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Abstract

Simulating collective decision-making involves more than aggregating individual
behaviors; it emerges from dynamic interactions among individuals. While large
language models (LLMs) offer strong potential for social simulation, achieving
quantitative alignment with real-world data remains a key challenge. To bridge
this gap, we propose the Mean-Field LLM (MF-LLM) framework, the first
to incorporate mean field theory into LLM-based social simulation. MF-LLM
models bidirectional interactions between individuals and the population through
an iterative process, generating population signals to guide individual decisions,
which in turn update the signals. This interplay produces coherent trajectories
of collective behavior. To improve alignment with real-world data, we introduce
IB-Tune, a novel fine-tuning method inspired by the Information Bottleneck
principle, which retains population signals most predictive of future actions while
filtering redundant history. Evaluated on a real-world social dataset, MF-LLM
reduces KL divergence to human population distributions by 47% compared to non-
mean-field baselines, enabling accurate trend forecasting and effective intervention
planning. Generalizing across 7 domains and 4 LLM backbones, MF-LLM provides
a scalable, high-fidelity foundation for social simulation.

1 Introduction

Simulating how population-level decisions evolve over time is essential for predicting the spread
of public opinion [3], household responses to policy shocks [17], and crowd dynamics during
emergencies [15]. Unlike static aggregation of individual behaviors, collective decision-making
emerges from dynamic interactions among individuals [33, 34, 5], where each agent’s choices are
shaped both by private observations and by the evolving actions of others [7]. These individual
decisions, in turn, continuously reshape the population distribution, creating a feedback loop that
drives population dynamics. Classic agent-based models simulate this loop using handcrafted
rules [6, 25], but often lack realism and fail to generalize beyond narrow scenarios.

Recent studies show that large language models (LLMs) can endow agents with rich world knowl-
edge and generative capabilities, enabling simulations ranging from “generative towns” [31, 48] to
social-media environments [43, 45, 35], election forecasting [44], and macroeconomic modeling [22].
State-of-the-art simulations such as OASIS [43] and AgentSociety [32] excel at environment model-
ing but remain prompt-centric in agent decision-making—relying on manually crafted role templates,
heuristic memory-retrieval rules, and fixed interaction schedules. These expert-crafted heuristics
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Figure 1: MF-LLM framework for simulating population decision dynamics. When an event
occurs (e.g., a rumor), individuals make sequential decisions (e.g., “This is outrageous!”) influenced
by evolving collective behavior such as public opinion. Early decisions shape collective behavior,
which in turn influences future actions, creating a feedback loop. MF-LLM captures this loop by
alternating two LLM-based modules: a policy model that generates individual decisions based on
personal states and population signals, and a mean field model that updates population signals from
new actions. This iterative process closely aligns with real-world population dynamics (top right).

enhance qualitative plausibility but lack principled alignment to real-world behavioral data. This
limits their applications in tasks requiring quantitative fidelity to real-world behavior, such as ex-ante
policy evaluation or counterfactual intervention planning. Bridging this realism gap—transforming
qualitative simulations into social simulations that quantitatively match real data—remains an
open challenge [38].

Despite recent advances, three key challenges hinder progress toward social simulation that aligns
with real-world data. (C1) Prompt-based heuristics lack data alignment. Many existing simulations
rely on carefully crafted prompts or scripted interaction schedules. While these may produce plausible
narratives, they fail to track the evolving dynamics of real-world populations. As shown in Fig. 1 (top
right), the prompt-based simulation (blue) initially follows the real-world rumor trend, but quickly
diverges as collective behavior shifts. (C2) Supervised fine-tuning overlooks interaction dynamics.
Supervised fine-tuning (SFT) offers a direct path to align LLM agents with real-world data. However,
it treats each decision as independent, ignoring how agents influence one another over time. As a
result, SFT may fit individual behavior but fails to reproduce collective dynamics [28, 7]. In Fig. 1
(top right), SFT-based simulation (orange) fails to follow the real-world rumor trajectory. (C3)
Balancing fidelity and scalability remains a core challenge. As agent population grows, simulating
agents’ interactions becomes increasingly complex and costly. Yet such interactions are essential
for reproducing real-world dynamics, as collective behavior emerges from agent-to-agent influence.
Balancing fidelity to real-world behavior with scalability thus remains a core challenge.

Contributions. To address the challenges of quantitative population simulation (C1–C3), we make
the following contributions:

1. MF-LLM: scalable simulation via mean-field agent-population interaction. We introduce
Mean-Field LLM (MF-LLM; see Fig. 1), a framework for simulating population dynamics. Inspired
by mean-field theory [19], MF-LLM replaces agent-to-agent interactions with agent–population
interactions. This avoids the combinatorial cost of modeling all agent-to-agent interactions (C3)
while preserving key feedback dynamics (C2). To implement this, MF-LLM alternates between two
LLM-based modules to generate the trajectory of collective decisions over time: (i) a mean-field
model that generates dynamically updated population signals based on past individual actions, and
(ii) a policy model that generates subsequent individual actions informed by these population signals.
This design reflects the bidirectional interaction between individual decisions and population
behavior (C2), while remaining scalable to large populations (C3).

2. IB-Tune: a data-driven algorithm for real-data alignment. To overcome the limitations of
SFT (C1), we propose a fine-tuning algorithm, IB-Tune, to optimize the above LLM modules. (i)
The mean-field model is trained with an information bottleneck objective, extracting population
signals that carry predictive information about future actions while discarding redundant history.
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(ii) The policy model is trained via negative log-likelihood supervision against real-world actions.
This creates a feedback loop: accurate population signals lead to more human-like actions, which
in turn improve the learning of decision-relevant population signals (C2).

3. Evaluation and key findings. We evaluate MF-LLM on the WEIBO corpus (∼ 4,500 real-
world events): (i) MF-LLM aligns closely with real-world population trends (Fig. 2), reduces
KL divergence by 47% over non-mean-field baselines, outperforms baselines across semantic
dimensions (Fig. 3), and generalizes across domains (Fig. 4) and LLM backbones (Table 1).
(ii) Ablation results show that both the mean-field module and IB-Tune are critical, with up to
118% degradation when removed (Table 2). (iii) We further examine MF-LLM’s real-world
applicability—forecasting and intervention planning (Fig. 5)—and find that exogenous signal
injection further improves fidelity (Fig. 8).

Code is available at https://github.com/Miracle1207/Mean-Field-LLM.

2 Related Work

A full discussion of related work appears in Appendix H; we highlight key directions here.

Agent-Based Models (ABMs). ABMs have long served as a foundation for modeling complex social
systems through local agent interactions, with seminal applications in artificial societies [10], crowd
behavior [15], markets [36], ecosystems [14], and public policy [2, 26]. While effective for exploring
emergent phenomena, classical ABMs often rely on manually designed rules, limiting scalability and
generalization to real-world complexity.

LLMs for Social Simulation. Recent work has explored using large language models (LLMs) to
enhance social simulation, leveraging their generative capabilities and world knowledge. Systems
such as OASIS [43, 45], ElectionSim [44], EconAgent [22, 42], and toolkits like GenSim [35]
and AgentSociety [32] demonstrate promising use cases across domains. However, many current
LLM-based agents operate on prompt-engineered templates, scripted roles, and heuristic memory,
with limited alignment to real-world data [8, 23], hindering their quantitative reliability.

Mean Field Theory for Scalable Interactions. Mean field theory offers a principled way to
model large-scale agent interactions by replacing explicit pairwise interactions with population-level
dynamics [19, 16, 41]. It has been applied in social influence [4, 40], energy systems [9], traffic [11],
and economics [27]. While prior work shows its success in reinforcement learning, extending it to
LLMs is non-trivial: modeling populations where each agent is an LLM makes dynamic updates
computationally expensive. These challenges motivate our MF-LLM framework.

3 Mean-Field LLM

We begin by formalizing the problem of simulating population decision dynamics (§3.1), then
introduce MF-LLM framework (§3.2) and IB-Tune algorithm (§3.3) to align with real-world data.

3.1 Problem Statement

We aim to simulate population decision-making in text-driven environments, where population
dynamics capture evolving collective behaviors emerging from decentralized decisions of interacting
agents (C2). Consider a population of N agents making sequential decisions in a shared, language-
based space. At each timestep t, a subset of Nt agents (

∑
t Nt = N ) acts simultaneously based on

textual states encoding personal attributes (e.g., roles, preferences) and environmental observations
(e.g., task descriptions). We denote the agent states as s⃗t = (s1t , . . . , s

Nt
t ), where sit ∈ S represents

agent i’s state. Each agent selects an action ait ∈ A, forming a joint action vector a⃗t = (a1t , . . . , a
Nt
t ),

which influences the environment and future behaviors. The parameter Nt controls simulation
granularity: larger Nt enables efficient, coarse rollouts, while smaller Nt captures finer dynamics.

Unlike traditional MDPs or Markov games with discrete actions, our language-based simulation
operates in open-ended natural language, where both state space S and action spaceA are unbounded
free-form text. We model agent decision-making with an LLM-driven policy, leveraging LLMs’
generative power to produce context-aware, semantically rich behaviors grounded in broad priors.
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3.2 Mean-Field LLM Framework

To quantitatively simulate population dynamics, we propose the Mean-Field LLM (MF-LLM) frame-
work—the first to introduce mean-field theory [19] into LLM-driven social simulation. We now
describe the core components of the MF-LLM framework.

Scalable Interaction Modeling via Mean Field. Simulating all agent-to-agent interactions be-
comes intractable as population size and time horizon grow. While full interaction histories can
be encoded for small groups, this approach does not scale to realistic population settings (C3). To
address this, MF-LLM introduces a mean-field approximation [41, 27] to model agent–population
dynamics without tracking all pairwise interactions. Unlike agent-centric memory designs that store
and retrieve individual experiences [31, 13], the mean field in MF-LLM encodes a population-centric,
continuously evolving signal that influences subsequent agent decision-making. It is initialized as an
empty string m0 and recursively updated by an LLM µ, referred to as the mean field model:

mt ← µ(mt−1, s⃗t−1, a⃗t−1), (1)

where (s⃗t−1, a⃗t−1) represent the latest agent states and actions. Instead of passively accumulating
interaction histories, MF-LLM dynamically distills decision-critical information from evolving
population trajectories. This mechanism preserves essential social dynamics while maintaining
scalability within LLM context limits. Detailed mean-field prompts are provided in Appendix F.4.

To stabilize early-stage simulation, we design a warm-up phase where the mean field is updated with
real actions a⃗∗t from background context. After twarmup, the simulation proceeds with policy-generated
actions. twarmup is determined based on task-specific considerations, as discussed in the experiments.

Decision-Making via Policy Model. Given the current mean field mt and individual state sit, each
agent selects an action based on a language-model-driven policy. This policy maps textual inputs to a
distribution over possible textual actions:

ait ∼ πi(· | sit,mt), (2)

where πi : S × M → A denotes the agent’s LLM-based policy. By operating in unbounded
language spaces, MF-LLM captures highly expressive, context-sensitive, and adaptive decision-
making, bridging closer to real-world complexity. Detailed policy prompts are shown in Appendix F.4.

