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Figure 1: Starting from a view of a 3D scene where a depth estimation model works well (left), our
method changes the camera’s viewpoint so that the model’s prediction is no longer accurate.

ABSTRACT

Monocular depth estimation models have advanced significantly in recent years,
where it seems as if they can provide accurate depth information for any arbitrary
scene. In this work, we develop a framework to see if this indeed is true by
stress-testing them in different indoor environments. Specifically, our goal is to
study how robust various models are to changes in camera viewpoint. Rather than
conducting an exhaustive search over all possible viewpoints in a scene, we employ
adversarial attacks leveraging a differentiable rendering framework applied to 3D
assets. By initializing from a given camera position, we optimize the camera’s
rotation and translation parameters through backpropagation to update prediction
errors. To ensure meaningful failure cases, we implement strategies that prevent
trivial adversarial shortcuts. To make all of this possible, we also construct a
dataset comprising of complex, efficiently renderable 3D assets, enabling rigorous
evaluation of four recently published depth estimation models. The key insight
from our experiments is that all of those models, including the very recent state-
of-the-art, fail on the adversarial viewpoints discovered through our framework,
i.e., their predictions deviate significantly from the ground-truth depth. Our work
establishes a new robustness benchmark for monocular depth estimation task.

1 INTRODUCTION

Predicting depth from an RGB image is a crucial task for many computer vision applications. The
initial algorithms tackled this problem for localized settings; neural networks were trained to work
on specific domains, e.g., only for self-driving car datasets Geiger et al. (2013) or only for indoor
scenesSilberman et al. (2012). This paradigm changed for monocular depth estimation (MDE) task
through methods that enable training the same model on diverse datasets of much bigger scale Ranftl
et al. (2020). Consequently, we now have a suite of MDE models that seem to work pretty well on
images in the wild Yang et al. (2024a;b).

Given how powerful these models seem to be, it is natural to ask if they fail at all. In this work, we
study the robustness of MDE models to semantic properties of the image; specifically, to camera’s
position. Imagine if a camera had the liberty to move around anywhere in a 3D scene, capturing
images from all sorts of viewpoints; getting close to objects, flying above them looking top down,
going into a corner of the room etc. Would these powerful models remain powerful for images
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captured from all of these viewpoints? Or can they fail at certain viewpoints? Questions such as these
are important because such scenarios can naturally arise in the real world when, e.g., a robot moves
through an environment estimating depth as it goes. The naive way to study such a property could be
to exhaustively sample images from many viewpoints in the scene from a real world, obtain their
ground-truth depth using some appropriate device (e.g., Microsoft Kinect), and measure dissimilarity
with the model’s prediction. However, finding failure cases this way will be very time consuming. A
better alternative could be to do this study on rendered images from 3D assets where the rendering
tool can automatically compute the ground-truth depth. Even in this case, one will need to search
over many viewpoints to find ones where the model fails.

Our algorithmic contribution is to make this search process directed by updating the camera position
so that it moves to locations where the model fails. We do this with the help of a differentiable
renderer. Given a 3D asset, a starting camera position parameterized by rotation and translation
matrix, we render the RGB image and obtain its ground-truth depth. Both are computed differentiably
with respect to the camera’s parameters. Feeding the image into the MDE model, we compute the
loss between the predicted and ground-truth depth and backpropagate the gradients to update the
rotation and translation parameters to increase the loss. We also apply a penalty so that no shortcuts
are taken to increase the loss, e.g., by going inside an object, or by going outside the 3D mesh, both
of which will render meaningless images. Performing this gradient ascent over a series of steps helps
us find the meaningful failure modes for many different models across multiple 3D assets.

