrison Formula to perform one-step update

(
Σt−1 + zz⊺

)−1
= Σ−1

t−1 −
[
Σ−1

t−1zz
⊺Σ−1

t−1

1 + z⊺Σ−1
t−1z

]
.

In this case, by iteratively repeating this process for |Z̃t| = B times (since we have B ≪ K
chosen arms in each round t, and B is a considerably small integer), we will have the updated
covariance matrix inverse Σ−1

t . Recall that each covariance matrix will have a shape of d× d, where
d is the dimensionality of perturbation vector z. We then have the overall computational costs as
approximatelyO(Bd2) instead of the naiveO(d3), where we also intuitively have B ≪ d. Moreover,
with dimension reduction approach motivated by JL-Lemma (Remark 2), we can have the projected
context dimension d′ ≪ d, which leads to computational complexity of O

(
B · (d′)2

)
, instead of the

naive O
(
(d′)3

)
with the direct matrix inversion.

D COMPLEMENTARY DISCUSSIONS

D.1 MOTIVATION OF THOMPSON SAMPLING AND BIAS ASSOCIATED WITH THIS DESIGN

D.1.1 ADDITIONAL DISCUSSION ON MOTIVATIONS

As mentioned in our manuscript (paragraph below Remark 1), conventional ZO gradient approx-
imation methods have a potential drawback: the perturbation vectors z are randomly sampled.
Consequently, their gradient approximation directions in the optimization landscape are random,
which can result in inefficient gradient estimation process. To overcome this challenge, numerous ZO
methods have been proposed to incorporate guided or chosen directions for gradient optimization,
enabling more efficient estimation of the target gradient (e.g., Cai et al. (2022); Qiu & Tong (2024)).

In this work, we propose reusing collected feedback by framing the ZO-based fine-tuning process as an
online sequential decision-making problem, and applying Contextual Bandit techniques to effectively
identify beneficial perturbation directions worth exploring. With the assumed linear optimization
landscape as in existing works (e.g., Spall (1992); Malladi et al. (2023)), we apply linear Thompson
Sampling to leverage previously collected information, which includes arms (previous gradient
approximation directions) and corresponding rewards (benefits of going along these directions), to
achieve a more efficient gradient estimation (Subsec. 4.1.2). Within the linear optimization landscape,
our TS model aids in selecting gradient directions for white-box LLM fine-tuning, by properly
reducing the possibility of choosing low-value directions (e.g., directions that are orthogonal to the
true gradient, which can provide limited information for gradient approximation). This approach
helps reduce the validation loss through instruction generation and ZO approximation direction
selection, aligned with our formulation of the arm reward (Eq. 8).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Ablation study on AIO components. We also would like to mention that the effectiveness of our TS
modeling is supported by our ablation study (Appendix Subsec. B.6), where we compare our AIO
framework with two alternatives: (1) "AIO w/ MeZO", where MeZO (Malladi et al., 2023) is used
directly for approximating white-box LLM parameter gradients instead of our gradient decomposition
formulation (Remark 1). (2) "AIO w/o TS Scheduling", where Thompson Sampling is not applied
for selecting perturbation directions, and completely random perturbation vectors z ∼ N (0, I) are
used for zeroth-order gradient approximation as in Eq. 5. We observe that our proposed AIO with
TS-aided ZO gradient approximation generally achieves better performance, compared with the two
baselines with substituted modules.

D.1.2 BIAS ASSOCIATED WITH TS

By balancing exploitation and exploration, TS will not introduce considerable bias. Under the
settings of gradient approximation, our proposed TS-based zeroth-order gradient approximation
method itself does not inherently introduce considerable bias in terms of gradient estimation, as
Thompson Sampling techniques can naturally tackle the exploitation-exploration dilemma (Agrawal
& Goyal, 2013; Zhang et al., 2021) by exploring various gradient directions instead of greedily
exploiting only certain ones. Here, TS model will choose from sampled candidate approximation
directions, instead of actually altering the direction vector value. Meanwhile, in the short term,
it is possible that TS may introduce temporary bias if it focuses on some perturbation directions
that can lead to high rewards (i.e., directions that can help reduce validation loss, Eq. 8). Due to
the bias-variance trade-off (Hu et al., 2021b), the temporary bias can also be beneficial under our
gradient approximation settings, and we will elaborate on this point in the next paragraph. On the
other hand, with only a few gradient directions applied for LLM fine-tuning (Malladi et al., 2023) in
each optimization round, directly applying conventional unbiased estimators with randomly sampled
directions can possibly result in high variance in terms of gradient estimation (Cai et al., 2022), which
also reflects the bias-variance trade-off in terms of zeroth-order gradient approximation.