Environment Transition Dynamics. After all Nt agents complete their decisions at timestep t,
the system transitions to the next state. State transitions depend on the current joint state-action pair
(s⃗t, a⃗t) and the mean field mt:

s⃗t+1 ∼ P (· | s⃗t, a⃗t,mt) , (3)

where P is the environment-specific stochastic transition function. This setup enables MF-LLM to
capture both individual decision-making and population-level evolution over time. Pseudocode 1
summarizes the overall framework. We also provide intuitive examples in Appendix C to illustrate
how MF-LLM models complex and heterogeneous interactions.

Pseudocode 1 Simulation Procedure of the MF-LLM Framework
1: Input: Number of subset agents Nt, time horizon T , warm-up horizon twarmup.
2: Initialize: Mean field m0 as empty string, agent states {si0}Ni=1.
3: for t = 0 to T − 1 do
4: if t ≤ twarmup then ▷ Warm-up phase using background actions
5: Retrieve real actions: a⃗t ← a⃗∗t
6: else ▷ Simulation phase using LLM policy
7: for each agent i in active set do ▷ subset of Nt agents active at time t
8: Observe sit, mt; generate action ait ∼ πi(· | sit,mt)

9: Form joint action: a⃗t ← (a1t , . . . , a
Nt
t )

10: Update mean field: mt+1 ← µ(mt, s⃗t, a⃗t)
11: Environment transition: s⃗t+1 ∼ P (· | s⃗t, a⃗t,mt)

12: Output: Sequence of simulated actions {a⃗t}Tt=0
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3.3 IB-Tune Algorithm

While MF-LLM captures population dynamics using pretrained LLMs, its alignment with real-world
data can be further improved through targeted fine-tuning. We propose IB-Tune, a fine-tuning
algorithm that optimizes: (1) the mean field model, to extract predictive population-level signals;
and (2) the policy model, to generate behaviorally realistic actions conditioned on these signals.

Mean Field Model Optimization. In the MF-LLM framework (Section 3.2), the mean field mt

serves as a dynamic population signal that encodes predictive information about future individual
actions. To enhance its predictive value and compress irrelevant history, we optimize mt via the
Information Bottleneck (IB) principle [37, 1], which learns representations that retain only task-
relevant information. Formally, given input variables X and target variables Y , the IB objective seeks
a latent variable Z that minimizes the trade-off:

minZ I(Z; X)− β · I(Z; Y ), (4)

where I(·; ·) is mutual information and β balances compression and prediction.

Applying this principle, we construct the mean field mt as a textual representation that retains the
essential information to predict individual actions in the next step Y = {a∗it }

Nt
i=1 while discarding

irrelevant details from historical trajectories X = {(s⃗∗τ , a⃗∗τ )}tτ=0. This leads to the IB-style objective:

minmt
I(mt; X)− β · I(mt; Y ), (5)

To approximate the predictive term I(mt; Y ), we leverage the intuition that an informative mean field
should enable the policy to better reproduce real-world behavior. Following standard IB practice [1],
we approximate it via the log-likelihood of observed actions under the policy model:

I(mt; Y ) ≈
∑Nt

i=1 log π(a
∗i
t | sit,mt). (6)

For the compression term I(mt; X), we adopt a variational upper bound that makes the objective
tractable. Full derivation of this bound is shown in Appendix G.1. Let µϕ(mt | X) denote the learned
posterior distribution and r(mt) a fixed prior induced by a pretrained LLM. Following standard IB
approximations [1], we bound the term as:

I(mt;X) ≤ Ep(X)

[
KL

(
µϕ(mt | X) ∥ r(mt)

)]
= Ep(X)

[
Eµϕ(mt|X)

[
logµϕ(mt | X)−log r(mt)

]]
.

In practice, we instantiate X as the immediate trajectory {mt−1, s⃗t−1, a⃗t−1} to balance predictive
richness and computational efficiency. Combining the above, the final objective for optimizing the
mean field model rewrites Eq. 5 as:

Lmean-field =
∑T

t=1

[
Ep(Xt)KL

(
µϕ(mt | Xt) ∥ r(mt)

)
− β

∑Nt

i=1 log π
(
a∗it | sit,mt

)]
, (7)

where mt ∼ µϕ(· | mt−1, s⃗t−1, a⃗t−1). This objective encourages mt to serve as a compact yet
predictive population signal, improving the fidelity of the decision-making of the downstream agent.

Policy Model Optimization. The policy model π governs individual decision-making conditioned
on private states and the mean field. Each agent observes its own state sit and the shared mean field
mt, selecting an action ait accordingly. We assume a factorized policy structure, where the joint
action distribution decomposes as:

π(⃗at | s⃗t,mt) =
∏Nt

i=1π(a
i
t | sit,mt),

with all agents sharing the same policy model π. Agent-specific behavior arises naturally from
personalized state inputs sit, expressed in rich natural language. This design ensures scalability and
generalization across heterogeneous populations.

To align the policy model with real-world agent behavior, we minimize the negative log-likelihood of
observed actions:

Lpolicy = −
∑T

t=1

∑Nt

i=1 log π(a
∗i
t | sit,mt), (8)

where a∗it denotes the ground-truth action of agent i at time t. This objective encourages the policy
model to generate behaviorally realistic individual actions conditioned on both private states and
evolving population signals, while continuously tracking the evolution of population dynamics.
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4 Experiments

We evaluate MF-LLM on its ability to simulate population decision dynamics using the WEIBO
corpus. Our experiments are structured around two core questions:

1. How Real is MF-LLM? Evaluating Its Fidelity and Generalization (§4.3). We assess
MF-LLM’s ability to match real-world decision trajectories across temporal trends, semantic
dimensions, and diverse social domains, and evaluate its robustness across multiple base LLMs.

2. What Drives MF-LLM? Dissecting the Mean Field and IB-Tune Mechanisms (§4.4). We
conduct ablations to assess the necessity of the mean-field module and the IB-Tune algorithm for
ensuring simulation fidelity.

4.1 Evaluation Setup

Dataset. We conduct experiments on both the WEIBO corpus and a TWITTER dataset. The WEIBO
corpus [24] contains over 5,000 real-world events, hundreds of temporally ordered user responses
per event, and rich user profiles. Its scale, accessibility, and granularity make it well-suited for
modeling population decision dynamics. Details are provided in Appendix F.1. The TWITTER
dataset2 contains a large collection of tweet–reply pairs centered on popular keywords, while a
MARKET BEHAVIOR dataset constructed from Bitcoin-related tweet–reply interactions is used to
simulate collective bullish/bearish sentiment dynamics. Results on the TWITTER and MARKET
BEHAVIOR datasets show consistent trends with those on WEIBO; due to page limitations, these
results are presented in Appendix B.2.

Baselines. Our baselines are drawn from existing LLM-based frameworks (e.g., AgentSociety[32],
OASIS[43]) based on their designs for dynamic population interactions (Details in Appendix F.2).

• State[44]: LLM conditioned only on user profile and event topic.
• Recent[45, 32]: State + k most recent actions from other agents (e.g., Top-k comments).
• Popular[43, 29]: State + k most popular actions from other agents (by followers, likes, etc.).
• SFT[30]: Supervised fine-tuning on state–action pairs; trained to convergence (Appendix Fig. 6).

For evaluation, we compare the outputs of our MF-LLM and baselines with ground-truth responses
from the WEIBO corpus (hereafter Real data).

4.2 Evaluation Metrics

To evaluate the accuracy of LLM-based simulation of population decision-making dynamics, we
adopt a micro-to-macro evaluation approach: (1) we first assess individual agent decisions (both real
and generated actions); (2) then evaluate the decision distribution over a subset of agents at each
timestep, capturing temporal trends in decision distribution over time. Accordingly, we design two
types of metrics: one for individual actions and one for action distribution similarity.

Metrics for Individual Actions. To assess the policy model’s ability to generate realistic actions for
individual agents, we use GPT-4o-mini3 to evaluate both real and generated text actions. We define
evaluation dimensions such as sentiment (e.g., happy, angry, calm, doubtful), attitude, behavior,
stance, belief, subjectivity, intent, and rumor, as informed by related work [29, 12]. A detailed list of
evaluation dimensions, prompt templates, and the reliability and efficiency analysis of GPT-4o-mini
as an evaluator are provided in Appendix F.3.

Metrics for Action Distribution. Building on individual action evaluation, we compute the action
distribution over Nt text actions at each timestep t. To assess the similarity between generated and
real distributions, we use: (1) KL Divergence and (2) Wasserstein Distance: measure distributional
similarity, averaged across all timesteps; (3) Dynamic Time Warping (DTW) Distance: evaluates
temporal alignment between time series, assessing how well generated trends follow real dynamics;
(4) Negative Log-Likelihood (NLL) Loss: measures log-probability of ground-truth actions; (5) Macro
F1 and (6) Micro F1: measure classification accuracy over generated action sets.

2https://www.kaggle.com/datasets/jackksoncsie/famous-keyword-twitter-replies-dataset/
data

3We use the version o4-mini-2025-04-16.
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Figure 2: Comparison of collective decision trajectories in three events: our MF-LLM, Real data,
and baselines—State, Recent, Popular, SFT . Event (a) Liu Xiang rumors (top row): spread vs.
counter-rumor rates and comment vs. share behaviors. Event (b) Delayed retirement debate (middle
row): calm vs. angry sentiment and neutral vs. opposing stances. Event (c) Weibo speech-freedom
debate (bottom row): angry vs. happy sentiment over 900 timesteps (Real data spans 500). Our
MF-LLM closely matches Real data trends in all events. Full curves see Appendix Fig. 7.
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(red)—on 5 distributional metrics and 8 semantic dimensions of actions. KL Divergence (Inverse),
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Figure 4: Comparison of algorithms across seven event domains. Heatmaps show six metrics
evaluating action distribution fidelity, with darker blue indicating better performance. MF-LLM
(ours) demonstrates strong generalization across all domains, even in challenging cases like Culture.
4.3 How Real is MF-LLM? Evaluating Its Fidelity and Generalization
Facet A: Temporal Fidelity — Matching Real-World Decision Trajectories To demonstrate
MF-LLM’s ability to reproduce realistic decision trajectories over time, we simulate three events
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with increasing horizons and agent scale: (a) short-horizon rumor propagation, (b) mid-horizon
retirement debate, and (c) long-horizon speech freedom discourse (Fig. 2). For each event, we track
key action metrics relevant to its topic (full curves in Appendix B Fig. 7). Across all events, MF-LLM
(red) closely aligns with ground-truth data (black), while baselines—State, Recent, Popular, and
SFT—often lag behind or smooth over critical transitions. (a) Rumor Propagation. MF-LLM
accurately captures the tipping point around step 75, followed by a realistic decline. Baselines
over-predict virality and fail to reverse the trend. (b) Retirement Debate. MF-LLM matches the
anger peak at T≈140 within three steps, while Popular and SFT lag by over 20 steps, missing the
timing of sentiment shifts. (c) Speech Freedom. Beyond matching the real-world trajectory up to
T≈500, MF-LLM continues generating coherent trends up to T = 900 by resampling states from
historical distributions (see Appendix G.2 for details). This ability arises from the iterative generation
between the mean-field and policy models, enabling natural long-horizon simulation. A detailed
analysis of the scalability and computational complexity of MF-LLM, from both theoretical and
empirical perspectives, is provided in Appendix E.

