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ABSTRACT

Federated learning (FL) with differential privacy (DP) provides a framework for
collaborative machine learning, enabling clients to train a shared model while ad-
hering to strict privacy constraints. The framework allows each client to have an
individual privacy guarantee, e.g., by adding different amounts of noise to each
client’s model updates. One underlying assumption is that all clients spend their
privacy budgets uniformly over time (learning rounds). However, it has been
shown in the literature that learning in early rounds typically focuses on more
coarse-grained features that can be learned at lower signal-to-noise ratios while
later rounds learn fine-grained features that benefit from higher signal-to-noise ra-
tios. Building on this intuition, we propose a time-adaptive DP-FL framework
that expends the privacy budget non-uniformly across both time and clients. Our
framework enables each client to save privacy budget in early rounds so as to be
able to spend more in later rounds when additional accuracy is beneficial in learn-
ing more fine-grained features. We theoretically prove utility improvements in
the case that clients with stricter privacy budgets spend budgets unevenly across
rounds, compared to clients with more relaxed budgets, who have sufficient bud-
gets to distribute their spend more evenly. Our practical experiments on standard
benchmark datasets support our theoretical results and show that, in practice, our
algorithms improve the privacy-utility trade-offs compared to baseline schemes.

1 INTRODUCTION

With machine learning (ML) relying increasingly on users’ sensitive data, the development of utility-
driven frameworks that also adhere to users’ individual constraints, including privacy preferences,
has become a priority. When federated learning (FL) (McMahan et al., 2017) was first introduced, it
was perceived as a privacy-preserving distributed learning framework that allows users (also called
clients) to keep their data local and solely exchanging model updates with the server who can ag-
gregate the updates and apply them to the global model for training.

However, it has been shown that data can be leaked through the model gradients (Zhu et al., 2019;
Geiping et al., 2020; Boenisch et al., 2023). Hence, FL was extended to incorporate formal pri-
vacy guarantees (McMahan et al., 2017; Geyer et al., 2017; Wei et al., 2020; Hu et al., 2023; Ra-
maswamy et al., 2020) via the mathematical framework of differential privacy (DP) (Dwork, 2006).
In DP-FL frameworks, one common approach is to protect the entire dataset of each client (“client-
level DP”) by clipping local model updates and adding noise before releasing them in each training
round (Truex et al., 2019; 2020). This ensures that an adversary who has access to the aggregated
perturbed updates of a subset of clients cannot confidently infer whether or not any particular client
has participated in the given training round. However, although the DP-FL framework ensures pri-
vacy, it degrades model utility by introducing errors into the model updates. Thus, careful calibration
of the perturbations is necessary to balance privacy and utility.

There are several extensions of the DP-FL framework in the literature that aim to improve privacy-
utility tradeoffs by reducing the effect of perturbation while adhering to the privacy budgets of
clients. Typically, these prior works (Pichapati et al., 2019; Yang et al., 2021; Shen et al., 2023;
Yang et al., 2023; McMahan et al., 2017) consider the inherent heterogeneity in FL—both in data
and privacy—to make perturbation more efficient. Yet, they either assume that clients’ privacy bud-
gets should be exhausted uniformly over time (Boenisch et al., 2024), or rely on strong assumptions
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regarding access to public data (Li et al., 2022) or negligible privacy loss when adjusting privacy
parameters in a time-adaptive manner based on data (Pichapati et al., 2019). As we will see, judi-
ciously expending the budget non-uniformly over time and in a privacy-preserved manner can yield
an improved privacy-utility tradeoff. Hence, a gap exists in the literature.

In this work, we reduce this gap by proposing a novel DP-FL framework with a data-independent
time-adaptive privacy spending method. In our framework, clients can spend their privacy budget
non-uniformly across time (training rounds). This means that clients intentionally allocate less of
their privacy budgets in the early rounds to save them for later rounds. We term these rounds as
“saving”. Clients then transit to “spending” rounds, wherein they uniformly allocate their remaining
budget across spending rounds. The decisions about when each client transits from saving to spend-
ing and how much they save in each round are made solely based on clients’ privacy budgets, and
not their local data. Therefore, we can schedule spending before the start of training, making it free
of privacy loss. We account for each client’s privacy spending in each round, formulating privacy
bounds as a function of clients’ decisions and budgets.

Two observations that motivate the potential of our framework to improve the privacy-utility tradeoff
are as follows. First, by preserving the privacy budget in early rounds and incrementally spending
later, we are able to adjust the signal-to-noise (SNR) ratio to be uneven across training rounds,
with noise shifting from later rounds to earlier ones. This enables coarse-grained features, which
are typically learned in the early rounds and are more tolerant to noise, still to be learned effec-
tively. Furthermore, the fine-grained features, typically learned in later rounds (Dziedzic et al.,
2019; Raghu et al., 2017; Shwartz-Ziv & Tishby, 2017), can be learned in a beneficial higher-SNR
setting. Secondly, in practical scenarios, we note that clients are likely to have different privacy
budgets. We show theoretically that clients with stricter privacy budgets benefit from expending
their privacy budgets more unevenly than those with relaxed (larger) budgets. Intuitively, this allows
less-privacy-sensitive clients, who have often sufficient budgets, to contribute to the learning both
of coarse-grained features in early rounds and of fine-grained features in later rounds. On the other
hand, more-privacy-constrained clients can preserve their budgets and helpfully contribute more to
the learning of fine-grained features.

In summary, we make the following contributions:

• As part of our framework design (detailed in Sec. 3), we introduce a novel privacy spend-
ing method, namely “spend-as-you-go”, where clients spend their privacy budgets incre-
mentally over time, instead of spending the privacy budget uniformly across time, as in
traditional DP-FL approaches.

• Our theoretical analysis (detailed in Sec. 4) provides privacy accounting for the incremental
spending pattern in our method. Additionally, we show theoretically, that if clients with
stricter privacy parameters, such as lower clipping norms, save larger rations of privacy
budget during saving rounds, and can spend more in spending rounds, we can reduce the
clipping bias (Das et al., 2023), in expectation.

• Based on these theoretical insights, in Sec. 5 we experimentally benchmark our framework
against the baselines and show that the global test accuracy achieved by our method sur-
passes that of the baselines for the FMNIST (Xiao et al., 2017), MNIST (Deng, 2012),
Adult Income (Becker & Kohavi, 1996), and CIFAR10 datasets (Krizhevsky et al., 2009).

2 BACKGROUND AND RELATED WORK

Federated Learning. We consider a typical FL system with N clients and a central server. Each
client n ∈ [N ] has its own data distribution Pn on X × Y , where X ⊆ Ru denotes the feature
space and Y ⊆ R denotes the label space. Let Ln : Rv × X × Y → R denote client n’s loss
function which maps a model parameter θ ∈ Rv and a data sample (x, y) ∈ X × Y to a cost.
Each client n is assumed to have access to a dataset Dn which consists of |Dn| data points sampled
from Pn. Defining L̄n(θ) := 1

|Dn|
∑

(x,y)∈Dn
Ln (θ; (x, y)) and L̄(θ) := 1

N

∑N
n=1 L̄n(θ), the

optimization problem in FL is minθ L̄(θ). The Federated Averaging (FedAvg) (McMahan et al.,
2017) algorithm solves this problem by having clients run local stochastic gradient descent (SGD)
and send updates to the server, which averages them to update the global model. This cycle repeats
until convergence or for a specified number of communication rounds. As the baseline for our
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proposed approach (detailed in Sec.3), we consider FedAvg, presented as Alg. 3 in App.A.1. This
algorithm, unconstrained by privacy limitations, represents the ideal utility case.

Differential Privacy. In ML, the mathematical framework of (ϵ, δ)-DP (Dwork et al., 2014), en-
sures that two models trained on neighboring datasets, i.e., datasets that differ in one data point,
differ only slightly in their outputs. This can be formalized as Def. 1 in App. A.6.2. In (ϵ, δ)-DP,
a smaller privacy budget ϵ ∈ R+ enforces a stronger privacy guarantee. The δ ∈ [0, 1] quantifies
the probability of violating the privacy guarantee and thereby has usually a small value. We discuss
(α, ϵ)-Rényi-DP (Mironov, 2017) as an alternative to relax DP guarantees and get smoother compo-
sition in App. A.6.2. In this paper, we adopt RDP, while as it is shown by (Mironov, 2017), it can
be converted to DP when needed (cf. Lem. 3 in App. A.6.2).

DP-FL. We use the notion of client-level DP-FL which protects the entire client’s dataset (McMa-
han et al., 2017; Geyer et al., 2017; Hu et al., 2023). To implement client-level DP in FL, we can rely
on the DP-FedAvg (McMahan et al., 2017; Hu et al., 2023) algorithm that first clips clients’ updates
according to a sensitivity c and then adds Gaussian noise according to N

(
0, c2σ2I

)
. DP-FedAvg

also implements privacy amplification by sub-sampling (Beimel et al., 2014), where clients are sam-
pled independently at random with probability q. As shown by Mironov et al. (2019), the Sampled
Gaussian Mechanism (SGM) tightens the RDP ϵ by a quadratic scaling factor q2 (cf. Lem. 4 in
App. A.6.2). We also use the notion of distributed DP (DDP) (Truex et al., 2019) which com-
bines the advantages of centralized (Ramaswamy et al., 2020) and local DP (Truex et al., 2020).
In DDP, clients clip their updates and locally add a small amount of noise, distributed according to
N
(
0, c2σ2/NI

)
(Truex et al., 2019). By adding local noise, clients’ privacy is partially protected

against the server, and sufficient noise, N
(
0, c2σ2I

)
, is guaranteed when the server aggregates all

N noisy updates. We consider the DP-FedAvg algorithm that is implemented with client-level and
DDP (presented as Alg. 4 in App.A.1) as a baseline for our approach, detailed in Sec.3.