We introduce the TS to balance the "bias" and "variance" trade-off for ZO gradient approximation,
under query-limited scenarios. Here, we would like to mention that state-of-the-art ZO gradient
approximation methods with a guided approximation process (e.g., Qiu & Tong (2024)) can also
introduce temporary bias in terms of gradient direction selection. However, they have been shown
highly effective and efficient, particularly under sample-efficient settings, due to their ability of
involving informative gradient approximation directions to balance "bias" and "variance" for gradient
approximation. As a result, due to the bias-variance trade-off, it can lead to the case that no algorithm
can serve as a universal solution to various application scenarios of zeroth-order approximation.
Therefore, practitioners need to tailor solutions to their specific application scenarios. In our case,
by balancing high-reward directions (exploitation) and sampling TS parameters from the posterior
(exploration), our TS-aided approximation can help stabilize the gradient estimates, making it
advantageous in query-limited scenarios like ours. In particular, by leveraging a highly efficient linear
TS model, the arm selection process (∼ 0.4 seconds per round) will be fast, ensuring the efficiency in
terms of gradient direction selection.

Ablation study on TS-aided zeroth-order gradient approximation. The effectiveness of our
modeling is also validated by our ablation study (Appendix Subsec. B.6), where we include a
variant, "AIO w/o TS Scheduling," for comparison. Instead of using TS, "AIO w/o TS Scheduling"
applies randomly chosen perturbation vectors z ∼ N (0, I) for zeroth-order gradient approximation,
as described in Eq. 5. In contrast, our AIO with TS-aided ZO gradient approximation achieves
better performance by strategically selecting informative gradient approximation directions, based on
collected information and knowledge from the optimization landscape.

D.2 REASONING OF OUR CHOICE OF DATA SETS AND BASELINES

Under our problem settings (Section 2), the black-box LLM is considered as part of the learning
objective rather than the learning model, and we have no control over its parameters while can only
interact with it through the API. Therefore, based on our problem settings, which align with those
of closely related works (Chen et al., 2024; Lin et al., 2024), the learning model will solely be the
white-box LLM, while the black-box LLM will serve as part of the learning objective.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.2.1 CHOICE OF DATA SETS.

Different from conventional instruction optimization settings, in this work, we address the challenge
of automatically optimizing instructions for a task-solving black-box LLM in terms of the given
target task. The process requires only a few exemplars as training data and eliminates the need for
human expert intervention. This is an emerging topic of automatic instruction generation that has
been explored in several related works (e.g., Zhou et al. (2022); Chen et al. (2024); Lin et al. (2024)).
Unlike existing approaches, we propose utilizing a white-box LLM for instruction generation and
optimization, coupled with LLM fine-tuning to effectively learn optimized instructions for highly
complex modern black-box LLMs.

As discussed in the Introduction and Related Works sections, the most relevant state-of-the-art works
to this paper are Chen et al. (2024); Lin et al. (2024), where a white-box LLM is also used as an
instruction optimizer to tailor instructions specifically for the downstream task-solving black-box
LLM. Therefore, for the datasets, we follow the most closely related works (e.g., Zhou et al. (2022);
Chen et al. (2024); Lin et al. (2024)) by utilizing instruction induction tasks from Honovich et al.
(2022), reasoning tasks from BigBench (bench authors, 2023), and Chain-of-Thought (CoT) datasets
(Cobbe et al., 2021; Garcia et al., 2020; Patel et al., 2021) to benchmark our proposed AIO against
baselines. These datasets are both common and widely adopted in this line of research, particularly
in works closely aligned with ours in terms of problem settings (e.g., Zhou et al. (2022); Chen et al.
(2024); Lin et al. (2024)).

The instruction induction tasks from Honovich et al. (2022) and reasoning tasks from BigBench
(bench authors, 2023) are used to evaluate the zero-shot instruction induction (Subsec. 5.1) and
few-shot instruction induction (Subsec. B.3) quality of the optimized instructions. In particular, since
no auxiliary task-relevant information is provided to the task-solving black-box LLM, the zero-shot
instruction induction results on these datasets (Honovich et al., 2022; bench authors, 2023) are widely
adopted to assess instruction quality by closely related works (e.g., Zhou et al. (2022); Chen et al.
(2024); Lin et al. (2024); Fernando et al. (2023); Hu et al. (2024)). Additionally, the applied CoT
datasets are also commonly used in the aforementioned related works (e.g., Zhou et al. (2022); Chen
et al. (2024); Lin et al. (2024)), as they effectively test the instruction optimizers’ ability to solve
complex reasoning tasks, such as math problems. Therefore, our dataset selections are standard and
widely adopted in closely related works, in order to demonstrate the effectiveness of AIO in terms of
instructing the task-solving black-box LLM.

