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Abstract
Face recognition datasets are often collected by crawling Internet and without
individuals’ consents, raising ethical and privacy concerns. Generating synthetic
datasets for training face recognition models has emerged as a promising alternative.
However, the generation of synthetic datasets remains challenging as it entails
adequate inter-class and intra-class variations. While advances in generative models
have made it easier to increase intra-class variations in face datasets (such as pose,
illumination, etc.), generating sufficient inter-class variation is still a difficult task.
In this paper, we formulate the dataset generation as a packing problem on the
embedding space (represented on a hypersphere) of a face recognition model
and propose a new synthetic dataset generation approach, called HyperFace. We
formalize our packing problem as an optimization problem and solve it with a
gradient descent-based approach. Then, we use a conditional face generator model
to synthesize face images from the optimized embeddings. We use our generated
datasets to train face recognition models and evaluate the trained models on several
benchmarking real datasets. Our experimental results show that models trained
with HyperFace achieve state-of-the-art performance in training face recognition
using synthetic datasets. Project page: https://www.idiap.ch/paper/hyperface

1 Introduction

Recent advances in the development of face recognition models are mainly driven by the deep neural
networks (He et al., 2016), the angular loss functions (Deng et al., 2019; Kim et al., 2022), and the
availability of large-scale training datasets (Guo et al., 2016; Cao et al., 2018; Zhu et al., 2021). The
large-scale training face recognition datasets are collected by crawling the Internet and without the
individual’s consent, raising privacy concerns. This has created important ethical and legal challenges
regarding the collecting, distribution, and use of such large-scale datasets (Nat, 2022). Considering
such concerns, some popular face recognition datasets, such as MS-Celeb (Guo et al., 2016) and
VGGFace2 (Cao et al., 2018), have been retracted.

With the development of generative models, generating synthetic datasets has become a promising
solution to address privacy concerns in large-scale datasets (Melzi et al., 2024; Shahreza et al., 2024).
In spite of several face generator models in the literature (Deng et al., 2020; Karras et al., 2019, 2020;
Rombach et al., 2022; Chan et al., 2022), generating a synthetic face recognition model that can
replace real face recognition datasets and be used to train a new face recognition model from scratch
is a challenging task. In particular, the generated synthetic face recognition datasets require adequate
inter-class and intra-class variations. While conditioning the generator models on different attributes
can help increasing intra-class variations, increasing inter-class variations remains a difficult task.

In this paper, we focus on the generation of synthetic face recognition datasets and formulate the
dataset generation process as a packing problem on the embedding space (represented on the surface
of a hypersphere) of a pretrained face recognition model. We investigate different packing strategies
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Figure 1: Sample face images from the HyperFace dataset

and show that with a simple optimization, we can find a set of reference embeddings for synthetic
subjects that has a high inter-class variation. We also propose a regularization term in our optimization
to keep the optimized embedding on the manifold of face embeddings. After finding optimized
embeddings, we use a face generative model that can generate face images from embeddings on the
hypersphere, and generate synthetic face recognition datasets. We use our generated synthetic face
recognition datasets, called HyperFace, to train face recognition models. We evaluate the recognition
performance of models trained using synthetic datasets, and show that our optimization and packing
approach can lead to new synthetic datasets that can be used to train face recognition models. We also
compare trained models with our generated dataset to models trained with previous synthetic datasets,
where our generated datasets achieve competitive performance with state-of-the-art synthetic datasets
in the literature. Figure 1 illustrates sample face images from our synthetic dataset.

The remainder of this paper is organized as follows. In Section 2, we present our problem formulation
and describe our proposed method to generate synthetic face datasets. In Section 3, we provide our
experimental results and evaluate our synthetic datasets. In Section 4, we review related work in the
literature. Finally, we conclude the paper in Section 5.

2 Problem Formulation and Proposed Method

2.1 Problem Formulation

Identity Hypersphere: Let us assume that we have a pretrained face recognition model F : I → X ,
which can extract identity features (a.k.a. embedding) x ∈ X ⊂ Rn

X from each face image I ∈ I.
Without loss of generality, we can assume that the extracted identity features cover a unit hypersphere1,
i.e., ||x||2 = 1,∀x ∈ X .

