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ABSTRACT

Recent years have seen significant progress in techniques for learning high-
dimensional distributions. Many modern methods, from diffusion models to
Energy-Based-Models (EBMs), adopt a coarse-to-fine approach. This is often
done by introducing a series of auxiliary distributions that gradually change from
the data distribution to some simple distribution (e.g., white Gaussian noise).
Methods in this category separately learn each auxiliary distribution (or transi-
tion between pairs of consecutive distributions) and then use the learned models
sequentially to generate samples. In this paper, we offer a simple way to gen-
eralize this idea by treating the “time” index of the series as a random variable
and framing the problem as that of learning a single joint distribution of “time”
and samples. We show that this joint distribution can be learned using any exist-
ing EBM method and that it allows achieving improved results. As an example,
we demonstrate this approach using contrastive divergence (CD) in its most basic
form. On CIFAR-10 and CelebA (32 × 32), this method outperforms previous
CD-based methods in terms of inception and FID scores.

1 INTRODUCTION

Probability density estimation is among the most fundamental tasks in unsupervised learning. It is
used in a wide array of applications, from image restoration and manipulation (Nichol et al., 2021;
Du et al., 2021; Lugmayr et al., 2020; Kawar et al., 2021; 2022) to out-of-distribution detection
(Du & Mordatch, 2019; Grathwohl et al., 2019; Zisselman & Tamar, 2020). However, directly
fitting an explicit probability model to high-dimensional data is a hard task, particularly when the
data samples concentrate around a low-dimensional manifold, as is often the case with visual data.
One way to circumvent this obstacle is by using coarse-to-fine approaches. In fact, in one form
or another, coarse-to-fine strategies have been used with great success in most types of generative
models (both implicit and explicit), including generative adversarial networks (GANs) (Karras et al.,
2018), variational autoencoders (VAEs) (Vahdat & Kautz, 2020), energy-based models (EMBs) (Gao
et al., 2018; Zhao et al., 2020), score matching (Song & Ermon, 2019; Li et al., 2019) and diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020).

The coarse-to-fine idea is commonly implemented through the introduction of a series of auxiliary
distributions that gradually transition from the data distribution to some simple known distribution
that is smoothly spread in space (e.g., a standard normal distribution). This construction is illustrated
in Fig. 1a for a two-dimensional data. The index running over the series of distributions is typically
referred to as “time”. This is to reflect either the diffusion-like sequential manner in which samples
are generated for training (from fine to coarse) (Sohl-Dickstein et al., 2015; Ho et al., 2020) or the
annealing-like sequential order in which samples are generated from the model at test time (from
coarse to fine) (Song & Ermon, 2019). Methods that use this construction attempt to learn each
of the distributions in the series (or each transition rule between pairs of consecutive distributions)
separately of the other distributions1

In this paper, we explore a more general approach for exploiting the coarse-to-fine structure, which
can be used in conjunction with almost any explicit distribution learning algorithm and leads to

1It is common to represent all models by a single neural network that accepts the “time” index as input. But
for each “time” step, the network is exposed only to samples from the corresponding distribution.
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Figure 1: (a) Coarse-to-fine distribution learning methods introduce a series of auxiliary distribu-
tions that gradually transition from the data distribution (2D spiral in this example) to some simple
distribution (a Gaussian here). These methods learn each auxiliary distribution (or pair of consecu-
tive distributions) separately. (b) Here we treat the “time” index of the series as a random variable, t,
and the samples from all distributions as samples from a single random vector z. We then train the
model to learn the joint distribution pz,t(t, z) using samples (t, z).

improved results. The key idea is to gather the samples from all auxiliary distributions and view
them as coming from a single joint distribution. More specifically, we treat the “time” index of
the series as a random variable, t, and the samples from all auxiliary distributions as samples of a
random vector z. This allows learning a single model for the joint distribution pz,t(z, t), using pairs
of samples (z, t) (see Fig. 1b).

To understand the benefit of this joint modeling, it is important to note that many of the individual
distributions pz|t(z|t) commonly occupy only small regions of the space. Thus, when training a
separate model for each t, each model is accurate over a different region in space, which can lead
to inaccuracies at test time when switching between models. In contrast, here we learn the joint
distribution pz,t(z, t), either directly (Sec. 3.4) or by breaking the problem in a reverse way and
learning pz(z) and pt|z(t|z) (Sec. 3.3). Thus, during training, our unified model is exposed to
samples from the entire space, leading to better stitching of the different parts.

