
AR-Pro: Counterfactual Explanations for Anomaly
Repair with Formal Properties

Xiayan Ji∗ Anton Xue∗ Eric Wong Oleg Sokolsky Insup Lee
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

{xjiae,antonxue,exwong,sokolsky,lee}@seas.upenn.edu

Abstract

Anomaly detection is widely used for identifying critical errors and suspicious
behaviors, but current methods lack interpretability. We leverage common prop-
erties of existing methods and recent advances in generative models to introduce
counterfactual explanations for anomaly detection. Given an input, we generate
its counterfactual as a diffusion-based repair that shows what a non-anomalous
version should have looked like. A key advantage of this approach is that it enables
a domain-independent formal specification of explainability desiderata, offering a
unified framework for generating and evaluating explanations. We demonstrate the
effectiveness of our anomaly explainability framework, AR-Pro, on vision (MVTec,
VisA) and time-series (SWaT, WADI, HAI) anomaly datasets. The code used for
the experiments is accessible at: https://github.com/xjiae/arpro.

1 Introduction

Anomaly detectors measure how much their inputs deviate from an established norm, where too much
deviation implies an instance that warrants closer inspection [15, 52]. For example, unusual network
traffic may indicate potential malicious attacks that necessitate a review of security logs [16, 30],
irregular sensor readings in civil engineering may suggest structural weaknesses [40, 49, 53], and
atypical financial transactions point to potential fraud [3, 47]. As a benign occurrence, unexpected
anomalies in scientific data can also lead to new insights and discoveries [25, 45].

Although state-of-the-art anomaly detectors are good at catching anomalies, they often rely on
black-box models. This opacity undermines reliability: inexperienced users might over-rely on the
model without understanding its rationale, while experts may not trust model predictions that are not
backed by well-founded explanations. This limitation of common machine learning techniques has
led to growing interest in model explainability [12], particularly in domains such as medicine [50]
and law [14]. We refer to [36, 44] and the references therein for recent surveys on explainability.

While many anomaly detection methods can localize which parts of the input are anomalous, this
may not be a satisfactory explanation, especially when the data is complex. In medicine [20], heart
sound recordings [17] and EEG brain data [5] can differ greatly between individuals; in industrial
manufacturing, it can be hard to understand subtle defects of PCB for inexperienced workers [73].
Thus, even when the location of the anomaly is known, it may be hard to articulate why it is anomalous.
In such cases, it can be helpful to ask the counterfactual question: “What should a non-anomalous
version look like?” For example, a doctor might ask what changes in a patient’s chest X-ray might
improve diagnostic outcomes [58], while a quality assurance engineer may ask what changes would
fix the defect [6].

*Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/xjiae/arpro

Figure 1: Overview of the AR-Pro framework. We first identify an input’s anomalous region and
then use property-guided diffusion to repair it. This repair is the counterfactual anomaly explanation,
where the following properties are defined with respect to a linearly decomposable anomaly detector
(AD). (Overall Improvement) The repair has a lower anomaly score. (Similarity) The repair should
resemble the original. (Localized Improvement) The score over the repaired region should improve.
(Non-degradation) The score over the non-anomalous region should not significantly worsen.

To answer such counterfactual questions, we begin with two observations. First, anomalies are
commonly localized to small regions of the input [13, 38, 73]. Second, recent generative models,
e.g., diffusion [24] models, can be trained to produce high-quality, non-anomalous examples. These
observations motivate us to repair anomalies as a counterfactual explanation. However, simply
generating a repair is not sufficient; we must also ensure its quality. For example, it may be
undesirable for a repair to significantly improve the anomaly score but barely resemble the original
input. Therefore, it is important to measure the quality of repairs using formal properties.

However, formalizing broadly applicable properties is challenging, as different domains (e.g., vision,
time series) and tasks (e.g., manufacturing, security) have unique considerations. To overcome
this, we further observe that many anomaly detectors in practice [4] satisfy a condition that we
call linear decomposability: the overall anomaly score is an aggregation of feature-wise anomaly
scores. Importantly, this is a strong but common condition with which we may formalize the
desiderata of counterfactual explanations. Conveniently, many of these desiderata are, in fact, domain-
independent. We leverage these conditions to formalize a general, domain-independent framework
for counterfactual anomaly explanation: we use a generative model to produce a repair and then
evaluate this repair with respect to the detector model.

We present an overview of our anomaly explainability framework, AR-Pro, in Figure 1. While
anomaly repair [21, 31, 70] and counterfactual explanations [56] have been explored in the literature,
we are the first to study this in a unified context. We summarize our contributions as follows:

• We observe that many anomaly detectors satisfy linear decomposability and use this condition to
define general, domain-independent properties for counterfactual explanations. This approach
lets us measure explanation quality with respect to the anomaly detector, as shown in Figure 1.

• We use these properties to guide diffusion models towards a high-quality repair of the anomalous
input. Such a repair serves as the counterfactual explanation of the anomaly.

• Our framework, AR-Pro, can produce semantically meaningful repairs that outperform off-the-
shelf diffusion models with respect to our explainability criteria. Our vision anomaly benchmarks
include MVTec [13] and VisA [73]. Our time-series anomaly benchmarks include SWaT [38],
HAI [54], and WADI [2].

2 Overview and Formal Properties

In Section 2.1, we first observe that many anomaly detector paradigms are linearly decomposable. In-
tuitively, this condition means that the overall anomaly score is an aggregation of feature-wise anomaly
scores. Next, we use linear decomposability in Section 2.2 to formalize general, domain-independent
properties of counterfactual explanations. We will use the terms counterfactual, explanation, and
repair interchangeably throughout this paper.

2

Figure 2: Reconstruction-based anomaly detection exemplifies linear decomposition. The anomalous
input x ∈ Rn is first reconstructed into x̂ ∈ Rn, and the feature-wise anomaly scores are given by
αi(x) = |x̂i − xi|2 ∈ Rn for i = 1, . . . , n. Then, the standard ℓ2 reconstruction-based anomaly
score is a linear combination of the feature scores: s(x) = α1(x) + · · ·+ αn(x).

2.1 Common Anomaly Detectors are Linearly Decomposable

Many anomaly detection techniques use a scoring function s : Rn → R to measure the anomalousness
an input x ∈ Rn, where s(x) is called the anomaly score of x. This is commonly done in a two-
stage process: the feature-wise anomaly scores α1(x), . . . , αn(x) ∈ R are first computed and then
aggregated [15]. We observe that this aggregation often satisfies the following form:

Definition 2.1 (Linear Decomposition). The feature-wise anomaly scores α : Rn → Rn and
regularizer β : Rn → R linearly decomposes the anomaly score s : Rn → R if for all x ∈ Rn:

s(x) = α1(x) + · · ·+ αn(x) + β(x).

While linear decomposability appears to be a strong assumption, it is common in practice. We show a
number of examples below, where we also flexibly refer to α : Rn → Rn as the feature scores.

Example 2.2. In reconstruction-based anomaly detection [8, 29], the input x is passed through an
encoder-decoder architecture to generate a reconstruction x̂. The motivation is that it should be
harder to reconstruct out-of-distribution (anomalous) inputs. Empirically, it is observed that if x is
anomalous, then x̂ will have a large reconstruction error when feature i is in the anomalous region,
e.g., a pixel in the defect area of a manufacturing artifact image. A typical example of such an
anomaly score is:

s(x) = |x̂1 − x1|2 + · · ·+ |x̂n − xn|2,

which is also known as the ℓ2 reconstruction error. This lets us define the feature-wise anomaly scores
by αi(x) = |x̂i − xi|2, and we illustrate this example in Figure 2.