Facet B: Semantic Fidelity — Capturing the Meaning of Collective Behavior Beyond trajectory
alignment, we assess MF-LLM’s ability to model the semantic structure of collective decisions. We
evaluate 20 real-world events involving up to 300 agents, measuring fidelity across five distributional
metrics and eight semantic dimensions of actions (Fig. 3). We exclude NLL Loss as it lacks semantic
interpretability. To ensure fair comparison, distance-based metrics (KL, Wasserstein, DTW) are
inversely normalized so that higher values indicate better alignment. MF-LLM (red) consistently
achieves the largest radar area, indicating stronger semantic fidelity across all dimensions. A clear
performance hierarchy emerges: MF-LLM outperforms all baselines, followed by SFT, with Popular,
Recent, and State trailing behind. While SFT performs better than other baselines on semantic metrics,
it fails to track temporal shifts (see Fig. 2). In contrast, MF-LLM excels in both aspects, particularly
on complex dimensions such as sentiment and stance, underscoring its strength in semantic decision
modeling. See Appendix Table 4 for full results.

Facet C: Cross-Domain Generalization — Transferring Across Diverse Event Domains Having
validated fidelity, we next test MF-LLM’s generalization across diverse event domains without task-
specific adaptation. The test events span seven domains—Crime, Culture, Health, News, Politics,
Sports, and Technology—each exhibiting distinct collective behaviors. As shown in Fig. 4, MF-LLM
consistently lowers KL divergence (e.g., Culture 2.88 → 0.61) and DTW distance (e.g., Sports
0.35 → 0.21), while boosting classification performance in Micro and Macro F1. Although SFT
achieves the lowest NLL loss, MF-LLM sacrifices marginal one-step accuracy for improved temporal
and semantic consistency—precisely what KL, DTW, and F1 capture. Notably, MF-LLM remains
robust even in complex domains like Culture, where other baselines struggle.

Facet D: Backbone Robustness — Generalizing Across Base LLMs The previous experiments,
based on Qwen2-1.5B-Instruct, validated MF-LLM’s fidelity and generalization. We now ex-
tend MF-LLM to additional backbones—GPT-4o-mini, DeepSeek-R1 Distill-Qwen-32B, and
Qwen2-7B-Instruct (Table 1). Since some LLMs are closed-source, we evaluate MF-LLM without
fine-tuning. Even without tuning, MF-LLM consistently outperforms State, Recent, and Popular
across all LLM backbones. Relative gains are most pronounced on GPT-4o-mini, with KL di-
vergence reduced by 60% and DTW by 21%. Qwen2-1.5B-Instruct yields the best absolute
performance. Here, MF-LLM achieves 33% (KL) and 8% (DTW) improvements, which further
increase to 47% and 16.8% with IB-Tune. Interestingly, smaller models outperform larger ones in
simulating collective decision dynamics, with detailed analysis in Section D. Overall, results highlight
MF-LLM’s robustness across diverse base LLMs—even without any model-specific adaptation.

4.4 What Drives MF-LLM? Dissecting the Mean Field and IB-Tune Mechanisms

Ablation variants. In §4.4, we evaluate six variants to assess the role of each MF-LLM component:

• MF-LLM (ours): full model with both modules fine-tuned via IB-Tune.
• w/o IB-Tune MF: replace IB-Tune mean field model with pretrained Qwen2-1.5B-Instruct.
• w/o IB-Tune Policy: replace IB-Tune policy with pretrained; mean-field remains fine-tuned.
• w/o IB-Tune: both modules use pretrained LLM without fine-tuning.
• SFT (no MF): drop mean-field module; policy trained via supervised fine-tuning.
• Pretrained (no MF): drop mean-field module; use pretrained policy without fine-tuning.
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Table 1: Comparison of base LLMs and baselines across multiple metrics. Lower is better (↓) for all
metrics except Micro/Macro-F1 (↑). Values denote mean with improvement rate (%) relative to State.
Cells with positive improvement rates are colored by magnitude.

Backbone LLMs KL Div. ↓ Wass. Dist. ↓ DTW ↓ Macro F1 ↑ Micro F1 ↑ NLL Loss ↓
GPT-4o-mini
State 4.172 0.127 0.420 0.337 0.653 –
Recent 6.728 (-61.169%) 0.145 (-14.173%) 0.485 (-15.476%) 0.270 (-19.881%) 0.625 (-4.288%) –
Popular 5.591 (-34.037%) 0.128 (-0.787%) 0.447 (-6.429%) 0.316 (-6.232%) 0.650 (-0.459%) –
MF-LLM (ours) 1.647 (60.523%) 0.100 (21.260%) 0.329 (21.667%) 0.399 (18.398%) 0.724 (10.873%) –

DeepSeek-R1-32B
State 1.946 0.110 0.348 0.398 0.691 –
Recent 6.435 (-230.680%) 0.141 (-28.182%) 0.495 (-42.241%) 0.281 (-29.397%) 0.617 (-10.709%) –
Popular 3.812 (-95.890%) 0.113 (-2.727%) 0.385 (-10.632%) 0.353 (-11.307%) 0.682 (-1.302%) –
MF-LLM (ours) 1.280 (34.224%) 0.088 (20.000%) 0.307 (11.782%) 0.418 (5.025%) 0.724 (4.775%) –

Qwen2-7B-Instruct
State 1.153 0.085 0.238 0.436 0.773 4.175
Recent 1.346 (-16.739%) 0.081 (4.706%) 0.218 (8.403%) 0.434 (-0.459%) 0.780 (0.906%) 4.183 (-0.192%)

Popular 1.066 (7.545%) 0.076 (10.588%) 0.199 (16.387%) 0.445 (2.064%) 0.794 (2.717%) 4.177 (-0.048%)

MF-LLM (ours) 1.010 (12.402%) 0.075 (11.765%) 0.198 (16.807%) 0.447 (2.523%) 0.796 (2.975%) 4.132 (1.030%)

Qwen2-1.5B-Instruct
State 0.966 0.068 0.166 0.463 0.823 4.138
Recent 1.277 (-32.192%) 0.077 (-13.235%) 0.202 (-21.687%) 0.441 (-4.752%) 0.799 (-2.917%) 4.056 (1.981%)

Popular 1.288 (-33.333%) 0.080 (-17.647%) 0.199 (-19.880%) 0.435 (-6.048%) 0.792 (-3.767%) 4.080 (1.402%)

MF-LLM (ours) 0.645 (33.230%) 0.065 (4.412%) 0.152 (8.434%) 0.486 (4.968%) 0.839 (1.944%) 4.085 (1.281%)

MF-LLM IB-Tune (ours) 0.512 (47.002%) 0.062 (8.824%) 0.138 (16.867%) 0.495 (6.911%) 0.846 (2.795%) 2.809 (32.091%)

Table 2: Ablation study on MF-LLM. We evaluate the contribution of the mean-field module and
IB-Tune by comparing six variants. Cells show metric values and relative changes from MF-LLM
(ours); darker shading indicates larger drops, reflecting the importance of the removed component.

Method KL Div. ↓ Wass. Dist. ↓ DTW Dis. ↓ NLL Loss ↓ Macro F1 ↑ Micro F1 ↑
MF-LLM (Ours) 0.4813 0.0703 0.1581 2.9029 0.4891 0.8303
w/o IB-Tune MF 0.5312 (10.4%) 0.0702 (-0.1%) 0.1586 (0.3%) 2.9802 (2.7%) 0.4865 (-0.5%) 0.8284 (-0.2%)

w/o IB-Tune Policy 0.5882 (22.2%) 0.0704 (0.1%) 0.1582 (0.1%) 4.0454 (39.4%) 0.4846 (-0.9%) 0.8300 (-0.0%)

w/o IB-Tune 0.6166 (28.1%) 0.0716 (1.8%) 0.1636 (3.5%) 4.0933 (41.0%) 0.4828 (-1.3%) 0.8292 (-0.1%)

SFT (no MF) 0.7531 (56.5%) 0.0746 (6.1%) 0.1859 (17.5%) 2.4217 (-16.6%) 0.4755 (-2.8%) 0.8164 (-1.7%)

Pretrained (no MF) 1.0526 (118.7%) 0.0792 (12.7%) 0.1946 (23.1%) 4.2088 (45.0%) 0.4561 (-6.7%) 0.8076 (-2.7%)

Mean-Field Module Is Key to Population Dynamics. Table 2 demonstrates the critical role of
the mean-field module in achieving high-fidelity simulations. Removing it increases KL divergence
by 118% and reduces Macro F1 by up to 7%. Although SFT (no MF) yields the lowest NLL Loss
(2.4217), its KL divergence exceeds ours by over 50%, suggesting that low token-level loss alone
may be insufficient for capturing social dynamics. These results confirm that the dynamic population
signal captured by MF-LLM is essential for reproducing realistic decision trajectories over time.

IB-Tune Enhances Real-World Alignment. From Table 2, (i) Removing IB-Tune from both
the mean-field and policy models (w/o IB-Tune) increases KL by 28.1% and NLL Loss by 41.0%
relative to MF-LLM, demonstrating that combined fine-tuning is essential. (ii) Isolating IB-tuned
mean-field (MF-LLM vs. w/o IB-Tune MF) cuts KL by 10.4% and NLL Loss by 2.7%, showing that
IB objective is key to aligning population trends and suppressing noise. (iii) Tuning Policy model
via IB-Tune yields large gains: it lowers KL by up to 22.2% and NLL Loss by up to 39.4% across
variants, further boosting distributional fidelity. Together, these results highlight IB-Tune’s two-stage
role: refining the mean field for population alignment, then calibrating the policy for better action
likelihoods—both essential for aligning MF-LLM with real-world decisions.

5 Discussion and Conclusion

Key Findings from our experiments: (1) MF-LLM accurately captures real-world population decision
dynamics, both in decision trajectories and semantic fidelity. (2) It generalizes well across diverse
event domains and LLM backbones. (3) The mean-field module is the key for capturing population
dynamics, while IB-Tune greatly enhances alignment with real-world data.

Applications and Discussion. Inspired by these findings, we explore MF-LLM’s broader potential
(Appendix D): (1) Enables forecasting of public opinion and pre-evaluation of intervention effects
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Figure 5: MF-LLM for prediction and intervention: (a) Rumor spread predicted from four start
points (20, 34, 43, 70); later starts improve accuracy. (b) Predictions under two interventions: single
intervention at step 34 (with later rebound); second intervention at step 80 yields desired effect.

(Fig. 5). (2) Injecting exogenous signals improves alignment with real-world dynamics (Fig. 8). We
further observe: (3) Low NLL does not necessarily imply high rollout fidelity. (4) Smaller LLMs
better capture agent diversity than larger ones in collective simulations.

Conclusion. MF-LLM integrates mean-field theory with LLMs to model the interplay between
individual decisions and population dynamics, enabling high-fidelity simulation of collective behavior
over time. IB-Tune further improves alignment with real-world data. These results suggest that
uncovering collective behavior principles, combined with data-driven fine-tuning, provides a strong
foundation for accurate and scalable social simulation.
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A Training Curves and Hyperparameters

We present the training loss curves for both the policy model and the mean field model optimized
via our IB-Tune algorithm, along with the loss curve of the LLM trained using standard supervised
fine-tuning (SFT), in Figure 6. All models are fine-tuned based on the Qwen2-1.5B-Instruct
language model. The corresponding training hyperparameters are summarized in Table 3. All
experiments were conducted on a machine equipped with two NVIDIA A100-PCIE-40GB GPUs
(CUDA 12.2, driver version 535.183.01), each with 40GB of memory. The mean field model was
trained for approximately 74 hours, the policy model for 64 hours, and the SFT model for 25 hours.
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Figure 6: Training loss curves for three LLMs (Qwen2-1.5B): (left) SFT (No Mean Field), represent-
ing standard supervised fine-tuning on state–action pairs; (middle) IB-Tune: Policy Model π(a|m, s),
corresponding to the fine-tuning of the policy model via our IB-Tune method; and (right) IB-Tune:
Mean Field Model, corresponding to the fine-tuning of the mean field model via IB-Tune. The loss
functions for the latter two models are detailed in Section 3.3. Each curve shows the moving average
smoothed loss (window size 40), with shaded areas indicating the original unsmoothed losses. All
models are fine-tuned to convergence.