Once a model is trained using our approach, it can be used similarly to existing methods by extracting
the auxiliary distributions pz|t(z|t) and sampling from them one after the other, from coarse to fine.
It can also be used in alternative ways, as we discuss in Sec. 3.5.

To illustrate the strength of our approach, we apply it together with the vanilla contrastive divergence
(CD) method (Hinton, 2002) on the CIFAR10 (Krizhevsky et al., 2009) and CelebA (Liu et al.,
2015) (32× 32) datasets. It is important to note that although the vanilla CD method is theoretically
justified (Yair & Michaeli, 2020), it fails when directly applied to high dimensional visual data (Gao
et al., 2018). This is because it provides good estimates only nearby the data manifold. To date,
good results have been obtained only with persistent contrastive divergence (PCD) (Tieleman, 2008;
Du & Mordatch, 2019), which maintains a buffer of past samples. With our approach, on the other
hand, plain CD not only succeeds in learning the distribution, but it also improves upon all previous
PCD-based techniques in terms of Inception Score (IS) and Fréchet Inception Distance (FID).

2 RELATED WORK

The idea of learning an explicit generative model by using an auxiliary coarse-to-fine series of
distributions, has been used in many works. We briefly mention its use within popular models.

Song & Ermon (2019) constructed a series of distributions by adding increasing amounts of white
Gaussian noise to the training samples. They learned the gradients of the distributions using denois-
ing score matching (Vincent, 2011), and used the trained model to solve various generative tasks
using gradient based simulated annealing.
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Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020; Dhariwal & Nichol,
2021) are currently the state-of-the-art methods for image generation. In this approach, the series of
distributions is defined through a diffusion process that begins with samples from the training set and
gradually transforms the distribution into white Gaussian noise. A series of models (denoisers) is
then trained to capture the reverse process, allowing to generate samples from each distribution given
the preceding one. This process can also be viewed as starting from a noisy image and repeatedly
removing small portions of the noise until reaching a clean image (Ho et al., 2020).

Gao et al. (2020b) used a construction similar to that of diffusion models, but with much fewer dis-
tributions. They employed a conditional version of maximum likelihood for training an EBM for
each distribution in the series. This was done using short MCMC chains for generating adversarial
samples from a selected distribution based on samples from consecutive distributions. The adver-
sarial samples are then used along with true samples from the selected distribution for calculating
the optimization objective.

Rhodes et al. (2020) address an arbitrary series of distributions that transitions between the dataset
and some reference distribution. A series of classifiers is then trained to discriminate between each
pair of consecutive distributions. The fact that the ratio between the distributions can be extracted
from these classifiers is then used for computing the target distribution in a telescopic manner.

3 METHOD

3.1 INTRODUCING THE JOINT DISTRIBUTION

Given a dataset of i.i.d. samples {xi}, we would like to learn a model for the distribution px from
which the samples were drawn. To do so, we first select some known distribution pn as a reference.
A possible choice can be white Gaussian noise. We then introduce a series of T auxiliary distribu-
tions {pvt}T−1

t=0 which begin with the reference distribution, pv0 = pn, and end with the distribution
of the data, pvT−1

= px. The main requirements from those distributions are that we know how to
draw samples from them and that the effective overlap between consecutive distributions be small.
One common construction relies on linear combinations of samples from px and pn. That is, given a
sample from the dataset, x, and a sample from the reference distribution, n, an intermediate sample
vt can be generated as

vt = αtx+ βtn (1)

with some predefined coefficients {αt, βt}T−1
t=0 that monotonically transition from (α0, β0) = (0, 1)

to (αT−1, βT−1) = (1, 0).

Up to this point, this is the standard coarse-to-fine construction. Here, however, we proceed to view
the samples from all distributions {pvt

}T−1
t=0 as coming from a single joint distribution. Specifically,

we introduce two random variables. The first is a random “time” index t ∼ pt, which is used to
select an auxiliary distribution from the series. A simple choice would be a uniform distribution over
[0, T − 1] (in Sec. 3.5 we discuss how pt can be modified at test time to aid the sample generation
process). Using t, we define a second random variable, z = vt. Namely, z is a random draw from
one of the auxiliary distributions, where the index is randomly chosen according to t, so that

pz|t (z|t) = pvt
(z). (2)

Given these two variables, we define our auxiliary problem as that of learning the joint distribution
pz,t based on samples of (z, t).