Example 2.3. In maximum likelihood-based anomaly detection [15], one measures the likelihood
of a test input x with respect to a set of non-anomalous training examples. Intuitively, an out-of-
distribution (anomalous) x should be unlikely with respect to the non-anomalous training examples
and will thus have a lower likelihood. In variants such as normalizing flow-based anomaly detection
for images [66], it is common to define a joint probability distribution over all the features:

s(x) = −
[
log p1(x) + · · ·+ log pn(x) + log|det J(x)|

]
,

where p1(x), . . . , pn(x) are the probabilities of each feature that lets us define αi(x) = − log pi(x),
while the change-of-variable Jacobian log|det J(x)| may be viewed as a regularization term.

Example 2.4. In language modeling [61], it is common to measure the anomaly of a token sequence
based on the likelihood of each token [7]. Although similar to the vision case, the standard formulation
for language models is different: given a token sequence x1, . . . , xn ∈ {1, . . . , vocab_size}, its
measure of unlikeliness (anomalousness) may be defined as:

s(x) = − 1

n

[
log p(x1) + log p(x2|x1) + log p(x3|x1, x2) + · · ·+ log p(xn|x1, . . . , xn−1)

]
,

where p is a probabilistic generative model, and so αi(x) = −(1/n) log p(xi|x1, . . . , xi−1). This is
also known as a preplexity measure, which has been used to detect jailbreaks against LLMs [64].

Beyond the above examples, anomaly detectors for time-series data [29, 60, 63] and text [35] also
commonly use this convention. We further remark that the feature-wise anomaly scores α are related
to feature attribution scores in explainability literature [33, 51, 55].

3

2.2 Formal Properties for Counterfactual Explanations

We now present the formal properties of counterfactual explanations. We will assume a given anomaly
score function s that is linearly decomposed by the feature-wise score function α and regularizer β.
Given some input x, it is common to convert α(x) ∈ Rn into a binary-valued vector ω(x) ∈ {0, 1}n
to classify which input feature is anomalous, and this is commonly done by a threshold:

ω(x) = (α1(x) ≥ τ1, . . . , αn(x) ≥ τn), for some feature-wise threshold τ ∈ Rn.

A binarization of the feature-wise scores suggests the need for region-specific anomaly scores, which
we implement with the following indexing scheme on s(x):

sz(x) = β(x) +
∑

i:zi=1

αi(x), for all z ∈ {0, 1}n.

Then, the anomalous and non-anomalous regions have scores sω(x)(x) and sω(x)(x), respectively,
where ω(x) = 1−ω(x) denotes non-anomalous region. We next enumerate some common desiderata
of counterfactual explanations, where we will refer to the anomalous input as xbad and the repaired
version as xfix.

Property 1 (Overall Improvement): The anomaly score should improve. Because a “repaired”
version should fix the anomaly by definition, one would reasonably expect that:

s(xfix) < s(xbad). (P1)

Property 2 (Similarity): The repair should resemble the original. When s is generated by a
complex machine-learning model, it may be the case that it has a value xfix where s(xfix) ≪ s(xbad),
but xfix and xbad bear little resemblance. In the case of vision models, xfix may even resemble static
noise. Such extreme dissimilarities between xfix and xbad are not desirable because a user cannot be
expected to feasibly interpret this information. Thus, we desire a similarity condition as:

ω(xbad)⊙ xbad ≈ ω(xbad)⊙ xfix, (P2)

where ⊙ denotes element-wise vector multiplication. This similarity condition states that the non-
anomalous regions of the original and the repair, as given by ω(xbad), should remain similar.

Property 3 (Localized Improvement): The anomalous region should improve. However, P1
and P2 are not sufficient. For example, one might have s(xfix) < s(xbad), but have a higher score on
the anomalous region ω(xbad). This is not desirable because it means that xfix has not actually fixed
the anomalous region of xbad. To ensure progress, we would like:

sω(xbad)(xfix) < sω(xbad)(xbad). (P3)

Property 4 (Non-degradation): The non-anomalous region should not significantly worsen.
Even when the above properties are satisfied, it is possible that the proposed repair could inadvertently
increase the anomaly score on the non-anomalous region ω(xbad). This would mean repairing the
anomalous region at the cost of corrupting the non-anomalous parts. We thus state the property
against this as follows, where δ4 > 0 is a given tolerance threshold:

sω(xbad)(xfix) ≤ sω(xbad)(xbad) + δ4. (P4)

The benefit of our above formulation is that it encapsulates general, domain-independent desiderata of
anomaly repairs. Importantly, this is achieved under the mild assumption of a linearly decomposable
anomaly detector. We comment that some overlap among our proposed formal properties may arise
in certain scenarios, and alternative sets could be more tailored for specific applications. Our goal,
however, is to provide a foundational set of properties that ensures broad applicability, allowing
further customization to suit individual application needs.

3 Property-guided Generation of Counterfactual Explanations

We now outline the process of conducting a property-guided repair for an anomalous input. In
Section 3.1, we first introduce the generalized setup, where we define the four previously outlined
properties as objective functions and frame the problem using risk-constrained optimization. Although
this formulation clarifies the objectives, it is generally intractable. Therefore, in Section 3.2, we
propose a diffusion-based algorithm to approximate the solution and achieve high-quality repairs.

4

Figure 3: We run property-guided diffusion with masked in-filling.

3.1 A Generalized Formulation with Properties as Loss Functions

We first present a generalized setup for generating repairs. We conceptualize this in terms of a
repair model Rs,ω parametrized by an anomaly score function s : Rn → R with known linear
decompositions α, β and a feature-wise binarization ω. To generate a repair, we sample the model:

xfix ∼ Rs,ω(xbad),

where a probabilistic formulation is relevant in the context of variational auto-encoders [27] or
diffusion models [24]. However, it is important that xfix obeys the formal properties as outlined in
Section 2.2. To do this, we cast these properties as loss functions listed below:

L1 = s(xfix) (P1 loss)
L2 = ∥ω(xbad)⊙ (xfix − xbad)∥2 (P2 loss)

L3 = max
{
0, sω(xbad)(xfix)− sω(xbad)(xbad)

}
(P3 loss)

L4 = max
{
0, sω(xbad)(xfix)− sω(xbad)(xbad)− δ4

}
(P4 loss)

Our rationale is as follows. First, because the primary objective of anomaly repair is to reduce the
anomaly score, we set L1 as simply the score of xfix. Second, we would like to ensure that xfix and
xbad are similar in the non-anomalous region, and so formulate L2 as the ℓ2 distance between xfix and
xbad over ω(xbad). Third, we formulate L3 to apply a penalty when the anomalous region degrades
in performance. Fourth, we allow for a degradation of score in the non-anomalous region ω(xbad), up
to some tolerance threshold δ4. We cast these as a risk-constrained optimization problem as follows:

minimize
θ

E
xfix∼Rs,ω(xbad;θ)

s(xfix)

subject to P
xfix∼Rs,ω(xbad;θ)

[
L2 ≤ δ2, L3 ≤ 0, L4 ≤ 0

]
≥ 1− δ

(1)

where θ is a parameter of the repair model, δ2 > 0 is a given threshold for L2 and δ > 0 is a
given failure probability for the violation of at least one of (P2), (P3), or (P4). We acknowledge that
multiple formulations for property-based losses are valid; however, the chosen approach is optimally
suited to our context.

3.2 Formal Property-guided Diffusion

We adopt techniques from guided diffusion [19] to generate repairs xfix. We first give a brief overview
of a standard diffusion process and then adapt it to perform property-guided generation. We refer
to [62] for a comprehensive guide on diffusion but attempt to make the exposition self-contained.

Background. A basic variant of diffusion models takes the form:

p(xt−1|xt) = N (µθ(xt, t), b
2
t I), for t = T, . . . , 1, (2)

where µθ is the denoising model with parameters θ, and b1 < · · · < bT is the variance schedule. When
µθ is trained on non-anomalous data (see [62] for training details), one can generate non-anomalous
samples of the training distribution by running the following iterative process:

xT ∼ N (0, I), xt−1 = µθ(xt, t) + btzt, zt ∼ N (0, I), for t = T, . . . , 1, (3)

where xT is the initial noise and x0 is the output sample. The idea is to repeatedly remove noise
from a Gaussian xT using µθ until the final x0 resembles a high-resolution image without defects,
for instance. The iterations (3) is also known as backward process.