Table 3: Training hyperparameters for IB-Tune (the mean field model, the policy model), and the
standard SFT algorithm. All models are fine-tuned from Qwen2-1.5B-Instruct.

Hyperparameter Mean Field Model Policy Model Standard SFT
Base model Qwen2-1.5B-Instruct Qwen2-1.5B-Instruct Qwen2-1.5B-Instruct
Max sequence length 2048 2048 2048
Training dataset Weibo Weibo Weibo
Training events (until converge) 400 400 400
Training batch size 256 256 256
Micro batch size 8 8 8
Max epochs 1 1 1
Learning rate 5× 10−7 5× 10−7 1× 10−6

LoRA rank 64 64 64
LoRA alpha 64 64 64
Zero stage 2 2 2
Loss function Lmean field of IB-Tune Lpolicy of IB-Tune NLL Loss of π(a|s)
β in Lmean field 2 - -
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B Additional Experimental Results

B.1 Additional Results on WEIBO corpus
Results across Different Decision Dimensions. In Table 4, we first present the similarity metrics
comparing our MF-LLM method against the baselines State, Recent, Popular, and SFT across each
decision dimension (base LLM is Qwen2-1.5B-Instruct). At each evaluation step, the action
distribution is constructed from the actions of the 16 nearest agents. Similarity is measured between
the real and generated distributions using multiple metrics, including KL divergence, Wasserstein
distance, DTW, Macro F1, Micro F1, and NLL Loss. The reported results are averaged over 14 task
scenarios. For each task, evaluation is performed by simulating agents from index 50 to 300.

Table 4: Evaluation results across different decision dimensions. All metrics are reported with relative
improvements (%) over State. MF-LLM (ours) consistently achieves the best performance.

Algorithm KL Div. ↓ Wass. Dist. ↓ DTW ↓ Macro F1 ↑ Micro F1 ↑ NLL Loss ↓
Dimension: Rumor

State 2.2057 0.1061 0.1741 0.3731 0.8387 4.3154
Recent 1.9807 (10.2%) 0.1050 (1.0%) 0.1813 (-4.1%) 0.3794 (1.7%) 0.8399 (0.1%) 3.8282 (11.3%)

Popular 1.6483 (25.3%) 0.0993 (6.4%) 0.1584 (9.0%) 0.3997 (7.1%) 0.8485 (1.2%) 3.8379 (11.1%)

SFT (No MF) 1.5597 (29.3%) 0.0948 (10.6%) 0.1459 (16.2%) 0.4060 (8.8%) 0.8536 (1.8%) 2.2280 (48.4%)

MF-LLM (ours) 1.0032 (54.5%) 0.0796 (25.0%) 0.0926 (46.8%) 0.4481 (20.1%) 0.8784 (4.7%) 2.8342 (34.3%)

Dimension: Sentiment
State 3.6245 0.0619 0.3895 0.2960 0.6960 4.3154
Recent 4.1686 (-15.0%) 0.0789 (-27.5%) 0.4120 (-5.8%) 0.2750 (-7.1%) 0.6711 (-3.6%) 3.8282 (11.3%)

Popular 3.8127 (-5.2%) 0.0724 (-16.9%) 0.3862 (0.8%) 0.2862 (-3.3%) 0.6824 (-2.0%) 3.8379 (11.1%)

SFT (No MF) 2.1504 (40.7%) 0.0504 (18.6%) 0.3310 (15.0%) 0.3473 (17.3%) 0.7332 (5.4%) 2.2280 (48.4%)

MF-LLM (ours) 1.6850 (53.5%) 0.0550 (11.2%) 0.3087 (20.7%) 0.3530 (19.3%) 0.7464 (7.2%) 2.8342 (34.3%)

Dimension: Attitude
State 1.7155 0.0816 0.2973 0.4449 0.7601 4.3154
Recent 2.2148 (-29.1%) 0.1052 (-28.9%) 0.3399 (-14.4%) 0.4185 (-5.9%) 0.7204 (-5.2%) 3.8282 (11.3%)

Popular 1.9632 (-14.5%) 0.0923 (-13.1%) 0.2983 (-0.3%) 0.4303 (-3.3%) 0.7396 (-2.7%) 3.8379 (11.1%)

SFT (No MF) 0.8818 (48.6%) 0.0741 (9.2%) 0.2566 (13.7%) 0.4750 (6.8%) 0.7854 (3.3%) 2.2280 (48.4%)

MF-LLM (ours) 0.4245 (75.3%) 0.0730 (10.5%) 0.2272 (23.6%) 0.4928 (10.8%) 0.7983 (5.0%) 2.8342 (34.3%)

Dimension: Behavior
State 0.2132 0.0901 0.1758 0.5446 0.7859 4.3154
Recent 0.2756 (-29.3%) 0.0873 (3.1%) 0.2208 (-25.6%) 0.5317 (-2.4%) 0.7489 (-4.7%) 3.8282 (11.3%)

Popular 0.2963 (-38.9%) 0.0901 (0.0%) 0.2411 (-37.1%) 0.5298 (-2.7%) 0.7437 (-5.4%) 3.8379 (11.1%)

SFT (No MF) 0.1505 (29.4%) 0.0819 (9.1%) 0.1467 (16.5%) 0.5511 (1.2%) 0.7948 (1.1%) 2.2280 (48.4%)

MF-LLM (ours) 0.0956 (55.2%) 0.0802 (11.0%) 0.1016 (42.2%) 0.5688 (4.4%) 0.8440 (7.4%) 2.8342 (34.3%)

Dimension: Stance
State 2.2091 0.0861 0.3092 0.4376 0.7477 4.3154
Recent 2.7059 (-22.5%) 0.1059 (-23.0%) 0.3302 (-6.8%) 0.4177 (-4.5%) 0.7263 (-2.9%) 3.8282 (11.3%)

Popular 2.3616 (-6.9%) 0.0938 (-9.0%) 0.2955 (4.4%) 0.4339 (-0.8%) 0.7450 (-0.4%) 3.8379 (11.1%)

SFT (No MF) 1.0596 (52.0%) 0.0771 (10.5%) 0.2485 (19.6%) 0.4776 (9.1%) 0.7874 (5.3%) 2.2280 (48.4%)

MF-LLM (ours) 0.4489 (79.7%) 0.0779 (9.5%) 0.2335 (24.5%) 0.5080 (16.1%) 0.7907 (5.7%) 2.8342 (34.3%)

Dimension: Belief
State 1.2888 0.1159 0.2279 0.4695 0.7939 4.3154
Recent 2.1881 (-69.8%) 0.1288 (-11.1%) 0.2685 (-17.8%) 0.4247 (-9.5%) 0.7763 (-2.2%) 3.8282 (11.3%)

Popular 1.6316 (-26.6%) 0.1170 (-1.0%) 0.2416 (-6.0%) 0.4516 (-3.8%) 0.7948 (0.1%) 3.8379 (11.1%)

SFT (No MF) 1.0178 (21.0%) 0.1055 (9.0%) 0.1691 (25.8%) 0.4927 (4.9%) 0.8100 (2.0%) 2.2280 (48.4%)

MF-LLM (ours) 0.4432 (65.6%) 0.0811 (30.0%) 0.1345 (41.0%) 0.5270 (12.2%) 0.8498 (7.0%) 2.8342 (34.3%)

Dimension: Subjectivity
State 0.2348 0.0878 0.2054 0.5481 0.7857 4.3154
Recent 0.3237 (-37.8%) 0.0929 (-5.8%) 0.3271 (-59.3%) 0.5130 (-6.4%) 0.6999 (-10.9%) 3.8282 (11.3%)

Popular 0.2542 (-8.3%) 0.0858 (2.3%) 0.2627 (-27.9%) 0.5299 (-3.3%) 0.7369 (-6.2%) 3.8379 (11.1%)

SFT (No MF) 0.1097 (53.3%) 0.0764 (13.0%) 0.1326 (35.4%) 0.5678 (3.6%) 0.8286 (5.5%) 2.2280 (48.4%)

MF-LLM (ours) 0.0891 (62.1%) 0.0724 (17.5%) 0.1030 (49.8%) 0.5754 (5.0%) 0.8484 (8.0%) 2.8342 (34.3%)

Dimension: Intent
State 0.6812 0.0770 0.2435 0.4602 0.7712 4.3154
Recent 0.7546 (-10.8%) 0.0841 (-9.2%) 0.3100 (-27.3%) 0.4424 (-3.9%) 0.7174 (-7.0%) 3.8282 (11.3%)

Popular 0.6901 (-1.3%) 0.0834 (-8.3%) 0.3096 (-27.2%) 0.4525 (-1.7%) 0.7164 (-7.1%) 3.8379 (11.1%)

SFT (No MF) 0.5381 (21.0%) 0.0763 (0.9%) 0.2137 (12.3%) 0.4719 (2.5%) 0.7889 (2.3%) 2.2280 (48.4%)

MF-LLM (ours) 0.3714 (45.5%) 0.0720 (6.5%) 0.1747 (28.2%) 0.4921 (6.9%) 0.8185 (6.1%) 2.8342 (34.3%)

15



Full Dynamic Trend Simulations. In Appendix Fig. 7, we present the full dynamic trend simu-
lations under the Liu Xiang Rumor scenario. We illustrate the dynamic trends across all decision
dimensions and compare the simulations of multiple baselines, including State, Recent, Popular,
and SFT. Additionally, we include simulation curves for the ablation variants of our proposed MF-LLM.
Due to the large number of baselines and evaluation dimensions, we report these detailed results in
the appendix for clarity.
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Figure 7: Comparison of dynamic trend simulations across multiple baselines (starting from step 48).
At each timestep, the distribution of actions is estimated based on the actions of the 16 nearest agents.
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B.2 Additional Results on TWITTER dataset

We extend evaluation beyond the WEIBO corpus to examine whether MF-LLM preserves distribu-
tional fidelity and decision consistency on other datasets featuring different interaction patterns.

Famous-Keyword Twitter Replies Dataset (Kaggle). The TWITTER dataset4 contains a large
collection of tweet–reply pairs centered on popular keywords, providing a suitable testbed for large-
scale discussion dynamics. Testing on several base LLMs, MF-LLM outperforms baselines without
any domain-specific fine-tuning:

Table 5: Results on the FAMOUS-KEYWORD TWITTER REPLIES dataset across different LLM
backbones. Lower is better (↓) for all metrics except Micro/Macro-F1 (↑). MF-LLM consistently
generalizes across backbones without domain-specific fine-tuning.