Learning the joint distribution can be done in several ways:

1. Using the decomposition pz,t(z, t) = pz|t(z|t)pt(t). Since pt is known, this only requires
learning pz|t, which is the standard approach2. Particularly, for each t ∈ {0, . . . , T − 1},
the distribution pz|t(·|t) is learned using an optimization problem that is defined only in
terms of samples corresponding to that t. This approach is illustrated in Fig. 1a.

2Strictly speaking, when using EBM-based methods, each pz|t is learned up to an unknown normalization
constant, preventing computation of pz,t. Methods using this technique, only use the individual pz|t at test time.
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2. Using the decomposition pz,t(z, t) = pt|z(t|z)pz(z). Here we need to learn both terms,
which are illustrated in Figs. 2b and 2a.
(a) Learning pt|z amounts to solving a classification problem (i.e., learning to predict the

discrete “time” variable t ∈ {0, . . . , T − 1} from a sample z). This can be done using
the cross-entropy loss.

(b) The distribution pz can be learned e.g., using any EBM learning method. Importantly,
this is a significantly simpler task than learning pz|t (especially for the finer t’s), as pz
is a smoother function that is more spread in space.

3. Directly learning pz,t, which appears in Fig. 1b. This requires slightly adapting existing
methods as this is a joint distribution over two domains with different properties.

It should be noted that although each of these options suffices on its own for extracting pz,t, it is also
possible to use combinations of these losses in order to further improve the training (e.g., a loss on
pt|z in addition to the standard loss on pz|t).

Our key observation is that substantially improved results are obtained when using the losses of
Option 2 and/or 3 in conjunction or instead of the standard loss on pz|t (Option 1). This is because
the losses on pt|z, pz, and pz,t are optimized using samples from all auxiliary distributions. This is
while the standard approach of training a model per t using a loss on pz|t, involves samples only
from that particular t and these samples come from a very restricted region in space.

In Sections 3.3 and 3.4 we show how options 2 and 3, respectively, can be used in conjunction with
the CD method. Option 2 leads to better results than Option 3, and improves upon all previous
CD-based methods.

3.2 THE PARAMETRIC MODEL

As opposed to the common approach in which t is fed as input to the model (Song & Ermon, 2019;
Rhodes et al., 2020; Ho et al., 2020), here we propose to have the model output a vector of length
T that contains the values of log pz,t(z, t) for all t ∈ {1, . . . , T − 1}. Namely, we use a parametric
model fθ (a neural network in our experiments), which accepts z as input and outputs

fθ (z) = [log p̂z,t;θ (z, t = 0) , log p̂z,t;θ (z, t = 1) , . . . , log p̂z,t;θ (z, t = T − 1)]
⊤
. (3)

Here p̂ denotes the model’s estimate of the probability density p. This is illustrated in Fig. 3.

In this design, each element of the output vector is basically an EBM for the corresponding auxiliary
distribution (here we define the log probabilities without the minus sign). This is related to the
observation in (Grathwohl et al., 2019), which draws the connection between classifiers and EBMs.
However, as opposed to EBMs, here we strive to learn a normalized distribution. This can be done

p z (z)
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Figure 2: (a) Samples from the marginal distribution pz. (b) The conditional distribution pt|z for the
three red points of z in (a).
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Figure 3: Our parametric model consumes a sample z and outputs a vector of log probabilities
indicating the joint likelihoods of z and t for all values of t = 0, . . . , T − 1.

by using an optimization process that mixes values along with using the fact that pz|t(z|0) = pn(z)
in order to fix the first element of the output vector of fθ(z) to be log pn(z).

Defining the model this way allows efficiently computing log p̂z;θ (z) and log p̂t|z;θ (t|z), as

log p̂z;θ (z) = logSumExp (fθ (z)) , (4)
log p̂t|z;θ (t|z) = logSoftmax (fθ (z))t . (5)

These terms can be used both during training (for applying losses on these distributions) and, as we
discuss in Sec. 3.5, at test time (for generating samples from the model).

