
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Division-of-Thoughts: Harnessing Hybrid Language Model
Synergy for Efficient On-Device LLM Agents

Anonymous Author(s)

Abstract
With the emergence of edge AI application scenarios such as on-
device web search assistants, enhancing the reasoning performance
of large language models (LLMs) on edge devices has become an
increasingly important topic. Due to the memory and computation
limitations of edge devices, edge-cloud collaboration presents a
promising solution, which involves deploying smaller LLMs locally
while invoking larger-scale LLMs in the cloud. However, how to
coordinate these two to balance cost and performance is a chal-
lenge. We propose a new collaborative reasoning framework called
Division-of-Thoughts (DoT) to fully harness the synergy between
locally deployed SLMs and cloud-based LLMs. DoT leverages a Task
Decomposer to elicit the inherent planning abilities in language
models to decompose user queries into smaller sub-tasks. We also
employ a Task Scheduler to analyze the pair-wise dependency of
sub-tasks and create a dependency graph, facilitating parallel rea-
soning of sub-tasks and the identification of key steps. To allocate
the appropriate model based on the difficulty of sub-tasks, DoT
leverages a Plug-and-Play Adapter, which is an additional task head
attached to the SLM that does not alter the SLM’s parameters. To
boost the allocation of the adapter, We also design a self-reinforced
tree search algorithm to create a high-qualiy sub-task allocation
dataset. Extensive experiments on various benchmarks demonstrate
that our DoT significantly reduces LLM costs while maintaining
reasoning accuracy. Comparable to the best baseline methods, we
reduce the average reasoning time and API costs by 66.12% and
83.57%, respectively. Our code can be accessed via the following
link: https://anonymous.4open.science/status/DoT-F17C

Keywords
LLM Agent, Personal Assistant, Edge-Cloud Collaboration

ACM Reference Format:
Anonymous Author(s). 2018. Division-of-Thoughts: Harnessing Hybrid Lan-
guage Model Synergy for Efficient On-Device LLM Agents. In Proceedings
of Make sure to enter the correct conference title from your rights confirma-
tion emai (Conference acronym ’XX). ACM, New York, NY, USA, 13 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
As web content continues to grow exponentially, on-device AI as-
sistants have become essential tools for helping users navigate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

the increasingly complex online landscape. This trend has led to
the widespread adoption of personal assistants such as Google
Assistant, Apple Siri, Amazon Alexa, Alibaba Tmall Genie, and
Xiaomi Xiao AI [13, 23], which have demonstrated their effective-
ness in helping users digest enormous web content for tasks like
web browsing [16], content searches [28], online shopping [25],
and travel planning [5]. These AI-powered agents enable web ap-
plications to harness the rapid advancements in AI technology,
delivering a more personalized and convenient user experience.
Amid recent AI breakthroughs in Large Language Models (LLMs),
the emergent capabilities of commonsense reasoning [32] and in-
context learning [6] are widely regarded as a key component for the
next generation of on-device agents [9]. Therefore, revolutionizing
AI personal assistants with LLM agents has become an important
research problem and a critical focus for applications [19].

However, deploying LLM agents on local devices presents signif-
icant challenges, as it is impractical to run LLMs with trillions of pa-
rameters on resource-constrained devices such as smartphones and
personal computers [34]. Conversely, relying solely on cloud-based
commercial LLMs raises concerns over privacy risks, unreliable
connections, and high monetary costs [18, 19]. Recent research has
focused on training smaller-scale language models and developing
model compression techniques [20, 21, 33], with the goal of cre-
ating sub-10B parameter models that can be practically deployed
on local devices, such as Llama 3 series [8] and Phi 3 series [1].
However, this approach introduces additional computational costs
for training or compressing these models and inevitably results in
performance degradation compared to full-size LLMs. Preliminary
efforts have also explored the potential of edge-cloud collabora-
tion, where tasks exceeding the capabilities of locally deployed
Smaller-scale Sanguage Models (SLMs) are rerouted to more pow-
erful cloud-based LLMs [3, 10]. Despite this, the significant perfor-
mance gap between SLMs and LLMs often leads to a suboptimal
trade-off between reasoning capabilities and cost.

To address this problem, our work draws inspiration from the
fundamental economic concept of“division of labour,” which posits
that breaking down complex tasks into finer components often
leads to more efficient solutions by allowing collaborative part-
ners to fully exploit their respective strengths. Building on this
idea, we propose a novel Division-of-Thoughts (DoT) framework
to fully harness the synergy between locally deployed SLMs and
cloud-based LLMs through sophisticated task decomposition and
optimized sub-tasks allocation. Specifically, DoT leverages a Task
Decomposer, a meta-prompt that combines “chain-of-thought”-like
prompting [32] with carefully curated task decomposition exam-
ples. This approach taps into the inherent planning abilities of
language models [29], enabling them to decompose user queries
into smaller sub-tasks. Our core insight is that even complex user
queries often contain a significant portion of simple sub-tasks that
can be adequately handled by SLMs. Therefore, decomposing user

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

queries can lead to optimized collaboration on sub-task level, i.e.,
unleashing the potential of “Division-of-Thoughts.” Besides, DoT
employs a Task Scheduler that analyzes the pair-wise dependency
between sub-tasks and creates a dependency graph. This facilitates
efficient and accurate scheduling by identifying parallel sub-tasks
and assessing the structural importance of each task. More impor-
tantly, we design a self-reinforced training method to boost the task
allocation capability of SLM, requiring no human annotation, but
only the feedback of task execution. Our training method leverages
a novel tree search algorithm that accounts for both the uncertainty
of language models and the task performance to optimize sub-task
allocation decisions. As a result, we can create a high-quality sub-
task allocation dataset without human supervision. Based on which,
we train a light-weight, plug-and-play adapter that significantly
boosts SLM’s ability to allocate sub-tasks. It is important to note
that the adapter fully preserves the general capabilities of the SLM,
as it does not modify SLM’s parameters. Instead, it introduces a
detachable decoding head specialized for sub-task allocation.

We conducted extensive experiments on six widely adopted LLM
agent benchmarks, covering a variety of scenarios, including logical
reasoning, web browsing, solving math problems, and common-
sense reasoning. The results demonstrate that our DoT framework
significantly reduces LLM costs while maintaining reasoning accu-
racy comparable to the best baseline methods across all benchmarks.
Specifically, the average reasoning time and API costs are reduced
by 66.12% and 83.57%, respectively, compared to the most accurate
baseline methods. Besides, an ablation study confirms the effec-
tiveness of our key model design choices. Furthermore, the DoT
framework consistently achieves superior cost-accuracy trade-offs
compared to task referral strategies that do not incorporate task
decomposition across all budget settings, where the performance
gain are particularly large at low cost setting.

To summarize, our contributions are three-fold:
• we present a novel Division-of-Thoughts (DoT) framework

that fully exploits the synergy between locally deployed
SLM and cloud-based LLM to power on-device agents with
cost-effective LLM reasoning.

• We design a Task Scheduler to extract the dependency graph
among sub-tasks, facilitating optimal sub-task scheduling.

• We propose a self-reinforced training method to boost
SLM’s task allocation accuracy without additional human
annotation, and also preserve the general reasoning capa-
bilities of SLM with detachable, plug-and-play adapter.

2 Related Work
2.1 Emergence and Extension of LLM

Reasoning Capabilities.
In recent years, large language models (LLMs) have undergone
remarkable and revolutionary advancements. As the scale of these
models increases, LLMs exhibit emergent reasoning capabilities
that are notably powerful [31]. Building upon these advancements,
various prompt engineering techniques have further extended the
reasoning capabilities of LLMs. Chain-of-Thought (CoT) [32] im-
proves reasoning performance by incorporating manually crafted
decomposition steps into the prompt, allowing the LLM to follow
the step-by-step resolution process. Building on this, Zero-shot

CoT [15] achieves similar effects by simply adding the phrase "Let’s
think step by step," enabling LLMs to automatically decompose
and execute tasks. From the linear structure of CoT, more complex
frameworks have been introduced, such as Tree-of-Thought [36]
and Graph-of-Thought [2], which expand LLMs’ reasoning capabil-
ities through branching reasoning paths. However, these methods
face increased resource demands and time complexity, and they
heavily rely on manually predefined steps tailored to specific tasks,
which significantly limits their generalizability. Additionally, there
are some approaches, differing from the idea of predefined reason-
ing structures, focus on how to decompose a complex problem into
simpler problems for more effective resolution [14, 37].

Underlying these methods is the intuition of task decomposition
and extensive empirical evidence has demonstrated its effective-
ness. Furthermore, this inspires us to explore the potential of task
decomposition in edge-cloud collaboration, allowing part of the
task to be addressed by cloud-based models while the other part
is handled by on-device models, thereby achieving a fine-grained
collaborative framework.

