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ABSTRACT

Referring Expression Comprehension (REC) aims to localize the image region
corresponding to a natural language query. To handle complex queries, recent
work has focused on compositional reasoning, with advances in Large Language
Models (LLMs) and Vision Language Models (VLMs) enabling the decomposi-
tion of queries into executable programs within reasoning pipelines. However,
existing approaches implicitly assume the target is always present, forcing the
model to output a result even when no valid referent exists. Moreover, multi-step
reasoning processes often result in high computational costs, limiting their appli-
cation in real-time scenarios. To address this limitation, we propose Verification-
Integrated Reasoning Operators (VIRO), which integrate operator-level verifica-
tion into a neuro-symbolic pipeline, enabling abstention and the explicit handling
of no-target cases. Each operator performs a reasoning step and verifies its own
execution, including a lightweight CLIP-based filter with minimal computational
overhead, and logical verification for spatial and relational constraints. Experi-
mental results demonstrate that our framework achieves strong robustness in no-
target cases, achieving 61.1% balanced accuracy, while showing state-of-the-art
accuracy on standard REC benchmarks, compared to compositional baselines.
Our neuro-symbolic pipeline also shows superior computational efficiency, high
reliability with a program failure rate of just 0.3%, and scalability—achieved by
decoupling program generation from execution.

1 INTRODUCTION

Humans often rely on language to navigate and interpret visual environments, using referring expres-
sions, such as “the blue cup on the wooden table,” to pinpoint specific objects in complex scenes.
This fundamental human skill is formalized in the vision-language task of Referring Expression
Comprehension (REC), where the goal is to localize a target object in an image based on a natural
language description (Qiao et al.,|2020). This task has broad applicability in artificial intelligence
(AI), including vision-language navigation (Wang et al.,|2021} Zhang et al.,[2024) and human-robot
interaction (Shridhar et al.,[2022; Jin et al.,|2025)), and text-to-image retrieval (Lee et al.| 2024)).

Early REC approaches have relied on supervised end-to-end learning that directly map textual
queries to the corresponding regions (Yu et al., [2018}; |[Kamath et al., 2021} [Yan et al., 2023). With
the advent of large language models (LLMs), the field has shifted toward compositional strategies
that parse a natural language description into structured semantic components (Subramanian et al.,
2022 Han et al., 2024; Shen et al., 2024; [Chen & Chen, [2025). By decomposing queries into
smaller semantic units, this approach enables systematic reasoning over complex relationships be-
tween objects, attributes, and spatial relations (Suris et al., 2023}, [Ke et al., [2024; (Cai et al., |[2025)),
and offers flexibility in interpreting diverse linguistic patterns. Moreover, recent advancements in
Open-Vocabulary Detectors (OVDs) (L1 et al., 2022} [Liu et al., [2024; Xiao et al., [2024), with their
strong zero-shot capabilities, enable a more direct mapping of language to visual evidence.

However, these approaches assume that a valid referent is present in every image, forcing a pre-
diction even in no-target scenes. In parallel, compositional methods (Suris et al., 2023} |Ke et al.|
2024 |Cai et al.| 2025} |(Chen & Chen| 2025) rely on open-vocabulary detectors; while effective on
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Figure 1: An illustrative comparison of between previous REC methods and our VIRO framework
in no-target cases. Previous REC methods (left) are forced to output a prediction, even when the
query cannot be grounded in the image, due to the lack of a mechanism for eliminating incorrect
candidates. In contrast, our VIRO framework (right) rejects invalid cases: (i) FIND identifies that
there is no elephant in the image (top); (ii) F IND_DIRECTION identifies the person is not positioned
to the left of the elephant (bottom). VIRO can terminate early if there are no candidates.

unseen categories, these detectors often hallucinate high-confidence false positives for non-existent
objects, which exacerbate the problem and furthermore, propagate through relational/spatial mod-
ules. While recent works by He et al.|(2023)) and |Liu et al. (2023) have acknowledged the existence
of no-target cases in their datasets, their solutions rely on task-specific supervision. This depen-
dency on supervised training limits the models’ applicability in more generalized scenarios where
such specific training data is unavailable. Consequently, algorithmic progress in zero-shot REC with
explicit handling of no-target cases remains a largely unexplored area of research.