In order to aid the training of the model, we make use of an observation made by Rhodes et al.
(2020), stating that it is beneficial to represent a ratio of distributions as a product of many small
ratio terms. We apply this idea to our model by adding an additional cumulative-summation layer
(g(x)i =

∑i
j=0 xj) before the output of the network. This additional layer does not impact the

representation power of the network as it is an invertible linear operation that can, in theory, be
absorbed into the preceding linear layer. However, this layer does affect the optimization of the
model, as it modifies the initialization of the effective linear operation preceding the output, as well
as the optimization dynamics. In practice, we found this implicit bias to be crucial for the success
of the model when applied to high-dimensional distributions.

3.3 TRAINING THE MODEL USING CD+CE

In this section we describe how our suggested model can be trained using a CD loss on the marginal
distribution pz together with a cross-entropy (CE) loss on pt|z. The overall loss in this method is
therefore LCD(θ) + LCE(θ), and we refer to it as CD+CE (see Alg. 1).

Contrastive divergence The CD method uses an MCMC process to generate contrastive samples
at each training iteration. Specifically, let us denote by Tp̂z;θ

the transition operator of an MCMC
process (an operator that performs a single MCMC step) designed to draw samples from p̂z;θ. Note
that in each training iteration, the MCMC process operates with respect to the current estimate of the
joint distribution. To generate a contrastive sample, the MCMC process is initialized with a sample
from the dataset, z̃0 = z, and is run for K steps, z̃k+1 = Tp̂z;θ

(z̃k). This results in a contrastive
sample z̃ = z̃K . The CD loss is then defined as

LCD (θ) = E [log p̂z;θ (z̃)− log p̂z;θ (z)]

= E [logSumExp (f (z̃))− logSumExp (f (z))] , (6)
where the expectation is overdraws of contrastive samples (first term) and samples from the dataset
(second term). A popular choice for an MCMC process over a continuous distributions is Langevin
dynamics in which the transition operator is given by:

Tp̂z;θ

(
z̃k

)
= z̃k +

µ2

2
∇z log p̂z;θ

(
z̃k

)
+ µε

= z̃k +
µ2

2
∇zlogSumExp (f (z)) + µε, (7)
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Figure 4: We present three MCMC processes running over the joint distribution of the toy model.
Note that the intermediate t values are used neither in CD+CE nor in JointCD, and are shown here
only for completeness. Particularly, in JointCD the MCMC runs over the marginal distribution of z,
so that t plays no role, and in JointCD we draw t only once for the final point.

where ε ∼ N (0, I) and µ is the step size. To keep the MCMC process accurate, we use a
Metropolis-Hastings rejection step (Hastings, 1970) as part of the transition operator.

Cross entropy Learning pt|z can be achieved by minimizing the standard cross-entropy loss over
the outputs of our model,

LCE (θ) = −E
[
log p̂t|z;θ (t|z)

]
= −E [logSoftmax (f (z))t] . (8)

This is equivalent to training a classifier to predict the discrete “time” index t given a sample z.

3.4 TRAINING THE MODEL USING JOINTCD

Our suggested model can also be trained using a CD loss on the joint distribution pz,t. We refer to
this method as JointCD (see Alg. 2). The distribution pz,t is visualized in Fig. 1b.

To apply CD on pz,t, we need a transition operator Tp̂z,t;θ of an MCMC process that is designed to
draw samples from p̂z,t;θ. Having such an operator, we can initialize the process with a sample from
the dataset, (z̃0, t̃0) = (z, t), and run (z̃k+1, t̃k+1) = Tp̂z,t;θ (z̃

k, t̃k) for K steps to generate a con-
trastive sample (z̃, t̃) = (z̃K , t̃K). The problem is that popular MCMC techniques, like Langevin
Dynamics and Hamiltonian Monte Carlo (HMC), are relevant only for continuous distributions,
whereas in our case pz,t is a mixed distribution (z is continuous and t is discrete). Nevertheless, as
we show in in App. A, any continuous MCMC process can be extended to work on our joint mixed
distribution simply by performing a step on z̃ using the continuous MCMC operator Tp̂z;θ

and then
sampling t̃ from p̂t|z. Namely, a single MCMC step in our case takes the form