D.2.2 CHOICE OF BASELINES.

In this paper, we primarily focus on the challenge of automatically optimizing instructions for a
task-solving black-box LLM given the target task. This distinguishes our problem settings from those
of conventional instruction optimization works. In this case, the most relevant works to ours are
Chen et al. (2024); Lin et al. (2024), which propose to deal with an analogous problem. From an in-
context learning perspective instead, they apply a white-box LLM as an instruction generator to tailor
instructions specifically for the downstream task-solving black-box LLM. Therefore, in our initial
submission, we have included these two works (InstructZero (Chen et al., 2024), INSTINCT (Lin
et al., 2024)) as our baselines to emphasize the advantages of LLM fine-tuning over their in-context
learning approaches under our instruction optimization settings, given the superior representation and
learning capabilities provided by LLM fine-tuning.

Meanwhile, there is also a line of research (e.g., Zhou et al. (2022); Pryzant et al. (2023)) that
employs a black-box LLM instead for instruction generation, resulting in a pipeline involving two
black-box LLMs. In this setup, the instruction-generating black-box LLM perceives the feedback of
the task-solver black-box LLM, and optimizes its instructing strategy from an in-context learning
perspective. Since these methods are also commonly adopted by our closely related works (Chen
et al., 2024; Lin et al., 2024), we have also included APE (Zhou et al., 2022) and ProTeGi (Pryzant
et al., 2023) as our baselines in our initial submission. Therefore, our choice of baselines is standard
in this line of research, including state-of-the-art baselines closely related to this paper, as well as
common baselines adopted by other existing works in this research direction.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E GENERALIZING AIO TO OTHER APPLICATION SCENARIOS

E.1 INVOLVING DOMAIN EXPERTS IN THE OPTIMIZATION OF INSTRUCTIONS

As shown in our pipeline illustration (the Generation Template), we only need a few exemplars from
the target task as the reference to the white-box LLM for instruction generation and optimization. In
this case, we do not need specific human-crafted task context for our AIO, which avoids the need for
human expert intervention. This emerging topic in automatic instruction generation has been explored
in several related works (e.g., Zhou et al. (2022); Chen et al. (2024); Lin et al. (2024)). Unlike
prior approaches, we propose utilizing a white-box LLM for instruction generation and optimization,
paired with LLM fine-tuning to efficiently learn optimized instructions for modern, highly complex
black-box LLMs. On the other hand, if domain experts (e.g., human engineers) or domain knowledge
(e.g., textual task descriptions or narratives) are available, there are several ways of integrating them
to our instruction optimization process.

E.1.1 TASK NARRATIVE OR DESCRIPTION

First, if task descriptions are provided to AIO as prior knowledge, we can incorporate this information
into the instruction generation template (left-hand side of Figure 1). In this case, the input to the
white-box LLM will include both the task exemplars and the textual task description. We conduct
additional experiments in terms of zero-shot instruction induction on four BigBench tasks with the
LoRA module, incorporating the one-sentence task descriptions provided by the BigBench data set
into our generation template.

Method \ Task epistemic reasoning logical fallacy hyperbaton movie recommendation
AIO 0.719 0.836 0.527 0.883
AIO w/ Task Info 0.811 0.872 0.639 0.895

Table 14: Experiment results with additional textual task description information.

Results are shown in Table 14. We see that involving additional textual task information into the
instruction generation and optimization process can generally improve performance, particularly for
logical reasoning tasks (e.g., epistemic reasoning, logical fallacy, hyperbaton), as task descriptions
can help provide extra background information to prevent potential misinterpretations of exemplars.

E.1.2 INVOLVING HUMAN EXPERTS

When human experts are available, following the idea of "Human-in-the-loop" (Wu et al., 2022), we
can involve these experts to help AIO in terms of instruction optimization and evaluation. For instance,
in terms of instruction improvement for medical diagnostics, AIO can generate instructions such
as "Please analyze patient symptoms to identify possible illnesses." Human evaluators could define
metrics emphasizing clarity (e.g., suggesting tools like "blood test" or "MRI scan") or appropriateness
(e.g., ensuring instructions do not encourage unsafe practices). This can enhance AIO’s applicability
in sensitive fields where clarity and accuracy are crucial. Compared to composing instructions from
scratch that requires more efforts, this formulation can help reduce the workload of human experts.

Meanwhile, human experts can be involved into the instruction evaluation process. In this case, AIO
can be requested to generate multiple candidate instructions after fine-tuning, and then human experts
can proceed to examine which of the candidates is most appropriate from multiple dimensions, such
as interpretability. This will also help to enhance AIO’s applicability for real-world scenarios.