To tackle the challenges, we introduce the Verification-Integrated Reasoning Operators (VIRO), a
neuro-symbolic framework designed to explicitly handle such scenarios through operator-level ver-
ification. Our pipeline builds on neuro-symbolic reasoning, decomposing natural language descrip-
tions using LLM into a sequence of executable operators, as illustrated in Figure [T} and executes
them sequentially. Crucially, VIRO embeds verification within each reasoning step, allowing oper-
ators to abstain from forced predictions and to terminate early when conditions are not met. This
verification process includes two key components: a lightweight CLIP-based filter with minimal
computational overhead that suppresses high-confidence false positives from open-vocabulary de-
tectors, and logical checks that strictly enforce spatial and relational constraints, yielding robustness
in no-target scenarios.

Our framework is evaluated on both no-target and standard REC scenarios. On the gRefCOCO no-
target dataset (He et al.,[2023), it exhibits strong robustness, achieving state-of-the-art accuracy when
compared to compositional baselines across standard REC benchmarks, including RefCOCO/+/g.
Furthermore, our neuro-symbolic approach achieves high throughput (FPS), a low program failure
rate, and enhanced scalability for processing multiple images from a single query.

Our key contributions are summarized as follows:

* We introduce a neuro-symbolic framework built on VIRO, primitive operators that embed ver-
ification directly within each reasoning step, enabling explicit handling of no-target scenarios
through early termination when verification conditions are not met.

* We design lightweight verification mechanisms including a CLIP-based uncertainty filter to re-
duce false positives from open-vocabulary detectors and logical verification for spatial reasoning,
achieving robust performance without task-specific supervision.

* Qur experiments show that superior performance across multiple metrics, including 61.1% bal-
anced accuracy on no-target cases, state-of-the-art results on standard REC benchmarks with a
low 0.3% failure rate, exceptional computational efficiency, and scalability through the decou-
pling of program generation from execution.
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2 RELATED WORK

Referring Expression Comprehension. Early end-to-end REC methods (Yan et al., 2023} [Ka-
math et al., [2021) perform well on seen domains but struggle under shift, as they cannot exploit
open-set detectors with strong recognition ability (Liu et al.l 2024} |L1 et al., 2022). To improve
zero-shot generalization, the field has shifted toward compositional strategies that first parse textual
descriptions into structured semantic units and then align them with candidate proposals for ground-
ing. |Subramanian et al.| (2022) combines CLIP-based matching with rule-based spatial reasoning,
Han et al.| (2024)) aligns textual and visual triplets through structural similarity, (Shen et al., [2024)
fuses heatmaps derived from Vision-Language Pre-training (VLP) models with proposals from an
OVD, and |Chen & Chen|(2025) formalizes queries into structured representations for probabilistic
matching. While these approaches enable strong zero-shot transfer, they remain inflexible when
queries deviate from pre-defined forms, limiting their ability to handle diverse linguistic inputs.

Compositional Reasoning REC. Recent neuro-symbolic approaches for visual grounding offer
more flexible compositions than fixed structures. VisProg (Gupta & Kembhavi, |2023) generates
abstract pseudo-code that composes vision—language and symbolic modules (e.g., attribute filtering,
spatial reasoning), while ViperGPT (Suris et al.|[2023) produces less structured code. HYDRA (Ke
et al., 2024) introduces iterative reasoning by coupling a planner and reasoner with an RL agent.
NAVER (Cai et al., 2025) performs self-correcting inference by circulating information across mul-
tiple states. However, these methods assume that the target always exists, forcing a prediction even
when no valid object is present. Furthermore, they often require regenerating a program for each new
image, which increases computational cost when applying a single query across multiple images.
In contrast, our framework addresses these gaps by (i) integrating lightweight verification for robust
no-target rejection and (ii) decoupling program generation from execution for greater efficiency.