Property-guided Diffusion. We next show how to adapt the denoising iterations (3) to produce
repairs. We use two main ideas: first, we use guidance [19] to slightly nudge the iterates xt−1 of (3)

5

at every step using a property-based loss, to encourage that the final iterate x0, which we take to be
xfix, is more amenable to our properties. Second, we used masked-infilling [39] to ensure that the
non-anomalous region ω(xbad) is generally preserved by the iterates. We implement this modified
iteration as follows: beginning from the initial noise xfix,T ∼ N (0, I), let:

x̂fix,t−1 = µθ(xfix,t, t) + btzt︸ ︷︷ ︸
Denoising step

− ηt∇L(xfix,t)︸ ︷︷ ︸
Guidance term

, zt ∼ N (0, I), (4)

xbad,t =
√
atxbad +

√
1− atϵt, ϵt ∼ N (0, I), (5)

xfix,t−1 = ω(xbad)⊙ xbad,t + ω(xbad)⊙ x̂fix,t−1, (6)

for t = T, . . . , 1, where at =
∏t

i=1(1 − bi) and η1 < · · · < ηT is the guidance schedule. The
property-based loss is given by:

L(xfix,t) = λ1L1 + λ2L2 + λ3L3 + λ4L4, (7)

with L1, L2, L3, L4 as in Section 3.1 and weights λ1, λ2, λ3, λ4 > 0. In the above, (4) first generates
x̂fix,t−1 from xfix,t by combining a standard denoising step with a guidance term. Then, (6) combines
x̂fix,t−1 with x̂bad,t, from (5), in a masked-infilling operation [39] to yield xfix,t−1. This masked
in-filling ensures similarity between xbad and xfix (i.e., xfix,0) over the non-anomalous region ω(xbad).

We emphasize that the diffusion iterations given by (4), (5), (6), and do not guarantee the satisfaction
of our formal properties. Rather, these iterations tend toward an output that better respects these
properties — as we later shown in our experiments. In particular, our property-based losses define a
way to evaluate the quality to which each property is satisfied or violated.

4 Experiments

Our experiments evaluate the performance of AR-Pro across vision and time-series datasets. In
particular, we aim to address the following research questions:

• (RQ1) Empirical Validation: How well does AR-Pro repair anomalies for different domains? In
particular, we investigate how well the four properties are satisfied when the diffusion process is
guided or unguided, as in the baseline.

• (RQ2) Ablation Study: How do the different hyper-parameters affect the repair quality? We
focus on the weights λ1, λ2, λ3, λ4 for the four property-based losses.

Vision Anomaly Models and Datasets. For anomaly detectors, we used the anomalib [4] implemen-
tation of Fastflow [66] (with ResNet-50-2 backbone [68]) and Efficient-AD [11]. For datasets, we
used the VisA [73] and MVTec-AD [13] datasets. VisA and MVTec-AD involve anomaly detection
in the context of industrial manufacturing, where VisA consists of 12 image classes, and MVTec-AD
consists of 15 image classes. Both FastFlow and Efficient-AD were trained with AdamW and a
learning rate of 10−4 until convergence.

Time-series Anomaly Datasets and Models. For anomaly detectors, we used the GPT-2 [48] and
Llama2 [59] architectures for time-series anomaly detection. In particular, we use only the first 6
layers of GPT-2 and the first 4 layers of Llama-2 (with an embedding dimension of 1024) to accelerate
training. For datasets, we used the SWaT (51 features) [38], HAI (86 features) [54], and WADI (127
features) [2] datasets, split into sliding windows of size 100. Both our versions of GPT-2 and Llama-2
were trained with AdamW and a learning rate of 10−5 until convergence.

Diffusion-based Repair Models. We used the HuggingFace implementation of DDPM [24] for vision
data and Diffusion-TS [67] for time-series data. Both models were trained on the non-anomalous
instances of their respective datasets using AdamW and a learning rate of 10−4 until convergence.

Evaluation Metrics. We use the four property-based loss functions defined in Section 3.1 as our
evaluation metrics. In particular, we measure the improvement of property-guided diffusion over
un-guided diffusion. We adapt these metrics below, where we write ω to mean ω(xbad) for brevity:

• Property 1 (Overall Improvement): Ms ≡ s(xfix).
• Property 2 (Similarity): Md ≡ ∥ω ⊙ (xfix − xbad)∥2
• Property 3 (Localized Improvement): Mω ≡ sω(xfix)− sω(xbad)

• Property 4 (Non-degradation): Mω ≡ sω(xfix)− sω(xbad)

6

Dataset Class Ms(↓) Md(↓) Mω(↓) Mω(↓)
Baseline Guided Baseline Guided Baseline Guided Baseline Guided

VisA

candle -23.39 ± 1.23 -26.43 ± 0.14 336.06 ± 44.41 8.34 ± 0.06 -0.003 ± 0.002 -0.007 ± 0.001 0.05 ± 0.01 -0.02 ± 0.004
capsules 12.45 ± 30.02 -17.86 ± 0.20 426.69 ± 45.30 8.41 ± 0.01 0.009 ± 0.003 -0.005 ± 0.001 0.15 ± 0.02 -0.01 ± 0.002
cashew -16.08 ± 0.85 -17.13 ± 0.33 307.39 ± 63.72 8.40 ± 0.01 -0.002 ± 0.004 -0.005 ± 0.001 0.06 ± 0.03 -0.00 ± 0.002
chewinggum -14.56 ± 0.89 -15.70 ± 0.14 258.32 ± 53.66 8.41 ± 0.01 -0.007 ± 0.003 -0.009 ± 0.003 0.02 ± 0.02 -0.01 ± 0.002
fryum -13.54 ± 3.02 -18.93 ± 0.42 349.18 ± 32.39 8.36 ± 0.01 0.003 ± 0.005 -0.007 ± 0.001 0.12 ± 0.04 -0.01 ± 0.003
macaroni1 199.95 ± 145.07 -25.63 ± 0.25 658.18 ± 81.65 8.41 ± 0.01 0.012 ± 0.002 -0.005 ± 0.001 0.18 ± 0.02 -0.01 ± 0.004
macaroni2 -15.61 ± 11.75 -25.18 ± 0.17 550.91 ± 55.19 8.41 ± 0.01 0.004 ± 0.003 -0.004 ± 0.001 0.11 ± 0.02 -0.01 ± 0.002
pcb1 -23.49 ± 0.49 -25.04 ± 1.08 325.54 ± 50.82 8.38 ± 0.01 -0.005 ± 0.006 -0.006 ± 0.003 0.05 ± 0.02 -0.01 ± 0.004
pcb2 -18.20 ± 0.67 -19.15 ± 0.12 289.54 ± 48.32 8.41 ± 0.01 -0.005 ± 0.003 -0.005 ± 0.001 0.03 ± 0.02 -0.01 ± 0.002
pcb3 -19.87 ± 4.29 -24.19 ± 0.15 291.16 ± 50.72 8.41 ± 0.01 -0.003 ± 0.004 -0.005 ± 0.002 0.05 ± 0.04 -0.01 ± 0.002
pcb4 2.51 ± 23.68 -20.24 ± 0.09 337.12 ± 75.48 8.41 ± 0.01 0.000 ± 0.004 -0.005 ± 0.001 0.12 ± 0.05 -0.01 ± 0.003
pipefryum -15.08 ± 3.83 -19.80 ± 0.22 252.68 ± 78.99 8.41 ± 0.01 -0.002 ± 0.006 -0.008 ± 0.001 0.09 ± 0.05 -0.02 ± 0.005