Personalized DP. DP-FedAvg and most of its variants apply worst-case privacy guarantees to
ensure privacy for the most constrained clients. This leads to over-perturbation and reduced utility
for clients with more relaxed privacy constraints. Some recent literature addresses this by exploring
personalized, or individualized, DP (Yang et al., 2021; Shen et al., 2023; Malekmohammadi et al.,
2024; Boenisch et al., 2024). For example, Boenisch et al. (2024) introduce individualized DP (IDP)
and apply it to the DP-SGD algorithm, a collaboration-free variant of DP-FedAvg. The integration
of IDP into a client-level DP-FL framework is natural. IDP enables individualized privacy budgets
across clients and fine-tunes client-specific privacy parameters, through the use of different clip
norms and/or sampling rates. We name this integrated algorithm IDP-FedAvg and formally present
it as Alg. 5 in App.A.1. We note that IDP-FedAvg and our proposed approach, detailed in Sec.3,
complement each other. In this paper, we consider IDP-FedAvg as another baseline for our approach.

Adaptive DP. Another approach to improve the utility performance of DP learning is parameter
grouping (Yang et al., 2023; McMahan et al., 2017) which clusters the ML parameters with similar
clipping norms and applies a non-uniform clipping across clusters. Similar to the IDP approach, our
approach and parameter grouping are complementary. However, integrating our approach into pa-
rameter grouping optimally, given the increased parameter choices across clusters, requires a study
on cluster-based parameter selection which is beyond the scope of this paper. Another approach used
for utility improvement is adaptive clipping (Pichapati et al., 2019; Andrew et al., 2021; Li et al.,
2022) which aims to optimize the clipping norms during training and thereby reduce the noise effect.
Some of these papers either rely on a strong assumption of accessing public data (Li et al., 2022),
or the strong assumption of minimal privacy loss occurs during parameter optimization (Pichapati
et al., 2019). Our proposed approach is an alternative to select privacy parameters non-uniformly
over time, which compared to these adaptive clipping methods eliminates the need for public data
and ensures zero privacy loss during parameter selection, as this is done prior to training. Another
adaptive clipping method that is not limited to the prior assumptions and is more relevant to ours is
the one proposed by Andrew et al. (2021), and presented as Alg. 6 and detailed in App.A.1. While
targeting the same goal of improving the privacy-utility tradeoff as ours, the method (Andrew et al.,
2021) maintains a fixed privacy spending over time. Note that this is orthogonal to our approach
and could be combined with ours for potential performance gain. However, such integration re-
quires careful privacy analysis, which is beyond the scope of this paper and left for future work. In
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App. A.8, we benchmark our approach against the method (Andrew et al., 2021), showing that our
approach achieves a better privacy-utility tradeoff.

3 PROPOSED FRAMEWORK

We introduce a novel time-adaptive DP-FL framework to solve the FL optimization problem with
high utility and under privacy constraints that are not meant to be spent uniformly over time. We
first discuss our threat space and privacy-related hyperparameters (summarized in Table 1).

Threat Space. We assume that each client aims to prevent data leakage to any other client who
may be honest but curious (HbC). Specifically, HbC clients follow the FL protocol honesty but
may attempt to infer sensitive information of the victim client from the shared model updates. We
assume the server is trusted but rather than offering zero protection, we make clients perturb their
model updates before sharing with the server to preserve privacy, though at a lower level. This is
because, after the server aggregates the perturbed model updates, the total perturbation increases,
providing stronger privacy protection against other clients than the server. For enhanced protection
against the server, one can use secure aggregation (Bonawitz et al., 2016) which ensures that the
server only learns an aggregated function (typically the sum) of the clients’ local updates, without
learning individual updates. However, the design or implementation of secure aggregation schemes
is beyond the scope of this paper, and we mainly focus on preserving privacy against HbC clients.

Privacy Hyperparameters. The spend-as-you-go method, which we will detail as part of our
framework design in Sec. 3.1, formalizes the intuition that each client saves a specific fraction of
their budget in certain rounds, then incrementally spends the saved portion over time. We realize
savings by using client-specific sampling rates, denoted as qn ∈ [0, 1] for client n, during “saving”
rounds and by using a uniform, larger, sampling rate, denoted as q ∈ [0, 1], during “spending”
rounds. It is intuitive that if qn < q then client n is less likely to be sampled during saving versus
spending rounds. According to privacy amplification by sub-sampling (Beimel et al., 2014), and as
detailed in Sec. 4.1, a fraction of their privacy budget will then be saved for later rounds. Another
hyperparameter is each client’s designated round for transitioning from the saving to the non-saving
(spend) mode. For each n ∈ [N ], we use Tn to denote the first round when client n is in the spend
mode. Intuitively, if Tn is aligned with the client n transitioning from coarse-grained training in
early rounds to fine-grained feature training in later rounds, the client’s saved budget during early
rounds enables the client to spend more in later rounds when additional accuracy is beneficial in
learning more fine-grained features. By setting qn = q or Tn = 1 for every n ∈ [N ], each client’s
privacy spending becomes uniform over time, resembling the traditional non-time-adaptive spending
approaches. We show the hyperparameters qn and Tn, which are specific to our framework, in
the first two rows of Table 1. Other hyperparameters, which are common in much of the DP-FL
literature, are summarized in rows 3 to 10 of Table 1. The privacy-related ones, which are consistent
across clients and fixed over time, include the global clip norm c, the sampling rate q, the DP
parameter δ, and the RDP-related order α. The configuration of these hyperparameters to avoid
additional privacy loss is covered partly in simulations (Sec. 5 and App. A.8) and partly in theory
(Sec. 4). Later, in Sec. 6, we discuss potential future directions for broader hyperparameter tuning.

3.1 THE SPEND-AS-YOU-GO METHOD

We consider an FL setting where every client n ∈ [N ] is given a privacy budget ϵn derived from
their individual privacy preferences. We assume all clients exhaust their privacy budget after T
global rounds. We propose the spend-as-you-go method, which is executed before training begins,
and obtains the following privacy parameters during execution: the local noise multipliers σt

n, the
sampling rates qtn, the privacy budget remaining ϵtn (with an initial value of ϵ0n = ϵn), and the local
clip norms ctn. Each qtn is chosen as either q or qn, depending on whether client n is in spend
or saving mode. From now on, we denote qtn as the sampling rate, and to distinguish between q
and qn, we refer to them as the spending-based sampling rate and the saving-based sampling rate,
respectively. To denote whether clients are in saving or spending mode at each round, we use M t

n,
a binary variable that is set to 0 if round t is a saving round for client n, and 1 otherwise. I.e.,
M t

n = 0 if t < Tn and M t
n = 1 if t ≥ Tn. Algorithm 1 presents the pseudocode for the spend-

as-you-go method. Regardless of the saving or sampling mode, in each round, we first find the
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value σt
n required to obtain the remaining privacy budget ϵtn using the GetNoise1 function (Line

4 of Alg. 1). This function takes as inputs ϵtn, δ, q, and the number of remaining rounds T − t.
During the spending rounds of client n (i.e., when M t

n = 1), the client is sampled according to
qtn = q. During the saving rounds (when M t

n = 0), the client sets qtn = qn. As shown in lines
6-8, we calculate the privacy spent and ϵtn at the end of each round t ∈ [T ] and for every client
n ∈ [N ]. Using Compute rdp function, we calculate the privacy spent given the input values
qtn, σ

t
n, and α. We then use get privacy spent to convert the RDP privacy spent into the DP

privacy spent, given the input values: the RDP privacy spent, α, and δ. We finally follow the same
procedure as in Boenisch et al. (2024) to compute local clip norms ctn such that their average across
n ∈ [N ] equals the hyperparameter c. To achieve this, we calculate ctn = cσt/σt

n (Line 12), where

σt = N
(∑

n∈[N ] 1/σ
t
n

)−1
(Line 10).

Table 1: Hyperparameters Summary

Tn Saving-to-spending transition round
qn Saving-based sampling rate of Client n

T Number of rounds
L Number of local iterations
B Batch size
λ Learning rate
α Rényi order in RDP
δ Probability of violating in DP
c Average clipping norm
q Global (spending-based) sampling rate

Algorithm 1 The spend-as-you-go Method in
Our Time-adaptive DP-FL Framework
Inputs: No. clients N , No. global rounds T , local privacy budgets
ϵn, sampling rate q, average clip norm c, modes Mt

n ∈ {0, 1},
sampling rates for saving mode qn, Prob. of violating δ.

Def SetPrivacyParams

(
c, q, {qn, ϵn,Mt

n}n∈[N]
t∈[T ]

, T, δ

)
1: Initialize ϵ0n = ϵn and ϵ̄0rdp,n = 0 for all n ∈ [N ]

2: for each global round t ∈ [T ] do
3: for each client n ∈ [N ] do
4: σt

n =GetNoise
(
ϵt−1
n , δ, q, T − t

)
5: If Mt

n = 0, then qtn = qn, Else, qtn = q.
6: ϵtrdp,n =Compute rdp

(
qtn, σ

t
n, α

)
7: ϵ̄trdp,n = ϵ̄t−1

rdp,n + ϵtrdp,n

8: ϵtn = ϵn−get privacy spent
(
α, ϵ̄trdp,n, δ

)
9: end for

10: Compute σt ←
(

1
N

∑
n∈[N]

1
σt
n

)−1

11: for each client n ∈ [N ] do
12: Set local clip norm ctn = cσt

σt
n

13: end for
14: qt = 1

N

∑N
n=1 qtn

15: end for
16: Return {qt, σt, {qtn, c

t
n, σ

t
n}n∈[N]}t∈[T ]

Algorithm 2 Iterative Training in Our Time-
adaptive DP-FL Framework
Inputs: No. clients N , No. global rounds T , No. local iterations L,
local privacy budgets ϵn, sampling rate q, average clip norm c, modes
Mt

n ∈ {0, 1}, sampling rates for saving mode qn, loss functionsLn,
datasetsDn, learning rate λ, batch size B, Prob. of violating δ

1: {qt, σt, {qtn, c
t
n, σ

t
n}n∈[N]}t∈[T ]

=SetPrivacyParams

(
c, q, {qn, ϵn,Mt

n}n∈[N]
t∈[T ]

, T, δ

)
2: Initialize global model θ0

3: for each global round t ∈ [T ] do
4: Ct ← Sample clients with probability {qtn}.
5: for each client n ∈ [N ] in parallel do
6: ∆̃θt

n = ClientUpdate
(
t, n, θt−1, ctn, σ

t
n

)
.