Representing Synthetic Dataset on the Identity Hypersphere: We can represent a synthetic
face recognition dataset D on this hypersphere by finding the embeddings for each image in the
dataset. For simplicity, let us assume that for subject i in the synthetic face dataset, we can have a
reference face image Iref,i and reference embedding xref,i = F (Iref,i). Note that the reference face
image Iref,i may already exist in the synthetic dataset D, otherwise we can assume the reference
embedding xref,i as the average of embeddings of all images for subject i in the dataset D. Therefore,
the synthetic face recognition dataset D with nid number of subjects can be represented as a set of
reference embeddings {xref,i}nid

i=1.

2.2 HyperFace Synthetic Face Dataset

HyperFace Optimization Problem: By representing a synthetic dataset D on the identity hyper-
sphere as a set of reference embeddings {xref,i}nid

i=1, we can raise the question that “How should

1If the identity embedding x extracted by F (.) is not normalized, we normalize it such that ||x||2 = 1.
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Figure 2: Block diagram of HyperFace Dataset Generation

reference embeddings cover the identity hypersphere?" To answer this question, we remind that
the distances between reference embeddings indicate the inter-class variation in the synthetic face
recognition dataset D. Therefore, since we would like to have a high inter-class variation in the gen-
erated dataset D, we can say that we need to maximize the distances between reference embeddings
{xref,i}nid

i=1. In other words, we need to solve the following optimization problem:

max min
{xref},i̸=j

d(xref,i,xref,j) subject to ||xref,k||2 = 1,∀k ∈ {1, ..., nid} (1)

where d(·, ·) is a distance function.

Solving the HyperFace Optimization: The optimization problem stated in Eq. 1 is a well-known
optimization problem, which is known as spherical code optimization (J. H. Conway, 1998) or the
Tammes problem (Tammes, 1930), where the goal is to pack a given number of points (e.g., particles,
pores, electrons, etc.) on the surface of a unit sphere such that the minimum distance between points is
maximized. There are different approaches for solving this optimization problem (such as geometric
optimization). However, for a large dimension of hypersphere (i.e., nX ) and a large number of
points (i.e., number of subjects nid in our problem), solving this optimization can be computationally
expensive. To address this issue, we solve the optimization problem with an iterative approach based
on gradient descent. To this end, we can randomly initialize the reference embeddings and find the
optimised reference embeddings {xref,i}nid

i=1 using the Adam optimizer (Kingma & Ba, 2015). This
allows us to solve the optimization with a reasonable computation resource. For example, we can
solve the optimization for nX = 512 and nid = 10, 000 on a system equipped with a single NVIDIA
3090 GPU in 6 hours.

Regularization: While we solve the optimization problem in Eq. 1 on the surface of a hypersphere,
we should note that the manifold of embeddings X does not necessarily cover the whole surface of
the hypersphere. This means if we get out of the distribution of embeddings X , we may not be able to
generate face images from such embeddings. Therefore, we need to add a regularization term to our
optimization problem that tends to keep the reference embeddings on the manifold of embeddings
X . To this end, we consider a set of face images {Ii}

ngallery
i=1 as a gallery of images2 and extract their

embeddings to have set of valid embeddings {xi}
ngallery
i=1 . Then, we try to minimize the distance of

our reference embeddings {xref,i}nid
i=1 to the set of embeddings {xi}

ngallery
i=1 , which approximates the

manifold of embeddings X . To this end, for each reference embedding {xref,i}nid
i=1, we find the closest

embedding in {xi}
ngallery
i=1 and minimize their distance. We can write the optimization in Eq. 1 as a

regularized min-max optimization as follows:

min max
{xref},i̸=j

−d(xref,i,xref,j) + α
1

nid

nid∑
k=1

min
{xg}

ngallery
g=1

d(xref,k,xg);︸ ︷︷ ︸
regularization

subject to ||xref,k||2 = 1,∀k ∈ {1, ..., nid},

(2)