3 METHOD

In Section we formally define the REC problem, extended to handle no-target cases. Subse-
quently, we present the neuro-symbolic reasoning pipeline integrated with VIRO in Section

3.1 PROBLEM FORMALIZATION

REC aims to localize a region within an image I that corresponds to a given natural language query
Q. A conventional REC assumes that the target object described by the query is always present in
the image. This assumption does not hold in practical applications, such as a visual searching system
or a robot searching an object in a building (Zhou et al.,|2023} |Yokoyama et al., 2024} Zhang et al.|
2024; [Yin et al.l 2025} |Gong et al., [2025), where the target is frequently absent from most images.
We formalize the output of model as:

v B, ifatargetexistsin [/,

N {@ , otherwise .

)

Here, B = (z,y,w, h) € R* denotes an bounding box in pixel coordinates, where (,y) represents
the center coordinates of the box, and w, h are its width and height. The & denotes the absence of a
target, i.e., no object corresponding to the query () is present in the image.

Table 1: Overview of VIRO. All operators are designed to return a set of verified bounding boxes or
an empty set (@) if its condition is not satisfied. Additional operators are provided in Appendix A.ll

Operator Input Arguments Verification Module Built-in Models
FIND object_name CLIP-based verifier OVD, CLIP
PROPERTY object, attribute CLIP score CLIP

RELATIVE DEPTH object, reference object,criteria Relative depthrelation DepthAnything

3.2 A NEURO-SYMBOLIC REASONING PIPELINE

To address the task defined above, our framework employs a two-stage neuro-symbolic pipeline. As
illustrated in Figure 2b] the pipeline consists of two main stages: (i) a pre-execution stage that trans-
lates the query @ into a symbolic program P (detailed in Section[3.2.2)), and (ii) a program execution
stage that runs this program P on the image I to localize the referent (detailed in Section[3.2.3). The
program P is constructed using verification operators, with additional details on their functionality
presented in the following section.
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Figure 2: Overview of VIRO. (a) Details of the F IND operator with a CLIP-based uncertainty filter.
(b) The decoupled VIRO pipeline and comparison with compositional reasoning approaches.

3.2.1 VERIFICATION-INTEGRATED REASONING OPERATORS (VIRO)

We introduce a finite set of primitive operators, Verification-Integrated Reasoning Operators
(VIRO), denoted O and summarized in Tablem These operators serve as the foundational building
blocks for our neuro-symbolic reasoning pipeline, i.e., P = (01,09, ...,07) where o, € O and T
denotes the number of program lines. Each operator in O is designed not only to perform a reason-
ing step but also to self-verify execution. If an operator determines that its verification condition is
not satisfied, the operator returns an empty set (&), enabling early termination of the entire pipeline.

We categorize these operators into four functional categories: (i) Identification operators, such
as FIND and PROPERTY, which detect candidates and refine entities based on specified attributes;
(ii) Absolute spatial operators, such as LOCATE, SIZE, ORDER, and ABSOLUTE_DEPTH, which
reason about position and scale in absolute terms; (iii) Relative spatial operators, such as
FIND DIRECTION, FIND_NEAR, FIND_INSIDE, and RELATIVE_DEPTH, which capture spa-
tial relationships between multiple entities; (iv) Termination operator, namely RESULT, which
concludes the program by mapping the selected object into the answer space. Further details of
each predefined operator, including their arguments, are provided in Table[T} To illustrate how the
verification module works, we detail two key examples below.