7: end for
8: ∆̃θt =

∑
n∈Ct ∆̃θt

n +
∑

n∈[N]\Ct N
(
0,

c2(σt)2

N I
)

9: Update θt = θt−1 + ∆̃θt

qtN

10: end for

Def ClientUpdate
(
t, n, θt, ctn, σ

t
n

)
1: Initialize local model θt,0

n = θt

2: for local iteration l ∈ [l] do
3: {Bi}|Dn|/B

i=1 ← SplitDn to size B batches
4: for each batch Bi do

5: θt,l
n = θt,l−1

n −
λ
∑

(x,y)∈Bi
∇Ln

(
θ
t,l−1
n ;(x,y)

)
B

6: end for
7: end for
8: Compute ∆θt

n = θt,L
n − θt,0

n

9: Clip ∆̃θt
n = ∆θt

n min

(
1,

ctn

∥∆θtn∥2

)
10: Add noise ∆̃θt

n ← ∆̃θt
n +N

(
0,

(ctn)2(σt
n)2

N I
)

11: Return ∆̃θt
n

3.2 THE ITERATIVE TRAINING MODULE

After setting parameters through the spend-as-you-go method, our DP-FL framework operates the
iterative training module, with the pseudocode presented in Algorithm 2. We note that although
the primary contribution of our DP-FL framework lies in the spend-as-you-go method, the iterative
training module also differs from the baseline due to the use of time-adaptive privacy parameters
and has to be carefully designed. This module spans T communication rounds. Within each round,
clients conduct L iterations of local training. For iteration l ∈ [L] within round t ∈ [T ], let θt,ln
denote the local model of client n. In round t ∈ [T ], Ct denotes the set of workers contributing to

1To introduce our spend-as-you-go method, we use some functions as implemented by Opacus li-
brary (Yousefpour et al., 2021).
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local training. This set is randomly chosen using Poisson sampling (Line 4). Each client n ∈ [N ]
in round t ∈ [T ] has an independent probability qtn ∈ [0, 1] of being selected for Ct. In expectation
qtN clients, where qt = 1

N

∑
n∈[N ] q

t
n, are sampled in round t.

Client update: In round t, each sampled client n ∈ Ct initializes θt,0n = θt (Line
1 of ClientUpdate). It then performs L iterations of local training, using a gradient-
based technique, such as mini-batch SGD. In each iteration l ∈ [L], the client first
splits Dn into size B batches (Line 3 of ClientUpdate). For each batch Bi, the
nth client updates θt,ln = θt,l−1n − λ

B

∑
(x,y)∈Bi

∇Ln

(
θt,l−1n ; (x, y)

)
, where λ is the learn-

ing rate and 1
B

∑
(x,y)∈Bi

∇Ln

(
θt,l−1n ; (x, y)

)
estimates the gradient ∇L̄n(θ

t,l−1
n ) (Line 5 of

ClientUpdate). Once local training finishes, the client computes the resulting model update
∆θtn = θt,Ln − θt,0n (Line 8 of ClientUpdate). The first phase of integrating the DP mechanism
in the iterative training module is to assign the client the task of clipping ∆θtn as shown in (Line 9
of ClientUpdate), and detailed as

∆̃θtn = ∆θtn min

(
1,

ctn
∥∆θtn∥2

)
, (1)

where ctn is the clip norm. The client then perturbs further its clipped model update by injecting
random noise (Line 10 of ClientUpdate). The noise is selected independently for each client
n ∈ Ct in round t. Algebraically, given noise ztn ∼ N

(
0,

(ctnσ
t
n)

2

N I
)

∆̃θtn ← ∆̃θtn + ztn. (2)

Server aggregation: As shown in lines 6 and 8, the server aggregates ∆̃θtn for all n ∈ Ct, and com-
putes the sum ∆̃θt =

∑
n∈Ct ∆̃θtn. For those clients not being selected, i.e., n ∈ [N ]\Ct, the server

compensates by injecting additional noise ∆̃θt ← ∆̃θt+
∑

n∈[N ]\Ct N
(
0, c2(σt)2/NI

)
. Assuming

cσt = ctnσ
t
n for all n ∈ [N ], because of this compensation, the total noise power N

(
0, c2(σt)2I

)
that is injected to the global model update is not a function of the sampling. The round ends with
the server computing θt = θt−1 + ∆̃θt

qtN (Line 9).

4 THEORETICAL ANALYSIS

For the DP-FL framework (described in Sec. 3), we now develop the theory that underlies our privacy
accounting (Sec. 4.1), and optimize the sampling rates to improve utility (Sec. 4.2).

4.1 PRIVACY ACCOUNTING

In this section, we calculate the RDP bounds for each client n ∈ [N ] at round t ∈ [T ]. The results
will support the general idea of save-to-spend in our framework. Since we use RDP to perform
privacy accounting, we convert each client’s privacy budgets {ϵn}n∈[N ] into the RDP equivalent,
denoted {ϵrdp,n}n∈[N ], at a fixed order α. For client n, we use ϵtrdp,n and ϵtrdp-left,n to denote, respec-
tively, the RDP privacy spent in round t and the “go-forward” RDP privacy budget remaining for
round t onwards.

The privacy accounting for the spend-as-you-go method first involves calculating each ϵtrdp,n
(cf. line 6 of Alg. 1). Next, the total RDP privacy spent during the first t rounds is calculated as∑t−1

τ=1 ϵ
τ
rdp,n (Line 7 of Alg. 1), with budget remaining ϵtrdp-left,n = ϵrdp,n −

∑t−1
τ=1 ϵ

τ
rdp,n. Recalling

from Sec. 3.1, client n selects the noise multiplier σt
n assuming that ϵtrdp-left,n will be spent uniformly

across the remaining T − t+1 rounds subject to using sampling rate q. As shown by Mironov et al.

(2019), under this uniform assumption σt
n should satisfy

ϵtrdp-left,n

T−t+1 = 2αq2

σt
n

. When t < Tn, the sam-

pling rate qn reduces the RDP expenditure to ϵtrdp,n =
ϵtrdp-left,n(qn)

2

(T−t+1)(q)2 . When t ≥ Tn, the full allocated
budget is used in round t. The RDP privacy spend ϵtrdp,n can be computed recursively as

ϵtrdp,n =

(
ϵrdp,n −

∑t−1
τ=1 ϵ

τ
rdp,n

T − t+ 1

)(
1t<Tn

(
qtn
q

)2

+ 1t≥Tn

)
. (3)
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Lemma 1 solves the recursive formula (3) for the RDP spent. Theorem 1 shows the RDP spent is
non-decreasing over time. The proofs of Lem. 1 and Thm. 1 are respectively provided in App. A.2
and A.3.
Lemma 1. Given any n ∈ [N ], t ∈ [T ], and Tn ∈ [T ], we have

ϵtrdp,n =


ϵrdp,n

T−t+1

(
qn
q

)2∏t−1
i=1

(
1− 1

T−t+1+i

(
qn
q

)2)
if t < Tn

ϵrdp,n

T−Tn+1

∏Tn−1
i=1

(
1− 1

T−Tn+1+i

(
qn
q

)2)
ow

(4)

Theorem 1. For (n, t, Tn) ∈ [N ]× [T ]× [T ], ϵtrdp,n ≥ ϵt−1rdp,n if t ≤ Tn, and ϵtrdp,n = ϵt−1rdp,n if t > Tn.

Remark 1. The non-decreasing result of Thm. 1 indicates that, during saving rounds (M t
n = 0)

clients spend at least as much of their privacy budget in each round as in the previous round. In
other words, saving decreases over time. During spending rounds (M t

n = 1) clients expend privacy
budget at a constant rate. If budget savings are accumulated than ϵTn

rdp,n > ϵTn−1
rdp,n and clients will

have access to a larger budget to spend.

4.2 OPTIMAL PERMUTATION OF SAVING SAMPLING RATES

We now optimize the selection of samplings rates. We start from a pre-defined set of N sampling
rates. We then choose a permutation that assigns each of the N rates to a distinct client. The
permutation is selected to minimize the per-round difference between the utility achieved when DP
perturbation is not applied (which generally will maximize utility), and the utility achieved when
our DP-FL framework is used. In the first case, the server aggregates the unperturbed local updates
∆θtn (i.e., no clipping or noise addition) for all clients n ∈ [N ] (i.e., no sub-sampled), and updates
the global model as θt = θt−1 +∆θt where

∆θt =
1

N

N∑
n=1

∆θtn. (5)

In our DP-FL framework, local updates undergo the DP mechanism detailed in Sec. 3. Factoring
into the (modified) global update ∆̃θt the clipping norms ctn, the additive noise multipliers σt

n, and
the sampling rates qtn, we get

∆̃θt =
1

Nqt

N∑
n=1

(
btn
(
Clip

(
∆θtn, c

t
n

)
+ ztn

)
+ (1− bt

n)z̃
t
n

)
, (6)

where qt = 1
N

∑N
n=1 q

t
n, ztn, z̃tn ∼ N

(
0,

(σt
nc

t
n)

2

N

)
are identically and independent distributed

(IID), and btn ∼ Bern (qtn) are also IID. The optimization problem is to choose the {qtn}n∈[N ] so
that ∆̃θt closely approximates an unbiased estimate of ∆θt. We define the difference between the
respective model updates as

Errort := ∆θt − ∆̃θt. (7)

Errort has four sources of randomness:

(i) Local dataset randomness: the randomness of local datasetsDn, which are sampled from
distributions Pn. This randomness is reflected in the local updates ∆θtn.