2The gallery of face images {Ii}
ngallery
i=1 can be generated using an unconditional face generator network such

as StyleGAN (Karras et al., 2020), Latent Diffusion Model (LDM) (Rombach et al., 2022), etc.
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Algorithm 1 HyperFace Optimization for Finding Reference Embeddings

1: Inputs: λ : learning rate, nitr : number of iterations, {xg}
ngallery
g=1 : embeddings of a gallery of face images,

2: α : hyperparameter (contribution of regularization).
3: Output: Xref = {xref,i}nid

i=1 : optimized reference embeddings.
4: Procedure:
5: Initialize reference embeddings {xref,i}nid

i=1

6: For n = 1, .., nitr do
7: Find xref,i,xref,j ∈Xref which have minimum distance d(xref,i,xref,j)
8: Reg← 1

nid

∑nid
k=1 min{xg}gallery d(xref,k,xg) ▷ Calculate the regularization term

9: cost← −d(xref,i,xref,j)
10: Xref ←Xref − Adam(∇cost, λ)
11: Xref ← normalize(Xref) ▷ To ensure that resulting embeddings Xref remain on the hypersphere.
12: End For
13: End Procedure

where α is a hyperparameter that controls the contribution of the regularization term in the optimiza-
tion. To provide more flexibility in our optimization, we consider the size of gallery ngallery to be
greater or equal to the number of identities nid in the synthetic dataset (i.e., ngallery ≥ nid).

Initialization: To solve the HyperFace optimization problem in Eq. 1 using Algorithm 1, we need
to initialize the reference embeddings {xref,i}nid

i=1. To this end, we can generate nid number random
synthetic images {Ii}nid

i=1 using a face generator model, such as StyleGAN (Karras et al., 2020),
Latent Diffusion Model (LDM) (Rombach et al., 2022). These models use a noise vector as the input
and can generate synthetic face images in an unconditional setting. Then, after generating {Ii}nid

i=1
images, we can extract their embeddings using the face recognition model F (·) and use the extracted
embeddings as initialization values for the reference embeddings {xref,i}nid

i=1 in Algorithm 1.

Image Generation: After we find the reference embeddings {xref,i}nid
i=1 using Algorithm 1, we

can use an identity-conditioned image generator model to generate face images from reference
embeddings. To this end, we use a recent face generator network (Papantoniou et al., 2024), which
is based on probabilistic diffusion models. The diffusion face generator model G(·, ·) can generate
a face image I = G(xref, z) from reference embedding xref and a random noise z ∼ N (0, IDM).
Therefore, by changing the random noise z and sampling different noise vectors, we can generate
different samples for the reference embedding xref. In addition, to increase intra-class variation, we
add Gaussian noise v ∼ N (0, InX ) to the reference embedding xref, and then normalize it to locate
it on the hypersphere. In summary, we can generate different samples for each reference embedding
xref by changing z and v noise vectors as follows:

I = G(
xref + βv

||xref + βv||2
, z), v ∼ N (0, InX ), z ∼ N (0, IDM), (3)

where β is a hyperparamter that controls the variations to the reference embedding. Figure 2 depicts
the block diagram of our synthetic dataset generation process.

3 Experiments

3.1 Experimental Setup

Dataset Genration: For solving the HyperFace optimization in Algorithm 1, we use an initial
learning rate of λ = 0.01 and reduce the learning rate by power 0.75 every 5, 000 iterations for a
total number of iterations nitr = 100, 000. We also consider cosine distance, which is commonly
used in face recognition systems for the comparison of face embeddings, as our distance function
d(·, ·). For the hyperparameters α and β, we consider default values of 0.5 and 0.01, respectively, in
our experiments. We also consider the size of gallery to be the same as the number of identities, and
explore other cases where ngallery > nid in our ablation study. We generate 64 images, by default, per
each identity in our generated datasets and explore other numbers of images in our ablation study.
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Table 1: Comparison of recognition performance of face recognition models trained with different
synthetic datasets and a real dataset (i.e., CASIA-WebFace). The performance reported for each
dataset is in terms of accuracy and best value for each benchmark is emboldened.