2.2 On-device LLM Agent
The rise of LLMs has revolutionized AI applications, sparking wide-
spread interest in personal AI assistants and mobile automation
tools. As on-device intelligent agents gain popularity, users increas-
ingly expect seamless, real-time AI support on their smartphones
and devices. However, the limited computational and storage capa-
bilities of edge devices pose significant challenges in deploying pow-
erful models for such intelligent agents. Under these constraints,
edge-cloud collaboration is a practical solution.

Apple’s latest research [9] exemplifies this synergy by combining
an efficient on-devicemodel, AFM-on-device, with a powerful cloud-
basedmodel, AFM-server. This approach balances device limitations
with the high-performance needs of Apple’s AI features across
their platforms. Similarly, [4] tackles edge-device limitations by
splitting task planning and execution between two models—Octo-
planner and Octopus—focused on efficiency and adaptability. Both
approaches highlight the growing trend of edge-cloud collaboration
to ensure powerful, low-latency AI experiences, though Apple leans
more on cloud support while Octo-planner emphasizes on-device
optimization.

Despite these advancements, a trade-off remains between the
power of cloud models and the real-time performance require-
ments of on-device models. This transition towards edge-cloud
collaboration stems from the recognition that edge devices, while
increasingly capable, are still constrained in their ability to host and
execute large-scale language models. The computational and stor-
age limitations of such devices make it difficult to support models
with 10 billion parameters or more, which often define state-of-the-
art performance in many AI tasks.

3 Preliminaries
Problem Definition Denote the local deployed SLM as MD , and
the cloud-based LLM asMC . The user’s original query is restricted
to the edge model for task decomposition and allocation, while the
resulting sub-tasks can be resolved by eitherMD orMC . For each

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Division-of-Thoughts: Harnessing Hybrid Language Model Synergy for Efficient On-Device LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

task 𝑇 , we aim to devise an efficient task decomposition method:

𝑇 → {𝑡1, 𝑡2, ...𝑡𝑘 } (1)

and an accurate model allocation strategy:

𝜇 : 𝑡𝑖 ↦→ {MD ,MC} (2)

that prioritizes assigning simple subtasks to on-device model, while
invoking the cloud-based model for handling more complex sub-
tasks. Let the reasoning accuracy over the entire task set T =

𝑇1,𝑇2, ...𝑇𝑛 be denoted as 𝐴𝑐𝑐 , with the API cost represented by
𝐶𝐴𝑝𝑖 , and the completion time denoted as 𝐶𝑇𝑖𝑚𝑒 . Our objective
is to minimize two types of costs while allowing for a controlled
decrease in reasoning accuracy. Given an acceptable accuracy degra-
dation threshold 𝛿𝐴𝑐𝑐 , the optimization objective can be expressed
as follows:

min (𝐶𝐴𝑝𝑖 + 𝜆𝐶𝑇𝑖𝑚𝑒 ) s.t. 𝐴𝑐𝑐 𝑓 𝑖𝑛𝑎𝑙 ≥ 𝐴𝑐𝑐 − 𝛿𝐴𝑐𝑐 (3)

where 𝜆 serves as a tunable weight.

4 Methodology
4.1 Division-of-Thoughts Framework
The division-of-labour is a prominent concept in economics, fa-
mously introduced by Adam Smith. It refers to the separation and
allocation of tasks within any economic system or organization,
enabling participants to specialize in specific areas based on their
unique capabilities. This specialization allows individuals, organiza-
tions, and nations to optimize productivity by leveraging specialized
skills, equipment, and resources. This concept inspires us to con-
sider a similar approach in the context of edge-cloud collaboration,
where user queries can be intricately divided: simpler sub-tasks
can be assigned to SLMs while more complex ones are allocated to
LLMs. This sub-task-level division of labor is expected to reduce
reasoning costs while maintaining reasoning performance, enabling
more efficient collaboration.

Building on this intuition, we developed the DoT edge-cloud
collaboration framework. As illustrated in Figure 1, our framework
is divided into three components. The first component is the Task
Decomposer, which breaks down the user’s query into several sim-
pler and independent sub-tasks. The second component is the Task
Scheduler, which is leveraged to determine the pairwise dependen-
cies between sub-tasks and constructing a task dependency graph
based on these dependencies. The third component is the plug-
and-play LLM adapter, responsible for assigning each sub-task to
the appropriate models. The adapter extracts sentence embeddings
from the SLM and maps them to difficulty coefficients, which serve
as the basis for the model allocation for sub-tasks. Importantly,
the training of the adapter does not require modifying the LLM’s
parameters, ensuring that the LLM’s question-answering remains
unaffected. Once the appropriate models have been assigned to
each sub-task, reasoning proceeds along the order defined by the
constructed dependency graph, leading to the final results.

4.2 Decomposing user Query
As emphasized in the division-of-labour, an effective divisionmethod
serves as the foundation for collaborative work. The granularity
and accuracy of division directly influence the quality and efficiency

of the collaboration. Previous work has explored the collaboration
between large and small models, but the granularity of these efforts
has often been limited to the query level, and most rely on manually
designed task decomposition strategies. For instance, in the ToT
approach to solving the 24-point game, the task is broken down
into two sequential steps: proposing and evaluating, with propos-
ing occurring before evaluating iteratively. However, this rigid and
manual workflow is challenging to generalize across various tasks,
which highlights the need for a flexible and fine-grained task de-
composition method that operates without human intervention.

We have developed a fine-grained task decomposition method
based on the powerful In-Context Learning (ICL) capabilities of
LLMs. We leverage a meta-prompt that incorporates “chain-of-
thought”-like prompting with hand-crafted task decomposing ex-
amples, to elicit the inherent planning abilities in LMs. For each
benchmark, We randomly selected 8 samples, manually performed
step-by-step task decomposition, and incorporated these steps into
the prompts. To enable LLMs to independently solve each sub-
task and effectively use the answers from preceding tasks as ref-
erences for subsequent reasoning, we place great emphasis on the
independence and clarity of the decomposed sub-tasks and have
incorporated targeted cues in the prompts design.

4.3 Task scheduling via Dependency Graph
We employed a three-step approach to schedule all the sub-tasks
effectively: Dependency Judgement. Prompting LLM agent to
assess pairwise dependencies between sub-tasks. The prompts are
as follows: "Please list the dependencies in the format ’Subproblem
A [xxx] -> Subproblem B [xxx]’ indicating that Subproblem A must
be completed before Subproblem B can start." Graph Construction.
Converting dependencies into a dependency graph. Based on the
clear directional dependencies, constructing the graph is straight-
forward. However, we further trace back from the final sub-task
node to calculate the depth of each sub-task node in the graph
(analogous to the height in a tree structure). Sub-tasks at the same
depth are independent of each other and can be inferred in par-
allel. Depth serves as the inference batch, with batches processed
sequentially while tasks within a batch are reasoned in parallel. As
shown in Figure 3, compared to sequentially reasoning through
all sub-tasks, our graph structure can capture more precise infer-
ential relationships while incurring fewer time costs. On-Graph
Reasoning. We start by solving the sub-tasks from the shallowest
depth batch, running the sub-tasks within the same batch in parallel.
After completing one batch, we proceed to the next. During the
reasoning of a specific sub-task, only the results of its prerequisite
sub-tasks, rather than all previously solved tasks, are included in
the prompts, which enables efficient graph-based reasoning.

4.4 Task Allocation with Plug-and-Play LLM
Adapter

For the decomposed sub-tasks, we aim to assess their difficulty
based on the task descriptions and allocate either cloud-based or
edge-side models for execution. Using LLMs to evaluate difficulty
introduces additional inference costs and often fails to accurately as-
sess the sub-task’s complexity, which motivates us to train a model
specifically designed for task allocation with sentence embeddings.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Plug-and Play Adapter

Query

Define all possible 
orientations and 
placements of the L-
shaped tile within 
the 2x5 rectangle.

Sub-
tasks

Task Allocation

Sub-task

This   sentence:
"[Subtask] "

means in one
word: "

LLM

s-task1

s-task2

s-task3

s-task4

s-task5

s-task6

Define all possible orientations and placements of the L-
shaped tile within the 2x5 rectangle.

How to use 1x1 tiles to fill the remaining spaces after 
placing L-shaped tile(s).

Calculate the ways to place a single L-shaped tile with 1x1 
tiles in all possible positions.

How to calculate the ways to place L-shaped tiles without 
overlap, considering remaining space for 1x1 tiles.

Summarize the counts from all possible scenarios, taking 
into account different combinations and positions.