(ii) Client sampling randomness: the sampling of clients, represented by the use of random
variables btn. These determine whether a client n contributes to the round t’s local training.

(iii) Noise addition randomness: the addition of the Gaussian noises ztn and z̃tn.
(iv) Privacy budget assignment randomness: the matching of clients with different datasets
Dn and data distributions Pn to different privacy budgets ϵn. Here, {ϵn}n∈[N ] are consid-
ered as a random permutation of a predefined set of privacy budgets {ϵ̂n}n∈[N ].

7
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To optimize the sampling rates, we first develop two upper bounds on the bias term
∥∥E (Errort

)∥∥.
Both bounds build on the clipping bias lemma (Das et al., 2023), cf., Lem. 2 in App. A.6.1. Our
theorems extend the results of that lemma to the situation where clients have individualized privacy
budgets and use time-varying clip norms ctn and sampling rates qtn.

Our first theorem, Thm. 2, bounds the expected bias with respect to (w.r.t.) three sources of random-
ness: (i), (ii), and (iii). We denote this expectation as

∥∥E(i),(ii),(iii)

(
Errort

)∥∥. The proof of Thm. 2
is given in App. A.4.
Theorem 2. Taking the expectation w.r.t. (i), (ii), and (iii), and for any ρ > 1, we have∥∥E(i),(ii),(iii)

(
Errort

)∥∥ ≤ 1

N

∥∥∥∥∥
N∑

n=1

(
1− qtn

qt

)
E(i)

(
∆θtn

)∥∥∥∥∥+ 1

N

N∑
n=1

qtn
qt

E(i)

(
∥∆θtn∥

ρ)
(ctn)

ρ−1 . (8)

To minimize this bias term in a reasoned fashion we select the qtn to minimize the upper bound. The
upper bound in (8) contains terms that couple qtn with the pure local updates ∆θtn. The latter are
not accessible to the server who is responsible for sampling clients. If clients were to select their
own qtn based on their local updates, this could lead to privacy leakage and would require additional
privacy protection. The coupling between qtn and ∆θtn can be removed from the first term of the
upper bound in (8) under certain conditions. For example, if all clients are sampled at the same rate
(qtn = qt) or if E(i) (∆θtn) is equal across all n ∈ [N ], the first term becomes zero. In such cases,
the upper bound reduces to the second term, which still couples qtn with ∆θtn and the clip norms ctn.

In contrast to Thm. 2, in Thm. 3 we take the expectation w.r.t. the additional source of randomness,
(iv). This results in a bound that depends solely on clipping norms, which makes optimizing the
sampling rates, qtn, easiers to accomplish. As we now bound the expected bias w.r.t. all four sources
of randomness – (i), (ii), (iii), and (iv) – we denote the expectation as

∥∥E(i),(ii),(iii),(iv)

(
Errort

)∥∥.
The proof of Thm. 3 is given in App. A.5.
Theorem 3. Taking the expectation w.r.t. (i), (ii), (iii), and (iv), and for any ρ > 1, we have:∥∥E(i),(ii),(iii),(iv)

(
Errort

)∥∥ ≤ 1

N2

(
N∑

n=1

E(i)

(∥∥∆θtn
∥∥ρ)) N∑

n=1

(
qtn
qt

1

(ctn)
ρ−1

)
. (9)

The main step in the proofs of Thm. 3 builds on the common assumption in FL that the sampling
from Pn and of ϵn is independent. This assumption is made without significant loss of generality as
privacy budgets are often assigned based on clients’ personal preferences and policy requirements.
In contrast, the data distribution is influenced by external factors such as geographical locations.
Such decoupling of privacy budgets and data distributions simplifies the proof of Thm. 3. It avoids
the need to model potential correlations between the client’s data and privacy preferences. These are
often unknown or irrelevant in practice.

As per Thm. 3, to minimize
∥∥E(i),(ii),(iii),(iv)

(
Errort

)∥∥ w.r.t. the sampling rates qtn, we solve the
following optimization problem:

min
{Πt}Tt=1

N∑
n=1

qtn
qt

1

(ctn)
ρ−1

s.t. qtn = qΠ−1
t (n), n ∈ [N ],

, (10)

where the {Πt} are a set of (bijective) permutation maps Πt : [N ] → [N ]. Each permutation maps
each element of the index set [N ] to a distinct element of [N ]. We apply the permutation to the
indices of the fixed set of sampling rates {q1, . . . , qN} to get {qt1, . . . , qtN}. The set {q1, . . . , qN} is
a hyperparameter in our problem, which is constrained by the condition qn ≤ q for every n ∈ [N ].
The optimized choice of the set of sampling rates {q1, . . . , qN} is reserved for future work. Per
(10), the optimal choice for {qt1, . . . , qtN} is to assign clients with smaller clip norms ctn (which will
contribute highly perturbed model updates) to have lower sampling rates qtn, and vice versa. The
intuition is that by matching the qtn to the ctn, we prevent clients who contribute a highly perturbed
model update from deteriorating other clients’ performance during saving rounds. This reduces
clipping bias and allow these clients to preserve more of their privacy budget compared, with the
subsequent benefit of enabling them to contribute more in future rounds.
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5 EXPERIMENTS

Datasets. To empirically evaluate the performance of our framework against baselines, we con-
sider widely used datasets. For the Fashion MNIST (FMNIST) and MNIST, we use a convolutional
neural network (CNN) architecture from (McMahan et al., 2017). For the Adult income dataset,
we use multi-layer perception from (Zhang et al., 2020). For the CIFAR10 dataset, we use a CNN
architecture from He et al. (2016). We partition datasets across 100 clients in a non-IID manner
using the Dirichlet distribution with a default parameter 0.1 (Zhang et al., 2023).

Privacy Settings. To reduce the number of choices for clients’ privacy budgets, and motivated by
society wherein individuals often share similar privacy preferences (Alaggan et al., 2015; Boenisch
et al., 2024), in our experiments we divide clients into three groups. The groups are respectively
assigned budgets of ϵgroup,1, ϵgroup,2, or ϵgroup,3. We randomly allocate 34% of clients to belong
to Group 1, 43% to Group 2, and 23% to Group 3. In other words, Client n in Group m, shares
ϵn = ϵgroup,m. To account for privacy consumption, we use the Opacus library (Yousefpour et al.,
2021). We consider DP parameter δ = 10−5 and choose an extended version of the default RDP
parameter α from the RDPAccountant function in Opacus. We apply per-layer clipping (McMahan
et al., 2017) to restrict the influence of individual layers by constraining their norms.

Baselines. As discussed in Sec. 2, we consider several baselines. The first is the non-private Fe-
dAvg (McMahan et al., 2017) which represents our upper bound on utility without any privacy
constraints. The second is DP-FedAvg (McMahan et al., 2017) where we use a uniform privacy
budget, chosen according to the smallest epsilon value of any of the clients. This ensures that
no client’s privacy budget is exceeded. The third is IDP-FedAvg which is the IDP-integration
(Boenisch et al., 2024) of DP-FedAvg. The fourth is adaptive clipping (Andrew et al., 2021). To
have a fair comparison with the baselines, we evaluate two variants of our framework. The first
variant assumes every client’s budget is constrained by the smallest value in the group budget tuple
(ϵgroup,1, ϵgroup,2, ϵgroup,3). The second variant incorporates different privacy groups. Further details
on the choice of hyperparameters in our experiments are given in Table 4 in Appendix A.7.
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Figure 1: Our framework improves accuracy in later rounds compared to the baseline. We plot
the global test accuracy vs. rounds for (a) the FMNIST dataset, and (b) the MNIST dataset. In (a),
(ϵgroup,1, ϵgroup,2, ϵgroup,3) = (10, 20, 30), and in (b) it equals (10, 15, 20).

Table 2: Global test accuracy for FedAvg without DP constraints, DP-FedAvg with ϵn = 10,
IDP-FedAvg with non-uniform privacy budgets, our framework with ϵn = 10, and our framework
with non-uniform budgets. For FMNIST and Adult Income the non-uniform privacy budgets ϵn are
(ϵgroup,1, ϵgroup,2, ϵgroup,3) = (10, 20, 30), and for MNIST, they are (10, 15, 20).

DATASET FedAvg
(non-DP)

DP-FedAvg
ϵn = 10

IDP-FedAvg
Non-uniform

Ours
ϵn = 10

Ours
Non-uniform

FMNIST 72.95 64.8 65.45 67.90 70.57

MNIST 90.23 76.79 76.94 80.2 83.83

Adult Income 78.93 60.12 70.93 72.14 77.53
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Figure 2: While both adhere to privacy budgets, our framework follows spend-as-you-go,
whereas IDP-FedAvg uses uniform privacy spending. The blue solid curves correspond to clients’
privacy spending in our framework, while the red dashed curves show IDP-FedAvg. The curves of
clients with budgets of 30, 20, and 10 are marked with rectangles, circles, and squares, respectively.

Experimental Results. As shown in Table 2 and Fig. 1, our framework yields improvements in
the resulting global model’s accuracy by spending privacy budget non-uniformly across training
rounds. Comparing Columns 4 and 6 of Table 2, our framework with non-uniform privacy budgets
improves global test accuracy over IDP-FedAve by 7.8%, 8.9%, and 9.3% on FMNIST, MNIST, and
Adult Income. In the case of using a uniform budget of ϵn = 10 across all clients n, our framework
achieves respective improvements of 4.7%, 4.4%, and 19.9% compared to DP-FedAvg, as shown
in Columns 3 and 5. We also observe that, our time-adaptive DP-FL scheme comes closest to the
ideal-case performance of FedAvg (column 2) without privacy constraints. Figure 1 plots global test
accuracy vs. global rounds for our framework with non-uniform privacy budgets and IDP-FedAvg,
on the FMNIST and MNIST datasets. This figure shows that while our framework conserves privacy
in early rounds, it allocates more budget in later rounds, eventually catching up to and surpassing
IDP-FedAvg by about 8% on FMNIST and 6% on MNIST in the final round.