Backbone LLMs KL Div. ↓ Wass. Dist. ↓ DTW ↓ Macro F1 ↑ Micro F1 ↑ NLL Loss ↓
Qwen2-1.5B-Instruct
State 0.8696 0.0673 0.1700 0.4977 0.8241 4.2121
Recent 1.5061 0.0922 0.2206 0.4471 0.7661 4.1053
Popular 1.0059 0.0725 0.1553 0.4864 0.8047 4.0697
MF-LLM (ours) 0.6883 0.0744 0.1587 0.4989 0.8093 3.9748
GPT-4o-mini
State 6.8382 0.1469 0.4513 0.2808 0.6282 –
Recent 6.5273 0.1491 0.4444 0.2843 0.6361 –
Popular 7.5150 0.1634 0.4251 0.2526 0.6112 –
MF-LLM (ours) 5.9322 0.1506 0.3300 0.2934 0.6403 –

GPT-4o
State 7.8105 0.1711 0.5178 0.2388 0.5962 –
Recent 7.2690 0.1607 0.4576 0.2574 0.6200 –
Popular 8.8492 0.1818 0.5198 0.2138 0.5798 –
MF-LLM (ours) 2.2669 0.1085 0.2211 0.4103 0.7249 –

DeepSeek-R1-Distill-Qwen-32B
State 1.7496 0.1105 0.2847 0.4173 0.6999 –
Recent 2.4299 0.1192 0.3462 0.3941 0.6829 –
Popular 1.4311 0.0905 0.2198 0.4424 0.7256 –
MF-LLM (ours) 1.1814 0.0922 0.2042 0.4483 0.7204 –

Market Behavior Simulation. Following prior studies on market-style decision dynamics (e.g.,
TwinMarket [42], ElectionSim [44]), we construct a Bitcoin-related tweet–reply dataset to simulate
bullish/bearish sentiment evolution. MF-LLM again achieves the best quantitative alignment:

Table 6: Results on the BITCOIN-RELATED MARKET BEHAVIOR SIMULATION dataset. Lower
is better (↓) for all metrics except Micro/Macro-F1 (↑). MF-LLM achieves the best quantitative
alignment across all metrics with base LLM Qwen2-1.5B-Instruct).

Method KL Div. ↓ Wass. Dist. ↓ DTW ↓ Macro F1 ↑ Micro F1 ↑ NLL Loss ↓
State 1.2304 0.0854 0.4505 0.4723 0.6721 4.4320
Recent 2.0641 0.0800 0.4730 0.4550 0.6573 4.3438
Popular 1.4394 0.0853 0.3930 0.4834 0.6920 4.2537
MF-LLM (ours) 0.9316 0.0915 0.2364 0.5025 0.7741 4.1485

Across both datasets, MF-LLM maintains strong alignment in distributional metrics (KL, WD, DTW)
and classification performance (Macro/Micro F1), indicating stable generalization under different
social and linguistic contexts.

C Modeling Complex and Heterogeneous Interactions in MF-LLM

MF-LLM naturally models complex and heterogeneous interactions among agents in large populations.
This section provides an intuitive explanation of its mechanism and several illustrative examples
from real-world data, showing how MF-LLM captures diverse influence patterns and topic-specific
behaviors.

4https://www.kaggle.com/datasets/jackksoncsie/famous-keyword-twitter-replies-dataset/
data

17

https://www.kaggle.com/datasets/jackksoncsie/famous-keyword-twitter-replies-dataset/data
https://www.kaggle.com/datasets/jackksoncsie/famous-keyword-twitter-replies-dataset/data


Intuitive Mechanism. In MF-LLM, the policy model maps the current population signal to individ-
ual actions, while the mean field model updates the population signal from newly observed actions.
The pathway

a1 → mt+1 → a2

represents an indirect but generalizable interaction between any pair of agents. Unlike prior work
with fixed influence weights, MF-LLM infers and updates interaction effects dynamically from online
data, enabling robust modeling even in unseen structures.

Empirical Illustration. To better understand this mechanism, we present several examples demon-
strating that MF-LLM effectively captures (1) heterogeneous interactions, (2) disproportionate
influence, and (3) small close-knit groups, without manually defined interaction weights or structures.

(1) Heterogeneous Interactions. We compare two different actions taken by the same high-influence
user.

Example of Heterogeneous Interactions

State: A non-verified user with high influence and many friends.
Previous Mean Field: Most users express opposition and criticism toward the event, regard-
ing it as unfair competition.

• Action A: “Repost”
• Action B: “Looking forward to the truth!”

Updated Mean Field:
• After Action A: “Most users are criticizing the event rather than seeking factual verifica-

tion.”
• After Action B: “Users call for an investigation to uncover the cause. Many suspect that

this might be a genuine news report.”

(2) Disproportionate Influence. We compare the same action taken by users of different influence
levels.

Example of Disproportionate Influence

Action: “Looking forward to the truth!”
Previous Mean Field: Most users express opposition and criticism toward the event, regard-
ing it as unfair competition.
Agent States:

• High-Influence User: A non-verified user with high influence and many friends.
• Low-Influence User: A similar user with low influence and few friends.

Updated Mean Field:
• After High-Influence User acts: “Many suspect that this might be a genuine news

report.”
• After Low-Influence User acts: “A few users in the comments express a desire to

uncover the truth.”

(3) Small, Close-Knit Groups. Finally, we illustrate localized topic-specific interactions.

Example of Small and Close-Knit Groups

Conversation Context: In an entertainment discussion:
• User A: “Taylor Swift will hold a concert!”
• User B: “The city marathon route will be adjusted next month.”

Updated Mean Field (after A + B): “Population sentiment surges around the concert...
marathon news draws moderate interest from runners.”
Policy Model Responses under the Same Mean Field:

• Idol Fan User: “Can’t believe it! Already organizing a group to buy tickets and cheer!”
• Marathon Enthusiast: “Good to know about the route change—I’ll adjust my training.”
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This shows MF-LLM captures topic-specific shifts via the mean field and generates heterogeneous
actions via the policy model, faithfully modeling “close-knit group” dynamics from real data.

Summary. These examples demonstrate that MF-LLM adaptively models heterogeneous and
asymmetric agent behaviors through iterative mean-field updates.

D Applications and Discussion of MF-LLM

Exo. Signal 1:
10 users retweeted 

consecutively.

Exo. Signal 2: 
Skepticism arises: 

"Really?"

Exo. Signal 3: 
Dozens retweeted without 

comment.

Exo. Signal 4: 
Someone @Huang Jianxiang 

to verify the truth.

(Huang Jianxiang is the famous 
Chinese sports commentator.)

Figure 8: Simulation before or after key nodes. Key node 1 and 3 boost rumor spread, Key node 2
and 4 reduce rumor spread.

We first highlight three key findings from our experiments. (1) MF-LLM accurately matches real-
world decision dynamics, in both temporal shifts and semantic structure. (2) It generalizes well
across social domains and backbone LLMs without task-specific tuning. (3) The mean-field module
and IB-Tune are both essential—removing either significantly degrades fidelity. These results
validate MF-LLM as a robust framework for simulating collective behavior. Inspired by them, we
now explore more practical applications and further discussions.

Forecasting Public Opinion and Pre-evaluating Interventions. We demonstrate MF-LLM’s
utility in real-time forecasting and intervention design using a rumor propagation scenario (Fig. 5).
The framework supports (i) trend forecasting, (ii) intervention planning, and (iii) evaluation of
intervention outcomes. (a) Forecasting accuracy. Starting from partial observations at steps 20,
34, 43, and 70, MF-LLM generates forward rollouts of population behavior. Forecasts closely
track ground-truth rumor prevalence (e.g., step 70: predicted 0.645 vs. actual 0.643), highlighting
MF-LLM’s temporal consistency and reliability. (b) Intervention planning. Simulation outputs
enable data-driven planning. At step 34, the model anticipates a rise in rumor spread, triggering an
early warning for intervention. This offers actionable insights for proactive decision-making. (c)
Intervention evaluation. We compare two intervention strategies. A single intervention at step
34 (green) slows spread temporarily but fails to prevent a rebound. A second, later intervention at
step 80 (red) stabilizes the trajectory. MF-LLM thus supports pre-deployment testing of multi-step
interventions.

Incorporating Exogenous Signals to Improve Fidelity. While MF-LLM captures endogenous
dynamics driven by agent interactions, many real-world events are shaped by rare, high-impact
exogenous signals. We investigate their effect using the Liu Xiang rumor scenario, where a burst of
“silent reposts” triggers widespread misperception. By injecting such signals into the simulation, we
reproduce observed inflection points (Fig. 8) and improve alignment with real-world dynamics. These
findings underscore the importance of modeling rare, externally induced behaviors. Future work may
explore dynamic event detection, uncertainty-aware responses, and automated signal injection to
capture both endogenous patterns and exogenous shocks.
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Low NLL does not Necessarily Imply High Rollout Fidelity. In Fig. 4 and Table 2, we observe that
SFT achieves the lowest NLL Loss at test time. However, token-level likelihood does not necessarily
translate to rollout-level fidelity. MF-LLM solves a richer conditional generation problem by aligning
each decision with the evolving population signal m. This additional constraint increases irreducible
cross-entropy slightly but prevents overfitting and encourages long-term semantic consistency. As a
result, MF-LLM outperforms SFT on KL divergence, DTW distance, and F1 metrics. The trade-off
is favorable: sacrificing minimal one-step accuracy yields substantial gains in rollout quality and
realism.

Smaller LLMs Outperform Larger Ones in Simulating Population Dynamics. In §4.3, we
find that smaller backbones such as Qwen2-1.5B-Instruct outperform larger models in simulating
collective decision dynamics. Analysis of outputs from GPT-4o-mini and DeepSeek-R1 reveals
highly homogeneous agent responses, even under identical prompts and hyperparameters across
different LLMs (Appendix I). Larger models tend to produce uniform responses over time, limit-
ing their ability to capture diverse agent behavior and degrading long-horizon simulation fidelity.
This likely stems from reduced sensitivity to subtle variations in prompt or agent state. In contrast,
smaller models exhibit greater responsiveness and variability, resulting in more realistic and dynamic
population trajectories. These findings align with prior work showing that large LLMs often favor
high-probability outputs [18], and may underperform in tasks requiring structured behavioral diver-
sity [47]. These results provide key insights for social simulation: reducing output homogeneity may
be more important than maximizing model size, and properly leveraging smaller models can preserve
behavioral diversity while offering substantial efficiency gains.

Limitations and Future Work While incorporating exogenous signals improves simulation fidelity,
the current MF-LLM framework does not yet support real-time detection or integration of such signals.
Future work could explore automated mechanisms for monitoring and injecting external events into
the simulation loop. In addition, as simulation horizons increase, small deviations in early steps may
compound over time, leading to distributional drift. This effect is observed in Fig. 2, and highlights
the need for long-horizon correction strategies, such as periodic recalibration or error-aware feedback
mechanisms.

E Scalability and Complexity Analysis of MF-LLM

Computational Complexity. MF-LLM aims to capture dynamic agent interactions that give rise
to collective behavior. Modeling all pairwise agent interactions would incur O(N2) computational
cost, whereas MF-LLM reduces this to O(N) through a mean-field approximation. Specifically,
the policy model generates one personalized action per agent, resulting in O(N) LLM inferences,
and the mean-field model updates the population signal once per batch of K agents, producing
O(N/K) mean-field inferences. Overall, MF-LLM achieves linear-time complexity while still
modeling inter-agent effects and reproducing population-level dynamics. This contrasts with baseline
simulators that either ignore agent interactions entirely or approximate them through manual prompt
engineering without dynamic coupling.