Count all unique arrangements of L-shaped and 1x1 tiles 
that completely cover the 2x5 rectangle.

s-Task5s-Task4

s-Task2s-Task1

s-Task6s-Task3

s-Task1

s-Task3

s-Task6

s-Task5

Task Graph

s-Task2

s-Task4

Transformer          

Query Text

Input 
Tokens

Hidden
States

Output 
Tokens

Extendable
Adapter

Dataset Construction

Training

Return

...

...

...

1

2

3

2

Figure 1: Whole framework of DoT.

Task Pool (1) Simple Referral

T1

T2

Difficulty

0.5

0.6

T4 0.9

T3 0.3 Threshold 
(Difficulty < 0.5)

T1

T2

T4

T3

/         Easy/Hard Subtasks

(2)  Division-of-Thought

Threshold 

(Difficulty < 0.5)

T1

T2

T4

T3

Figure 2: Advantages over the Simple Referral Paradigm

Sentence embeddings, which map a sentence to a fixed-size vector
capturing its semantic meaning and context, have seen extensive
application in natural language processing for its lightweight ac-
cessibility and the strong ability to capture sentence semantics. We
can obtain a sentence embedding for each sub-task’s prompt and
then map the embedding to the corresponding difficulty. Given that
LLMs are already deployed on the edge side and have been shown
to serve as effective sentence embedders, we plan to leverage the
local deployed SLM to produce sentence embeddings.

However, autoregressive LLMs lack specialized tokens such as
BERT’s [MASK] or [CLS], which are typically used in transformer-
based models for embedding tasks. The exploration of Ting Jiang
et al. [12] helps us overcome this limitation. Prompt-based method
is refined specifically for autoregressive LLMs by instructing the
model to generate the nextword that captures the semanticmeaning
of the input sentence. Specifically, a simple but effective template
can be constructed for each piece of text: This sentence: "[text]"
means in one word: ", where [text] represents the input sentence,

Time Step 1 Time Step 2 Time Step 3 Time Step 4 Time step 5 Time step 6

Step 1 -> Step 3 
Step 1 -> Step 4
Step 2 -> Step 3 
Step 2 -> Step 4  
Step 3 -> Step 5  
Step 4 -> Step 5
Step 5 -> Step 6

s-Task2
s-Task1

s-Task4s-Task6

s-Task3 s-Task5

s-Task1 s-Task2

s-Task3 s-Task4

s-Task5 s-Task6

s-Task1 s-Task2 s-Task3 s-Task4 s-Task5 s-Task6

s-Task1

s-Task2

s-Task3

s-Task4

s-Task5 s-Task6

Time Step 1 Time step 2 Time step 3 Time step 4

Figure 3: Details of Dependency Graph Construction [figure]

and the LLM is prompted to generate the next token that encapsu-
lates the core meaning of the sentence in a single word. The last
generated token plays a critical role, as we extract its hidden state
from the model and use it as the sentence embedding.

Boosting SLMwith Plug-and-Play Adapter.Despite the vary-
ing lengths of sub-task descriptions, the sentence embeddings main-
tain a consistent dimensionality. For efficiency, we append a multi-
layer perceptron (MLP) to the transformer module of the LLM to
map the embeddings to a difficulty score. Given that both the edge
side and the cloud host only one model, we can simply set the scores
as 0 (simple, for the edge-side SLM) or 1 (complex, for the cloud-
based LLM). The output from the MLP is translated into a model
designation and passed to the agent handling the current reasoning
step, providing a concrete allocation strategy for edge-cloud collab-
oration. Moreover, the adapter requires no modifications to SLM’s
parameters. It essentially serves as a flexible and extensible adapter
for the SLM, avoiding the need to store two sets of parameters on
the edge side.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Division-of-Thoughts: Harnessing Hybrid Language Model Synergy for Efficient On-Device LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Subtask A

1.Subtask Difficulty Estimation

s-Task4 s-Task5 s-Task6 s-Task3 s-Task2 s-Task1

Evaluation

Subtask B

0

1

𝑰𝒏𝒅𝒆𝒙𝑻𝒐𝒌𝒆𝒏

𝑷𝒓𝒐𝒃𝑻𝒐𝒌𝒆𝒏

Reasoning

LLM

0

1

𝑰𝒏𝒅𝒆𝒙𝑻𝒐𝒌𝒆𝒏

𝑷𝒓𝒐𝒃𝑻𝒐𝒌𝒆𝒏

More
Uncertainty

Extract
α-quantile

Evaluate
Difficulty

Subtask A

Subtask B

EASY

HARD

s-Task2

> > > > >

2. Optimal Allocation Search 

α-quantile > Threshold α-quantile < Threshold

s-Task4 s-Task5 s-Task6

s-Task3 s-Task1

Correct

s-Task2

s-Task4 s-Task5 s-Task6

s-Task1s-Task3

Search Step n=1

Evaluation Correct

s-Task2

s-Task4 s-Task5

s-Task1s-Task3

Evaluation Correct

s-Task2

s-Task4

s-Task1s-Task3

s-Task6

s-Task6s-Task5

1

2

3

4

Evaluation Correct

s-Task2 s-Task1s-Task3

s-Task6s-Task55 s-Task4

Evaluation

Return 
Wrong

1

Evaluation

Return 
Wrong

2

Evaluation

Return 
Wrong

3

Evaluation

Return 
Wrong

4Evaluation Correct

Return 5

Difficulty Ranking

Evaluation

Wrong

...

Figure 4: Details of the Dataset Construction Method.

Creating Training Data with 𝛼-Tree Algorithm. Then how
do we construct a dataset to train our adapter? We developed an
efficient allocation optimization strategy, 𝛼 −𝑇𝑟𝑒𝑒 , which consists
of two key components: the sub-task difficulty ranking based on
the 𝛼-quantile token probability, and a tree-based search strategy
guided by the ranking, allowing us to generate a large-scale optimal
allocation dataset with low cost and high speed.

𝛼-quantile refers to calculating a specific quantile from the token
probabilities generated by LLM during inference. Unlike traditional
methods that aggregate probabilities through summation or aver-
aging, 𝛼-quantile focuses on a specific portion of the uncertainty
distribution—such as the minimum (𝛼 = 0) or a higher percentile
(e.g., 𝛼 = 0.8), which provides a fine-grained measure of uncertainty.
Donate the input context as 𝑥 , and the output tokens as 𝑦′

𝑖
. The

𝛼-quantile value can be denoted as:

𝑠quant (𝑥, 𝛼) � quantile𝛼
(
𝑝 (1) (𝑦′1 | 𝑥), 𝑝 (𝑦′2 | 𝑥,𝑦′1), . . . ,

𝑝 (𝑦′𝑛 | 𝑥,𝑦′1, . . . , 𝑦
′
𝑛−1)

)
In our implementation, we employed the SLM to answer all

decomposed sub-questions, recording the sampling probability cor-
responding to each token. We then applied a consistent alpha value
to extract the 𝛼-quantile from each probability sequence and ranked
the 𝛼-quantile values for all sub-task responses. Since higher task
difficulty leads to greater uncertainty in the model’s answers, re-
sulting in lower token sampling probabilities, we reversed the 𝛼-
quantile ranking to obtain the difficulty order of the sub-tasks.

Based on the 𝛼-quantile values of the sub-tasks, we set a fixed
allocation threshold: sub-tasks with values exceeding this threshold
are assigned to SLM, while those below the threshold are assigned
to LLM, forming the initial model allocation. From this initial alloca-
tion, we perform collaborative reasoning with SLM and LLM. If the
reasoning result is correct, we reassign 𝑛 of the sub-tasks currently

handled by LLM—specifically those with the highest probability of
being correctly answered—to SLM. Conversely, if the answer is in-
correct, we transfer 𝑛 of the sub-tasks handled by SLM—specifically
those with the lowest probability of being misanswered—to LLM.
As shown in Figure 4, the structure of the search exhibits a tree-
like form. The algorithmic workflow for dataset construction is
illustrated in 1.