In Fig. 2 we present the privacy budget spent by clients from different budget groups (10, 20, 30)
across rounds. This figure shows that, while IDP-FedAvg enforces uniform privacy consumption
over time, in our framework, clients follow spend-as-you-go, saving budgets in the first half of
training, and spending more in later rounds. Our experimental results demonstrate that our time-
adaptive approach boosts the utility of the trained model while adhering to privacy constraints.

In Appendix A.8, we present extended experimental results, including benchmarks on the CIFAR10
dataset (Table 11), comparisons with adaptive clipping (Table 7), and evaluations across privacy-
related hyperparameters (Tables 6, 9, and 10, and Figure 5), as well as other parameters (Tables 5
and 8 and Figure 4).

6 DISCUSSIONS AND FUTURE WORK

We now discuss some limitations of our work that represent interesting directions for future work.
Our spend-as-you-go method reduces reliance on determining when clients should transition from
saving to spending by allowing them to gradually spend their saved budgets over time, rather than
waiting until a specific round to start spending. While our experiments indicate that transitioning
from saving to spending midway through training generally yields good results, tuning the hyper-
parameters involved in estimating the transitioning round may improve utility. However, such hy-
perparameter tuning can lead to additional privacy loss (Papernot & Steinke, 2021) that would need
to be accounted for. For future work, we believe that our time-adaptive DP-FL framework should
be closely integrated with a form of privacy-preserving hyperparameter tuning to identify the best
rounds in which to transition from savings to spending.

Furthermore, as we demonstrated theoretically and validated experimentally, adapting saving-related
hyperparameters to clients’ specific privacy budgets can enhance utility. To eliminate the risk of
privacy leakage from this adaptation, we provide theoretical optimizations that rely solely on clients’
privacy-related constraints, independent of their data. Future research can explore data-and-privacy
joint measures to quantify clients’ contributions with controlled privacy leakage and adapt client-
specific savings decisions accordingly.
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A APPENDIX

A.1 SUMMARY OF NOTATIONS AND BENCHMARKING SCHEMES

We summarize the important notations (including the hyperparameters shown in Table 1) in Table 3.
We formally depict the baselines: FedAvg (McMahan et al., 2017) as Alg. 3, DP-FedAvg as Alg. 4,
IDP-FedAvg as Alg. 5, and adaptive clipping (Andrew et al., 2021) as Alg. 6. Next, we provide
further details to explain the adaptive clipping baseline in comparison with our proposed approach.

Table 3: A Summary of Notations and Hyperparameters1.

N No. of Clients Dn Dataset of Client n
Ct Client set in R. t Bi Batch i
T No. of rounds B Batch size
L No. of local iterations ϵn DP privacy budget of Client n
θt Global model at R. t ϵtrdp,n RDP privacy spent of Client n in R. t
∆θt Global model update at R. t ϵtrdp-left,n RDP budget RE. of Client n for R. t onwards
θt,ln Model of Client n at R. t, I. l ϵ̄trdp,n RDP privacy spend of Client n up to R. t+ 1

∆θtn Model update of Client n at R. t ϵtn DP budget RE. of Client n for R. t onwards
∆̃θtn Perturbed update of Client n at R. t σt Global noise multiplier in R. t

Errort ∆θt − ∆̃θt σt
n Noise multiplier of Client n in R. t

λ Learning rate c Average clipping norm
α Rényi order in RDP ctn Clipping norm of Client n in R. t
δ Probability of violating in DP q Spending-based sampling rate
Tn Saving-to-spending transition R. qn Saving-based sampling rate of Client n
M t

n Saving-or-spending mode qtn Sampling rate of Client n in R. t
Ln Loss function of Client n qt Average sampling rate in R. t

1 Table’s abbreviations: “No.” for “Number”, “RE.” for “Remaining”, “I.” for “Iteration”, and “R.” for
“Round”.

Algorithm 3 Federated Averaging (Fe-
dAvg) (McMahan et al., 2017)
Inputs: No. clients N , No. global rounds T , No. local iterations L,
loss functions Ln, local datasetsDn, learning rate λ, batch size B

1: Initialize global model θ0

2: for each global round t ∈ [T ] do
3: Ct ← Sample clients with probability q.
4: for each client n ∈ Ct in parallel do
5: ∆θt

n = ClientUpdate
(
t, n, θt−1

)
.

6: end for
7: Aggregate ∆θt =

∑
n∈Ct ∆̃θt

n

8: Update θt = θt−1 + ∆θt

qN

9: end for

Def ClientUpdate
(
t, n, θt

)
1: Initialize local model θt,0

n = θt

2: for local iteration l ∈ [l] do
3: {Bi}|Dn|/B

i=1 ← SplitDn to size B batches
4: for each batch Bi do

5: θt,l
n = θt,l−1

n −
λ
∑

(x,y)∈Bi
∇Ln

(
θ
t,l−1
n ;(x,y)

)
B

6: end for
7: end for
8: Return ∆θt

n = θt,L
n − θt,0

n

Algorithm 4 Differential Private Federated Aver-
aging (DP-FedAvg) (McMahan et al., 2017)
Inputs: No. clients N , No. global rounds T , No. local iterations L,
noise multiplier σ, clip norm c, sampling rate q, loss functions Ln,
local datasetsDn, learning rate λ, batch size B

1: Initialize global model θ0

2: for each global round t ∈ [T ] do
3: Ct ← Sample clients with probability q.
4: for each client n ∈ Ct in parallel do
5: ∆̃θt

n = ClientUpdate
(
t, n, θt−1, c

)
.

6: end for
7: Aggregate ∆̃θt =

∑
n∈Ct ∆̃θt

n

8: Add noise ∆̃θt ← ∆̃θt +N (0, c2σ2I)
9: Update θt = θt−1 + ∆̃θt

qN

10: end for

Def ClientUpdate
(
t, n, θt, c

)
1: Initialize local model θt,0

n = θt

2: for local iteration l ∈ [l] do
3: {Bi}|Dn|/B

i=1 ← SplitDn to size B batches
4: for each batch Bi do

5: θt,l
n = θt,l−1

n −
λ
∑

(x,y)∈Bi
∇Ln

(
θ
t,l−1
n ;(x,y)

)
B

6: end for
7: end for
8: Compute ∆θt

n = θt,L
n − θt,0

n

9: Clip ∆̃θt
n = ∆θt

n min

(
1, c

∥∆θtn∥2

)
10: Return ∆̃θt

n
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The Adapting Clipping Baseline. In this paper, we consider the adaptive clipping method (An-
drew et al., 2021) as a baseline for our time-adaptive DP-FL approach. In the extended simulations
in App. A.8, we benchmark the method against our approach. The method is formally presented
as Alg. 6. As shown in Line 13 of this algorithm, the server dynamically adjusts the clipping norm
based on a specified quantile γ in the distribution of clients’ updates. The goal of this method is to
minimize the difference between the clipping norm and the quantile in the distribution, aiming to
achieve the same objective as ours: improving the privacy-utility tradeoff. In contrast to our time-
adaptive approach, which is independent of the client’s data and can be done prior to training, the
method (Andrew et al., 2021) introduces privacy risks during the quantile approximation. To miti-
gate these risks, as shown in Line 2 of the SetClipping function in Alg. 6, the method (Andrew
et al., 2021) incorporates a supplementary DP mechanism that allocates part of the privacy budget
to preserve privacy during quantile estimation. However, this results in a lower remaining privacy
budget, requiring a larger noise multiplier σ, as computed in Line 2 of SetSigma in Alg.6, in
comparison to our approach.

Algorithm 5 Individualized DP-FedAvg (IDP-
FedAvg), a natural integration of IDP (Boenisch
et al., 2024) to FL
Inputs: No. clients N , No. global rounds T , No. local iterations L,
local privacy budgets ϵn, average clip norm c, sampling rate q, loss
functions Ln, local datasetsDn, learning rate λ, batch size B, proba-
bility of violating δ

1: σ, {cn}n∈[N] =SetPrivacyParams
(
c, q, {ϵn}n∈[N], T, δ

)
2: Initialize global model θ0

3: for each global round t ∈ [T ] do
4: Ct ← Sample clients with probability q.
5: for each client n ∈ Ct in parallel do
6: ∆̃θt

n = ClientUpdate
(
t, n, θt−1, cn

)
.

7: end for
8: Aggregate ∆̃θt =

∑
n∈Ct ∆̃θt

n

9: Add noise ∆̃θt ← ∆̃θt +N (0, c2σ2I)
10: Update θt = θt−1 + ∆̃θt

qN

11: end for

Def ClientUpdate
(
t, n, θt, cn

)
1: Initialize local model θt,0

n = θt

2: for local iteration l ∈ [l] do
3: {Bi}|Dn|/B

i=1 ← SplitDn to size B batches
4: for each batch Bi do

5: θt,l
n = θt,l−1

n −
λ
∑

(x,y)∈Bi
∇Ln

(
θ
t,l−1
n ;(x,y)

)
B

6: end for
7: end for
8: Compute ∆θt

n = θt,L
n − θt,0

n

9: Clip ∆̃θt
n = ∆θt

n min

(
1, cn

∥∆θtn∥2

)
10: Return ∆̃θt

n

Def SetPrivacyParams
(
c, q, {ϵn}n∈[N], T, δ

)
1: for each client n ∈ [N ] do
2: Set local noise multiplier σn =GetNoise(ϵn, δ, q, T )
3: end for
4: Compute σ ←

(
1
N

∑
n∈[N]

1
σn

)−1

5: for each client n ∈ [N ] do
6: Set local clip norm cn = cσ

σn

7: end for
8: Return σ, {cn}n∈[N]

Algorithm 6 DP-FedAvg-M with Adaptive Clip-
ping (Andrew et al., 2021)
Inputs: No. clients N , No. global rounds T , No. local iterations
L, noise multiplier σ, clip norm c, sampling rate q, loss functions
{Ln}n∈[N], local datasets {Dn}n∈[N], client-side learning rate λ,
server-side learning rate λs, clip-related learning rate λb, γ quantile,
batch size B, probability of violating δ,

1: σ =SetSigma(q, ϵ, T, δ, σb)
2: Initialize global model θ0

3: for each global round t ∈ [T ] do
4: Ct ← Sample qN clients uniformly.
5: for each client n ∈ Ct in parallel do
6: (btn, ∆̃θt

n) = ClientUpdate
(
t, n, θt−1, ct

)
.