Tp̂z,t;θ (z̃
k, t̃k) =

{
z̃k+1 = Tp̂z;θ

(z̃k)

t̃k+1 ∼ p̂t|z;θ(·|z̃k+1).
(9)

We show in App. A that this process obeys the detailed balance criterion and thus its stationary dis-
tribution is indeed p̂t,z as desired. Note that the intermediate t̃k values are not required for sampling
the next step. Therefore, in practice, we draw only the last one, t̃K . We illustrate this joint MCMC
process in Fig. 4.
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Algorithm 1: CD + CE
while not converged do

Sample t ∼ pt, z ∼ pz|t=t

z̃ ← z
for 1 to K do

z̃ ← Tp̂z;θ
(z̃)

end

Take gradient step on

log p̂z;θ (z̃)−log p̂z;θ (z)−log p̂t|z;θ (t|z) ,

computing the densities using (4),(5).
end

Algorithm 2: JointCD
while not converged do

Sample t ∼ pt, z ∼ pz|t=t

z̃ ← z
for 1 to K do

z̃ ← Tp̂z;θ
(z̃)

end
Sample t̃ from p̂t|z=z̃;θ

Take gradient step on

log p̂z,t;θ
(
z̃, t̃

)
− log p̂z,t;θ (z, t) ,

computing the densities using (3).
end

3.5 SAMPLING FROM THE MODEL

Sampling from the trained model can be done via simulated annealing. In this approach, one runs
an MCMC process while constantly replacing the underlying distribution, starting from a simple
smooth distribution and gradually refining it into the target distribution. In our context, this is
commonly done by running through the series of learned auxiliary distributions, starting with pz|t=0

and gradually increasing t until reaching pz|t=T−1 (which equals px). This algorithm is outlined in
Alg. 3 in App. B, and illustrated in Fig. 5a.

We note that our approach allows viewing simulated annealing as a special case of a more general
sampling scheme. Specifically, we can interpret simulated annealing as running through a series of
distributions p(n)z′ , where p

(n)
z′|t′(z|t) = pz|t(z|t) for all n and p

(n)
t′ (t) = δ(t− n) (here δ(·) denotes

kronecker’s delta function). We can therefore generalize this method by using any sequence of distri-
butions {p(n)t′ (t)}whose centers of mass gradually move from the small values of t to the larger ones.
In this generalized setting, we have p

(n)
z′,t′(z, t) = pz|t(z|t)p

(n)
t′ (t) = pz,t(z, t)p

(n)
t′ (t)/pt(t), from

which p
(n)
z′ can be extracted by summation over t. The resulting generalized simulated annealing al-

gorithm is outlined in Alg. 4 in App. B. One particular choice of p(n)t′ is p(n)t′ = Uniform[t(n), T − 1]
where t(n) is a linear function growing from 0 to T −1. For this choice, p(n)z′ is essentially the mean
of all the auxiliary distributions, from t(n) to t = T − 1. We refer to this variant as soft simulated
annealing and exemplify it in Fig. 5b.

t=1 t=51 t=101 t=153 t=203 t=255

(a) Simulated annealing
t≥1 t≥51 t≥101 t≥153 t≥203 t≥255

(b) Soft simulated annealing

p x (x)

(c) Ground-truth

Figure 5: We depict intermediate samples along with the underlying distribution from the basic
simulated annealing (a) and the soft simulated annealing (b) processes applied to the learned spiral
toy model. The ground truth distribution is shown in pane (c).
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(a) Sample generation using simulated annealing from a model trained with CD+CE.

(b) Images generated from models trained on CelebA and CIFAR10 using CD+CE.

Figure 6: Results on CIFAR10 and CelebA.

4 EXPERIMENTS

We now illustrate the efficacy of our method on a toy problem as well as on the CFIAR10 and
CelebA datasets. Code for all experiments will be released upon acceptance of the paper.

4.1 TOY MODEL

The toy problem appearing in Fig. 5c involves data lying on a 2D shifted spiral, where the shifting
has been introduced to aid the visualization. To apply our method, we selected a Gaussian dis-
tribution centered at the origin as a reference distribution and defined 256 auxiliary distributions,
according to (1). We then used JointCD to train a neural network. For the MCMC process, we used
Metropolis-Hastings adjusted Langevin dynamics with K = 3 steps. The details of the network and
the training process can be found in App. C. The resulting learned model is shown in Fig. 5a.