Algorithm 1 Constructing Model Allocation Dataset
Input: Tasks which has been decomposed into several subtask:{

𝑇1 = {𝑡11 , .., 𝑡
𝑘1
1 },𝑇2 = {𝑡12 , .., 𝑡

𝑘2
2 }, ...,𝑇𝑛 = {𝑡1𝑛, .., 𝑡

𝑘𝑛
𝑛 }

}
Output: Fine-grained device-cloud model allocation scheme ap-

plied to each subtask within every task (𝑚 𝑗
𝑖
∈ {MD ,MC}):{

𝑀1 = {𝑚1
1, ..,𝑚

𝑘1
1 }, 𝑀2 = {𝑚1

2, ..,𝑚
𝑘2
2 }, ..., 𝑀𝑛 = {𝑚1

𝑛, ..,𝑚
𝑘𝑛
𝑛 }

}
1: for task id i do
2: Perform on-graph reasoning for eash subtask: 𝐴𝑛𝑠𝑤𝑒𝑟 =

{𝑎1
𝑖
, .., 𝑎

𝑘𝑖
𝑖
} with 𝑃𝑟𝑜𝑏𝑡𝑜𝑘𝑒𝑛 = {𝑝1

𝑖
, .., 𝑝

𝑘𝑖
𝑖
}

3: Calculate the 𝛼-quantile value for each token sequence:
𝑉𝛼−𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 = {𝑣1

𝑖
, 𝑣2
𝑖
, ..., 𝑣

𝑘𝑖
𝑖
}

4: Set a threshold 𝜃 to obtain the initial allocation strategy:

𝑀𝑖 = {𝑚1
𝑖
, ..,𝑚

𝑘1
𝑖
} where𝑚 𝑗

𝑖
=

{
MD if 𝑣 𝑗

𝑖
> 𝜃

MC if 𝑣 𝑗
𝑖
< 𝜃

5: Reasoning on the task to obtain: result = True or False
6: while True do
7: if result == True then
8: Find all subtasks assigned toMC ,𝑀𝐶𝑖 = {𝑚 ∈ 𝑀𝑖 |
𝑚 == MC}, select N subtasks with the highest 𝛼-quantile
probabilities, and reassign them to D. Get new𝑀′

𝑖
.

9: else
10: Find all subtasks assigned to MD , 𝑀𝐷𝑖 = {𝑚 ∈

𝑀𝑖 | 𝑚 == MD }, select N subtasks with the lowest 𝛼-quantile
probabilities, and reassign them toMC . Get new𝑀′

𝑖
.

11: end if
12: Reasoning to obtain new result 𝑟𝑒𝑠𝑢𝑙𝑡 ′
13: if 𝑙𝑒𝑛(𝑀𝐷𝑖 ) == 0 or 𝑙𝑒𝑛(𝑀𝐶𝑖 ) == 0 or 𝑟𝑒𝑠𝑢𝑙𝑡 ′ ≠ 𝑟𝑒𝑠𝑢𝑙𝑡

then
14: break
15: end if
16: 𝑀𝑖 = 𝑀′

𝑖
17: end while
18: end for

5 Experiments
5.1 Experimental Setup
Benchmarks. We validated the effectiveness of our framework
across seven benchmarks. These benchmarks are all publicly avail-
able and open-source. We categorized these benchmarks into four
groups:

• Logical Reasoning. We classified the selected P3 and
SCAN benchmarks into this category. These benchmarks
place a stronger emphasis on logic, involving challenges

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Model
Logical Reasoning Web Browsing Solving Math Problems Commonsense

Reasoning
P3 SCAN WebShop MATH CHAMP DROP CSQA

𝐴𝑐𝑐 𝐶𝑇𝑖𝑚𝑒 𝐶𝐴𝑝𝑖 𝐴𝑐𝑐 𝐶𝑇𝑖𝑚𝑒 𝐶𝐴𝑝𝑖 Acc 𝐶𝑇𝑖𝑚𝑒 𝐶𝐴𝑝𝑖 𝐴𝑐𝑐 𝐶𝑇𝑖𝑚𝑒 𝐶𝐴𝑝𝑖 𝐴𝑐𝑐 𝐶𝑇𝑖𝑚𝑒 𝐶𝐴𝑝𝑖 𝐴𝑐𝑐 𝐶𝑇𝑖𝑚𝑒 𝐶𝐴𝑝𝑖 𝐴𝑐𝑐 𝐶𝑇𝑖𝑚𝑒 𝐶𝐴𝑝𝑖
COT (GPT-4o) 42% 35.8 4.45¢ 68% 9.21 2.75¢ 35% 30.9 10.65¢ 51.5% 34.5 5.34¢ 55.5% 26.4 4.45¢ 80% 11.6 1.30¢ 80% 17.0 3.60¢
TOT (GPT-4o) 38% 93.1 14.55¢ 52% 32.5 9.82¢ 36% 62.4 47.34¢ 63% 60.5 9.97¢ 57% 64.2 11.65¢ 80.5% 40.2 5.41¢ 82% 98.8 20.50¢

COT (Llama 3-8B) 5.5% 18.1 N/A 17% 5.0 N/A 0.0% 10.5 N/A 10% 21.1 N/A 19% 13.1 N/A 72% 3.8 N/A 70% 8.4 N/A
TOT (Llama 3-8B) 5.5% 58.3 N/A 13% 21.8 N/A 1.4% 22.5 N/A 29.5% 49.0 N/A 25% 68.1 N/A 65% 27.8 N/A 68.5% 89.4 N/A

DataShunt 14% 25.1 2.45¢ 23.5% 7.6 1.72¢ 34% 30.9 8.35¢ 16% 24.9 1.66¢ 34% 19.1 2.98¢ 74% 8.6 0.60¢ 73% 10.4 1.28¢
DoT (ours) 41% 23.5 1.58¢ 63% 5.5 1.20¢ 31% 17.2 4.97¢ 59% 22.6 1.02¢ 58% 16.1 0.84¢ 85% 4.9 0.32¢ 82% 9.9 0.49¢

Improvement ↓2.38% ↓34.36% ↓64.49% ↓7.35% ↓40.28% ↓56.36% ↓13.89% ↓72.43% ↓89.95 ↓6.35% ↓62.72% ↓89.50% ↑1.75% ↓74.92% ↓92.79% ↑5.59% ↓87.81% ↓94.09% 0% ↓89.98% ↓97.60%

Table 1: Performance of DoT and baselines on 7 benchmarks. CTime and CApi are averaged expense for each task, where time
consumption is measured in seconds, and api cost is measured in US dollar cents (¢). N/A appears in experiments where
reasoning is conducted solely using LlaMA without invoking the OpenAI’s API key. In each benchmark, the highest reasoning
accuracy is highlighted in bold. The results of the baseline with the highest Acc are underlined which will be used to compute
the "Improvement" in the last row.

such as traversal, backward reasoning, and anomaly detec-
tion, which require a higher level of logical coherence and
rigor.

• Solving Math Problems. This category of benchmarks
primarily addresses mathematical problems, involving com-
putation, mathematical knowledge, and problem-solving
techniques. It is widely regarded as a crucial test of LLMs’
reasoning abilities. We selected three benchmarks for this
category: MATH, CHAMP, and DROP.

• Commonsense Reasoning. CSQA is a widely used com-
monsense reasoning dataset that places less emphasis on
reasoning capabilities but requires a broader knowledge
base. The difference in LLMs’ parameter scales leads to dis-
parities in the knowledge systems they possess, making
CSQA well-suited for evaluating our collaborative reason-
ing scenario.

• Web Browsing.We used the WebShop benchmark for this
category, which tests LLMs’ reasoning abilities as interac-
tive agents in real-world scenarios. It challenges agents to
navigate web pages, interpret complex queries, and take
appropriate actions to fulfill user requests. This benchmark
assesses crucial skills for AI assistants, including under-
standing compositional instructions, reformulating queries,
and strategically exploring information to meet specific
requirements.

Baselines and Prompting Methods. Given the constraints of
the edge-cloud collaborative setting, we established three baselines.

• CoT. This baseline decomposes the problem into sub-steps,
solving each sequentially. We use a single LLM throughout,
executing each step only once without iteration.

• ToT. ToT explores multiple solutions (M=5) for each sub-
step. We use a scoring mechanism to retain the N=3 top-
scored paths, with the highest-scored path determining the
final answer. Like CoT, it employs a single LLM for the
entire process.

• DataShunt. This approach dynamically selects between
on-device small LLM and cloud-based large LLM at the start
of each task. It prompts the LLM to evaluate task complexity,
assigning a solving model that is then used consistently for
all sub-steps.

In the task decomposition processes involved in CoT and ToT, we
employed the same prompting method used in our DoT, applying
eight hand-crafted examples to each benchmark. These examples
were randomly sampled from the dataset and are orthogonal to the
test set. The specific prompts can be found in Appendix A.5.

Selection and Deployment of LLMs We used GPT-4o [26]
as cloud-based LLM and Llama 3-8B [24] as on-device LLM as its
parameter scale is theoretically deployable on edge devices. The
Llama 3-8B model is deployed on a local A100 GPU with a context
length limit of 8192. The parameter count of our adapter is only
13,109,249, approximately 1/800th of the parameters in local Llama.