Dataset name # IDs # Images LFW CPLFW CALFW CFP AgeDB

SynFace (Qiu et al., 2021) 10’000 999’994 86.57 65.10 70.08 66.79 59.13
SFace (Boutros et al., 2022) 10’572 1’885’877 93.65 74.90 80.97 75.36 70.32
Syn-Multi-PIE (Colbois et al., 2021) 10’000 180’000 78.72 60.22 61.83 60.84 54.05
IDnet (Kolf et al., 2023) 10’577 1’057’200 84.48 68.12 71.42 68.93 62.63
ExFaceGAN (Boutros et al., 2023b) 10’000 599’944 85.98 66.97 70.00 66.96 57.37
GANDiffFace (Melzi et al., 2023) 10’080 543’893 94.35 76.15 79.90 78.99 69.82
Langevin-Dispersion (Geissbühler et al., 2024) 10’000 650’000 94.38 65.75 86.03 65.51 77.30
Langevin-DisCo (Geissbühler et al., 2024) 10’000 650’000 97.07 76.73 89.05 79.56 83.38
DigiFace-1M (Bae et al., 2023) 109’999 1’219’995 90.68 72.55 73.75 79.43 68.43
IDiff-Face (Uniform) (Boutros et al., 2023a) 10’049 502’450 98.18 80.87 90.82 82.96 85.50
IDiff-Face (Two-Stage) (Boutros et al., 2023a) 10’050 502’500 98.00 77.77 88.55 82.57 82.35
DCFace (Kim et al., 2023) 10’000 500’000 98.35 83.12 91.70 88.43 89.50
HyperFace [ours] 10’000 640’000 98.67 84.68 89.82 89.14 87.07

CASIA-WebFace (Yi et al., 2014) 10’572 490’623 99.42 90.02 93.43 94.97 94.32

We use ArcFace (Deng et al., 2019) as the pretrained face recognition model F (·) with the embedding
dimension of nX = 512 and use a pretrained generator model (Papantoniou et al., 2024) to generate
face images from ArcFace embeddings. After generating face images, we align all face images using
a pretrained MTCNN (Zhang et al., 2016) face detector model. For our regularization, we randomly
generate images with StyleGAN (Karras et al., 2020) as default, and investigate other generator
models in our ablation study.

Evaluation: To evaluate the generated synthetic datasets, we use each generated datasets as a
training dataset for training a face recognition model. To this end, we use the iResNet50 backbone
and train the model with AdaFace loss function (Kim et al., 2022) using the Stochastic Gradient
Descent (SGD) optimizer with the initial learning rate 0.1 and a weight decay of 5 × 10−4 for 30
epochs with the batch size of 256. After training the face recognition model with the synthetic dataset,
we benchmark the performance of the trained face recognition models on different benchmarking
datasets of real images, including Labeled Faces in the Wild (LFW) (Huang et al., 2008), Cross-age
LFW (CA-LFW) (Zheng et al., 2017), CrossPose LFW (CP-LFW) (Zheng & Deng, 2018), Celebrities
in Frontal-Profile in the Wild (CFP-FP) (Sengupta et al., 2016), and AgeDB-30 (Moschoglou et al.,
2017) datasets. For consistency with prior works, we report recognition accuracy calculated using
10-fold cross-validation for each of benchmarking datasets. The source code of our experiments and
generated datasets are publicly available3.

3.2 Analysis

Comparison with Previous Synthetic Datasets: We compare the recognition performance of face
recognition models trained with our synthetic dataset and previous synthetic datasets in the literature.
We use the published dataset for each method and train all models with the same configuration for
different datasets to prevent the effect of other hyperparameters (such as number of epochs, batch
size, etc.). For a fair comparison, we consider the versions of datasets with a similar number of
identities4, if there are different datasets available for each method. Table 1 compares the recognition
performance of face recognition models trained with different synthetic datasets. As the results
in this table show, our method achieves state-of-the-art performance in training face recognition
using synthetic data. Figure 1 illustrates sample face images from our synthetic dataset. Figure 3 of
appendix also presents more sample images from HyperFace dataset.