∆(↑) +26.54% +97.46% +146.42% +114.16%

MVTec-AD

bottle -13.67 ± 0.03 -13.16 ± 1.42 252.11 ± 41.14 8.70 ± 1.76 -0.016 ± 0.001 -0.012 ± 0.001 -0.05 ± 0.01 -0.05 ± 0.003
cable -12.56 ± 0.13 -13.18 ± 0.17 206.08 ± 80.64 5.03 ± 1.94 -0.006 ± 0.003 -0.007 ± 0.003 0.02 ± 0.01 -0.01 ± 0.005
capsule -13.73 ± 0.35 -15.21 ± 0.31 105.41 ± 48.80 5.07 ± 2.23 -0.004 ± 0.003 -0.006 ± 0.002 0.04 ± 0.01 -0.01 ± 0.006
carpet -18.93 ± 0.35 -19.47 ± 0.70 201.02 ± 82.18 4.98 ± 2.04 -0.014 ± 0.005 -0.014 ± 0.005 0.00 ± 0.02 -0.01 ± 0.010
grid 40.78 ± 115.98 -13.73 ± 0.11 556.52 ± 65.32 10.01 ± 0.85 0.010 ± 0.002 -0.010 ± 0.002 0.17 ± 0.02 -0.02 ± 0.004
hazelnut -10.34 ± 0.23 -12.94 ± 0.21 127.33 ± 52.05 5.07 ± 1.98 -0.003 ± 0.004 -0.011 ± 0.004 0.09 ± 0.01 -0.02 ± 0.005
leather -12.81 ± 0.14 -13.85 ± 0.08 484.22 ± 75.46 10.01 ± 1.30 -0.013 ± 0.002 -0.014 ± 0.002 0.02 ± 0.01 -0.02 ± 0.005
metal nut -8.94 ± 0.34 -11.05 ± 0.33 214.22 ± 104.32 5.71 ± 2.74 -0.001 ± 0.004 -0.007 ± 0.002 0.07 ± 0.02 -0.02 ± 0.003
pill -10.90 ± 0.08 -11.81 ± 0.17 242.05 ± 20.04 10.88 ± 0.79 -0.006 ± 0.001 -0.007 ± 0.001 0.01 ± 0.01 -0.02 ± 0.001
screw -11.28 ± 0.28 -13.10 ± 0.07 432.16 ± 66.10 10.16 ± 1.49 -0.001 ± 0.001 -0.006 ± 0.001 0.05 ± 0.01 -0.02 ± 0.002
tile -11.25 ± 0.44 -12.18 ± 0.57 425.23 ± 44.84 9.91 ± 1.03 -0.012 ± 0.002 -0.015 ± 0.004 0.04 ± 0.01 -0.03 ± 0.006
toothbrush -6.43 ± 0.10 -8.33 ± 0.05 151.76 ± 25.94 9.27 ± 1.77 -0.002 ± 0.002 -0.009 ± 0.002 0.05 ± 0.00 -0.03 ± 0.003
transistor -12.15 ± 0.18 -12.64 ± 5.51 278.70 ± 69.53 7.27 ± 1.83 -0.007 ± 0.002 -0.007 ± 0.001 0.02 ± 0.01 -0.01 ± 0.002
wood -9.65 ± 2.29 -13.54 ± 0.26 344.91 ± 67.58 10.17 ± 1.75 -0.013 ± 0.003 -0.019 ± 0.001 0.03 ± 0.02 -0.02 ± 0.005
zipper -12.62 ± 0.19 -13.24 ± 0.05 314.25 ± 34.11 10.10 ± 1.27 -0.009 ± 0.001 -0.009 ± 0.001 -0.00 ± 0.00 -0.03 ± 0.002

∆(↑) +8.35% +97.34% +29.15% +154.76%

Table 1: AR-Pro outperforms a non-guided diffusion baseline across our four metrics. We show the
results for all VisA and MVTec-AD categories, where ∆ is the median percentage improvement.

Each experiment employs a representative anomaly detector and dataset with predefined train-test
splits. The performance of the anomaly detectors is detailed in Appendix B. For ω, each feature-wise
threshold τi is taken to be the 90% quantile of the training set’s feature-wise anomaly scores.

4.1 (RQ1) Empirical Validation

We now evaluate the performance of AR-Pro for generating anomaly repairs with respect to the four
evaluation metrics. We report the mean and standard deviation values. Because there may be a large
range of values across classes, we report the median improvement (∆) of the guided generation over
the baseline. We present results for the FastFlow anomaly detector on the VisA and MVTec dataset
in Table 1, and refer to Appendix C for additional results with Efficient-AD.

Quantitative Results. For all the categories, the guided results show significant improvement over
the baseline on the formal criteria, with an average improvement of 84.27%. There is a wide range
of Ms values for baseline models in certain classes, possibly due to deviations in the color scheme
of the generated images from their training distribution. Hence, we report the median improvement
across the classes in the last row to mitigate the impact of outliers.

We show results for time-series data in Table 2. AR-Pro achieves lower error on Md,Mω, and Mω,
with an overall improvement of 60.03% over the baseline. Specifically, Llama-2 achieves an average
improvement of 67.17% in formal metrics, while GPT-2 increases by 53.90% on average. Compared
to image data, the performance on Md is not as competitive and exhibits considerable variability,
likely due to the broader range of adjustments required for repairs to ensure smooth signals.

In addition, we evaluate whether the guided repairs generate non-anomalous samples by comparing
them against a conformity threshold with 95% confidence derived from the training set [9]. Treating
the non-anomalous class as the negative, we report the True Negative Rate (TNR) in Table 3. The
TNR of most VisA and MVTec-AD categories reaches 100%, surpassing the majority of baseline
values. As a result, the guided repair achieves a median TNR of 100% for both VisA and MVTec,
representing an average improvement of 2.50% over the baseline. Across the three time-series datasets
(SWaT, HAI, and WADI), the guided repair obtains an average TNR of 95.33%, which is 92.66%
higher than the baseline average of 2.67%. Overall, 99.26% of guided repairs across both domains
are classified as non-anomalous with 95% confidence, statistically confirming the effectiveness of
AR-Pro.

Qualitative Results. We present qualitative examples here to illustrate that our method can generate
semantically meaningful repairs, as shown in Figure 4 for VisA and Figure 5 for MVTec-AD. For

7

Model Dataset Ms(↓) Md(↓) Mω(↓) Mω(↓)
Baseline Guided Baseline Guided Baseline Guided Baseline Guided

Llama2

SWaT 0.83 ± 0.05 0.59 ± 0.04 3.05 ± 0.61 7.25 ± 2.50 0.084 ± 0.026 -0.026 ± 0.008 0.19 ± 0.02 0.05 ± 0.012
WADI 0.97 ± 0.00 0.26 ± 0.01 0.98 ± 0.01 0.00 ± 0.00 0.087 ± 0.005 0.000 ± 0.000 0.61 ± 0.01 0.00 ± 0.000
HAI 0.92 ± 0.00 0.58 ± 0.01 0.75 ± 0.00 0.00 ± 0.00 0.166 ± 0.008 0.000 ± 0.000 0.18 ± 0.01 0.00 ± 0.000

∆(↑) +46.36% +20.77% +110.32% +91.23%

GPT-2

SWaT 0.68 ± 0.06 0.57 ± 0.05 12.81 ± 15.82 16.28 ± 16.30 -0.029 ± 0.041 -0.094 ± 0.038 0.13 ± 0.04 0.09 ± 0.031
WADI 0.71 ± 0.04 0.32 ± 0.00 34.45 ± 0.60 42.15 ± 0.94 0.018 ± 0.003 -0.019 ± 0.002 0.43 ± 0.04 0.07 ± 0.002
HAI 0.92 ± 0.02 0.61 ± 0.11 3.69 ± 9.72 5.67 ± 18.80 0.136 ± 0.050 -0.005 ± 0.018 0.21 ± 0.03 0.04 ± 0.127

∆(↑) +34.93% -34.37% +177.79% +37.24%

Table 2: Comparison of baseline and guided performance across four metrics for SWaT, WADI, and
HAI dataset categories with Llama2 and GPT2 model. ∆ is the median improvement percentage of
the guided result from baseline.