Evaluation. For evaluation, we established three metrics: 𝐴𝑐𝑐 ,
𝐶𝑡𝑖𝑚𝑒 ,𝐶𝐴𝑝𝑖 . Six of the benchmarks, excludingWebShop, have deter-
ministic results. For instance, the results for CSQA are single-letter
options, allowing direct determination of correctness. Similarly, for
P3, the reasoning output can be passed into a problem function, and
if the function returns True, the reasoning is deemed correct. It is
worth noting that, although benchmarks like MATH and CHAMP
have deterministic results, the presence of mathematical formulas
complicates direct evaluation. Therefore, we rely on a large lan-
guage model (GPT-4o) to verify the results, but the time and token
costs for evaluation are not included in the total cost. For WebShop,
we use the evaluation environment provided by the original bench-
mark to average the reward of all purchased items on the level of
satisfaction according to the constraints.

5.2 Main Results
Comparison between our method and the baselines are shown in
Table 1, we have highlighted in bold the highest accuracy results
among the five baseline experiments on each benchmark, while the
associated costs are underlined. We computed the relative change
in our results compared to the baseline with the highest accuracy.

The experimental results demonstrate that our approach signifi-
cantly reduces costs while maintaining accuracy within an accept-
able range of decline. Across seven benchmarks, the relative change
in accuracy compared to the best baseline results was: -2.38%, -7.35%,
-13.89%, -6.35%, 1.75%, 5.59%, and 0%. Notably, positive values were
observed in some cases, indicating potential improvements in rea-
soning accuracy, which suggests that our framework enhances the
reasoning capability of LLMs. This enhancement will be further

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Division-of-Thoughts: Harnessing Hybrid Language Model Synergy for Efficient On-Device LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Methods SLM Ratio SR # Evaluation API Cost
Zero-Shot LLM 53.11% 92.78% 1 $2.56
Binary-Search 69.46% 88.45% 8.456 $16.45
𝛼-tree (n=1) 85.53% 99.44% 3.4589 $7.34
𝛼-tree (n=2) 86.45% 96.34% 2.3445 $5.12

Table 2: Methods for Searching the Optimal Allocation
Scheme

discussed in ablation study 5.4. At the same time, our approach
achieved a substantial reduction in cost compared to the baseline
with the highest accuracy, with an average time reduction of 66.12%
and an average Api cost reduction of 83.57% which far exceeded
the decline in accuracy.

Moreover, on P3 and SCAN benchmarks, CoT achieved the best
performance, indicating that a sequential linear reasoning structure
is better suited for these task types. In contrast, on more complex
mathematical reasoning benchmarks like MATH, CHAMP, and
WebShop, ToT achieved the highest reasoning accuracy, demon-
strating the effectiveness of the multiple-proposal strategy. How-
ever, our approach incurred less than half of CoT’s cost and only
one-tenth of ToT’s cost while still achieving comparable perfor-
mance, highlighting the broad applicability of our graph-structured
reasoning and the effectiveness of the edge-cloud collaborative
framework.

To evaluate whether our collaborative approach fully leverages
on-device models for reasoning, we calculated the proportion of
reasoning time by the small on-device model relative to the overall
task execution time, as well as the percentage of sub-tasks assigned
to the edge-side model. These metrics were compared against the
baseline DataShunt, and the results are presented in Figure 5. As
shown in the figure, across all benchmarks, our allocation strategy
utilizes on-device models more effectively, with the reasoning time
and task allocation percentages exceeding those of the baseline by
11.99% and 21.92%, respectively.

5.3 Efficiency and Quality of Dataset
Construction.

To validate the effectiveness of our method for difficulty assessment
and optimal allocation search in dataset construction, we compared
our 𝛼-tree with other baseline search methods. We established two
baseline methods: Zero-shot LLM: This approach utilizes a LLM
to assess the difficulty of sub-tasks. The evaluation model employs
GPT-4o, utilizing a question-and-answer format that incorporates
the task content, all sub-tasks, and the current sub-task into the
prompt. Binary-Search: This method employs a binary search
strategy. Initially, all sub-tasks are processed uniformly using GPT-
4o. If the reasoning results are correct, half of the sub-tasks are
randomly assigned to Llama 3-8B, with this random assignment
repeated N times until successful. In the second round of binary
search, half of the remaining sub-tasks assigned to the larger model
are again randomly allocated to the smaller model. This process
continues until all sub-tasks are either handled by the smaller model
or incorrect reasoning persist. We set N to 5.

For our 𝛼-tree approach, which sequentially searches for optimal
solutions according to difficulty, we tested with n=1 and n=2 (where

n represents the number of models whose allocation is altered at
each search step). The comparison metrics included two quality
assessment indicators: SLM Ratio: the proportion of the smaller
on-device model in the final allocation scheme, and SR: success rate
of reasoning with the final allocation scheme applied. Additionally,
we considered two cost metrics: # Evaluation: the number of search
iterations, where a single search requires reasoning for all sub-
tasks of the entire task, and Api Cost, which refers to the expense
incurred when invoking the cloud-based large LLM API during
dataset construction.

We visualize the quality and cost of the constructed dataset on
the MATH benchmark. As shown in Table 2, in terms of construc-
tion quality, our 𝛼-tree achieved the highest proportion of small
model usage while maintaining the highest reasoning accuracy.
This demonstrates that our method finds a more efficient collabo-
rative allocation strategy, ensuring high-quality reasoning while
minimizing inference costs. Zero-shot LLM resulted in the lowest
proportion of SLM usage, indicating that LLMs fail to assess the
difficulty of sub-tasks. Binary-Search also showed a lower SLM pro-
portion compared to ours. While increasing the number of search
attempts (N) could potentially yield better results through random
search, this unordered and purely random strategy will incur signif-
icant costs. Even with the current 5-time search, the cost is already
several times higher than our approach. Further scaling will bring
unsustainable cost. Naturally, LLM-Eval has the lowest cost, but its
construction quality is significantly inferior.

P3
SC

AN

Web
Sh

op
MAT

H
CHAMP

DROP
CSQ

A
0

10

20

30

40

50

60

Re
as

on
in

g 
Ti

m
e 

(s
)

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n

Ours-
Ours-

DataShunt-
DataShunt-

Ours- %
DataShunt- %

P3
SC

AN

Web
Sh

op
MAT

H
CHAMP

DROP
CSQ

A
0

1

2

3

4

5

6

7

# 
Ta

sk
s

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n

Ours-
Ours-

DataShunt-
DataShunt-

Ours- %
DataShunt- %

Figure 5: Proportion of small models in reasoning time and
tasks.

5.4 Ablation Study
To validate the effectiveness of each design aspect of our model,
we conducted ablation studies focusing on two key components.
The first ablation removes the dependency graph construction and

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Model
Logical Reasoning Web Browsing Solving Math Problems Commonsense

Reasoning
P3 SCAN WebShop MATH CHAMP DROP CSQA

Acc Time Api Acc Time Api Acc Time Api Acc Time Api Acc Time Api Acc Time Api Acc Time Api
DoT w/o Graph 38% 36.4 1.44¢ 57% 5.2 1.18¢ 31% 20.7 4.97¢ 56% 20.9 0.99¢ 52% 27.7 0.82¢ 80% 4.2 0.26¢ 77% 9.6 0.48¢

DoT w/o Allocation 43% 39.8 4.80¢ 64% 10.7 3.66¢ 39.6% 19.4 13.89¢ 78% 36.9 7.68¢ 64% 30.4 5.05¢ 84% 12.8 1.69¢ 85% 20.6 1.49¢
DoT (ours) 41% 23.5 1.58¢ 63% 5.5 1.20¢ 31% 17.2 4.97¢ 59% 22.6 1.02¢ 58% 16.1 0.84¢ 85% 4.9 0.32¢ 82% 9.9 0.49¢

Table 3: Result of ablation study.

on-graph reasoning, replacing it with a sequential reasoning resolu-
tion. The second ablation removes the model allocation mechanism,
instead using the cloud-based LLM exclusively for reasoning. No-
tably, the second ablation experiment provides a direct assessment
of whether our reasoning workflow can enhance the reasoning
performance of LLMs.

The experimental results are presented in Table 3. We were
pleasantly surprised to discover that, without considering reasoning
costs, using the large cloud-based model exclusively for reasoning
can greatly improve the reasoning accuracy. This improvement
was particularly significant on the challenging MATH and CHAMP
benchmarks, where accuracy increased from 63% to 78% and from
57% to 64%, respectively, compared to the ToT (GPT-4o), which
had the highest accuracy among baselines. Improvements on other
benchmarks were relatively limited. Understandably, relying solely
on the cloud-based model results in several times the computational
cost compared to the collaborative approach, but this cost remains
acceptable when compared to ToT. Even when using the smaller
model exclusively, its accuracy was significantly improved over
CoT (Llama 3-8B) and ToT (Llama 3-8B). For example, accuracy
on Puzzle increased from 5.5% to 29%, and on SCAN from 17%
to 52%. Additionally, because the smaller model is deployed on
edge devices, the overall cost was greatly reduced. Additionally, the
ablation results after removing the dependency graph construction
and on-graph reasoning (DoT w/o Graph) further demonstrate the
critical role of the graph structure in reasoning.