3Project page: https://www.idiap.ch/paper/hyperface
4Only in the dataset used for DigiFace (Bae et al., 2023) there are more identities, because there is only one

version available for this dataset, which has a greater number of identities compared to other existing synthetic
datasets.
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Table 2: Ablation study on the effect of number of images

Image/ID LFW CPLFW CALFW CFP AgeDB

32 98.70 84.17 88.83 88.74 86.33
50 98.50 84.23 89.40 88.83 86.53
64 98.67 84.68 89.82 89.14 87.07
96 98.42 84.15 89.00 89.51 87.45
128 98.20 83.63 89.82 89.31 87.62

Ablation Study: In our dataset gen-
eration method, there are different hy-
perparameters which can affect the
HyperFace optimization and the gen-
erated synthetic datasets. Table 2 re-
ports the ablation study on the num-
ber of images generated per each syn-
thetic identity in our experiments. As
the results in Table 2 show, increasing
the number of images per identity improves the recognition performance of trained face recognition
model, but it tends to saturate after 64 images per identity.

Table 3: Ablation study on the effect of number of identities

# IDs LFW CPLFW CALFW CFP AgeDB

10k 98.67 84.68 89.82 89.14 87.07
30k 98.82 85.23 91.12 91.74 89.42

Table 3 also compares the number of
identities in the generated dataset. As
the results in Table 3 show, increasing
the number of identities improves the
recognition performance of trained
face recognition model on the bench-
marking datasets.

Table 4: Ablation study on the effect of ngallery

ngallery LFW CPLFW CALFW CFP AgeDB

10K 98.53 84.00 88.92 89.34 85.9
20K 98.50 84.32 89.28 89.17 86.00
50K 98.72 84.23 88.72 89.19 86.85

Table 4 reports the recognition perfor-
mance achieved for face recognition
model trained with datasets optimized
with different number images. as the
results in this table shows, increasing
the size of gallery improves the perfor-
mance of the trained model. However,
with 10,000 images we can still approximate the manifold of face embeddings on the hypersphere.

Table 5: Ablation study on the type of data in gallery

Gallery LFW CPLFW CALFW CFP AgeDB

StyleGAN 98.67 84.68 89.82 89.14 87.07

LDM 98.65 84.35 89.17 89.09 86.35

BUPT 98.70 84.77 90.03 89.16 87.13

As another ablation study, we use
different source of images for the
gallery set to use in our regularization
and solve the HyperFace optimization.
We use pretrained StyleGAN (Karras
et al., 2020) as a GAN-based genera-
tor model and a pretrained latent dif-
fusion model (Rombach et al., 2022)
as a diffusion-based generator model.
We use these generator models and randomly generate some synthetic face images. In addition, for
our ablation study, we consider some real images from BUPT dataset (Wang et al., 2019) as a dataset
of real face images. As the results in Table 5 show, optimization with images from StyleGAN and
LDM lead to comparable performance for the generated face recognition dataset. However, the real
images in the BUPT dataset lead to superior performance. This suggests that the synthesized images
cannot completely cover the manifold of embeddings and if we use real images as our gallery it can
improve the generated dataset and recognition performance of our face recognition model.

Table 6: Ablation study on the effect of α

α LFW CPLFW CALFW CFP AgeDB

0 98.40 84.15 88.87 89.31 86.48
0.50 98.67 84.68 89.82 89.14 87.07
0.75 98.62 84.32 89.48 89.67 86.72
1.0 98.55 84.72 89.1 89.76 86.63

We also study the effect of hyperpa-
rameters α and β on the generated
face recognition dataset. Table 6 re-
ports the ablation study for the con-
tribution of regularization in our opti-
mization (α). As the results in this ta-
ble shows, the regularization enhances
the quality of generated dataset and
improves the recognition performance of face recognition model.
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Table 7: Ablation study on the effect of β

β LFW CPLFW CALFW CFP AgeDB

0 98.53 84.00 88.92 89.34 85.9
0.005 98.67 84.68 89.82 89.14 87.07
0.010 98.7 84.72 90.05 89.54 88.42
0.020 98.4 84.05 91.32 90.13 89.83

Similarly, Table 7 reports the ablation
study for the effect of noise in data
generation and augmentation (i.e., hy-
perparamter β in in Eq. 3). As can
be seen, the added noise increases the
variation for images of each subject
and increases the performance of face
recognition models trained with the
generated datasets.