Dataset Category Baseline TNR (↑) Guided TNR (↑) Category Baseline TNR (↑) Guided TNR (↑)

VisA

Candle 1.00 1.00 Fryum 0.66 1.00
Capsules 0.00 1.00 Pipe Fryum 1.00 1.00
Cashew 1.00 1.00 PCB 1 1.00 0.96

Chewinggum 1.00 1.00 PCB 2 1.00 1.00
Macaroni 1 0.11 1.00 PCB 3 0.90 1.00
Macaroni 2 0.52 1.00 PCB 4 0.18 1.00

MVTec-AD

Bottle 1.00 1.00 Grid 0.00 1.00
Cable 1.00 1.00 Hazelnut 1.00 1.00

Capsule 1.00 1.00 Leather 1.00 1.00
Carpet 1.00 1.00 Metal Nut 1.00 1.00

Pill 1.00 1.00 Screw 1.00 1.00
Tile 1.00 1.00 Toothbrush 1.00 0.96

Transistor 0.56 1.00 Wood 1.00 1.00
Zipper 1.00 1.00

Overvall
VisA 0.95 1.00 MVTec-AD 1.00 1.00

Median
SWaT 0.08 0.86 HAI 0.00 1.00
WADI 0.00 1.00

Table 3: True Negative Rate (TNR) for categories in the vision (VisA, MVTec) and time-series
(SWaT, HAI, and WADI) anomaly detection datasets.

example in Figure 4, we observe that for categories PCB 1, PCB 2, PCB 3, and PCB 4, the baseline
fails to rigorously repair the anomaly: the orientation of the board is reversed for PCB 1; unintended
white marks appear on the lower left of PCB 2; the dark lines in the potentiometer change for PCB
3; and the “FC-75” label is missing for PCB 4. However, by integrating formal property guidance,
our approach accurately reconstructs all these details while effectively removing the anomalies. For
the MVTec-AD examples, AR-Pro produces repairs that more closely resemble the original inputs
compared to those generated by the baseline. This demonstrates that our method’s generated repairs
adhere more rigorously to the formal properties.

In Figure 6, we present examples from our time-series repair, where the anomalous time segment is
shaded in red. Our results demonstrate that AR-Pro generates a signal that resembles the original
signal better, as shown in the first two plots of Figure 6. In addition, we recover the sensor time series
to non-anomalous values when the baseline fails to repair the anomaly, as shown in the last two plots
of Figure 6.

More repair examples are available in Appendix D. However, although the quality of the generated
repairs has improved, we notice that this enhancement comes with a trade-off of increased inference
time. Further details can be found in Appendix E.

4.2 (RQ2) Ablation Study

We randomly sampled 100 instances to compute the mean of each metric in order to evaluate the
effect of hyper-parameters λ1, λ2, λ3, λ4 associated with each property-based loss. Each line in the
plots represents results obtained while keeping the other hyper-parameters at 1.0. The ablation results
for the time series are presented in Figure 7, with additional plots in Appendix F.

8

Figure 4: The original input and ground truth anomaly mask are displayed in the first two columns.
The baseline method fails to preserve close similarity to the input PCB boards, as highlighted in the
third column. Guided vision repair examples in the fourth column address these deficiencies.

Figure 5: MVTec repairs with AR-Pro; better resemble the original compared to the baseline.

Our observations indicate that variations in the scale of property hyperparameters do not significantly
impact the formal metrics, as the range of change remains relatively small. In addition, no consistent
trends were observed when varying the λ1, λ2, λ3, λ4 hyper-parameters. This suggests that our
framework demonstrates robust performance, and extensive tuning may be unnecessary.

5 Related Work

Numerous techniques have been developed for anomaly detection across various domains [3, 49].
Traditional approaches to anomaly detection include clustering [43, 57] and statistical methods [34]
such as ARIMA [41] and Gaussian models [52]. However, these methods often struggle with
high-dimensional data. More recently, deep learning-based anomaly detection [20, 28], including au-
toencoders [27] and GANs [18], can detect high-dimensional anomalies via reconstruction error. For
time-series data, LSTMs [32] and transformer-based models [60, 63, 69, 72] have shown exceptional
performance. Additionally, diffusion models are emerging as promising tools for visual anomaly
detection [42, 71]. While these methods vary in strengths and are continually improving, explaining

9

Figure 6: Original input is the blue line, property guided fix is the green line, and the baseline is the
red line. The first image shows that the baseline generates a spurious signal when there is no anomaly.
The second image shows that the baseline repairs the anomaly, but not as effectively as with guidance.
The last two images show instances where the baseline fails to repair the anomaly.

(a) Ms (b) Md (c) Mω (d) Mω

Figure 7: Varying the hyper-parameters does significantly change Ms, Md,Mω , and Mω .

anomalies remains a challenge [10]. Most current methods rely on feature importance scores or
visualizations [44], such as gradients or reconstructions [46], which often fail to provide actionable
insights. The lack of formal frameworks [65] and consistent evaluation metrics [1] complicates
this issue. For example, the absence of formal metrics leads to inconsistencies in evaluation [26],
underscoring the need for more rigorous approaches and reliable criteria [37]. Most similar to our
work is [56], which also performs time series-specific generation of counterfactual explanations in
the form of anomaly repairs but considers a different set of properties and does not use diffusion.
Our work also focuses on generative modeling to produce counterfactual explanations in the form of
anomaly repairs. For vision, the current leading paradigms are diffusion models [24] and generative
adversarial networks [23]. Diffusion models are also applicable to time-series data [67], and we refer
to [22] for a survey on other techniques.

6 Discussion

The main theoretical contribution of our work is the identification of common counterfactual ex-
planation desiderata for linearly decomposable anomaly detectors. While we have identified four
formal properties, we acknowledge that other valid ones may also exist. Moreover, we recommend
that practitioners evaluate and choose the properties necessary for the particular problem, and this is
made possible by the form of our diffusion guidance function in (7). The quality of anomaly repairs
depends on the performance of the anomaly detector and the generative model. While there may
have been limitations in our efforts, we found it challenging to use variational auto-encoders [27] for
generating high-quality repairs. Furthermore, our implementation is focused on diffusion models, but
the ideas presented can also be extended to other generative techniques.

7 Conclusion

We present AR-Pro, a framework for generating and evaluating counterfactual explanations in
anomaly detection. We use the fact that common anomaly detectors are linearly decomposable,
which lets us define formal, general, domain-independent properties for explainability. Using these
properties, we show how to generate high-quality counterfactuals using a property-guided diffusion
setup. We demonstrate the effectiveness of AR-Pro on vision and time-series datasets and showcase
our improvement over off-the-shelf diffusion models.

Acknowledgement This work was supported in part by ARO MURI W911NF2010080, NSF-
2125561, and NSF-2143274.

10

References
[1] C. Agarwal, S. Krishna, E. Saxena, M. Pawelczyk, N. Johnson, I. Puri, M. Zitnik, and

H. Lakkaraju. Openxai: Towards a transparent evaluation of model explanations. Advances in
Neural Information Processing Systems, 35:15784–15799, 2022.

[2] C. M. Ahmed, V. R. Palleti, and A. P. Mathur. Wadi: a water distribution testbed for research in
the design of secure cyber physical systems. In Proceedings of the 3rd international workshop
on cyber-physical systems for smart water networks, pages 25–28, 2017.

[3] M. Ahmed, A. N. Mahmood, and M. R. Islam. A survey of anomaly detection techniques in
financial domain. Future Generation Computer Systems, 55:278–288, 2016.