Uncertainty Filter in FIND Operator. The FIND operator takes an argument object_name, a
noun phrase [ (e.g., “guy”) in the query () (e.g., “A middle guy in red”). It invokes an OVD model
D (e.g., Grounding DINO (Liu et al., 2024)) on image I with label [ to generate a (possibly empty)
set of proposals, i.e., {Bj};L, < D(I,1). While state-of-the-art OVDs offer powerful zero-shot
grounding, they can yield high-confidence false positives (FPs) that are visually or semantically
similar to [, which can propagate error through the reasoning pipeline, as illutrated in Figure

To mitigate FP proposals, we integrate a lightweight CLIP-based verification module within the
FIND operator. This module provides a secondary check on the OVD’s proposals by leveraging
CLIP’s discriminative power of binary classification tasks, effectively refines uncertain outputs’
filter while adding minimal computational overhead. Specifically, for each proposal B;, we crop
its corresponding image region, denoted as I;. We predefine a bank of K common categories C =
{c1,¢2,...,ck} that are well-represented in CLIP. The verification score for B; is the average
probability of being the target [ when compared one-on-one against each ¢, € C:

1 E exp(sim(1;,1)/7)

U = R 2 opim( ) /7) + explsim(ly 0)/7)

2
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where sim(+, ) denotes cosine similarity between CLIP image/text embeddings and 7 > 0 is a
temperature. We accept B; as [ only if S(I | I;) > d;, where ¢; is a fixed or label-specific adaptive
threshold. There is a trade-off in setting the threshold: when it is set close to 0.5, true positives (TP)
may be filtered out, while FPs may remain unfiltered. Since CLIP can exhibit inherent bias toward
labels that were well-represented in its training data, this can affect the accuracy of the thresholding
process. To mitigate this, we use ImageNet (Deng et al., |2009) as an auxiliary dataset for per-
label threshold calibration. Details of the calibration process are provided in Appendix To
summarize, S(I|I;) serves as an uncertainty filter, assessing the degree of alignment between the
given label [ and the regions /; proposed by OVD, and filtering out uncertain proposals.

Logical Verification in FIND_ DIRECTION Operator. The FIND_DIRECTION operator takes
three arguments: object, reference_object, and direction. object refers to the target
object that we are trying to find, while the reference_ob ject is the object used as a reference for
comparison. It performs a geometric test over all input candidates to verify whether each object
proposal satisfies the specified spatial relation with respect to at least one reference_object.

3.2.2 PRE-EXECUTION STAGE: SYMBOLIC PROGRAM GENERATION

The pre-execution stage translates a given natural-language query () into a machine-executable sym-
bolic program P, which is composed of our primitive operators defined in Section[3.2.1] This trans-
lation into a structured format is crucial for ensuring robust execution, as the inherent complexity
of natural language make direct machine interpretation unreliable. This process is accomplished
through two key components: a program generator that produces an initial program, and a program
validator that subsequently ensures its syntactic correctness.

Program Generation. We leverage a Large Language Model (LLM) to translate the natural lan-
guage query () into a symbolic program P. We guide this process using a few-shot prompting
strategy as in |Gupta & Kembhavi| (2023), where the prompt contains a set of exemplars m demon-
strating the desired query-to-program mapping:

P =LLM(Q|m) = (01,02,...,0r), whereo, € O . 3)

Program Validation. While powerful, LLMs can occasionally produce programs with syntac-
tic errors such as malformed syntax, wrong operator names, or mismatched arguments. Unlike
ViperGPT (Suris et al.| 2023) that rely on compiling Python code as shown in Fig [2b] our validator
simply checks for conformance to our predefined operator-based grammar. If validation fails, a con-
cise diagnostic is fed back to the LLM in a new prompt to trigger a revision. See Appendix [A.3|for
details. Furthermore, Symbolic approaches achieve low failure rates, as shown in Section[4.2.2]

3.2.3 EXECUTION STAGE: PROGRAM INTERPRETATION

The program interpreter executes the symbolic program P = (01, 02, . . ., or) sequentially, invoking
the corresponding operator at each step. Each operator relies on a built-in model to function properly,
and we leverage the following models: GroundingDINO (Liu et al.| [2024)/GLIP (L1 et al.| |2022),
CLIP (Radford et al.l 2021), and DepthAnything (Yang et al., [2024). Execution continues until
either (i) all operators are applied and RESULT maps the final candidates to an answer box, or
(ii) some operator returns &, yielding a no-target outcome for the current image and immediately
terminate. The latter corresponds to an early-exit, which occurs when built-in verification rejects
all proposals (e.g., FIND identifies there is no valid object; FIND_DIRECTION finds no relation as
illustrated in Figure[I)). This mechanism enables explicit no-target handling and reduce unnecessary
computation, as demonstrated in Section[4.3] thereby highlighting the robustness of our verification-
integrated design.