Table 8: Ablation study on the network structure

Network LFW CPLFW CALFW CFP AgeDB

ResNet18 98.33 81.38 88.53 86.03 85.27
ResNet34 98.5 83.47 88.88 88.29 86.42
ResNet50 98.67 84.68 89.82 89.14 87.07
ResNet101 98.73 85.43 90.05 89.54 87.52

As another experiment, we consider
different backbones and train face
recognition models with different
number of layers. As the results in
Table 8 show, increasing the number
of layers improve the recognition per-
formance of trained face recognition
model. While this is expected and has
been observed for training using large-scale face recognition datasets, it sheds light on more potentials
in the generated synthetic datasets.

Scaling Dataset Generation: To increase the size of the synthetic face recognition dataset, we can
increase the number of images per identity and also the number of samples per identity. In our ablation
study, we investigated the effect of the number of images (Table 2) and the number of identities
(Table 3) on the recognition performance of the face recognition model. However, increasing the
size of the dataset requires more computation. Increasing the number of images in the dataset has
linear complexity in our image generation step (i.e., O(nimages), where nimages is the number of
images in the generated dataset). However, the complexity of solving the HyperFace optimization
problem with iterative optimization in Algorithm 1 has quadratic complexity (i.e., O(n2

id)). Therefore,
solving this optimization for a larger number of identities requires much more computation resources.
Meanwhile, most existing synthetic datasets in the literature have a comparable number of identities
to our experiments. We should note that in our optimization, we considered all points in each iteration
of optimization which introduces quadratic complexity to our optimization. However, we can solve
the optimization with stochastic mini-batches of points on the embedding hypersphere, which can
reduce the complexity in each iteration (i.e., O(b2), where b is batch size and b ≤ nid), but may
increase the optimization error.

4 Related Work

With the advances in generative models, several synthetic face recognition datasets have been
proposed in the literature. Bae et al. (2023) proposed DigiFace dataset where they used a computer-
graphic pipeline to render different identities and also generate different images for each identity by
introducing different variations based on face attributes (e.g., variation in facial pose, accessories, and
textures). In contrast to (Bae et al., 2023) , other papers in the literature used Generative Adversarial
Networks (GANs) or probabilistic Diffusion Models (PDMs) to generate synthetic face datasets. Qiu
et al. (2021) proposed SynFace and utilised DiscoFaceGAN (Deng et al., 2020) to generate their
dataset. They generated different synthetic identities using identity mixup by exploring the latent
space of DiscoFaceGAN to increase intra-class variation and then used DiscoFaceGAN to generate
different images for each identity.

Boutros et al. (2022) proposed SFace by training an identity-conditioned StyleGAN (Karras et al.,
2020) on the CASIA-WebFace (Yi et al., 2014) and then generating the SFace dataset using the
trained model. Kolf et al. (2023) also trained an identity-conditioned StyleGAN (Karras et al., 2020)
in a three-player GAN framework to integrate the identity information into the generation process
and proposed the IDnet dataset. Colbois et al. (2021) proposed the Syn-Multi-PIE dataset using
a pretrained StyleGAN (Karras et al., 2020). They trained a support vector machine (SVM) to
find directions for different variations (such as pose, illuminations, etc.) in the intermediate latent
space of a pretrained StyleGAN. Then, they used StyleGAN to generate different identities and
synthesized different images for each identity by exploring the intermediate latent space of StyleGAN
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using linear combinations of calculated directions. Boutros et al. (2023b) proposed ExFaceGAN,
where they used SVM to disentangle the identity information in the latent space of pretrained
GANs, and then generated different identities with several images within the corresponding identity
boundaries. Geissbühler et al. (2024) used stochastic Brownian forces to sample different identities
in the intermediate latent space of pretrained StyleGAN (Karras et al., 2020) and generate different
identities (named Langavien). Then they solved a similar dynamical equation in the latent space of
StyleGAN to generate different images for each identity (named Langavien-Dispersion) and further
explored the intermediate latent space of StyleGAN (named Langavien-DisCo).