7: end for
8: Aggregate ∆̃θt =

∑
n∈Ct ∆̃θt

n

9: Add noise ∆̃θt ← ∆̃θt +N (0, (ct)2σ2I)
10: Average ∆̃θt ← 1

qN ∆̃θt

11: Compute ∆̃θt ← βs∆̃θt−1 + (1− βs)∆̃θt

12: Update θt = θt−1 + λs∆̃θt

13: ct+1=SetClippig
(
{btn}n∈Ct , σb, q, γ, λb, c

t
)

14: end for

Def ClientUpdate
(
t, n, θt, ct

)
1: Initialize local model θt,0

n = θt

2: for local iteration l ∈ [l] do
3: {Bi}|Dn|/B

i=1 ← SplitDn to size B batches
4: for each batch Bi do

5: θt,l
n = θt,l−1

n −
λ
∑

(x,y)∈Bi
∇Ln

(
θ
t,l−1
n ;(x,y)

)
B

6: end for
7: end for
8: Compute ∆θt

n = θt,L
n − θt,0

n

9: Compute b = I∥∆θtn∥≤ct

10: Clip ∆̃θt
n = ∆θt

n min

(
1, ct

∥∆θtn∥2

)
11: Return b, ∆̃θt

n

Def SetSigma(q, ϵ, T, δ, σb)

1: σ̄ =GetNoise(ϵ, δ, q, T )

2: σ =
(

1
σ̄2 − 1

(2σb)
2

)−1/2

3: Return σ

Def SetClippig
(
{btn}n∈Ct , σb, q, γ, λb, c

t
)

1: Aggregate b̃t =
∑

n∈Ct btn
2: Add noise b̃t ← b̃t +N (0, σ2

b I)
3: Average b̃t ← 1

qN b̃t

4: Update ct+1 = ct exp
(
−λb(b̃

t − γ)
)

5: Return ct+1
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A.2 PROOF OF LEMMA 1

We use induction to solve the recursive formula (3). According to (3), when t = 1 < Tn, ϵ1rdp,n =

ϵrdp,n(qn)
2

T (q)2 , and when t = 2 < Tn, client n spends ϵ2rdp,n =
ϵrdp,n−ϵ1rdp,n

T−1

(
qn
q

)2
. By substituting ϵ1rdp,n

in ϵ2rdp,n, we obtain ϵ2rdp,n =
ϵrdp,n

T−1

(
1− 1

T

(
qn
q

)2)(
qn
q

)2
. We now assume ϵt−1rdp,n satisfies in (4) for

every 2 ≤ t < T . If t < Tn, by substituting ϵt−1rdp,n in (3), we obtain

ϵtrdp,n =

(
ϵrdp,n −

∑t−1
τ=1 ϵ

τ
rdp,n

T − t+ 1

)(
qn
q

)2

=

ϵt−1rdp,n(T − t+ 2)
(

q
qn

)2
− ϵt−1rdp,n

T − t+ 1

(qn
q

)2

(11)

= ϵt−1rdp,n

(
T − t+ 2−

(
qn
q

)2)
T − t+ 1

(12)

=
ϵrdp,n

T − t+ 2

(
qn
q

)2
(

t−2∏
i=1

(
1− 1

T − t+ 2 + i

(
qn
q

)2
)) (T − t+ 2−

(
qn
q

)2)
T − t+ 1

(13)

=
ϵrdp,n

T − t+ 1

(
qn
q

)2 t−1∏
i=1

(
1− 1

T − t+ 1 + i

(
qn
q

)2
)
. (14)

If t = Tn, by substituting ϵt−1rdp,n in (3), we obtain

ϵTn

rdp,n =

(
ϵrdp,n −

∑Tn−1
τ=1 ϵτrdp,n

T − Tn + 1

)
=

ϵTn−1
rdp,n (T − Tn + 2)

(
q
qn

)2
− ϵTn−1

rdp,n

T − Tn + 1

 (15)

= ϵTn−1
rdp,n

(
T − Tn + 2−

(
qn
q

)2)
T − Tn + 1

(
q

qn

)2

(16)

=
ϵrdp,n

T − Tn + 2

(
Tn−2∏
i=1

(
1− 1

T − Tn + 2 + i

(
qn
q

)2
)) (T − Tn + 2−

(
qn
q

)2)
T − Tn + 1

(17)

=
ϵrdp,n

T − Tn + 1

Tn−1∏
i=1

(
1− 1

T − Tn + 1 + i

(
qn
q

)2
)
. (18)

If t > Tn, by substituting ϵt−1rdp,n in (3), we obtain

ϵtrdp,n =

(
ϵrdp,n −

∑t−1
τ=1 ϵ

τ
rdp,n

T − t+ 1

)
=

(
ϵt−1rdp,n(T − t+ 2)− ϵt−1rdp,n

T − t+ 1

)
(19)

= ϵt−1rdp,n =
ϵrdp,n

T − Tn + 1

Tn−1∏
i=1

(
1− 1

T − Tn + 1 + i

(
qn
q

)2
)
. (20)
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A.3 PROOF OF THEOREM 1

We use the explicit solutions of the recursive formula (3), presented in Lem. 1, to prove this theorem.
When t < Tn,

ϵtrdp,n − ϵt−1rdp,n =
ϵrdp,n

T − t+ 1

(
qn
q

)2 t−1∏
i=1

(
1− 1

T − t+ 1 + i

(
qn
q

)2
)

(21)

−
ϵrdp,n

T − t+ 2

(
qn
q

)2 t−2∏
i=1

(
1− 1

T − t+ 2 + i

(
qn
q

)2
)

(22)

= ϵrdp,n

(
qn
q

)2
(

t−2∏
i=1

(
1− 1

T − t+ 2 + i

(
qn
q

)2
))

(23)

×

(
1

T − t+ 1

(
1− 1

T − t+ 2

(
qn
q

)2
)
− 1

T − t+ 2

)
(24)

= ϵrdp,n

(
qn
q

)2
(

t−2∏
i=1

(
1− 1

T − t+ 2 + i

(
qn
q

)2
))

1−
(

qn
q

)2
(T − t+ 1)(T − t+ 2)

.

(25)

The right-hand-side of (25) is larger than equal to zero because qn ≤ q. Therefore, in this case
ϵtrdp,n ≥ ϵt−1rdp,n. When t = Tn,

ϵTn

rdp,n − ϵTn−1
rdp,n =

ϵrdp,n

T − Tn + 1

Tn−1∏
i=1

(
1− 1

T − Tn + 1 + i

(
qn
q

)2
)

(26)

−
ϵrdp,n

T − Tn + 2

(
qn
q

)2 Tn−2∏
i=1

(
1− 1

T − Tn + 2 + i

(
qn
q

)2
)

(27)

= ϵrdp,n

(
Tn−2∏
i=1

(
1− 1

T − Tn + 2 + i

(
qn
q

)2
))

(28)

×

 1

T − t+ 1

(
1− 1

T − Tn + 2

(
qn
q

)2
)
−

(
qn
q

)2
T − Tn + 2

 (29)

= ϵrdp,n

(
Tn−2∏
i=1

(
1− 1

T − Tn + 2 + i

(
qn
q

)2
))

1−
(

qn
q

)2
(T − Tn + 1)

. (30)

The right-hand-side of (30) is again larger than equal to zero because. Therefore, in this case we
also have ϵTn

rdp,n ≥ ϵTn−1
rdp,n . Lem. 1 also shows ϵtrdp,n = ϵt−1rdp,n when t > Tn.
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A.4 PROOF OF THEOREM 2

If the expectation is taken w.r.t. (i) the randomness of local datasets and (ii) the sampling of clients,
and (iii) the randomness of injected Gaussian noise, then the bias is simplified as follows:

∥∥E(i),(ii),(iii)

(
Errort

)∥∥
=

1

N

∥∥∥∥∥
N∑

n=1

E(i),(ii),(iii)

(
∆θtn −

1

qt
(
btn
(
Clip

(
∆θtn, c

t
n

)
+ ztn

)
+ (1− btn)z̃

t
n

))∥∥∥∥∥
=

1

N

∥∥∥∥∥
N∑

n=1

E(i),(ii)

(
∆θtn −

1

qt
bt
n

(
Clip

(
∆θtn, c

t
n

)))∥∥∥∥∥ (31)

=
1

N

∥∥∥∥∥
N∑

n=1

E(i)

(
∆θtn −

qtn
qt
(
Clip

(
∆θtn, c

t
n

)))∥∥∥∥∥ (32)

=
1

N

∥∥∥∥∥
N∑

n=1

E(i)

(
∆θtn

(
qt

qt
− qtn

qt
+

qtn
qt

)
− qtn

qt
(
Clip

(
∆θtn, c

t
n

)))∥∥∥∥∥ (33)

=
1

N

∥∥∥∥∥
N∑

n=1

((
qt

qt
− qtn

qt

)
E(i)

(
∆θtn

)
+

qtn
qt

E(i)

(
∆θtn −

(
Clip

(
∆θtn, c

t
n

))))∥∥∥∥∥ (34)

≤ 1

N

∥∥∥∥∥
N∑

n=1

(
qt

qt
− qtn

qt

)
E(i)

(
∆θtn

)∥∥∥∥∥+ 1

N

N∑
n=1

∥∥∥∥qtnqt E(i)

(
∆θtn −

(
Clip

(
∆θtn, c

t
n

)))∥∥∥∥ (35)

≤ 1

N

∥∥∥∥∥
N∑

n=1

(
qt

qt
− qtn

qt

)
E(i)

(
∆θtn

)∥∥∥∥∥+ 1

N

N∑
n=1

qtn
qt

E(i)

(
∥∆θtn∥

ρ)
(ctn)

ρ−1 (36)

The equality (31) is due to E(iii) (ztn) = E(iii)

(
z̃tn
)
= 0. The equality (32) is due to E(ii)

(
btn
)
= qtn.