This whole process relies not only on the availability of 3D assets that can be rendered not just
differentiably, but also quickly, since a new scene has to be rendered after each update. Since no
such dataset of complex scenes exists to the best of our knowledge, we collect nine public 3D assets,
and convert them into a format usable with PyTorch. Using this dataset, we study four major depth
estimation models that have been proposed in the last five years, including state of the art Depth
Anything v1/v2. We find that all models fail in providing accurate depth prediction for adversarial
viewpoints. The objective of our work is less to study the precise nature of scene factors that break a
model (e.g., specific viewpoint) but more to develop a benchmark to stress-test MDE models to see
how robust they can be in certain environments. Overall, our contributions are the following:

• We propose and formulate a new task of finding failure cases of modern depth estimation
algorithms with respect to camera’s external parameters.

• To to that, we propose 3D assets that can be rendered differentiably and quickly. We plan to
release the assets.

• Using these assets, we create an adversarial attack framework that optimizes camera’s
parameters, without taking shortcuts, to maximize depth prediction errors.

• We study four state-of-the-art monocular depth estimation algorithms, and find that our
toolbox can discover failure cases for all of them.

2 RELATED WORK

Depth Estimation. The task of depth estimation involves predicting the distance of objects present
in an image from the camera. Traditionally, this was done in a stereo setting, using left and right
camera images Scharstein & Szeliski (2003); Kusupati et al. (2020). More recently with the pro-
liferation of deep learning systems, it is becoming possible to do the same task using just a single
image, i.e., monocular depth estimation. Within this line of work, there are two broad categories;
models which predict metric depth Yin et al. (2023); Bhat et al. (2023), and those which predict
relative depth Lee & Kim (2019); Chen et al. (2016). For the latter category, MiDaS Ranftl et al.
(2020) made a crucial breakthrough by developing a scale and shift invariant objective function that
allows training the same model across multiple types of datasets. This key idea was further used to
enable using huge amounts of unlabeled images to create very powerful depth estimation model -
DepthAnything Yang et al. (2024a). A follow up work made use of the higher quality ground-truth
depth information from synthetic datasets to propose a stronger model DepthAnything V2 Yang et al.
(2024b). More recently, there has been an attempt to re-purpose image generative models into depth
estimators Ke et al. (2024). All of these models that have come out in the last few years seem capable
to be deployed for all kinds of scenes in the wild. However, it is not clear how these new models can
fail. In this work, we study whether they do struggle with camera viewpoint changes.
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Figure 2: Our overall pipeline for finding failure modes. Given a 3D asset and a camera initialized
with some rotation θ = {θx, θy, θz} and translation parameters δ = {δx, δy, δz}, PyTorch3D renders
the image Iθ,δ in a differentiable way. We obtain ground-truth depth Dθ,δ through an intermediate
step producing z-buffer values. The rendered image goes to an arbitrary model ϕ which predicts
depth D̂θ,δ . Camera parameters are updated to increase the discrepancy between Dθ,δ and D̂θ,δ .

Adversarial attack Neural networks have been shown to be susceptible to adversarial attacks,
where a purposefully crafted imperceptible noise added to the input completely changes a model’s
output. This was first studied for image classification Goodfellow et al. (2015); Kurakin et al. (2017),
where the noise was added onto the pixels of the image. This was extended to other computer vision
tasks, like semantic segmentation Xie et al. (2017); Arnab et al. (2018), object detection Liu et al.
(2019), depth estimation Zhang et al. (2020); Zheng et al. (2024). There has also been a line of
work which goes beyond pixel level attacks to more semantic attacks; e.g., fooling classifiers by
changing lighting condition, surface normals Zeng et al. (2019); Jain et al. (2020), by imperceptibly
changing the mesh Xiao et al. (2019), by changing camera viewpoint Dong et al. (2022). Since these
works optimize factor(s) in the semantic feature space, they often use some form of differentiable
rendering Ravi et al. (2020); Li et al. (2018); Kato et al. (2018); Jakob et al. (2022) or Nerf-based
techniques Mildenhall et al. (2020). Any adversarial attack is essentially trying to optimize some
property to progressively deviate a model’s prediction from the ground-truth. A key similarity in all
of the works is that this ground-truth (e.g., class label, ground-truth depth) is assumed to be constant
throughout the optimization process. Our objective in this work differs in this key aspect; since our
goal is to change the camera viewpoint, the ground-truth depth at each step also changes. We make
use of the differentiable rendering tool to handle this.