3.2.4 DECOUPLED NEURO-SYMBOLIC APPROACH

As shown in Figure [2b] VIRO adopts a decoupled design that separates program generation from
execution. In contrast, methods such as HYDRA (Ke et al., [2024) and NAVER (Cai et al., [2025)
entangle program synthesis for a query () with image execution. Consequently, even when the
query is identical across [N images, these systems regenerate a reasoning program for each image 7,
incurring IV separate synthesis operations. VIRO generates the program once and reuses it across
all images, enabling low-latency operation. Empirical results are reported in Section {4.2.2
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4 EXPERIMENT

In this section, we present a comprehensive evaluation of our VIRO pipeline.The details of the exper-
imental setup are described in Section We then present our main results in terms of robustness,
efficiency, and scalability in Section Following this, we conduct extensive ablation studies in
Section[4.3] analyzing the contribution of each component. Finally, Section[#.4]provides an in-depth
analysis of our pipeline’s behavior through qualitative examples.

4.1 EXPERIMENTAL SETUP

Dataset and Evaluation Metrics. We evaluate our framework on both no-target scenarios and
standard benchmarks. For no-target setting, we use the gRefCOCO dataset (He et al., [2023), focus-
ing on the no-target split, which contains referring expressions that do not correspond to any object
in the image. This setting allows us to directly evaluate the model’s ability to suppress incorrect
predictions in the absence of a valid target. For standard REC, we evaluate our method on widely
used REC benchmarks, including RefCOCO/+ (Yu et al.,[2016), and RefCOCOg (Mao et al.,[2016).

We evaluate both no-target robustness and standard REC accuracy via Balanced Accuracy, defined
as (TPR+TNR) /2. It provides a holistic measure by equally weighing the ability to localize existing
targets and reject non-existing ones. The component metrics are defined as follows:

* True Positive Rate (TPR) = TPZ_%, measuring accuracy on target-present samples. This is

equivalent to the standard Acc@0.5, used in standard REC, where a prediction is a correct if loU
between the predicted and ground-truth bounding boxes exceeds 0.5.

* True Negative Rate (TNR) = %, measuring accuracy on target-absent samples (TP+FP),

often referred to as no-target accuracy (N-acc).
* False Positive Rate (FPR) = % = 1 — TNR, quantifying how often the model incorrectly
predicts a target in images where none exist.

Baselines. We group existing REC approaches into four categories, according to their underlying
assumptions. Fully supervised REC includes methods trained end-to-end with full annotations on
RefCOCO/+/g, as well as on gRefCOCO no-target dataset for handling no-target cases. Proposal-
based REC methods first parse the referring expression to extract key linguistic components and
then align them with candidate region proposals. Such approaches inherently force the model to
select one of the proposals, which makes handling no-target cases intrinsically difficult. Detector-
based REC leverages large-scale pretrained grounding detectors to directly match textual phrases
with image regions in an end-to-end manner, without explicit proposal ranking. For this category, we
select GroundingDINO-T (Liu et al., |2024) and GLIP-L (Li et al.,|2022) as representative methods.
A key criterion for their selection is that neither model was trained on the MSCOCO caption that is
the source of our evaluation benchmarks, thereby ensuring a fair comparison. Finally, compositional
reasoning REC, which serves as our primary point of comparison, explicitly parses and executes the
linguistic structure to localize referents through multi-step reasoning. Further details of experiments

are provided in Appendix

4.2 MAIN RESULTS

We evaluate our framework along three key dimensions: (i) robustness in handling no-target cases

(Section[4.2.1), (ii) efficiency in terms of failure rate and execution latency (Section[4.2.2)), and (iii)
scalability, highlighting the benefits of our decoupled pipeline (Section #.2.3).