5.5 Trade-off Between Accuracy and Cost.
The ablation study demonstrates that our on-graph reasoningmethod
significantly enhances the reasoning capability of LLMs, though at
a higher computational cost. Offloading all sub-tasks to the pow-
erful cloud-based models can achieve higher reasoning accuracy.
In this section, we delve into the detailed relationship between
cost and reasoning accuracy to identify the achievable performance
upper bound under different budget constraints. Based on our orig-
inal task allocation strategy, we generate diverse model allocation
schemes by proportionally assigning more sub-tasks to either the
cloud-based model or the on-device model according to the diffi-
culty level of each sub-task, resulting in the various data points
shown in the figure. We also introduce DataShunt as a baseline,
where the proportion of tasks handled by the cloud-based models
is adjusted by tuning the LLM evaluation thresholds. We conducted
experiments on four benchmarks, plotting the trade-off curves be-
tween accuracy and API cost. As illustrated in Figure 6, our curve
consistently remains above the baseline curve. Under the same cost,

our approach demonstrates higher reasoning accuracy. We also
achieves a higher upper bound on reasoning accuracy.

0 1 2 3 4 5

CApi(¢)
10

20

30

40

50

60

70

80

Ac
c 

(%
)

Ours (DOT)
DataShunt

(a) MATH

0 1 2 3 4 5

CApi(¢)

20

30

40

50

60

Ac
c 

(%
)

Ours (DOT)
DataShunt

(b) CHAMP

0 1 2 3 4 5

CApi(¢)
5

10

15

20

25

30

35

40

45

Ac
c 

(%
)

Ours (DOT)
DataShunt

(c) P3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

CApi(¢)
70

72

74

76

78

80

82

84

Ac
c 

(%
)

Ours (DOT)
DataShunt

(d) CSQA

Figure 6: Acc − CApi trade-off curves on 4 benchmarks.

6 Conclusion
In conclusion, our proposed Division-of-Thoughts collaborative rea-
soning framework effectively enhances the reasoning performance
of LLMs on edge devices by intelligently distributing tasks be-
tween local and cloud resources. The framework not only breaks
down complex tasks into manageable subtasks but also leverages
a directed-acyclic graph for optimal scheduling, maximizing rea-
soning accuracy while minimizing input context. Furthermore, the
novel task allocator significantly improves local model performance
with minimal memory overhead, making it well-suited for resource-
constrained environments. Looking ahead, we aim to incorporate
additional cloud-based large models, tailored for specific tasks, to
refine the overall collaborative framework. We also intend to inte-
grate a broader array of updated benchmarks to thoroughly evaluate
the framework’s performance across diverse scenarios, ultimately
advancing the state of edge AI applications.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Division-of-Thoughts: Harnessing Hybrid Language Model Synergy for Efficient On-Device LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed

Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly capable language model
locally on your phone. arXiv preprint arXiv:2404.14219 (2024).

[2] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski,
Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr
Nyczyk, et al. 2024. Graph of thoughts: Solving elaborate problems with large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 38. 17682–17690.

[3] Lingjiao Chen, Matei Zaharia, and James Zou. 2023. Frugalgpt: How to use large
language models while reducing cost and improving performance. arXiv preprint
arXiv:2305.05176 (2023).

[4] Wei Chen, Zhiyuan Li, Zhen Guo, and Yikang Shen. 2024. Octo-planner:
On-device Language Model for Planner-Action Agents. arXiv preprint
arXiv:2406.18082 (2024).

[5] Dickson KW Chiu, Yves TF Yueh, Ho-fung Leung, and Patrick CK Hung. 2009.
Towards ubiquitous tourist service coordination and process integration: A collab-
orative travel agent system architecture with semantic web services. Information
Systems Frontiers 11 (2009), 241–256.

[6] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, and Zhifang Sui. 2022. A survey on in-context learning. arXiv
preprint arXiv:2301.00234 (2022).

[7] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh,
and Matt Gardner. 2019. DROP: A reading comprehension benchmark requiring
discrete reasoning over paragraphs. arXiv preprint arXiv:1903.00161 (2019).

[8] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[9] Tom Gunter, Zirui Wang, ChongWang, Ruoming Pang, Andy Narayanan, Aonan
Zhang, Bowen Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. 2024.
Apple intelligence foundation language models. arXiv preprint arXiv:2407.21075
(2024).

[10] Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat,
Aditya Krishna Menon, and Sanjiv Kumar. 2024. Language Model Cascades:
Token-level uncertainty and beyond. arXiv preprint arXiv:2404.10136 (2024).

[11] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring mathematical problem
solving with the math dataset. arXiv preprint arXiv:2103.03874 (2021).

[12] Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang.
2023. Scaling sentence embeddings with large language models. arXiv preprint
arXiv:2307.16645 (2023).

[13] Veton Kepuska and Gamal Bohouta. 2018. Next-generation of virtual personal
assistants (microsoft cortana, apple siri, amazon alexa and google home). In 2018
IEEE 8th annual computing and communication workshop and conference (CCWC).
IEEE, 99–103.

[14] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter
Clark, and Ashish Sabharwal. 2022. Decomposed prompting: Amodular approach
for solving complex tasks. arXiv preprint arXiv:2210.02406 (2022).

[15] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[16] Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen,
Hao Yu, Hanchen Zhang, Xiaohan Zhang, YuxiaoDong, et al. 2024. AutoWebGLM:
A Large Language Model-based Web Navigating Agent. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 5295–5306.

[17] Brenden Lake and Marco Baroni. 2018. Generalization without systematicity:
On the compositional skills of sequence-to-sequence recurrent networks. In
International conference on machine learning. PMLR, 2873–2882.

[18] Stefanos Laskaridis, Stylianos I Venieris, Alexandros Kouris, Rui Li, and
Nicholas D Lane. 2024. The future of consumer edge-ai computing. IEEE Pervasive
Computing (2024).

[19] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu,
Jiacheng Liu, Wenxing Xu, Xiang Wang, Yi Sun, et al. 2024. Personal llm agents:
Insights and survey about the capability, efficiency and security. arXiv preprint
arXiv:2401.05459 (2024).

[20] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen
Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. 2024. AWQ:
Activation-aware Weight Quantization for On-Device LLM Compression and
Acceleration. Proceedings of Machine Learning and Systems 6 (2024), 87–100.

[21] Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang,
Nicholas D Lane, and Mengwei Xu. 2024. Small Language Models: Survey,
Measurements, and Insights. arXiv preprint arXiv:2409.15790 (2024).

[22] Yujun Mao, Yoon Kim, and Yilun Zhou. 2024. CHAMP: A Competition-level
Dataset for Fine-Grained Analyses of LLMs’ Mathematical Reasoning Capabili-
ties. arXiv preprint arXiv:2401.06961 (2024).

[23] Alex Mari. 2019. Voice Commerce: Understanding shopping-related voice assis-
tants and their effect on brands. (2019).

[24] Meta. 2024. Introducing Meta Llama 3: The most capable openly available LLM
to date. https://ai.meta.com/blog/meta-llama-3/

[25] Guangtao Nie, Rong Zhi, Xiaofan Yan, Yufan Du, Xiangyang Zhang, Jianwei Chen,
Mi Zhou, Hongshen Chen, Tianhao Li, Ziguang Cheng, et al. 2024. A Hybrid
Multi-Agent Conversational Recommender System with LLM and Search Engine
in E-commerce. In Proceedings of the 18th ACM Conference on Recommender
Systems. 745–747.

[26] OpenAI. 2024. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/
[27] Tal Schuster, Ashwin Kalyan, Oleksandr Polozov, and Adam Tauman Kalai. 2021.

Programming puzzles. arXiv preprint arXiv:2106.05784 (2021).
[28] Nikhil Sharma, Q Vera Liao, and Ziang Xiao. 2024. Generative Echo Chamber?

Effect of LLM-Powered Search Systems on Diverse Information Seeking. In
Proceedings of the CHI Conference on Human Factors in Computing Systems. 1–17.

[29] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun
Chao, and Yu Su. 2023. Llm-planner: Few-shot grounded planning for embodied
agents with large language models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2998–3009.

[30] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2018. Com-
monsenseqa: A question answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937 (2018).

[31] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large languagemodels. arXiv preprint arXiv:2206.07682
(2022).

[32] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in Neural Information Processing Systems
35 (2022), 24824–24837.