[4] S. Akcay, D. Ameln, A. Vaidya, B. Lakshmanan, N. Ahuja, and U. Genc. Anomalib: A deep
learning library for anomaly detection. In 2022 IEEE International Conference on Image
Processing (ICIP), pages 1706–1710. IEEE, 2022.

[5] N. Alahmadi, S. A. Evdokimov, Y. Kropotov, A. M. Müller, and L. Jäncke. Different resting state
eeg features in children from switzerland and saudi arabia. Frontiers in human neuroscience,
10:559, 2016.

[6] A. L. Alfeo and M. G. Cimino. Counterfactual-based feature importance for explainable
regression of manufacturing production quality measure. In ICPRAM, pages 48–56, 2024.

[7] G. Alon and M. Kamfonas. Detecting language model attacks with perplexity. arXiv preprint
arXiv:2308.14132, 2023.

[8] J. An and S. Cho. Variational autoencoder based anomaly detection using reconstruction
probability. Special lecture on IE, 2(1):1–18, 2015.

[9] A. N. Angelopoulos and S. Bates. A gentle introduction to conformal prediction and distribution-
free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

[10] L. Antwarg, R. M. Miller, B. Shapira, and L. Rokach. Explaining anomalies detected by
autoencoders using shapley additive explanations. Expert systems with applications, 186:115736,
2021.

[11] K. Batzner, L. Heckler, and R. König. Efficientad: Accurate visual anomaly detection at
millisecond-level latencies. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 128–138, 2024.

[12] V. Belle and I. Papantonis. Principles and practice of explainable machine learning. Frontiers
in big Data, 4:688969, 2021.

[13] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger. Mvtec ad–a comprehensive real-world
dataset for unsupervised anomaly detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9592–9600, 2019.

[14] A. Bibal, M. Lognoul, A. De Streel, and B. Frénay. Legal requirements on explainability in
machine learning. Artificial Intelligence and Law, 29:149–169, 2021.

[15] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM computing
surveys (CSUR), 41(3):1–58, 2009.

[16] Z. Chen, G. Xu, V. Mahalingam, L. Ge, J. Nguyen, W. Yu, and C. Lu. A cloud computing based
network monitoring and threat detection system for critical infrastructures. Big Data Research,
3:10–23, 2016.

[17] G. D. Clifford, C. Liu, B. Moody, D. Springer, I. Silva, Q. Li, and R. G. Mark. Classification of
normal/abnormal heart sound recordings: The physionet/computing in cardiology challenge
2016. In 2016 Computing in cardiology conference (CinC), pages 609–612. IEEE, 2016.

[18] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath. Gen-
erative adversarial networks: An overview. IEEE signal processing magazine, 35(1):53–65,
2018.

11

[19] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

[20] T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes. Deep learning for medical
anomaly detection–a survey. ACM Computing Surveys (CSUR), 54(7):1–37, 2021.

[21] A. Filos, P. Tigkas, R. McAllister, N. Rhinehart, S. Levine, and Y. Gal. Can autonomous
vehicles identify, recover from, and adapt to distribution shifts? In International Conference on
Machine Learning, pages 3145–3153. PMLR, 2020.

[22] F. Gatta, F. Giampaolo, E. Prezioso, G. Mei, S. Cuomo, and F. Piccialli. Neural networks
generative models for time series. Journal of King Saud University-Computer and Information
Sciences, 34(10):7920–7939, 2022.

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144,
2020.

[24] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[25] A. Høst-Madsen, E. Sabeti, and C. Walton. Data discovery and anomaly detection using
atypicality: Theory. IEEE Transactions on Information Theory, 65(9):5302–5322, 2019.

[26] J. Jiang, F. Leofante, A. Rago, and F. Toni. Formalising the robustness of counterfactual expla-
nations for neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
2023.

[27] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[28] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim. A survey of deep learning-based
network anomaly detection. Cluster Computing, 22:949–961, 2019.

[29] C.-Y. Lai, F.-K. Sun, Z. Gao, J. H. Lang, and D. S. Boning. Nominality score conditioned time
series anomaly detection by point/sequential reconstruction. arXiv preprint arXiv:2310.15416,
2023.

[30] X. A. Larriva-Novo, M. Vega-Barbas, V. A. Villagrá, and M. S. Rodrigo. Evaluation of
cybersecurity data set characteristics for their applicability to neural networks algorithms
detecting cybersecurity anomalies. IEEE Access, 8:9005–9014, 2020.

[31] V. Lin, K. J. Jang, S. Dutta, M. Caprio, O. Sokolsky, and I. Lee. Dc4l: Distribution shift recovery
via data-driven control for deep learning models. In 6th Annual Learning for Dynamics &
Control Conference, pages 1526–1538. PMLR, 2024.

[32] B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich. A survey on anomaly detection for
technical systems using lstm networks. Computers in Industry, 131:103498, 2021.

[33] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

[34] C. Manikopoulos and S. Papavassiliou. Network intrusion and fault detection: a statistical
anomaly approach. IEEE Communications Magazine, 40(10):76–82, 2002.

[35] A. Manolache, F. Brad, and E. Burceanu. Date: Detecting anomalies in text via self-supervision
of transformers. arXiv preprint arXiv:2104.05591, 2021.

[36] R. Marcinkevičs and J. E. Vogt. Interpretable and explainable machine learning: a methods-
centric overview with concrete examples. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 13(3):e1493, 2023.

[37] J. Marques-Silva and A. Ignatiev. Delivering trustworthy ai through formal xai. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2022.

12

[38] A. P. Mathur and N. O. Tippenhauer. Swat: A water treatment testbed for research and training
on ics security. In 2016 international workshop on cyber-physical systems for smart water
networks (CySWater), pages 31–36. IEEE, 2016.

[39] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon. Sdedit: Guided image
synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2021.

[40] A. Moallemi, A. Burrello, D. Brunelli, and L. Benini. Exploring scalable, distributed real-time
anomaly detection for bridge health monitoring. IEEE Internet of Things Journal, 9(18):17660–
17674, 2022.

[41] H. Z. Moayedi and M. Masnadi-Shirazi. Arima model for network traffic prediction and anomaly
detection. In 2008 international symposium on information technology, volume 4, pages 1–6.
IEEE, 2008.

[42] A. Mousakhan, T. Brox, and J. Tayyub. Anomaly detection with conditioned denoising diffusion
models. arXiv preprint arXiv:2305.15956, 2023.

[43] G. Münz, S. Li, and G. Carle. Traffic anomaly detection using k-means clustering. In Gi/itg
workshop mmbnet, volume 7, 2007.

[44] M. Nauta, J. Trienes, S. Pathak, E. Nguyen, M. Peters, Y. Schmitt, J. Schlötterer, M. van Keulen,
and C. Seifert. From anecdotal evidence to quantitative evaluation methods: A systematic
review on evaluating explainable ai. ACM Computing Surveys, 55(13s):1–42, 2023.

[45] G. Pallotta, M. Vespe, and K. Bryan. Vessel pattern knowledge discovery from ais data: A
framework for anomaly detection and route prediction. Entropy, 15(6):2218–2245, 2013.

[46] G. Pang and C. Aggarwal. Toward explainable deep anomaly detection. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 4056–4057,
2021.

[47] T. Pourhabibi, K.-L. Ong, B. H. Kam, and Y. L. Boo. Fraud detection: A systematic literature
review of graph-based anomaly detection approaches. Decision Support Systems, 133:113303,
2020.

[48] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[49] D. Ramotsoela, A. Abu-Mahfouz, and G. Hancke. A survey of anomaly detection in industrial
wireless sensor networks with critical water system infrastructure as a case study. Sensors,
18(8):2491, 2018.