4.2.1 ROBUSTNESS ON NO-TARGET CASES

As shown in Table [2] proposal-based baselines yield near-zero TNR because they are effectively
forced-prediction systems: from a pre-generated pool (e.g., Faster R-CNN in MAttNet (Ren et al.|
20165 [Yu et al.l 2018)), they must return one region, and a candidate is almost always avail-
able. Detector-based and compositional methods further suffer from OVD hallucinations; even
self-correction often forces a choice rather than enabling abstention, inflating FPR. This design
reflects an implicit trade-off—optimizing TPR on standard benchmarks at the expense of no-target
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Table 2: Comparison of REC methods on robustness using the gRefCOCO no-target testA split, and
on standard REC performance using the RefCOCO testA split.

No Target Robustness Standard REC

Method Balanced Acc. T TNR (N-acc) T FPR| TPR (Acc@0.5) 1
Fully Supervised REC (He et al., 2023)

GREC-MDETR-R101 (Kamath et al.,[2021) 62.0 34.5 65.5 89.6
GREC-UNINEXT-R50 (Yan et al.,|[2023) 70.4 49.3 50.7 91.5
Proposal-based REC

ReCLIP (Subramanian et al.,[2022) 23.1 0.0 100.0 46.1
SS-CLIP (Han et al.,[2024) 333 0.0 100.0 66.5
GroundVLP (Shen et al.|[|[2024) 30.7 0.0 100.0 61.3
Detector-based REC

GroundingDINO-T (Liu et al.|[2024) 39.1 22.8 712 57.1
GLIP-L (Li et al.|[2022) 37.2 21.7 78.3 52.6
Compositional Reasoning REC with GroundingDINO

ViperGPT (Suris et al.,[2023) 334 0.2 99.9 66.7
HYDRA (Ke et al.[[2024) 35.2 7.5 92.5 62.8
NAVER (Cati et al.|2025) 33.8 34 96.6 64.2
VIRO (Ours) 61.1 50.2 49.8 71.9

Table 3: Comparison of accuracy and efficiency for compositional reasoning methods on standard
REC benchmarks. Accuracy is reported on the testA splits of RefCOCO/+, and the test split of Ref-
COCOg, including excluding failure accuracy (Exc.1) and include failure accuracy (Inc.?). Failure
rate (%) and FPS on execution stage are evaluated on RefCOCOg and RefCOCO, respectively.

RefCOCO  RefCOCO+ RefCOCOg

Method Failure Rate | Exc. Inc. Exc. Inc. Exc. Inc. FPS?
Detector-based REC

GroundingDINO-T (Liu et al.,[2024) 0.00 572 572 576 576 595 595 5.00
GLIP-L (Li et al.|[2022) 0.00 526 526 48.6 48.6 526 526 1.23
Compositional Reasoning REC with GroundingDINO

ViperGPT (Suris et al.|[2023) 6.03 66.7 644 617 575 657 61.7 0.67
HYDRA (Ke et al.,2024) 32.37 62.8 449 584 374 67.1 454 0.05
NAVER (Cai et al.,[2025) 9.74 642 603 60.1 556 684 558 0.20
VIRO (Ours) 0.30 719 719 633 633 666 663 1.39
Compositional Reasoning REC with GLIP

ViperGPT (Suris et al..|[2023) 6.31 720 69.6 657 613 69.6 652 0.68
HYDRA (Ke et al.,2024) 21.44 73.1 605 60.6 48.7 67.6 531 0.05
NAVER (Cai et al.,[2025) 25.90 734 625 627 507 700 519 0.17
VIRO (Ours) 0.30 72.8 728 637 637 670 668 1.25

robustness—and can yield misleadingly high TPR by rewarding guesses. We illustrate this in Ap-
pendix where a forced-prediction variant of our method attains state-of-art TPR.