The inequality (35) is due to triangle inequality. The inequality (36) is due to the clipping bias
lemma (Das et al., 2023), given any ρ > 1.

A.5 PROOF OF THEOREM 3

If the expectation is taken w.r.t. (i) the randomness of local datasets and (ii) the sampling of clients,
(iii) the randomness of injected Gaussian noise, and (iv) privacy budget assignment randomness,
then the bias is simplified as follows:
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The equality (37) is due to E(iii) (ztn) = E(iii)

(
z̃tn
)
= 0. The equality (38) is due to E(ii)

(
btn
)
= qtn.

The inequality (42) is due to triangle inequality. The inequality (44) is due to the clipping bias
lemma (Das et al., 2023) given any ρ > 1.

We next further simplify the first and second terms on the right-hand side of (44).
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The first term equals zero:
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Equality (45) is due to the independency of randomness between (i) and (iv). Equality (47) is
because of our assumption that the sampling from Pn and of ϵn is independent. Equality (49) is
because

∑N
n=1 q

t
n = qt.

The second term on the right-hand side of (44) can be further simplified into:
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Equality (50) is due to the independency of randomness between (i) and (iv). Equality (51) is because
of our assumption that the sampling from Pn and of ϵn is independent. Combining (44), (49), and
(53), Thm. 3 is proved.

A.6 EXTENDED BACKGROUND

A.6.1 SOME USEFUL LEMMAS FROM PRIOR WORKS

Lemma 2. [Clipping bias (Das et al., 2023) Suppose ϕ(ξ) (where ξ denotes the source of ran-
domness) is an unbiased estimator of ϕ, i.e., Eξ (ϕ(ξ)) = ϕ. Let b(ξ) denote the clipping bias of
Clip (ϕ(ξ), c), i.e., b(c) = ∥ϕ− Eξ (Clip (ϕ(ξ), c))∥. Then for any ρ > 1,

b(c) ≤ Eξ (∥ϕ(ξ)∥ρ)
cρ−1

. (54)
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A.6.2 DIFFERENTIAL PRIVACY

Definition 1 ((ϵ, δ)-DP Dwork et al. (2014)). The randomized algorithm A : χ → R with domain
χ and rangeR satisfies (ϵ, δ)-DP iff for any two neighboring inputsD,D′ ∈ χ that differ by at most
one record, and any measurable subset of outputs S ⊆ R,

Pr (A(D) ∈ S) ≤ eϵPr (A(D′) ∈ S) + δ. (55)

In (55), the privacy budget ϵ ∈ R+ controls the extent to which the output distributions induced by
two neighboring inputs may differ. The δ ∈ [0, 1] quantifies the probability of violating the privacy
guarantee. Allowing a larger δ ∈ [0, 1] improves utility at the cost of a more relaxed (weaker)
privacy guarantee. One way to relax the DP guarantee is to use (α, ϵ)-Rényi DP (RDP) (Mironov,
2017). The α > 1 is the order of Rényi divergence between distributions P := Pr (A(D)) and
P ′ := Pr (A(D′)), defined as

Rα (P∥P ′) := 1

1− α
logEx∼P ′

(
P

P ′

)α

. (56)

While the Rényi divergence can be defined for α < 1, including negative orders, the RDP defini-
tion Mironov (2017) is based on α ≥ 1 and is outlined as follows.
Definition 2 (Rényi DP (RDP) Mironov (2017)). The randomized algorithm A : χ → R with
domain χ and rangeR is (α, ϵ)-RDP iff for any neighboring inputs D,D′ ∈ χ, we have

Rα (Pr (A(D))∥Pr (A(D′))) ≤ ϵ. (57)

When accounting for total privacy consumption over an iterative algorithm, RDP offers a smoother
composition property than DP. RDP allows the privacy budget to accumulate linearly with the num-
ber of training rounds (Mironov, 2017). This simplifies the tracking and management of privacy
budgets over time. We next recall a lemma from (Mironov, 2017). Lemma 3 shows how RDP can
be converted to DP when needed.
Lemma 3. If A is an (α, ϵrdp)-RDP algorithm, it also satisfies (ϵ, δ)-DP for any 0 < δ < 1, where

ϵ = ϵrdp + log
α− 1

α
− log δ + logα

α− 1
. (58)

To implement privacy guarantees, we use the sampled Gaussian mechanism (SGM) Mironov et al.
(2019), formally defined as follows.

Definition 3 (SGM Mironov et al. (2019)). Consider the algorithm A which maps a subset D ⊆ χ
to Rw and has ℓ2-sensitivity c. The sampled Gaussian mechanism parameterized by the sampling
rate q ∈ [0, 1], c, and noise multiplier σ > 0 is defined as

Gσ,c,q(D) := A({x | x ∈ D is sampled with Probability q}) +N (0, c2σ2Iw), (59)

where each element of D is (Poisson) sampled independently at random with probability q, and
N (0, c2σ2Iw) is spherical w-dimensional Gaussian noise with per-coordinate variance c2σ2.

Lemma 4 (Mironov et al. (2019)). The SGM Gσ,c,q with c = 1 guarantees (α, ϵ)-RDP, where
ϵ ≤ 2αq2

σ2 .

A.7 EXTENDED EXPERIMENTAL SETUP

We conduct our experiments in Python 3.11 using Pytorch leveraging the 4 × L4 24 GB GPU.
Below, we provide additional details on the experimental setups used in Sec. 5 to analyze how our
time-adaptive DP-FL framework enhances the privacy-utility tradeoff and in Appendix A.8 which
extends experiments for further analysis.
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Details on Datasets. For our experiments, we use FMNIST, MNIST, Adult Income, and CIFAR10
datasets. Both FMNIST and MNIST datasets have a training set of 60,000 and a test set of 10,000
28 × 28 images, associated with 10 labels. The Adult Income dataset consists of 48,842 samples
with 14 features and is split into a training set of 32,561 samples and a test set of 16,281 samples.
The CIFAR10 dataset consists of 60,000 32 × 32 color images in 10 classes, with 6000 images per
class. There are 50,000 training images and 10,000 test images.

Simulation Parameters. Throughout our simulations, we use SGD optimizer and momentum equal
to 0.9. We also use a CosineAnnealing learning rate scheduler from (Loshchilov & Hutter, 2016)
for faster convergence. In Sec.5, we fix the spending-based sample rate (during spend mode) to
q = 0.9 and the average clipping norm to c = 250. We consider the transition from saving round to
spending round occurs in the middle of training. I.e., given the total number of rounds T = 25, we
set Tgroup,1 = Tgroup,2, Tgroup,3 = 13. The obtained results are averaged over three runs. In Table 4
we summarize other hyperparameters, including learning rate (λ), number of clients (N ), batch size
(B), number of local epochs (L), and the saving-based sampling rates of clients from privacy groups
1, 2, and 3 (qgroup,1, qgroup,2, qgroup,3).

Table 4: Parameters for different datasets, used in Table 2 and Figure 2. We set T = 25, Tgroup,1 =
Tgroup,2, Tgroup,3 = 13, q = 0.9, and c = 250.

Dataset (ϵgroup,1, ϵgroup,2, ϵgroup,3) λ N B L (qgroup,1, qgroup,2, qgroup,3)

FMNIST (10, 20, 30) 0.001 100 125 30 (0.5, 0.6, 0.7)
MNIST (10, 15, 20) 0.001 100 125 30 (0.5, 0.6, 0.7)
Adult Income (10, 20, 30) 0.01 80 32 5 (0.6, 0.7, 0.8)
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Figure 3: Average Training loss of clients in our time-adaptive DP-FL scheme against the IDP-
FedAvg baseline with FMNIST dataset in training rounds T = 25. We set (ϵgroup,1, ϵgroup,2, ϵgroup,3) =
(10, 20, 30) in our scheme and IDP-FedAvg.

A.8 EXTENDED EXPERIMENTAL RESULTS

Impact of Training Rounds on Model Convergence. We extend experiments to more training
rounds— T ∈ {25, 50, 100}. For example, in Figure 4, we set T = 50, and plot the global test
accuracy vs. communication rounds. It is evident from Figure 4 that for our time-adaptive DP-
FL framework, as the number of training rounds increases, the upward trend in the accuracy starts
slowing down. However, increasing the number of communication rounds does not always improve
accuracy. This is because, with more rounds, the privacy budget is distributed across more rounds,
resulting in a lower budget per round. Consequently, the increased effect of perturbation can degrade
the privacy-utility tradeoff. This is demonstrated in our FMNIST and MNIST experiments, as shown
in Table 5, in which we report the final-round test accuracy across different schemes. As shown in
the third column of Table 5, when training rounds increase from 25 to 50 and from 50 to 100, Fe-
dAvg (the non-DP baseline scheme) consistently demonstrates an upward trend in both MNIST and
FMNIST experiments. However, our scheme (fifth column of Table 5) and IDP-FedAvg (fourth col-
umn), which operate under limited group privacy budgets (ϵgroup,1, ϵgroup,2, ϵgroup,3) = (10, 20, 30),
do not exhibit the same consistent improvement. They exhibit an upward trend from 25 to 50 rounds
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but not consistently from 50 to 100 rounds. Notably, the best performance amongst the DP ex-
periments of Table 5) is achieved by our scheme, reaching 75.63% after T = 100 rounds for the
FMNIST dataset, and 90.78% at T = 50 rounds for the MNIST dataset.
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Figure 4: Global test accuracy for increasing number of communication rounds. In this figure,
we use the FMNIST dataset, N = 100 clients, L = 30 local iterations, (ϵgroup,1, ϵgroup,2, ϵgroup,3) =
(20, 20, 20), c = 250, and q = 0.8.