[50] M. Reyes, R. Meier, S. Pereira, C. A. Silva, F.-M. Dahlweid, H. v. Tengg-Kobligk, R. M.
Summers, and R. Wiest. On the interpretability of artificial intelligence in radiology: challenges
and opportunities. Radiology: artificial intelligence, 2(3):e190043, 2020.

[51] M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1135–1144, 2016.

[52] P. J. Rousseeuw and M. Hubert. Anomaly detection by robust statistics. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 8(2):e1236, 2018.

[53] K. K. Santhosh, D. P. Dogra, and P. P. Roy. Anomaly detection in road traffic using visual
surveillance: A survey. ACM Computing Surveys (CSUR), 53(6):1–26, 2020.

[54] H.-K. Shin, W. Lee, J.-H. Yun, and H. Kim. {HAI} 1.0:{HIL-based} augmented {ICS} security
dataset. In 13Th USENIX workshop on cyber security experimentation and test (CSET 20),
2020.

[55] K. Simonyan. Deep inside convolutional networks: Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.6034, 2013.

13

[56] D. Sulem, M. Donini, M. B. Zafar, F.-X. Aubet, J. Gasthaus, T. Januschowski, S. Das, K. Ken-
thapadi, and C. Archambeau. Diverse counterfactual explanations for anomaly detection in time
series. arXiv preprint arXiv:2203.11103, 2022.

[57] I. Syarif, A. Prugel-Bennett, and G. Wills. Unsupervised clustering approach for network
anomaly detection. In Networked Digital Technologies: 4th International Conference, NDT
2012, Dubai, UAE, April 24-26, 2012. Proceedings, Part I 4, pages 135–145. Springer, 2012.

[58] J. J. Thiagarajan, K. Thopalli, D. Rajan, and P. Turaga. Training calibration-based counterfactual
explainers for deep learning models in medical image analysis. Scientific reports, 12(1):597,
2022.

[59] H. Touvron, L. Martin, K. Stone, P.-E. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
A. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[60] S. Tuli, G. Casale, and N. R. Jennings. Tranad: Deep transformer networks for anomaly
detection in multivariate time series data. arXiv preprint arXiv:2201.07284, 2022.

[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[62] L. Weng. What are diffusion models? lilianweng.github.io, Jul 2021.

[63] J. Xu, H. Wu, J. Wang, and M. Long. Anomaly transformer: Time series anomaly detection
with association discrepancy. arXiv preprint arXiv:2110.02642, 2021.

[64] Z. Xu, Y. Liu, G. Deng, Y. Li, and S. Picek. A comprehensive study of jailbreak attack versus
defense for large language models. In Findings of the Association for Computational Linguistics
ACL 2024, pages 7432–7449, 2024.

[65] J. Yu, A. Ignatiev, P. J. Stuckey, N. Narodytska, and J. Marques-Silva. Eliminating the im-
possible, whatever remains must be true: On extracting and applying background knowledge
in the context of formal explanations. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2023.

[66] J. Yu, Y. Zheng, X. Wang, W. Li, Y. Wu, R. Zhao, and L. Wu. Fastflow: Unsupervised anomaly
detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677, 2021.

[67] X. Yuan and Y. Qiao. Diffusion-ts: Interpretable diffusion for general time series generation.
arXiv preprint arXiv:2403.01742, 2024.

[68] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

[69] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff. A transformer-based
framework for multivariate time series representation learning. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining, pages 2114–2124, 2021.

[70] A. Zhang, S. Song, J. Wang, and P. S. Yu. Time series data cleaning: From anomaly detection
to anomaly repairing. Proceedings of the VLDB Endowment, 10(10):1046–1057, 2017.

[71] H. Zhang, Z. Wang, Z. Wu, and Y.-G. Jiang. Diffusionad: Denoising diffusion for anomaly
detection. arXiv preprint arXiv:2303.08730, 2023.

[72] T. Zhou, P. Niu, L. Sun, R. Jin, et al. One fits all: Power general time series analysis by
pretrained lm. Advances in neural information processing systems, 36, 2024.

[73] Y. Zou, J. Jeong, L. Pemula, D. Zhang, and O. Dabeer. Spot-the-difference self-supervised
pre-training for anomaly detection and segmentation. In European Conference on Computer
Vision, pages 392–408. Springer, 2022.

14

A Computational Resources

All experiments were done on a server with three NVIDIA GeForce RTX 4090 GPUs.

B Anomaly Detector Performance

In this section, we report the performance of anomaly detectors. The results for FastFlow [66] are
presented in Table 4, and the results for GPT-2 [48] are shown in Table 5. We did not perform
extensive parameter tuning, as the performance of anomaly detectors is not the primary focus of
our work. In addition, it is recommended that users adhere to usage guidelines of using GPT-2 or
implementing safety filters.

C Additional Experiments

We include additional model EfficientAD [11] and dataset MVTec [13]. The results are shown in
Table 6. EfficientAD achieved an 88.24% average improvement across the four metrics on MVTec-AD
and 74.85% improvement on VisA.

D More Qualitative Examples

Additional VisA examples can be found in Figure 8, while additional MVTec-AD examples can be
found in Figure 9 and Figure 10. Additional time-series examples can be found in Figure 11.

E Inference Time

We randomly sampled 50 instances from the testing set to compare inference times, as shown in
Table 7. We observed that although property guidance generates higher-quality repairs, it results
in slightly longer inference times for time series data and significantly longer times for image data,
possibly due to the higher dimensionality of the inputs. In total, it took about 40 hours to finish RQ1
for VisA and 25 hours to finish SWaT. For RQ2, it took 5 hours for SWaT. Improving computation
time will be a focus of our future work.

F More Ablation Plots

In addition to λ1 to λ4, we also perform ablation on the overall guidance scale, which we denote
using λϕ. The The ablation study for λϕ on time series can be found in Figure 12. The ablation for
image data, using cashew class as an example can be found in Figure 13 and Figure 14.

Category Image AUROC Pixel AUROC

Candle 0.6501 0.5617
Capsules 0.5352 0.8188
Cashew 0.3816 0.7558
Chewing Gum 0.3754 0.9362
Fryum 0.761 0.4244
Macaroni1 0.2607 0.9127
Macaroni2 0.504 0.7729
PCB1 0.7173 0.9163
PCB2 0.7398 0.7945
PCB3 0.5361 0.8073
PCB4 0.6331 0.6183
Pipe Fryum 0.4696 0.2799

Average 0.5470 0.7166
Table 4: AUROC Scores of Fastflow for Various Categories in VisA

15

Metric GPT-2 on SWaT

Accuracy 0.9784
Precision 0.8831
Recall 0.9472
F1-score 0.9140

Table 5: Performance of GPT-2 anomaly detectors on SWaT Datasets

Model Class Ms(↓) Md(↓) Mω(↓) Mω(↓)
Baseline Guided Baseline Guided Baseline Guided Baseline Guided