Empirical Validation of Complexity. To empirically validate the theoretical O(N) analysis, we
conduct two complementary experiments: (i) scalability testing under larger agent populations and
(ii) runtime under increasing simulation scales.

(a) Scalability under Larger Populations. We evaluate MF-LLM’s scalability by extending simu-
lations up to 4,000 agents using Qwen2-1.5B-Instruct (without fine-tuning). Results in Table 7
show that MF-LLM maintains consistent accuracy as population size increases, demonstrating stable
performance and convergence in large-scale settings.

(b) Runtime Scaling. We further measure runtime on Qwen2-1.5B-Instruct using the TWITTER
dataset (no fine-tuning) on a single NVIDIA A100 GPU (40 GB memory). As shown in Table 8,
runtime increases linearly with the number of agents, maintaining an almost constant per-agent cost
(∼0.56 s), which empirically confirms the O(N) complexity of MF-LLM.

Summary. Both theoretical and empirical analyses demonstrate that MF-LLM scales linearly with
population size while preserving simulation fidelity. This scalability enables efficient modeling
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Table 7: Scalability of MF-LLM across different population sizes (500–4,000 agents). Lower is better
(↓) for all metrics except Micro/Macro-F1 (↑).

Agents KL Div. ↓ Wass. Dist. ↓ DTW ↓ Macro F1 ↑ Micro F1 ↑ NLL Loss ↓
500 1.2582 0.0645 0.1196 0.3688 0.8644 3.9916
1000 1.4638 0.0729 0.1220 0.3643 0.8436 4.0112
2000 1.1053 0.0685 0.0965 0.3569 0.8537 4.0236
3000 1.0668 0.0650 0.0837 0.3592 0.8611 4.0142
4000 1.5905 0.0698 0.1025 0.3548 0.8376 4.0237

Table 8: Runtime scaling of MF-LLM with respect to agent population size. Results empirically
validate the O(N) complexity.

Agents Total Time (s) Time / Agent (s)
512 280.88 0.55
1008 561.89 0.56
1504 832.31 0.55
2000 1113.41 0.56
2512 1404.34 0.56
3008 1687.50 0.56
3504 1966.29 0.56
4000 2249.15 0.56

of large-scale populations, bridging micro-level decision processes and macro-level population
dynamics.

F Detailed Experimental Setup and Prompts

F.1 Dataset

The WEIBO corpus [24] consists of approximately 5,000 real-world events across seven domains:
Crime, Culture, Health, News, Politics, Sports, and Technology. Each event includes a topic and
responses from 100 to 1,000 users, with corresponding user profiles (e.g., location, gender, follower
count, activity level) and their posts. We use 4,000 events for training and 1,000 for testing. Training
converged after 400 events, at which point optimization was stopped (see Appendix Fig. 6).

F.2 Baselines.

Based on related work, we summarize the following baseline approaches for modeling other agents’
decision-making:

• State: The user profile and event topic serve as the state and input to the LLM, independent of
other agents’ decisions, as in ElectionSim[44].

• Recent: Besides the state, the k most recent actions are provided as input. For instance, TrendSim
[45] observes the Top-k comments, and AgentSociety [32] tracks event flow in time order.

• Popular: In addition to the state, the k actions with the highest popularity (followers, replies, likes,
etc.) are included as input to the LLM, as in OASIS [43] and HiSim[29].

• SFT: Standard supervised fine-tuning [30] on state–action pairs for each agent. The baseline is
carefully trained to convergence (see training curves in Appendix Fig. 6)

For evaluation, we compare the outputs of our MF-LLM and baselines with ground-truth responses
from the WEIBO corpus (hereafter Real data).
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F.3 Evaluation Metrics

Metrics for Evaluating Individual Actions. To provide a fine-grained assessment of individual
agent actions, we define eight evaluation dimensions, each capturing a critical aspect of decision
realism. Below, we explain the meaning and motivation behind each dimension.

• Rumor. Measures whether the agent is spreading or countering a rumor. spread: The com-
ment believes, forwards, or amplifies the topic discussed. counter: The comment challenges,
questions, or refutes the truthfulness of the topic, aiming to clarify or correct misinformation.

• Sentiment. Captures the emotional tone expressed in the comment, including implicit sarcasm or
critique. Categories include angry, calm, happy, sad, fear, and surprise.

• Attitude. Reflects the overall emotional orientation of the comment—whether it is positive,
negative, or neutral. Particular care is taken to detect subtle negativity even when not explicitly
stated.

• Behavior. Classifies the type of action taken: share if the agent reposts the content, and comment
if the agent directly evaluates it.

• Stance. Identifies the agent’s position toward the topic—support, oppose, or neutral. Em-
phasis is placed on recognizing implicit opposition or dissatisfaction within the comment.

• Belief. Assesses whether the agent believes in the truthfulness of the discussed topic or expresses
doubt. Expressions of skepticism, calls for truth, or assertions of falsehood are categorized as
doubt.

• Subjectivity. Distinguishes whether the comment is based on subjective personal opinions or on
objective factual descriptions.

• Intent. Captures the underlying purpose of the comment: question (asking for clarification),
promotion (disseminating information), or opinion (expressing personal views).

Prompt Template for Evaluating Decision Dimensions. We employ GPT-4o-mini to evalu-
ate both real and generated action texts. GPT-4o-mini offers a highly cost-effective and fast API,
enabling stable and consistent evaluation results. We benchmarked several alternatives, including emo-
tion classification models, GPT-3.5-Turbo, GPT-4o, and DeepSeek, and selected GPT-4o-mini
for its balance between reliability, speed, and deployment cost.

To ensure evaluation reliability, we conducted a human validation study on 100 samples with
domain experts (social science scholars, junior faculty, and senior PhD students), comparing human
judgments with outputs from multiple LLMs. Table 9 summarizes the results. GPT-4o-mini achieves
91.25% agreement with human judgment—higher than GPT-3.5-Turbo (79.13%) and comparable
to GPT-4o (89.38%)—while maintaining the lowest cost and near-real-time speed.

Table 9: Reliability and efficiency comparison of different LLMs for semantic evaluation.
GPT-4o-mini achieves high human alignment at minimal cost and latency.

Metric GPT-4o-mini GPT-3.5-Turbo GPT-4o GPT-4
Agreement w/ Human (%) 91.25 79.13 89.38 94.13
Price ($/1M tokens, Input / Output) 0.15/0.60 0.5/1.5 2.5/10 30/60
Speed (s/sample) 1.25 0.83 0.96 4.02

Since semantic evaluation is not a highly complex task for modern LLMs, GPT-4o-mini provides
the most cost-effective balance of accuracy, efficiency, and scalability. Below, we present the prompt
template used for decision-dimension evaluation.
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Prompt Template for Evaluating Decision Dimensions

Role: You are an expert in public opinion content analysis. Task: Analyze multiple user comments
objectively to evaluate the sentiment, stance, and opinion orientation regarding the following topic:
Discussion Topic: {topic}
Instructions: For each comment, perform analysis according to the following nine dimensions and
strictly return the results in JSON format. Special Note: The emoji “@_@” typically conveys feelings
of “surprise, confusion, or being stunned”.

1. rumor (Rumor propagation): Select from ["spread", "counter"].

• "counter": Comments that aim to refute, disbelieve, question the authenticity, expect
further clarification, or directly point out the falsity of the topic.

• "spread": All other comments, including those expressing belief in the topic, reposting
content, tagging usernames, repeating topic content, or expressing emotional reactions to the
topic.

2. sentiment (Emotional state): Capture the user’s emotional state conveyed
through the comment (including punctuation and tone). Choose from
["angry", "calm", "happy", "sad", "fear", "surprise"]. Note: Simple reposts are
categorized as "calm".

3. attitude (Attitude polarity): Determine whether the user’s sentiment is positive, negative, or
neutral. Choose from ["positive", "negative", "neutral"]. Note: Pay close attention to
any implicit negative sentiment (e.g., sarcasm, criticism).

4. behavior (Behavior type): Select from ["comment", "share"].

• "share": The comment is primarily forwarding or reposting content.
• "comment": The comment expresses an evaluation, opinion, or reaction.

5. stance (Stance towards the topic): Select from ["support", "oppose", "neutral"]. Note:
Pay attention to implicit opposition, dissatisfaction, or criticism.

6. belief (Belief in the topic): Select from ["believe", "doubt"].

• "believe": The comment expresses belief in the topic (including reposting).
• "doubt": The comment questions, refutes, or expresses skepticism towards the topic.

7. keywords (Keyword extraction): Extract important keywords from the comment and return them
as an array (e.g., ["policy", "economy"]). If the comment is meaningless, return [""].

8. subjectivity (Subjectivity): Determine whether the comment is based on subjective opinions or
objective facts. Select from ["subjective", "objective"].

9. intent (Intent classification): Select from ["question", "promotion", "opinion"].

• "question": The comment primarily asks a question.
• "promotion": The comment primarily disseminates or promotes information.
• "opinion": The comment primarily expresses an opinion or viewpoint.

Input Format: The following are {len(comments)} user comments:

Comment 1: "{comment_1}"
Comment 2: "{comment_2}"
...

Output Format: Strictly return a JSON array evaluating the {len(comments)} comments. Do not
output anything other than the JSON array.

Example Output:

[
{

"rumor": "spread",
"sentiment_state ": "calm",
"sentiment_tendency ": "neutral",
"behavior_type ": "share",
"stance ": "neutral",
"belief_degree ": "believe",
"keywords ": ["share", "weibo"],
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"subjectivity ": "objective",
"intent_classification ": "promotion"

},
{

"rumor": "counter",
"sentiment_state ": "angry",
"sentiment_tendency ": "negative",
"behavior_type ": "comment",
"stance ": "oppose",
"belief_degree ": "doubt",
"keywords ": ["fake", "impossible "],
"subjectivity ": "subjective",
"intent_classification ": "opinion"

}
]

F.4 Prompt Templates

In this paper, we design three prompt templates. (i) The first template guides the policy model to
generate individual decision-making behaviors. (ii) The second template assists the mean field model
in summarizing the evolving population distribution. (iii) The third template enables GPT-4o-mini to
evaluate the dimensions of individual decisions with fine-grained analysis. Together, these templates
ensure a coherent workflow across decision generation, mean field updating, and evaluation.

Prompt Template for Policy Model

You are tasked with simulating a plausible user action (reposting or commenting) based on their profile
and the current population information.
Inputs:

• Discussion Topic: {topic}

• Recent Comments (if available): {Recent_comment}
• Popular Comments (if available): {Popular_comment}
• Current Mean Field: {mean_field}

• User Profile Attributes:

– Location
– Description
– Gender: Male or Female
– Number of Friends: Categorized as

* Very few: fewer than 10
* Few: 10 to 30
* Moderate: 31 to 1000
* Many: 1001 to 3000
* Very many: more than 3000

– Number of Followers (Influence Level): Categorized as

* Very low: fewer than 100
* Low: 101 to 500
* Moderate: 501 to 1000
* High: 1001 to 10000
* Very high: more than 10000

– Activity Level (Based on Total Interactions):
* Inactive: fewer than 10 interactions
* Moderately active: 10 to 100 interactions
* Highly active: more than 100 interactions

– Verification Status:

* Verified user (with verification type ID)
* Non-verified user

24



Intermediate Step (User State Construction): First, generate a concise user profile description in
Chinese (or English), following the template:

A user from {user_location}, described as {user_description}, iden-
tified as {gender}, with a {friends_level} number of friends and
a {influence_level} level of influence based on followers. The
user is {activity_level} in terms of interactions, and the account is
{verified_status}.