Table 5: Benchmarking our time-adaptive DP-FL scheme against the baselines in terms of
global test accuracy and across varying datasets and number of training rounds (T). We set
(ϵgroup,1, ϵgroup,2, ϵgroup,3) = (10, 20, 30) in our scheme and IDP-FedAvg.

Dataset T FedAvg
(non-DP)

IDP-FedAvg Ours

FMNIST
25 72.95 62.57 66.55
50 76.00 71.80 75.51

100 80.14 71.29 75.63

MNIST
25 90.23 64.53 74.69
50 93.42 89.57 90.78

100 95.91 87.00 90.15
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Figure 5: Test accuracy for our time-adaptive DP-FL framework vs. IDP-FedAvg, using
stricter privacy budgets (ϵgroup,1, ϵgroup,2, ϵgroup,3) = (2, 5, 10). In this figure, we use N = 100
clients, T = 50 global rounds, L = 30 local iterations, c = 250, and q = 0.8.

Impact of Different Privacy Budgets on Model Utility. We present additional experimental results
to evaluate the impact of stricter privacy budgets (ϵgroup,1, ϵgroup,2, ϵgroup,3) = (2, 5, 10) and (5, 5, 5)
on model utility (test accuracy). The results are presented in Figure 5 and Tables 6 and 7. As
expected, we observe that lower privacy budgets hamper utility. In particular, in Table 6, we bench-
mark our scheme against the IDP-FedAvg baseline using two sets of non-uniform privacy budgets,
(10, 20, 30) and (2, 5, 10), evaluated across two datasets. Our findings suggest that the time-adaptive
DP-FL framework yields considerably higher utility than IDP-FedAvg, also under stringent privacy
constraints. Similarly, Table 7 focuses on uniform privacy budgets and further confirms that even
with a reduction in privacy budgets from (10, 10, 10) to (5, 5, 5), our scheme consistently outper-
forms the corresponding baselines.
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Table 6: Benchmarking our time-adaptive DP-FL scheme against the baselines in terms of the final-
round test accuracy and across varying privacy budgets (ϵgroup,1, ϵgroup,2, ϵgroup,3). We set T = 25 and
L = 30 for ϵ = {10, 20, 30} and T = 25 and L = 50 for ϵ = {2, 5, 10}, (qgroup,1, qgroup,2, qgroup,3) =
(0.3, 0.5, 0.7).

Dataset Privacy Budgets IDP-FedAvg
Non-uniform

Ours
Non-uniform

FMNIST (10, 20, 30) 62.57 66.55
FMNIST (2, 5, 10) 60.99 65.75
MNIST (10, 20, 30) 64.53 77.38
MNIST (2, 5, 10) 63.35 66.50

Table 7: Benchmarking our time-adaptive DP-FL scheme against the baselines in terms of the final-
round test accuracy and across varying uniform privacy budgets ϵgroup,1 = ϵgroup,2 = ϵgroup,3. We set
T = 25 and L = 30.

Dataset Privacy
Budgets

Adaptive Clipping
(βs, λs) = (0, 1.0)

DP-FedAvg Adaptive Clipping
optimal (βs, λs)

Ours

FMNIST (10, 10, 10) 60.23 64.8 67.64 67.90
FMNIST (5, 5, 5) 52.39 51.06 52.39 60.79
MNIST (10, 10, 10) 65.59 76.79 78.04 80.2
MNIST (5, 5, 5) 55.48 61.45 55.48 69.07

Additional Baseline. We benchmark our scheme against the adaptive clipping method Andrew
et al. (2021), with pseudocode provided in Algorithm 6 and results presented in the third and fifth
columns of Table 7. This baseline is designed for uniform privacy budgets and is parameterized
by the server-side learning rate λs and momentum parameter βs, which are not privacy-specific. To
ensure a fair comparison with our scheme and other baselines in our paper, we set these parameters
as λs = 1.0 and βs = 0.0. In column 3, we use these default values, while in column 5, we select
the optimal values from a set of possible choices. As shown in the table, our scheme consistently
outperforms adaptive clipping, even when the baseline’s parameters are optimally tuned.

Effect of Number of Clients on Model Utility. We experiment with different numbers of clients—
N ∈ {30, 60, 75}—for the MNIST dataset to validate the applicability of our time-adaptive DP-
FL framework across various scenarios. Additionally, we also perform experiments to analyze if
our framework outperforms the baselines, in terms of the utility of the trained model. Our results
in Table 8 indicate that for all the different numbers of clients that we consider, our framework
remarkably surpasses the utility of the baseline.

Table 8: Comparison of model utility on a varying number of clients and comparison of model utility
for time-adaptive DP-FL with baselines for varying number of clients

Number of clients SETUP
Privacy Budgets

IDP-FedAvg
Non-uniform

Ours
Non-uniform

30 (10, 20, 30) 72.35 73.34

60 (10, 20, 30) 78.69 83.83

75 (10, 20, 30) 70.93 77.53

The Choice of Hyperparameters. We evaluate our DP-FL framework with different choices
of hyperparameters—different saving-based sampling rates (qgroup,1, qgroup,2, qgroup,3) and different
saving-to-spending transition rounds (Tgroup,1, Tgroup,2, Tgroup,3). The final-round test accuracies for
different choices of (qgroup,1, qgroup,2, qgroup,3), and across both MNIST and FMNIST datasets, are
presented in Table 9. In this table, in Column 3 we set these rates as (0.5,0.6,0.7), in Column 4
as (0.3, 0.5, 0.7), and in Column 5 as (0.6, 0.6, 0.6). As shown in the table, our scheme, which
uses lower sampling rates during saving—e.g., for all i ∈ [3], qgroup,1 is smaller than q = 0.9 in
this table—outperforms the IDP-FedAvg baseline (Column 6) that uses a uniform sampling rate q
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over time. This table also shows that our method is relatively robust against the clients’ choice of
saving-based sampling rates, consistently achieving performance between that of IDP-FedAvg and
the ideal-case of FedAvg without DP (Column 2).

Table 9: Evaluating the impact of saving-based sampling rates of different privacy groups,
(qgroup,1, qgroup,2, qgroup,3), on our time-adaptive DP-FL scheme in comparison with the baseline. We
set (ϵgroup,1, ϵgroup,2, ϵgroup,3) = (10, 20, 30), T = 25, L = 30 and N = 100, Tgroup,1 = Tgroup,2 =
Tgroup,3 = 13, q = 0.9, c = 250, λ = 0.001, and B = 125.

DATASET FedAvg
non-DP

Ours
(0.5, 0.6, 0.7)

Ours
(0.3, 0.5, 0.7)

Ours
(0.6, 0.6, 0.6)

IDP-FedAvg

MNIST 90.23 72.72 77.39 71.6 64.53

FMNIST 72.95 70.57 66.55 67.75 62.57

The final-round test accuracies for different choices of saving-to-spending transition rounds
(Tgroup,1, Tgroup,2, Tgroup,3), and across both MNIST and FMNIST datasets, are presented in Table 10.
We let the total number of rounds to equal to T = 25. In this table, in Column 3 we set the tran-
sition rounds as (7,7,7), in Column 4 as (7, 13, 19), in Column 5 as (19, 13, 7), and in Column 6
as (19, 19, 19). As shown in the table, our scheme, which transitions from saving to spend mode
sometime between the first and final round—i.e., for all i ∈ [3], 1 < Tgroup,1 < 25—outperforms
the IDP-FedAvg baseline (Column 7) which can be viewed as a special case of ours with transi-
tion rounds set to (1, 1, 1). This table shows the robustness of our method to the client’s choice of
transition rounds, showing less than a 2% variation in accuracy across different choices while con-
sistently achieving performance between that of IDP-FedAvg and the ideal-case of FedAvg without
DP (Column 2).

Table 10: Evaluating the impact of saving-to-spending transition rounds of different privacy
groups, (Tgroup,1, Tgroup,2, Tgroup,3), on our time-adaptive DP-FL scheme in comparison with the
baseline. We set (ϵgroup,1, ϵgroup,2, ϵgroup,3) = (10, 20, 30), T = 25, L = 30, N = 100,
(qgroup,1, qgroup,2, qgroup,3) = (0.3, 0.5, 0.7), q = 0.9, c = 250, λ = 0.001, and B = 125.

DATASET FedAvg
non-DP

Ours
(7, 7, 7)

Ours
(7, 13, 19)

Ours
(19, 13, 7)

Ours
(19, 19, 19)

IDP-FedAvg

MNIST 90.23 74.38 74.69 72.24 73.88 64.53

FMNIST 72.95 66.72 65.29 65.34 67.5 62.57

Experiments on The CIFAR10 Dataset. We run experiments on the CIFAR10 dataset. The final-
round test accuracies of our time-adaptive DP-FL framework in comparison with the FedAvg (non-
DP) and IDP-FedAvg baselines are presented in Table 11. The results suggest that our proposed
approach surpasses IDP-FedAvg, by lowering the gap to the ideal case of FedAvg by about 9%. We
note that the test accuracies reported for all schemes in this table are relatively lower than those we
reported earlier in this paper for the MNIST, FMNIST, and Adult Income datasets. We hypothe-
size that this happens due to the increased complexity of the CIFAR10 dataset, particularly when
distributed in a non-iid manner in an FL setting with N = 100 clients.

Table 11: Benchmarking our time-adaptive DP-FL framework against the baselines using the CI-
FAR10 dataset. We set (ϵgroup,1, ϵgroup,2, ϵgroup,3) = (100, 50, 25), T = 50, L = 30, N = 100,
(qgroup,1, qgroup,2, qgroup,3) = (0.5, 0.5, 0.5), q = 0.9, c = 250, λ = 0.001, and B = 125.

DATASET FedAvg IDP-FedAvg Ours
CIFAR10 44.42 34.97 35.41
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