E.2 GENERALIZING OPTIMIZED INSTRUCTION TO RELATED TASKS OR DOMAINS

Recall that this work focuses on the problem of automatically optimizing instructions for a task-
solving black-box LLM given the target task. The instruction generation and optimization require
only a few exemplars as training data and do not involve human expert intervention. This problem is
an emerging topic in the field of automatic instruction generation, with several related works (e.g.,
Zhou et al. (2022); Chen et al. (2024); Lin et al. (2024)). Different from existing works, in this paper,
we propose leveraging a white-box LLM for instruction generation and optimization, combined with
LLM fine-tuning to effectively learn optimized instructions for modern black-box LLMs of extreme

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

complexity. However, while this paper focuses on optimizing instructions for a given target task, our
AIO framework can be potentially extended to generalize across multiple related tasks or domains.

Transfer learning and domain adaptation. First, we can leverage ideas from transfer learning
and domain adaptation to address this issue. Here, we can consider two related domains (tasks):
the source domain and the target domain. The source domain will refer to the domain that we train
the original instruction optimizer (white-box LLM), typically having larger amount of training data
(exemplars) than the target domain. Afterwards, to adapt the trained white-box LLM to the target
domain, we can apply few-shot domain adaptation techniques (e.g., Chronopoulou et al. (2022))
to efficiently fine-tune the white-box LLM parameters for the target domain, even with a relatively
smaller number of samples. In the meantime, in the context of transfer learning, we can possibly have
additional theoretical insights. This is because the generalization loss on the target domain can be
theoretically upper bounded by the empirical loss on the source domain, the learning power of the
neural model, and the discrepancy between the source and target domains (Ben-David et al., 2010).

Meta-learning. On the other hand, we can leverage ideas from meta-learning (Finn et al., 2017) to
develop an instruction "meta-optimizer", which is capable of abstracting high-level information across
multiple domains and generating high-quality meta-instructions (analogous to meta-prompts (Hou
et al., 2022)). Using this approach, the "meta-optimizer" can be adapted to downstream tasks with
only a few exemplars from the target task, without significant modifications of the AIO parameters.
The performance of this approach is expected to depend on the neural model’s learning capacity and
the discrepancy among different tasks (Chen et al., 2021). With a white-box LLM as the learning
model with fine-tuning, providing sufficient representation power, AIO can help acquire high-level
instruction knowledge using meta-learning techniques.

31

	Introduction
	Related Works
	Problem Formulation
	Proposed Framework: Automatic Instruction Optimizer (AIO)
	Thompson Sampling (TS) aided zeroth-order (ZO) Gradient Approximation
	Zeroth-order Gradient Approximation for Black-box LLM Gradients
	TS-aided selection of gradient perturbation directions

	Workflow Summary and Pseudo-code for AIO Framework

	Experiments
	Experiments on Zero-shot Instruction Induction
	Optimization Performance versus API Token Efficiency
	Case Study: Instruction Optimization Trajectory Analysis

	Conclusion
	Complementary Details for Implementation and Experiments
	Descriptions for tasks involved in our experiments
	Templates applied for AIO instruction generation and black-box LLM inference (zero-shot induction and few-shot induction)

	Complementary Experiments
	Baseline descriptions.
	Implementation Details
	Complementary Experiments with Few-shot AIO
	Chain-of-Thought (CoT) Results
	Different combinations of white-box and black-box LLMs
	Ablation Study on AIO Components
	Parameter study for and B
	Combinations of different white-box LLMs
	Different numbers of Exemplars
	Transferability of fine-tuned instruction optimizers across different black-box task-solving LLMs
	Additional baseline: EvoPrompt
	Additional Instruction Optimization Trajectory Results
	"Sentiment" Task
	"Navigate" Task
	"Object Counting" Task
	"Taxonomy Animal" Task
	"Larger Animal" Task
	"Implicatures" Task
	"Epistemic Reasoning" Task
	"Timedial" Task
	"Question Selection" Task
	"Movie Recommendation" Task

	Supplementary Technical Details
	Details for Auto-regressive Generation and Perturbation
	Details for Efficient Covariance Matrix Inversion Update with Sherman-Morrison Formula

	Complementary discussions
	Motivation of Thompson Sampling and bias associated with this design
	Additional discussion on Motivations
	Bias associated with TS

	Reasoning of our choice of data sets and baselines
	Choice of data sets.
	Choice of baselines.

	Generalizing AIO to other application scenarios
	Involving domain experts in the optimization of instructions
	Task narrative or description
	Involving Human experts

	Generalizing optimized instruction to related tasks or domains