[33] Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, Qi Cai, and Ziyuan Ling.
2024. On-device language models: A comprehensive review. arXiv preprint
arXiv:2409.00088 (2024).

[34] Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, Daliang Xu, Qipeng Wang,
Bingyang Wu, Yihao Zhao, Chen Yang, Shihe Wang, et al. 2024. A survey
of resource-efficient llm and multimodal foundation models. arXiv preprint
arXiv:2401.08092 (2024).

[35] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. 2022. Webshop:
Towards scalable real-world web interaction with grounded language agents.
Advances in Neural Information Processing Systems 35 (2022), 20744–20757.

[36] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving
with large language models. arXiv preprint arXiv:2305.10601 (2023).

[37] Denny Zhou, Nathanael Schärli, Le Hou, JasonWei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022. Least-to-
most prompting enables complex reasoning in large language models. arXiv
preprint arXiv:2205.10625 (2022).

9

https://ai.meta.com/blog/meta-llama-3/
https://openai.com/index/hello-gpt-4o/


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Appendix
A Introdcution of Benchmarks
A.1 Mathematics

• MATH [11].Mathematics Aptitude Test of Heuristics (MATH),
comprises 12,500 problems from prestigious U.S. mathemat-
ics competitions like AMC and AIME. These problems, col-
lected from platforms such as AoPS, test advanced problem-
solving skills beyond standard K-12 math. Each problem
includes a step-by-step solution and a final answer. The
dataset spans seven subjects: Prealgebra, Algebra, Number
Theory, Counting and Probability, Geometry, Intermedi-
ate Algebra, and Precalculus, with difficulty levels ranging
from 1 (easy) to 5 (challenging), allowing models to learn
and apply various mathematical heuristics.

• CHAMP [22]. Concept and Hint-Annotated Math Prob-
lems (CHAMP). This benchmark features 270 non-routine,
competition-level problems sourced from Engel’s Problem-
Solving Strategies. The problems span five categories: num-
ber theory, polynomial, sequence, inequality, and combina-
torics, requiring creative strategies and specific tricks. Each
problem includes a final checkable answer and a step-by-
step solution in natural language. The dataset contains 54
concepts and 330 hints, averaging 1.4 concepts, 1.7 hints,
and 6 solution steps per problem. Problem statements av-
erage 20.2 words, with solutions averaging 10.9 words per
step, highlighting the dataset’s complexity and challenge.

• DROP [7]. Discrete Reasoning Over Paragraphs (DROP), is
an English reading comprehension dataset with 96k adversarially-
created questions. It challenges systems to resolve refer-
ences in a question and perform discrete reasoning opera-
tions like addition, counting, or sorting over multiple input
positions within a paragraph. The dataset is crowdsourced
and derived from Wikipedia passages designed for com-
plex questions. DROP demands a deeper understanding of
paragraph content than previous datasets, with rigorous
validation to ensure the quality of its development and test
sets.

A.2 Logic
• P3 [27]. Python Programming Puzzles (P3), introduces a

new type of programming challenge for evaluating program
synthesis. P3 contains 397 Python-based puzzles, where the
goal is to find an input that makes a given function return
True. The puzzles span various difficulty levels, from simple
string manipulations to complex algorithmic problems. P3
solvers, such as GPT-3 and Codex, can solve puzzles without
reference solutions by learning from past attempts, with
Codex achieving the highest success rate. P3 is designed
for objective and comprehensive evaluation across a wide
range of programming tasks.

• Scan [17]. This benchmark is used to evaluate the sequence-
to-sequence learning ability to translate simplified natural
language commands into action sequences. SCAN contains
20,910 commands generated by a phrase-structure gram-
mar, which describe basic actions such as "jump" or "walk"

and their combinatorial variations (e.g., "jump around left").
While the dataset was originally designed to test a model’s
ability to generalize to unseen commands by applying learned
interpretation functions, the logical structure and constraints
involved in the translation process also make it ideal for
assessing LLM reasoning capabilities.

A.3 Commonsense
• COMMONSENSEQA [30]. This benchmark is a challeng-

ing dataset designed to test commonsense question answer-
ing. It consists of 12,247 multiple-choice questions created
using concepts from CONCEPTNET. Each question is au-
thored by crowd-workers to differentiate between multiple
target concepts that share a semantic relation with a source
concept, encouraging the use of prior knowledge and com-
plex reasoning. COMMONSENSEQA pushes beyond simple
associations, making it a more difficult task compared to
traditional question-answering benchmarks.

A.4 On-device AI assistant application
• Webshop [35]. WebShop serves as a simulated e-commerce

environment featuring 1.18 million real-world products and
12,087 crowd-sourced text instructions. Designed to evalu-
ate language agents, it challenges them to navigate diverse
web pages and perform actions based on natural language
product specifications. Agents encounter obstacles such
as interpreting compositional instructions, reformulating
queries, and understanding noisy text on webpages, while
strategically exploring to fulfill product requirements. The
modular design of WebShop separates website navigation
from task-specific elements, allowing for easy adaptation to
new tasks and domains. This dataset provides a robust plat-
form for assessing the capabilities of language agents in an
interactive, real-world-inspired setting, emphasizing their
ability to comprehend and act on complex instructions.

A.5 Implementation Details across Benchmarks
A.5.1 MATH. For MATH tasks, we employ a structured workflow
comprising four key stages: Task Decomposition, Model Alloca-
tion, Dependency Graph Construction, and Step-by-Step Reasoning
Based on the Graph. In the task decomposition phase, we prompt
the LLM with exemplars of manually decomposed complex prob-
lems. The LLM is then instructed to generate manageable subtasks
that collectively solve the primary challenge. Subsequently, we
task the LLM with establishing subtask dependencies, where a re-
lationship 𝑆𝑡𝑒𝑝𝑖 → 𝑆𝑡𝑒𝑝 𝑗 indicates that 𝑆𝑡𝑒𝑝𝑖 must precede 𝑆𝑡𝑒𝑝 𝑗 .
Using the derived dependencies, we construct a reasoning graph
via Breadth-First Search (BFS). Subtasks at the same depth are pro-
cessed in parallel. Upon completion of all subtasks, we conduct a
final query to obtain the ultimate solution. This solution undergoes
LLM-based evaluation through comparison with the ground truth.

A.5.2 CHAMP. For CHAMP tasks, the process is largely similar to
the MATH process with the primary distinction being the specific
few-shot examples of human-written decompositions provided to
the LLM.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Division-of-Thoughts: Harnessing Hybrid Language Model Synergy for Efficient On-Device LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A.5.3 DROP. For DROP tasks, we adapt our approach to accommo-
date the format of questions based on given texts. The prompt for
each step incorporates relevant background information provided
in the dataset while maintaining the core implementation structure
used in other benchmarks.

A.5.4 P3. The Programming Puzzle tasks present a unique chal-
lenge, requiring the LLM to generate inputs that yield a ’True’
output for a given function. In addition to the puzzle description,
we provide the LLM with the expected data type of the final input.
The evaluation process for P3 differs from other benchmarks: we
execute the program using the LLM-generated input and assess the
correctness based on the program’s output.

A.5.5 SCAN. For SCAN tasks focused on translating natural lan-
guage instructions into action sequences, the steps until evaluation
stay the same. The final phase involves converting the model’s
natural language outputs into standardized action sequences using
few-shot examples. The evaluation is conducted by directly com-
paring these sequences with the true answers, ensuring the outputs
accurately match the expected actions.

A.5.6 COMMONSENSEQA. For CSQA tasks, presented asmultiple-
choice questions based on common sense, our implementation
has an identical structure as other tasks, while both the problem
and its options are presented to the LLM for the following task
decomposition and reasoning. The Final Evaluation consists of the
LLM choosing the most plausible answer from the provided options.
This selected answer is cleaned and will directly compare with the
correct choice.

A.5.7 Webshop. The WebShop task presents unique challenges
due to its interactive nature, where each action influences subse-
quent states and available options. Unlike our other experiments,
WebShop is not perfect for the construction of a complete, prede-
fined reasoning graph. Instead, our framework dynamically gen-
erates and executes sub-tasks based on the current state of the
shopping session, in which the shopping process is divided into
high-level sub-tasks/thoughts. We utilized the Model Allocation for
each step when generating an action, either be ‘think[]‘, ‘click[]‘,
or ‘plan[]‘. The first step would be to generate a keyword from the
instructions to search on the website. Then, the top N = 10 matched
items are recorded for the following procedures. With the conver-
sation from the webpage, we implemented the task decomposition
process to get a roadmap for the following actions. Prompting each
step at once to the LLMs, the detailed information about each item
will be recorded in the search history. Then, an evaluation and
comparison process is prompted to choose the best item from the
list. Lastly, the LLM will be prompted dynamically based on the
previous steps, and self-navigated to complete the final purchase.
This implementation demonstrates our framework’s flexibility in
handling tasks with dynamic, state-dependent decision-making
processes.