EfficientAD
(MVTec-AD)

bottle 24.91 ± 1.73 15.34 ± 2.49 252.67 ± 25.10 9.00 ± 1.11 0.014 ± 0.462 -0.388 ± 0.411 1.53 ± 0.21 -0.02 ± 0.030
cable 6.35 ± 1.00 6.35 ± 0.63 377.28 ± 55.71 9.14 ± 1.20 -0.120 ± 0.052 -0.138 ± 0.031 0.32 ± 0.07 -0.03 ± 0.009
capsule 141.59 ± 3.43 142.81 ± 2.38 223.74 ± 26.83 10.58 ± 1.23 -0.366 ± 0.395 -0.120 ± 0.202 -0.29 ± 0.31 -0.07 ± 0.081
carpet 6.71 ± 3.11 0.70 ± 0.04 412.91 ± 50.80 10.17 ± 1.28 0.340 ± 0.220 -0.011 ± 0.004 2.23 ± 1.34 -0.00 ± 0.001
grid 3.24 ± 1.06 0.32 ± 0.02 555.47 ± 74.34 10.03 ± 0.59 0.220 ± 0.086 -0.009 ± 0.003 1.56 ± 0.58 -0.00 ± 0.001
hazelnut 94.40 ± 7.79 48.76 ± 18.15 238.92 ± 26.92 9.54 ± 0.94 2.380 ± 1.002 -0.856 ± 0.775 20.99 ± 1.98 0.05 ± 0.061
leather 37.15 ± 2.45 16.42 ± 0.63 481.82 ± 68.25 9.99 ± 1.43 1.347 ± 0.373 -0.249 ± 0.186 12.03 ± 1.86 0.01 ± 0.014
metal nut 3.51 ± 0.09 2.56 ± 0.11 421.94 ± 56.50 10.40 ± 1.32 0.024 ± 0.033 -0.025 ± 0.035 0.63 ± 0.05 -0.00 ± 0.002
pill 4.56 ± 0.09 2.38 ± 0.11 261.21 ± 15.65 10.88 ± 0.70 0.178 ± 0.026 -0.014 ± 0.020 0.55 ± 0.04 -0.01 ± 0.005
screw 1.05 ± 0.20 0.98 ± 0.34 376.92 ± 40.00 10.22 ± 1.00 0.020 ± 0.004 0.006 ± 0.004 0.10 ± 0.00 0.01 ± 0.001
tile 6.67 ± 1.98 0.82 ± 0.27 432.18 ± 62.29 9.85 ± 1.47 0.094 ± 0.308 -0.318 ± 0.236 2.75 ± 1.08 -0.02 ± 0.012
toothbrush 50.02 ± 5.44 35.26 ± 9.41 142.70 ± 25.12 9.27 ± 1.69 -0.175 ± 0.265 -0.013 ± 0.056 1.13 ± 0.63 -0.02 ± 0.011
transistor 37.40 ± 3.66 46.66 ± 10.74 270.86 ± 72.84 26.60 ± 100.98 -1.355 ± 0.672 -0.311 ± 0.485 -1.78 ± 1.96 -0.35 ± 1.506
wood 91.43 ± 54.07 22.96 ± 2.72 353.12 ± 47.96 10.24 ± 1.24 1.829 ± 0.560 -0.489 ± 0.487 14.30 ± 3.73 -0.15 ± 0.066
zipper 1.37 ± 0.20 0.52 ± 0.12 305.86 ± 32.46 9.91 ± 1.01 0.030 ± 0.009 -0.015 ± 0.003 0.25 ± 0.02 -0.00 ± 0.002

∆(↑) +47.85% +97.10% +107.84% +100.16%

EfficientAD
(VisA)

candle 280.37 ± 48.14 387.79 ± 60.55 166.18 ± 27.27 8.71 ± 1.27 -7.219 ± 3.677 -0.212 ± 0.379 -6.98 ± 7.23 -0.22 ± 0.285
capsules 28.98 ± 10.27 31.01 ± 5.50 371.05 ± 52.72 8.41 ± 0.01 -0.570 ± 0.227 -0.036 ± 0.042 2.06 ± 0.74 -0.01 ± 0.012
cashew 364.66 ± 35.11 363.13 ± 31.62 255.69 ± 54.96 8.76 ± 1.85 -2.968 ± 4.098 -2.778 ± 3.437 -0.32 ± 2.53 0.06 ± 1.063
chewinggum 81.47 ± 4.01 75.87 ± 11.40 179.61 ± 15.37 8.40 ± 0.01 -0.216 ± 0.498 -0.176 ± 0.486 0.76 ± 0.53 -0.02 ± 0.020
fryum 267.90 ± 55.84 130.03 ± 18.19 222.72 ± 32.44 8.38 ± 0.01 5.766 ± 2.300 -0.539 ± 1.032 9.62 ± 2.04 -0.08 ± 0.348
macaroni1 881.24 ± 32.80 657.44 ± 16.24 227.79 ± 13.91 8.41 ± 0.01 16.696 ± 3.118 -1.117 ± 0.735 25.61 ± 4.36 -0.18 ± 0.195
macaroni2 350.04 ± 63.90 198.60 ± 29.18 244.22 ± 25.98 8.41 ± 0.01 3.070 ± 2.147 -0.523 ± 0.799 3.65 ± 1.63 0.17 ± 0.375
pcb1 24.09 ± 2.89 15.87 ± 0.56 208.50 ± 31.13 8.37 ± 0.02 0.293 ± 0.068 -0.001 ± 0.027 0.21 ± 0.09 -0.00 ± 0.003
pcb2 10.61 ± 0.67 9.07 ± 1.22 496.76 ± 52.56 8.41 ± 0.01 0.125 ± 0.157 -0.040 ± 0.029 3.66 ± 0.38 -0.01 ± 0.005
pcb3 15.06 ± 8.65 27.82 ± 3.88 363.07 ± 38.92 8.41 ± 0.01 -0.708 ± 0.368 -0.007 ± 0.011 -1.34 ± 0.95 -0.01 ± 0.007
pcb4 61.88 ± 14.91 79.72 ± 20.28 298.36 ± 27.41 8.41 ± 0.01 0.020 ± 0.204 -0.110 ± 0.179 1.53 ± 0.19 0.02 ± 0.014
pipe fryum 112.89 ± 16.76 111.60 ± 8.36 117.01 ± 33.67 8.41 ± 0.01 0.619 ± 1.512 0.018 ± 1.140 0.40 ± 0.97 -0.20 ± 0.289

∆(↑) +4.01% +96.43% +98.65% +100.30%

Table 6: Comparison of baseline and guided performance across four metrics for MVTec dataset
categories with EfficientAD and FastFlow. ∆ is the median improvement percentage of the guided
result from baseline.

Vision Time-series

Baseline Guided Baseline Guided

126.50 236.37 10.86 12.49
Table 7: Comparison of baseline and guided generation median runtimes (seconds).

16

Figure 8: More VisA examples. With AR-Pro, we have anomaly repairs resemble inputs better,
compared with baseline.

17

Figure 9: More MVTec examples (Part 1). With AR-Pro, anomaly repairs resemble inputs better
compared with the baseline.

18

Figure 10: More MVTec examples (Part 2). With AR-Pro, anomaly repairs resemble inputs better
compared with the baseline.

(a) Both repair anomaly. (b) Baseline fails to repair anomaly.

(c) Baseline fails to repair anomaly. (d) Baseline fails to repair anomaly.

Figure 11: The first image shows an instance where the baseline repairs the anomaly, but not as
effectively as with property guidance. The last three images show instances where the baseline fails
to repair the anomaly.

19

(a) Ms (b) Md (c) Mω (d) Mω

Figure 12: Effects of hyperparameter λϕ on Ms, Md,Mω and Mω on SWaT; the effect of λϕ varies
across metrics, but the range remain relatively small.

(a) Ms (b) Md (c) Mω (d) Mω

Figure 13: Effects of hyperparameter on Ms, Md,Mω and Mω on VisA cashew class; the effect of
λϕ varies across metrics, but the range remain relatively small.

(a) Ms (b) Md (c) Mω (d) Mω

Figure 14: Effects of hyperparameter λϕ on Ms, Md,Mω and Mω on VisA cashew class; the effect
of λϕ varies across metrics, but the range remain relatively small.

20

	Introduction
	Overview and Formal Properties
	Common Anomaly Detectors are Linearly Decomposable
	Formal Properties for Counterfactual Explanations

	Property-guided Generation of Counterfactual Explanations
	A Generalized Formulation with Properties as Loss Functions
	Formal Property-guided Diffusion

	Experiments
	(RQ1) Empirical Validation
	(RQ2) Ablation Study

	Related Work
	Discussion
	Conclusion
	Computational Resources
	Anomaly Detector Performance
	Additional Experiments
	More Qualitative Examples
	Inference Time
	More Ablation Plots