Melzi et al. (2023) proposed GANDiffFace, a hybrid dataset generation framework, where they
used StyleGAN to generate face images with different identities, and then used DreamBooth (Ruiz
et al., 2023) as a diffusion-based generator, to generate different samples for each identity. Boutros
et al. (2023a) trained an identity-conditioned diffusion model to generate synthetic face images and
proposed IDiffFace datasets. They generated different samples using an unconditional model, and
then generated different samples using their conditional diffusion model (named IDiff-Face Two-
Stage). Alternatively, they uniformly sampled different identities and generated different samples
for each identity using their identity-conditioned diffusion model (named IDiff-Face Uniform). Kim
et al. (2023) proposed DCFace, where they trained a dual condition (style and identity conditions)
face generator model based on diffusion models on the CASIA-WebFace dataset. They used their
trained diffusion model to generate different identities and different styles for each identity by varying
identity and style conditions.

5 Conclusion

In this paper, we formalized the dataset generation as a packing problem on the hypersphere of a
pretrained face recognition model. We focused on inter-class variation and designed our packing
problem to increase the distance between synthetic identities. Then, we considered our packing
problem as a regularized optimization and solved it with an iterative gradient-descent-based approach.
Since the manifold of face embeddings does not cover the whole hypersphere, the regularization
allows us to approximate the manifold of face embeddings and enhance the quality of generated face
images. We used the generated datasets by our method (called HyperFace) to train face recognition
models, and evaluated the trained models on several real benchmarking datasets. Our experiments
demonstrate the effectiveness of our approach, which achieves state-of-the-art performance for
training face recognition using synthetic data. We also presented an extensive ablation study to
investigate the effect of each hyperparameter in our dataset generation method.
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A Sample Images from HyperFace Dataset

Figure 3: Sample face images from the HyperFace dataset
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B Leakage of Identity

In our dataset generation method, we used images synthesized by StyleGAN for initialization and
regularization. Therefore, it is important if there is any leakage of privacy data in the images generated
from StyleGAN in the final generated dataset. To this end, similar to (Shahreza & Marcel, 2024), we
extract and compare embeddings from all the generated images to embeddings of all face images in
the training dataset of StyleGAN. The highest similarity score between generated images and training
dataset correspond to children images (as shown in Figure 4a) which are difficult to compare visually
and conclude potential leakage. Figure 4b illustrates images of highest scores excluding children.
While there are some visual similarities in the images, it is difficult to conclude leakage of identity in
the generated synthetic dataset.
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(b) adult images

Figure 4: Sample pairs of images with the highest similarity between face embeddings of images in
synthesized dataset and training dataset of StyleGAN, which was used to generate random images for
initialization and regularization in the HyperFace optimization.

C Ethical Considerations

State-of-the-art face recognition models are trained with large-scale face recognition datasets, which
are crawled from the Internet, raising ethical and privacy concerns. To address the ethical and privacy
concerns with web-crawled data, we can use synthetic data to train face recognition models. However,
generating synthetic face recognition datasets also requires face generator models which are trained
from a set of real face images. Therefore, we still rely on real face images in the generation pipeline.

In our experiments, we investigated if we have leakage of identity in the generated synthetic dataset
based on images used for initialization and regularization. However, there are other privacy-sensitive
components used in our method. For example, we defined and solved our optimization problem on
the embedding hypersphere of a pretrained face recognition model. Therefore, for generating fully
privacy-friendly datasets, the leakage of information by other components needs to be investigated.

We should also note that while we tried to increase the inter-class variations in our method, there
might be still a potential lack of diversity in different demography groups, stemming from implicit
biases of the datasets used for training in our pipeline (such as the pretrained face recognition model,
the gallery of images used for regularization, etc.). It is also noteworthy that the project on which the
work has been conducted has passed an Institutional Ethical Review Board (IRB).
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