4.2 CELEB A & CIFAR10

We trained models using both CD+CE and JointCD on CIFAR10 and on CelebA at 32 × 32 reso-
lution. Here we have used 1024 auxiliary distribution, also according to the linear interpolation in
(1) As our parametric model, we used ResNet18 (He et al., 2016) with minor changes. Here as well,
we used adjusted Langevin dynamics, but during training we gradually increased the lengths of the
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Table 1: FID and inception scores for methods trained unconditionally on CIAFR10

Model Inception ↑ FID ↓

GAN-based
SNGAN (Miyato et al., 2018) 8.22 21.7
StyleGAN2-ADA (Karras et al., 2020) 9.83 2.92

Normalizing flows
Residual flow (Chen et al., 2019) 46.37
FCE (Gao et al., 2020a) 37.3

Score based
NCSN-v2 (Song & Ermon, 2020) 8.4 10.87
DDPM (Ho et al., 2020) 9.46 3.17

EBMs (ML based)
CoopNets (Xie et al., 2018) 6.55 33.61
Multi-grid EBM (Gao et al., 2018) 40.01 6.56
CF-EBM (Zhao et al., 2020) 16.71
EBM-DRL (Gao et al., 2020b) 8.3 9.58

EMBs (CD based)
EBM-IG (Du & Mordatch, 2019) 6.78 38.2
Improved-EBM (Du et al., 2021) 7.85 25.1
JointCD (Our) 9.09 26.8
CD+CE (Our) 8.29 23.7

chains, from K = 5 to K = 100. It is worth noting that due to the need to take a large number
of MCMC steps before each gradient step, the training is slow and took 7 days on 4 RXT-2080Ti
GPUs. The full details of the network and the training process can be found in App. C.

For generating samples, we used simulated annealing. We found that on CIFAR10, the CD+CE
method performs better than JointCD. The generation process is visualized in Fig. 6a, and generated
samples are shown in Fig. 6b. These results are all from the CD+CE model. Results from the
JointCD method can be found in App. D.

We used the inception score (Salimans et al., 2016) and FID (Heusel et al., 2017) to evaluate the
CIFAR10 results 3. With the CD+CE method, we achieved an inception score of 8.5 and an FID
score of 23.7. As can be seen in Table 1, these results improve upon previous CD based techniques.

5 CONCLUSION

We presented new methods for harnessing coarse-to-fine series of distributions for learning EBMs.
Our approach views the “time” index of the series as a random variable and defines an auxiliary
task of learning the joint distribution of “time” and samples. We illustrated how using this approach
in conjunction with the CD method, leads to substantially improved results. One limitation of our
method is that it requires relatively long training times. However, we believe that with further hyper-
parameter tuning and correct architectural choices, this can be somewhat alleviated in the future. Our
joint modelling approach can in principle be used within other generative models, but we leave those
directions for future research.

3Using the PyTorch implementation from https://pypi.org/project/pytorch-gan-metrics/, which has been
shown to reproduce the scores of the original implementation with an error smaller then 0.2%.
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A WHY JOINTCD OBEYS DETAILED BALANCE

A sufficient condition for an MCMC process to converge is that it maintains a relation that is know
as detailed balance between the conditional distribution of the transitions and the underlying dis-
tribution from which we would like to sample. Specifically given an underlying distribution pz(z)
and an MCMC process with a conditional probability of pz̃|z(z̃|z) to step form z to z̃, then detailed
balance criteria is given by:

pz̃|z (z̃|z) pz (z)
pz̃|z (z|z̃) pz (z̃)

= 1 (10)

That exist various MCMC process that operate on continuous random variables and obey (usually
approximately) the detailed balance criteria. In order to apply one of these existing MCMC process
to the joint distribution of pz,t we suggest the following way to take a step from (z, t) to (ṽz, t̃). In
each step we begin by ignoring t and generate z̃ using the continuous MCMC process on z with
regard to the marginal distribution pz. We then sample t̃ based on z̃ according to the conditional
distribution pt|z. I.e., :

pz̃,̃t|z,t
(
z̃, t̃|z, t

)
= pt|z

(
t̃|z̃

)
pz̃|z (z̃|z) (11)