Note: If using GPT or DeepSeek models, we add an explicit instruction at the end of the prompt: "Output
only the final simulated text without any intermediate reasoning process." In the output generated
by DeepSeek-R1 Distill-Qwen-32B, any content enclosed within <think>...</think> tags is
removed, and only the final generated text is preserved for evaluation.

Prompt Template for Mean Field Model

You are tasked with summarizing the distribution of user comments regarding a specific discussion
topic.
Inputs:

• Discussion Topic: {topic}

• Previous Mean Field: {previous_mean_field}

• Recent User Comments: A list of user comments formatted as "Comment 1: xxx", "Com-
ment 2: xxx", etc.

Instructions: Based on the provided information, summarize the overall user discussion by addressing
the following six aspects in order of importance:

1. Stance Distribution: Are users predominantly supportive or oppositional?

2. Opinion Distribution: What are the major viewpoints expressed?

3. Emotion Distribution: Are emotions primarily anger, excitement, doubt, or anxiety? Overall,
are sentiments positive, negative, or neutral?

4. Behavior Distribution: Are users more inclined to repost or to comment?

5. Perception of Topic Authenticity: To what extent do users believe or doubt the authenticity
of the topic?

6. Intent of Comments: Are users primarily asking questions, expressing opinions, or dissemi-
nating information?

Response Requirements: Provide a concise summary in Chinese (or English), approximately 200
words in length. Ensure the response is structured clearly, focuses on key points, and remains easy to
comprehend.

G Details of MF-LLM Framework

G.1 Derivation of the IB-Tune Objective

Variational upper-bound on the I(mt;X) term. We begin from the definition of mutual informa-
tion and derive a computable bound by introducing a variational prior r(mt).

I(mt;X) = Ep(X,mt)

[
log

p(mt | X)

p(mt)

]
(definition of mutual information)

= Ep(X)

[
KL

(
p(mt | X) ∥ p(mt)

)]
(rewriting as an expectation of KL)

≈ Ep(X)

[
KL

(
µϕ(mt | X) ∥ p(mt)

)]
(variational posterior µϕ)

= Ep(X)Eµϕ(mt|X)

[
logµϕ(mt | X)− log p(mt)

]
.

Next, we add and subtract the log-density of a fixed prior r(mt):

logµϕ − log p = (logµϕ − log r) + (log r − log p) .
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Hence

I(mt;X) = Ep(X)KL
(
µϕ(mt | X) ∥ r(mt)

)︸ ︷︷ ︸
(A)

+ Ep(X)Eµϕ(mt|X)

[
log r(mt)− log p(mt)

]︸ ︷︷ ︸
(B)

.

Observe that

(B) = Ep(mt)

[
log r(mt)− log p(mt)

]
= −KL

(
p(mt) ∥ r(mt)

)
≤ 0.

Discarding this non-negative term yields the desired bound:

I(mt;X) ≤ Ep(X)KL
(
µϕ(mt | X) ∥ r(mt)

)
= Ep(X)Eµϕ(mt|X)

[
logµϕ(mt | X)− log r(mt)

]
.

G.2 Scaling to More Agents via State Sampling

Simulating More Agents Our MF-LLM framework is inherently scalable and can simulate an
arbitrary number of agents over time through iterative rollouts of the policy model and mean field
model, as shown in Figure 2. A key question is how to obtain the state information for additional
agents during simulation. If the profiles of future users or agents are available, they can be directly
used as the input states for simulation. However, in scenarios where the profiles of future agents are
unknown—such as when predicting future participation—we extend our method by sampling agent
states from an existing state distribution. Agent profile distributions tend to evolve much more
slowly than opinion/decision distributions, especially relative to the fast dynamics of event-driven
discussions. Therefore, for long-term simulations of collective decision trends, it is reasonable to
sample agent states from historical user profiles. Our experimental results further suggest that the
mean field model plays a dominant role in shaping collective dynamics, while the specific agent state
distribution has a relatively minor impact.

H Full Version of Related Work

H.1 Agent-Based Models: Foundations and Limitations.

Agent-Based Modeling (ABM) has long served as a cornerstone for simulating complex social
systems, enabling emergent phenomena to arise from local interactions among individuals. Seminal
works such as Sugarscape [10], Bonabeau’s survey [6], and domain-specific applications in crowd
dynamics [15], market simulations [36], ecosystems [14], and public policy [2, 26] have demonstrated
the versatility of ABMs across diverse domains. However, traditional ABMs often rely on manually
crafted behavioral rules, limiting their adaptability and scalability—especially as population size and
environmental complexity increase [7, 17, 25]. While effective at capturing rule-driven emergent
patterns, ABMs typically lack the flexibility required to generalize across diverse and unseen scenarios.
Recent advances in large language models (LLMs) offer a promising direction to overcome these
limitations by equipping agents with generative decision-making capabilities grounded in rich
contextual knowledge.

H.2 LLMs for Social Simulation: Progress and Gaps.

The rise of LLMs has catalyzed a new wave of social simulation systems, enabling agents to rea-
son, adapt, and interact through natural language. Early works such as Generative Agents [31]
and Sotopia [48] demonstrated the potential of LLMs to support small-scale, open-ended simu-
lations. Recent efforts have scaled up to broader domains, including social media [43, 45, 32],
elections [44], economic behavior [22, 42], and misinformation spread [23]. Toolkits such as Gen-
Sim [35], AgentScope [13], and AgentSociety [32] have facilitated the construction of complex
multi-agent environments. Despite these advances, key limitations remain. Many simulations rely
on handcrafted prompts, fixed roles, and heuristic memory mechanisms that lack alignment with
real-world behavior, limiting their quantitative fidelity. Agent interactions are typically governed
by static or scripted schedules [43, 45, 8], preventing agents from adapting to changing collective
dynamics. Although recent approaches attempt to incorporate peer behavior and scene evolution into
memory [23, 45, 29, 43], they often depend on heuristic retrieval or summarization strategies, lacking
principled mechanisms to retain decision-critical information over long horizons. These constraints
hinder the simulation of realistic, adaptive population behavior. Progress in LLM-based social simu-
lation will require principled mechanisms to model the feedback loop between individual actions and
evolving population signals—allowing agents to both respond to and influence macro-level dynamics.
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H.3 Mean Field Approximation: Scalable Interaction Modeling.

Mean field approximation offers an effective way to model large multi-agent systems by replacing
costly pairwise interactions with interactions between each agent and a shared population signal [19,
16, 41]. This abstraction is formalized in Mean Field Game (MFG) theory, which enables scalable
modeling of individual decisions and their aggregate influence on population dynamics. By collapsing
multi-agent dependencies into a compact population-level representation, MFGs significantly reduce
the complexity of interaction modeling and have been applied to domains such as social influence [40,
4], traffic control [11, 39], energy optimization [9], economic policy [27], and imitation learning [46].
However, classical MFGs often assume stylized agent behaviors and lack the contextual reasoning
required for realistic social simulation. Recent neural variants [20, 21] improve expressiveness,
but remain less flexible than large language models. Motivated by these limitations, we propose
Mean-Field LLM (MF-LLM), which combines the scalability of mean-field approximation with the
generative reasoning capabilities of LLMs. MF-LLM explicitly models the bidirectional feedback
between individual behavior and evolving population dynamics, enabling scalable, high-fidelity social
simulation.

I Showcase of LLM-Generated Content

In Appendix I, we present a subset of generated comments under the “Liu Xiang Olympic Rumor”
scenario, corresponding to the decision distribution at a single time step (manifested as a comments
distribution in this context). We compare outputs generated by agents in identical states but using
different methods and LLM backbones. All comments were initially generated in Chinese and
faithfully translated into English for presentation. The complete results are available in our GitHub
repository.

I.1 Analysis of Generated Comments across Different Algorithms

To further evaluate the fidelity of generated comments, we conducted a comparative analysis along
three key dimensions: content richness and naturalness, intention distribution (rumor-spreading vs.
countering vs. neutral), and belief uncertainty. We compare the outputs from MF-LLM and State
generation against real human comments collected from the same context.

Content Richness and Naturalness. Comments generated by MF-LLM exhibit a high degree
of linguistic diversity and conversational naturalness, closely resembling real human discourse.
Examples include casual expressions such as “Haha Is this news real?” and mixed emotional cues
like “This feels way too real... but let’s wait for the official announcement.” These stylistic features
mirror the informal, fragmented, and emotion-driven nature of real-world social media discussions.
In contrast, State generation tends to produce more formal, structured outputs, often resembling
official clarifications (e.g., “Regarding the latest news, I have contacted the relevant parties, please do
not believe rumors.”). Such responses, while coherent, lack the spontaneous variability observed in
human comments.

Intention Distribution. MF-LLM successfully captures the coexistence of rumor-spreading, rumor-
debunking, and neutral stances within the population. Some generated comments actively propagate
suspicions (e.g., “Stop joking around.”), while others explicitly advise caution against misinformation
(e.g., “Fake people and fake stories are all rumors, don’t believe them!”). Importantly, MF-LLM also
generates comments that reflect passive spectatorship, mimicking users who merely observe without
taking a stance. In contrast, State generation is skewed toward debunking or formal clarification,
showing limited presence of rumor-spreading or ambivalent behaviors. This mismatch leads to a
narrower and less realistic distribution compared to real-world discussions.

Belief Uncertainty. Real human comments display a wide spectrum of belief, ranging from full
acceptance to skepticism and outright denial. MF-LLM-generated comments faithfully reproduce
this belief heterogeneity. Some comments show partial belief or hesitation (e.g., “Is it true? Or fake?
Too many rumors going around.”), while others demonstrate firm rejection or concern. This spread
reflects the nuanced and non-binary attitudes common in organic social discourse. Conversely, State
generation primarily produces comments that firmly oppose rumor acceptance, lacking examples that
inhabit the uncertain middle ground.
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Summary. Overall, MF-LLM significantly outperforms State generation in replicating the natural
distribution of real human comments across multiple dimensions. It captures richer language pat-
terns, more balanced intention distributions, and a realistic belief spectrum, enabling more faithful
simulation of public opinion dynamics.

I.2 Analysis of Repetition across Different LLMs

We further evaluate the quality of generated comments by examining content diversity, align-
ment with real-world distributions, and model-specific generation tendencies. In particular, we
compare GPT-4o-mini and DeepSeek-R1 Distill-Qwen-32B against Qwen2-1.5B-Instruct
MF-LLM/State.

High Repetition Across Agent States. Both GPT-4o-mini and DeepSeek-R1 exhibit significant
repetition across outputs, even when agent states vary. For example, GPT-4o-mini frequently repeats
phrases like “really heartbreaking” and “sigh,” while DeepSeek-R1 consistently generates sensational
headlines such as “shocking! Liu Xiang’s withdrawal scandal exposed!” across different user profiles.
We highlight repeated content using color in following tables. This redundancy indicates a failure to
adapt responses to agent-specific contexts, limiting the models’ ability to simulate diverse population
behavior.

Deviation from Real Comment Distributions. Generated comments from GPT-4o-mini and
DeepSeek-R1 deviate markedly from real-world comment patterns. Human comments naturally
span rumor-spreading, debunking, passive observation, humor, and emotional venting. In contrast,
both models collapse this diversity into narrow emotional templates, predominantly emphasizing
grief or outrage. This leads to unrealistic collective behavior, missing the rich spectrum of opinions
and intentions present in authentic discussions.