In contrast, VIRO attains 61.1% Balanced Accuracy substantially outperforming all baselines with-
out REC fine-tuning. These gains stem from verification-integrated operators that enable abstention
when no valid referent is present. Importantly, VIRO’s robustness approaches that of fully super-
vised methods (e.g., GREC-UNINEXT) without training on no-target annotations, demonstrating
robust zero-shot visual grounding.

4.2.2 ANALYSIS OF COMPOSITIONAL REASONING ON STANDARD REC BENCHMARKS

Table [3| provides a comprehensive evaluation of VIRO, against compositional reasoning REC base-
lines, focusing on its accuracy, execution efficiency, and throughput on standard REC benchmarks,
using both GroundingDINO-T and GLIP-L. We report both Exc. (exclude failure accuracy) and Inc.
(include failure accuracy), where the latter penalizes program failures as incorrect predictions, i.e.,
evaluating all datasets.

VIRO shows a remarkably low program failure rate of 0.3%, which ensures that its Inc. accuracy
remains nearly identical to its Exc. accuracy. In contrast, competing methods such as HYDRA and
NAVER are prone to failures from two sources: (i) compile errors due to syntactically incorrect
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programs generated by the LLM, and (ii) execution timeouts when an answer is not found within a
default number of iterations (e.g., 7 for HYDRA, 5 for NAVER as default value). In contrast, VIRO’s
integrated validator, with a maximum of 5 iterations, ensures that nearly all generated programs are
executable, overcoming a critical bottleneck of previous compositional approaches.

Furthermore, VIRO achieves superior computational efficiency. The results show that our method
delivers high throughput (FPS) during the execution stage, significantly surpassing other compo-
sitional reasoning methods. This demonstrates that VIRO incorporates a sophisticated reasoning
layer via its operators without imposing a heavy computational burden, making it highly suitable for
processing a large number of images as analyzed in the following section.

4.2.3 SCALABILITY IN 1-QUERY-N-IMAGES

We evaluate the scalability of VIRO in a 1-query-/N- i—
images setting, where a single query is used to lo- 250007 —a- Hvora
calize a target across multiple N images. This sce- RN
nario is crucial for real-world applications such as

robotic visual search. As shown in Figure [3] VIRO
and ViperGPT demonstrates exceptional scalability.
Due its decoupled architecture, the program genera- " 10000

tion (pre-execution) is performed only once per query, /
ie., T = Tpre—execution + N X Texecution- In con- 2000 I o 50 160 500 1000
trast, methods like HYDRA and NAVER entangle The Number of Images (Log Scale)
these stages, forcing program regeneration for each
image. Their total time is calculated as Tioy =
N x Tpre—execution + N x Texecutiona leading to a non-
linear growth in processing time that is impractical for large-scale tasks. This result highlights the
critical advantage of our decoupled design for achieving low-latency visual reasoning at scale.
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Figure 3: Total time in a 1-query-N-images
setting, with the z-axis on a log scale.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies to analyze the impact of key hyperparameters on VIRO’s
performance and to validate our design choices. Unless stated otherwise, all experiments are con-
ducted using VIRO with GroundingDINO-T, evaluated on the RefCOCO testA split.

Table 4: Ablation study of the proposed verification components in VIRO. ‘Fixed’ refers to a fixed
threshold, while ‘adaptive’ refers to an adaptive threshold.

No Target Robustness Standard REC

Method Balanced Acc. T TNR (N-acc)t FPRJ] TPR (Acc@0.5) 1
Detector-only (GroundingDINO-T) 39.1 22.8 77.2 57.1
+ Neuro-symbolic (w/o verification) 56.8 38.9 61.1 74.6
+ Logical Verification (LV) 57.0 39.3 60.7 74.6
+ Uncertainty Filtering (UF, fixed) 58.5 43.1 56.9 74.4
+ Uncertainty Filtering (UF, adaptive) 61.1 50.2 49.8 71.9

Verification Components. Table[4|shows the results of a cumulative ablation study to analyze the
contribution of each verification module of our VIRO pipeline. We start with a standard detector-
only baseline and progressively add our proposed modules to measure the impact on both no-target
robustness and standard REC accuracy. By incorporating neuro-symbolic reasoning without ver-
ification, the performance improves significantly, with a balanced accuracy of 56.8%. This im-
provement stems from the compositional pipeline’s ability to ground all noun phrases in the query,
enabling sophisticated reasoning. The addition of LV and UF yields a further incremental improve-
ment in no-target robustness, with a small reduction in TPR that reflects a precision—recall trade-off.