As long as the continuous MCMC process obeys the detailed balance criteria than so does the sug-
gested process with respect to pz,t. This can be seen from following derivation:

pz̃,̃t|z,t
(
z̃, t̃|z, t

)
pz,t (z, t)

pz̃,̃t|z,t
(
z, t|z̃, t̃

)
pz,t

(
z̃, t̃

) =
pt|z

(
t̃|z̃

)
pz̃|z (z̃|z) pz,t (z, t)

pt|z (t|z) pz̃|z (z|z̃) pz,t
(
z̃, t̃

) (12)

=
pt|z

(
t̃|z̃

)
pz̃|z (z̃|z) pt|z (t|z) pz (z)

pt|z (t|z) pz̃|z (z|z̃) pt|z
(
t̃|z̃

)
pz (z̃)

(13)

=
pz̃|z (z̃|z) pz (z)
pz̃|z (z|z̃) pz (z̃)

(14)

= 1. (15)

B THE SAMPLING ALGORITHMS

We outline in alg. 3 the process for generating samples from the model using the common simulated
annealing, and in alg. 4 the process of using the generalized simuulated annealing described in
section 3.5.

Algorithm 3: Basic Simulated Annealing
Draw a sample z from pn = pz|t=0

for t = 0 to T − 1 do
for n = 0 to N do

z̃ ← Tp̂z|t=t;θ
(z̃)

end
end

Algorithm 4: General Simulated Annealing
Draw a sample z from pn = pz|t=0

for n = 0 to N do
p̂
(n)
z′;θ :=

∑T−1
t=0 p̂z;θ(z, t)

p
(n)
t’ (t)

pt(t)

z̃ ← T
p̂
(n)

z′;θ
(z̃)

end

C EXPERIMENT DETAILS

C.1 TOY MODEL

For the toy model, we used a network of 4 residual blocks containing fully connected layers with
a width of 256. As a reference distribution we used white Gaussian distribution with zero mean
and STD σn = 0.3. We found it beneficial to have the STD of the reference distribution slightly
larger then that of the data. We trained the model using JointCD (Alg. 2) with Metropolis-Hastings
adjusted Langevin dynamics. The Langevin step size was been adaptively adjusted during the run to
maintain an average acceptance rate of 60% in the Metropolis-Hastings adjustment stage. This was
done by keeping an array of an individual step size for each value of t. We have found the step size
of each t to converge in an early state of the training to about 0.4βtσn, where
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We have used Adam (Kingma Diederik & Adam, 2014) as an optimizer with a learning rate of 10−3

and the default momentum values of β1 = 0.9, β2 = 0.999. We used a batch size of 256. The model
was trained for 400 epochs (30 minutes on a RTX 2080Ti GPU).

C.2 CIFAR10 AND CELEBA 32X32

As our model we have used ResNet18 with the following modifications:

1. We have removed the BatchNorm (Ioffe & Szegedy, 2015) layers which, makes the network
nondeterministic par input.

2. We have replaced the ReLU activation with LeakyReLU.
3. We have added a cumulative-summation layer before the output of the network as described

in section 3.2.

As a reference distribution, we have again used a white Gaussian distribution with zero mean and
STD of σn = 0.5 and we have defined a series of 1024 distribution according to (1). When working
with the images we have subtracted a value of 0.5 from all the pixels in order to roughly center the
data around 0.

We have used the same MCMC process as in the toy model along with the same method for adjusting
the step size. We have used AdamW (Loshchilov & Hutter, 2018) as an optimizer with a weight
decay of 10−3. We have used an initial learning rate of 10−3 with a linear warm-up during the first
4000 steps. We have reduced the learning rate by a factor of 10 every 200,000 steps over the full
training process which consisted of 300,000 steps. We used a batch size of 512.

The number of steps Langevin dynamic has been set to 5 during the first 40000 and was linearly
increased up to 100 over the course of the next 40000 steps. From there on the number of steps has
been fixed to 100. Due to this large number of Langevin steps, the training time was relatively long
and took 7 days on 4 RTX 2080Ti GPUs.
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Figure 7: Generated images from CelebA using a model trained using CD+CE

D ADDITIONAL RESULTS
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Figure 8: Generated images from CIFAR10 using a model trained using CD+CE
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Figure 9: Generated images from CelebA using a model trained using JointCD
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Figure 10: Generated images from CIFAR10 using a model trained using JointCD
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