Distinct Narrative Biases. Each model also imposes distinctive stylistic biases. GPT-4o-mini
favors sentimental and empathetic narratives, often regardless of the agent’s initial belief state.
DeepSeek-R1, in contrast, exaggerates sensationalism by systematically inserting attention-grabbing
phrases. These narrative tendencies further distort the natural variance of social discourse, amplifying
specific emotional tones beyond their prevalence in Real data.

Summary. Compared to Qwen2-1.5B-Instruct MF-LLM, both GPT-4o-mini and
DeepSeek-R1 exhibit higher repetition, stronger narrative bias, and weaker alignment with
real-world collective decision-making dynamics. These results highlight the necessity of
diversity-aware generation strategies when modeling large-scale social behaviors.
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Comparison between Real and Generated Comments (Qwen2-1.5B-Instruct MF-LLM)

Index Real Comment Generated Comment

1 Repost. I feel the same way!! But let’s wait for the
official announcement.

2 Stop spreading bullshit rumors, you brainless
nationalists! [angry] Since when could the
host country just change the IAAF competition
rules whenever they want?! [angry] How much
more stupid can you get just to suck up to
someone?!

Haha∼ Is this news real? Were we tricked
again?

3 Is it true? Or fake? Too many rumors going
around.

@RealNewsBot Fake people and fake stories
are all rumors, don’t believe them!

4 Repost. This feels way too real. @CRNews @So-
huVideo This whole thing is really confus-
ing... //@CRNews: Didn’t expect this∼
//@SohuVideo: [haha] That was close [think-
ing][sly smile]

5 [Watching] Stop joking around. Only China would dare to
pull something like this. Heh.

6 Is it real or fake? You know what’s up. Stop spreading rumors,
haha, seriously.

7 No way, really? Is it true? @lovelingzi @RealWorld @OnlyBelieveInSkills @Sport-
sNews

8 [angry] Shameful. @BeijingSportsChannel

9 Looking for the truth. Repost.

10 Repost. "Rumor says ________"

11 Is this really how it happened?! [angry] @Everyone Please pay attention∼ Recently
a shocking piece of news has been spreading
online...[image]... Let’s check out this video
together...

12 Repost. Why are there so many people spreading fake
news? Stop lying!! Is all of this even true? I
was still hoping someone would tell the truth∼

13 Damn it! Inhumane! I’m boycotting British
goods! [angry rant]

@TruthBot @ChinaTrackTeam I’m really cu-
rious why this issue is causing such a huge
debate? We need to see if there’s any solid
evidence proving this claim, because online ru-
mors are everywhere now... //@BeijingSports:
Very...

14 Repost. @People’s Daily:

15 Paranoia kicking in again. @Hello everyone∼ Here’s the latest trending
news∼ As we all know, there was a shocking
report earlier saying that China’s track star Liu
Xiang might have messed up because the hur-
dle spacing was deliberately altered.
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Comparison between Real and Generated Comments (Qwen2-1.5B-Instruct State)

Index Real Comment Generated Comment

1 Repost. I saw someone post a message about Liu Xi-
ang withdrawing before the London Olympics.
He said it was because a hurdle spacing was
lengthened...

2 Stop spreading bullshit rumors, you brainless
nationalists! [angry] Since when could the
host country just change the IAAF competition
rules...

[]

3 Is it true? Or fake? Too many rumors going
around.

[Regarding the latest news on this topic, I have
already contacted the relevant parties, please
everyone don’t believe in rumor spreading ]

4 Repost. Shocked!! It’s spreading wildly online that Liu
Xiang was accused of violating IAAF rules,
and that improper setup of the competition
venue...

5 [Watching] Really? Does this maybe reveal some of our
own problems?

6 Is it real or fake? [Shocking rumor online: Liu Xiang’s with-
drawal involved a huge scandal? The hurdle
spacing was actually widened...]

7 No way, really? Is it true? @lovelingzi @RealWorld @MeToo

8 [angry] Shameful. [Shocking rumor online: Liu Xiang’s with-
drawal stunning inside story — London’s care-
lessness actually led to hurdle spacing in-
crease!]

9 Looking for the truth. #OlympicQualifiers##ShockingSecret After
Liu Xiang’s hurdle misstep, how did he still
manage to break through?...

10 Repost. "Rumor says ______"

11 Is this really how it happened?! [angry] [Reply] @Anonymous: This topic is very in-
teresting. I think the key problem lies in differ-
ences in the venue and training levels...

12 Repost. "Haha. . . . . . " Netizen comment: Haha. . . . . .

13 Damn it! Inhumane! I’m boycotting British
goods! [angry rant]

@Liu Xiang questioned for continuous hurdle
mistakes — is this claim credible?

14 Repost. @People’s Daily:

15 Paranoia kicking in again. #Today’sTopic #OnlineRumorEvent
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Comparison between Real and Generated Comments (GPT-4o-mini State)

Index Real Comment Generated Comment

1 Repost. Although Liu Xiang’s withdrawal is really re-
grettable, this kind of hurdle spacing change is
just way too unprofessional! He made so many
adjustments...

2 Stop spreading bullshit rumors, you brain-
less nationalists! [angry] Since when could
the host country just change the IAAF com-
petition rules whenever they want?! [angry]
How much more stupid can you get just to
suck up to someone?!

Sigh, Liu Xiang’s withdrawal this time is really
heartbreaking! I heard the hurdle spacing was
actually changed, this is just way too unreason-
able!...

3 Is it true? Or fake? Too many rumors going
around.

Liu Xiang’s withdrawal is really heartbreaking,
especially with the hurdle spacing problem in
London, it really should not have happened!...

4 Repost. After seeing this behind-the-scenes story, I truly
feel a mix of emotions. Liu Xiang, as an excellent
athlete, has been through so much...

5 [Watching] I heard Liu Xiang’s withdrawal in London was
because of the hurdle spacing change, this is just
too outrageous!...

6 Is it real or fake? Liu Xiang’s withdrawal is really heartbreaking,
seeing such behind-the-scenes news makes me
feel so emotional...

7 No way, really? Is it true? @lovelingzi Sigh, this news is really heartbreaking! Liu Xiang
has always been a hero in our hearts, and his
seven-step technique...

8 [angry] Shameful. As a fan who has been following Liu Xiang, I
am truly shocked by the behind-the-scenes of this
London event!...

9 Looking for the truth. Sigh, Liu Xiang’s withdrawal this time is really
heartbreaking! I have always supported him, and
I never thought that...

10 Repost. Seeing Liu Xiang at the London Games was re-
ally heartbreaking! We originally thought he
would perform well, but unexpectedly...

11 Is this really how it happened?! [angry] This is really regrettable! Liu Xiang has always
been our pride, but unexpectedly in London, be-
cause of the careless hurdle spacing design...

12 Repost. In this shocking piece of news, I feel extremely
regretful and disappointed. Liu Xiang’s seven-
step technique was a classic skill...

13 Damn it! Inhumane! I’m boycotting British
goods! [angry rant]

The inside story of Liu Xiang’s withdrawal in
London is truly shocking! It turns out the hurdle
spacing was actually increased to 13.85 meters...

14 Repost. Seeing the inside story about Liu Xiang’s with-
drawal, my heart really feels full of mixed emo-
tions. Turns out, the hurdle spacing change...

15 Paranoia kicking in again. Sigh, it’s really too disappointing! Behind Liu
Xiang’s withdrawal, there was actually such a
hidden story...
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Comparison between Real and Generated Comments (DeepSeek-R1 Distill-Qwen-32B
State)

Index Real Comment Generated Comment

1 Repost. Repost Weibo: Shocking! The real reason be-
hind Liu Xiang’s withdrawal scandal exposed!
Carelessness at the London Olympics led to an
increase in hurdle spacing...

2 Stop spreading bullshit rumors, you brainless
nationalists! [angry] ...

"The hurdle spacing increased by 0.13 meters,
it looks like a tiny change, but it had a huge
impact on Liu Xiang’s seven-step technique!
This small detail at the London Olympics is
really chilling..."

3 Is it true? Or fake? Too many rumors going
around.

Liu Xiang is really too unfortunate, the hurdle
spacing adjustment affected his performance,
and other athletes also had problems. This is
so unfair! Hope the truth will be revealed!

4 Repost. Shocked! London really screwed Liu Xiang
this time! The hurdle spacing increased by
0.13 meters...

5 [Watching] Shocking! Liu Xiang’s withdrawal scandal
exposed! The hurdle spacing at the London
Olympics was actually increased to 13.85 me-
ters...

6 Is it real or fake? Liu Xiang’s withdrawal is indeed regrettable,
but the hurdle spacing change at the London
Olympics was definitely a key factor...

7 No way, really? Is it true? @lovelingzi Shocking! Liu Xiang’s withdrawal scandal ex-
posed! Carelessness at the London Olympics
actually lengthened the hurdle spacing...

8 [angry] Shameful. [Repost]Liu Xiang’s withdrawal scandal ex-
posed! London Olympics adjusted the hurdle
spacing, from 13.72 to 13.85...

9 Looking for the truth. This is so unfair! Liu Xiang’s seven-step tech-
nique was clearly designed for 13.72 meters...

10 Repost. This is way too unfair! Liu Xiang’s seven-
step technique was designed for a 13.72-meter
distance, but London actually changed it...

11 Is this really how it happened?! [angry] Netizen emotions: sadness, disappointment,
support for Liu Xiang.

12 Repost. Shocking! There’s such a big scandal behind
Liu Xiang’s withdrawal! Was the hurdle spac-
ing at the London Olympics really set so casu-
ally?...

13 Damn it! Inhumane! I’m boycotting British
goods! [angry rant]

This is way too outrageous! The London
Olympics actually changed the hurdle spacing,
causing Liu Xiang to hit the hurdle directly...

14 Repost. Oh my god, Liu Xiang’s withdrawal is really
too unfortunate! London increased the hurdle
spacing to 13.85 meters...

15 Paranoia kicking in again. Sigh, this is way too outrageous! Liu Xiang’s
seven-step technique was his signature move...
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly state the paper’s main contributions,
which are supported by the MF-LLM framework (§ 3) and experimental results (§ 4).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a further discussion of experimental findings and limitations in
Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper is not a theoretical paper. The derivation of the loss function related
to algorithm design is provided in Section 3 and the Appendix G.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes all necessary information for reproduction, including the
algorithm pipeline 1, the use of pre-trained large language models subsection 4.3, parameter
configurations Appendix A, and evaluation approaches subsection F.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have open-sourced the code, which is available via an anonymous GitHub
repository linked at the end of the Introduction section 1.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides comprehensive details on training and evaluation, includ-
ing data sources and splits subsection F.1, hyperparameter configurations Appendix A,
evaluation approaches subsection F.3, model initialization subsection 4.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the number of test events and evaluation steps, and clearly indicate
the evaluation test datasets used in our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information about the compute resources in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and fully adhered to the NeurIPS Code of Ethics throughout
the research process.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is primarily methodological. We discuss potential applications in
Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any model or dataset with a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We clearly indicate the datasets and pretrained language models used in the
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new code assets that are documented and released with
accompanying instructions in the anonymized repository.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve any human subjects or crowdsourcing, and
therefore no IRB or equivalent review is required.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for writing assistance, such as editing and formatting.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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