OVD Detection Threshold. The detection threshold of the Open-Vocabulary Detector (OVD) is
a critical parameter that governs the trade-off between standard REC accuracy (TPR) and no-target
robustness (TNR). As shown in Figure[d] a higher threshold improves TNR by filtering out spurious
detections, but this simultaneously lowers recall, which in turn degrades TPR. We adopt a threshold
of 0.2 to favor high recall at the proposal stage while maintaining balanced overall performance.
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Table 5: Ablation study on early-exit evalu-
ated on gRefCOCO no-target testA split.

~
o

Early-exit Latency| FPS 1

Enabled 0.52 1.39

¢~ TNR (N-acc) Disabled 0.58 1.79
, —&— TPR (Acc@0.5)

Accuracy (%)
ul ()]
? o
®

401 -@- Balanced Acc.
! ! } 7 7 Table 6: Ablation study on the CLIP model.
0.1 0.2 0.3 0.4 0.5
Detection Threshold CLIP Model TPR (Acc@0.5)1 FPS 1
Figure 4: Analysis of the OVD detection threshold, V?T'H/ 14 71.9 1.39
which illustrates the trade-off between TPR and TNR. _ Vil L/14 68.8 179

Description: the dog on the street Description: middle person

Previous REC methods ~ VIRO (Ours) Previous REC methods VIRO (Ours)

Figure 5: RefCOCO validation examples for false-positive suppression. Prior REC methods (left
in each pair) produce spurious detections (red boxes), whereas VIRO (right) rejects them via CLIP-
based verification, yielding no prediction in these cases.

Early-exit Mechanism. As shown in Table |5} enabling early-exit reduces the average latency to
0.52 seconds per query on the gRefCOCO no-target testA split. Because operators run sequen-
tially, unmet intermediate conditions trigger termination—for example, for “an elephant to the left
of a man,” the program exits if the elephant is not found, avoiding downstream work and boosting
throughput when no-target cases are frequent.

CLIP Models. We analyze the impact of the CLIP model backbone, used for both UF and the
PROPERTY operator. Table [6 compares the performance of ViT-L/14 and ViT-H/14. Our final
configuration use ViT-H/14 as it provides the best balance between accuracy and efficiency, although
the lighter ViT-L/14 variant remains a computationally efficient alternative.

4.4 QUALITATIVE ANALYSIS

We present qualitative examples from RefCOCO validation set. Figure [5| demonstrates VIRO’s
ability to suppress false positives (FPs) from open-vocabulary detectors via CLIP-based verification,
compared against previous REC methods. Illustrative examples of our program’s execution process
are provided in Appendix [A.7]

5 DISCUSSION AND CONCLUSION

In this work, we introduced a verification-integrated neuro-symbolic pipeline VIRO for REC. By
embedding lightweight verification mechanisms into each reasoning step, our framework explicitly
handles no-target scenarios, achieves interpretable early termination, and maintains state-of-the-art
accuracy with strong computational efficiency. Beyond REC, the modularity of our pipeline suggest
promising extensions to interactive domains. In particular, the ability to parse natural language
into verifiable symbolic programs opens the door to future applications where robots and humans
engage in dialogue. In such scenarios, robots could not only interpret complex instructions but also
execute them safely and transparently, ensuring that ambiguous or invalid commands are rejected
before action. This direction underscores the broader potential of our approach as a foundation for
trustworthy multimodal reasoning in embodied Al systems.
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