B Prompts
B.1 Task Decomposition
I will now give you a [Based on the type of problem]. The type
of problem is type. Please break this problem down into several
easy-to-solve steps.

1 examples are as follows: [Manual Written Examples]
Now the command is question, please decompose it into easy-

to-solve steps like the examples. Answer Format: (Please write
each broken-down question step on a separate line, starting with a
number.)

To solve the question "xxx", we need to know: "1. question 𝑠𝑡𝑒𝑝1",
"2. question 𝑠𝑡𝑒𝑝2", "3. question 𝑠𝑡𝑒𝑝3". ...

B.2 Dependency Construction
System Prompt:
Now we have a problem, which we have broken down into many
sub-problems. I want you to understand the connection between
these sub-problems
User Prompt:
The init problem is question. And the sub-problems are steps. Please
provide your understanding of the relationships between these sub-
problems. Your response must be concise.

Now we need to create standardized connections for the rela-
tionships between these sub-problems. Now Given the following
subtasks for question: question, determine the dependencies be-
tween them:

[List of Steps]
Please list the dependencies in the format ’Subproblem A [xxx]

-> Subproblem B [xxx]’ indicating that Sub-problem A must be
completed before Sub-problem B can start. Please identify any
potential conditional dependencies from a logical perspective.

Answer format: (Please strictly follow the format. Each depen-
dency should be separated by a new line. No explanation is re-
quired.)
Step 𝐼𝐷𝑖 [ sub-problem i ] -> Step 𝐼𝐷 𝑗 [ sub-problem j ]
Step 𝐼𝐷 𝑗 [ sub-problem m ] -> Step 𝐼𝐷𝑛 [ sub-problem n ]
...

B.3 Subtask Reasoning
System Prompt:
Here is a math word problem. I will first provide a passage of the
problem to set the context. Then, I will ask a specific question that
requires you to use the information from the problem description,
along with calculation and reasoning, to solve it.
Passage:
{ passage }
Question:
{question}

I have broken this math question down into several smaller
questions. I will assign you sub-questions one by one, and provide
the results of the previous sub-questions as a reference for your
reasoning. Please solve the question according to mathematical
logic.

For each steps So far, the answers to the resolved sub-questions
are as follows: The format is Sub-question-Id: xxx; Sub-question:

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

xxx; Answer: xxx. Sub-question-Id: [Corresponding ID]; Sub-question:
[Corresponding Step]; Answer: [Corresponding Solution for the
step]
Among them, sub-questions predecessors are directly related to
this sub-question, so please pay special attention to them. The sub-
question to solve now is xxx: {subtask} Based on the information
above, please provide a concise and clear answer

B.4 Final Answer Conclusion
Now that all the sub-questions have been solved, so what is the
final answer? Please give the final answer without any additional
explanation or clarification.

B.5 Model-Eval
Here is a [Problem type] problem with a standard answer and
a student’s solution. Please help me determine if the student’s
solution is correct.
Problem: {question}

Standard answer: {True Answer}
Answer: {Answer concluded by Model}

If the student’s answer is correct, just output True; otherwise,
just output False. No explanation is required.

B.6 ToT Evaluation
Please provide a confidence rating for the accuracy of this solution,
on a scale from 1 to 5. Only output the number.

B.7 SCAN Action Sequence Mapping
Now I have a pseudo action sequence expression with parenthe-
ses and multiplication. I need you to help me convert this into a
sequence of actions without an operator sign.

[Examples of mapping procedure]
The pseudo action sequence to be converted is as follows: sen-

tence Please change it to the action sequences.
Please JUST answer the result.

B.8 Webshop Prompts
Given the special characteristic of Webshop tasks as requiring a
dynamic interaction with the shopping environment, we made a
unique prompting structure for this task.

B.8.1 System Role
. You are an online webshop agent. You are instructed to complete a
shopping process. You have to generate the next step in the process.
Your action should take into account the most current observation
(which is the page you are on) and the previous actions taken. Note:
If no item absolutely meets the requirement, choose the one that
meets most requirements.

There are three types of actions you can output:
1. search[query]: You can search for a product based on the query.

The query is a string that describes the product you are looking for
2. think[thoughts]: You can think about the current state of the

shopping process and decide what to do next.
3. click[button]: You can click on a button on the page to navigate

to another page. Where the button are presented in the observation

that is bracketed by []. If you think a product is the best choice, you
can click on the "Buy Now" button to end the process.

Example of a valid output:
search[noise cancelling cosy cost usb microphone]
think[I want to compare the features of the products]
click[Buy Now]
click[< Prev]
Note Don’t output Action in front of the action. The action should
be in the format of [action][content].

B.8.2 Webshop Task Decomposition
. I have an online shopping request with some constraints and I
need to find the best options, and I have searched for the key words
with some top results. You should help me to decompose the ques-
tion into sub-steps that should be done for the following process.
You will have the tools to help you with the online shopping.

Here is a example of decomposed tasks: Given the information of
the current state 1 Action: reset Observation: WebShop Instruction:
i want a noise cancelling cosycost usb microphone, and price lower
than 60.00 dollars [Search]

Action: search[noise cancelling cosycost usb microphone] Ob-
servation: [Back to Search] Page 1 (Total results: 50) [Next >]
[B0972Q1T8T] Cosycost USBMicrophone, Condenser Computer PC
Gaming Microphone for PS4/5 Laptop Windows Mac OS Android
Phone,Noise Cancelling Instant Mute,Studio Mic for Voice,Music
Recording, Podcasting,Streaming $32.99 [B072L2D6LY] Andrea
Communications NC-255VM USB On-Ear Stereo USB Computer
Headset with Noise-Canceling Microphone, in-Line Volume/Mute
Controls, and Plug $34.59 [B071H84LTJ] Andrea Communications
NC-455VM USB Over-Ear Circumaural Stereo USB Computer Head-
set with Noise-Canceling Microphone, in-Line Volume/Mute Con-
trols, and Plug $49.24

Example of decomposed tasks:
To solve the question, we need to clarify/solve:

1. Click and check item B0972Q1T8T to get more detailed informa-
tion.
2. Click and check item B072L2D6LY to get more detailed informa-
tion.
3. Click and check item B071H84LTJ for more information.
4. Based on the more detailed information, I will compare to see
which one fulfill by request.

Now, the current state is {prompt}
Based on the current process, please decompose it into sub-steps.

Make sure to answer in this format Answer Format: (Please write
each broken-down question on a separate line, starting with a
number.) To solve the question "xxx", we need to clarify/solve:
"1. Click and check xxxx",
"2. Click and check xxxx",
"3. sub-question 3".

B.8.3 ToT Evaluation
. Please evaluate the following shopping process based on these
criteria: 1. Relevance to the original request 2. Efficiency of the
search and decision-making 3. Comparison of multiple options 4.
Attention to product details and customer requirements

Background information: {init prompt} {prompt}
Shopping process: {search action}

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Division-of-Thoughts: Harnessing Hybrid Language Model Synergy for Efficient On-Device LLM Agents Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Rate the overall quality of this shopping process on a scale from
1 to 10, where 10 is the best. Only provide the numerical score as
your answer.

B.8.4 Reasoning
. Here is an example of the shopping process:

[One Manual Written Example]

This is the current instruction:
Instruction: [Shopping Request]

Action: XXX
Observation: XXX
(Here The Action and Observation will be updated dynamically

based on the action generated by LLMs)

13


	Abstract
	1 Introduction
	2 Related Work
	2.1 Emergence and Extension of LLM Reasoning Capabilities.
	2.2 On-device LLM Agent

	3 Preliminaries
	4 Methodology
	4.1 Division-of-Thoughts Framework
	4.2 Decomposing user Query
	4.3 Task scheduling via Dependency Graph
	4.4 Task Allocation with Plug-and-Play LLM Adapter

	5 Experiments
	5.1 Experimental Setup
	5.2 Main Results
	5.3 Efficiency and Quality of Dataset Construction.
	5.4 Ablation Study
	5.5 Trade-off Between Accuracy and Cost.

	6 Conclusion
	References
	A Introdcution of Benchmarks
	A.1 Mathematics
	A.2 Logic
	A.3 Commonsense
	A.4 On-device AI assistant application
	A.5 Implementation Details across Benchmarks

	B Prompts
	B.1 Task Decomposition
	B.2 Dependency Construction
	B.3 Subtask Reasoning
	B.4 Final Answer Conclusion
	B.5 Model-Eval
	B.6 ToT Evaluation
	B.7 SCAN Action Sequence Mapping
	B.8 Webshop Prompts