3 METHOD

An RGB image captured with a camera has a corresponding ground-truth depth map whose each
pixel indicates the distance of the corresponding object from the camera. The task of a monocular
depth estimation model is to process the RGB image and estimate this ground-truth depth. Our goal is
to find cases where this estimation fails because of changes in the camera viewpoint. That is, starting
from a location of the camera where a MDE model predicts depth accurately, find a location within
the same scene where it does not do a good job.

This problem formulation has two requirements. First, we should be able to change camera location
and render a new image of the same scene. Second, for each camera location, we also need access
to ground-truth depth information of the corresponding RGB image. Consequently, we work with
3D-assets of indoor scenes. Please see the appendix why 3DGS/NeRF based techniques cannot
give us accurate depth of the scenes. We first give an overview of how a camera, the factor that
we want study, is parameterized for 3D computer vision tasks. Following that, we explain how its
parameterization, along with 3D assets, can be used to find the camera viewpoints where a model
struggles.

3.1 PRELIMINARY NOTES

A camera has many properties. Of particular interest to us in this work are those which define its
position and orientation in the 3D world. The orientation of the camera can be described using
the three axis angles - θ = {θx, θy, θz} - in the world coordinate system. The axis angles can be
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converted into the more common form of a 3× 3 rotation matrix. All valid rotation matrices can be
represented using θrot. The position of the camera can be described using three translation parameters
- δ = {δx, δy, δz} which define the 3× 1 translation vector. Collectively, these two form the extrinsic
matrix, which describes how to transform the points from the world coordinate system to camera
coordinates. Henceforth, we refer to θrot and δshift as θ and δ respectively for simplicity. These six
parameters can represent a camera in any location looking at any direction.

Given this transformation, the image gets rendered through a sequence of steps (e.g., projection,
rasterization). One of the intermediate steps of the rendering process also computes the z-component
of the Euclidean distance of a point in a scene from the camera, a.k.a, depth map. This will serve as
our ground-truth depth. Both spatial signals, the rendered RGB image and its ground-truth depth, are
functions of the rotation and translation properties of the camera - Iθ,δ and Dθ,δ. Iθ,δ ∈ RH×W×3

and Dθ,δ ∈ RH×W , where H,W are height and width of the rendered image. We use a differentiable
renderer (PyTorch3D) to compute both of these values, which will be critical, as we later explain, to
update θ and δ given a model’s accuracy.

3.2 FORWARD PASS

Given a 3D asset, we first initialize θ and δ to some values so that (i) the rendered image is some
reasonable, commonplace view of the scene, and (ii) a depth estimation model ϕ performs reasonably
well on that image. The image is then passed into a MDE model, ϕ, that is of interest to us (e.g.,
DepthAnything Yang et al. (2024a)). The predicted depth, which is also a function of the same
camera parameters, is denoted as ϕ(Iθ,δ) = D̂θ,δ. Both, the ground truth and predicted depth maps
are normalized to have values in [0, 1]. The models that we are interested in studying are big and
powerful enough so that for such commonplace views, D̂θ,δ ≈ Dθ,δ typically. We want to update θ
and δ to some values so that D̂θ,δ ̸= Dθ,δ .

To do that, we first need a metric to determine how similar or dissimilar two depth maps are.
Measuring distance on pixel level doesn’t always correspond well to humans’ judgments of similarity.
A common example is an image and its blurrier version; humans can recognize their differences,
something that pixel-wise L2 distance, which is somewhat low for the pair, does not show. This
was studied extensively for RGB images in Zhang et al. (2018), and the authors found perceptual
loss Johnson et al. (2016), which measures the same L1 distance in a more semantic feature space, to
better correspond to human judgments. On account of similar requirements, we employ the same
loss for our task. We pass both Dθ,δ and D̂θ,δ into a VGG-16 Simonyan & Zisserman (2015) model
pre-trained on ImageNet dataset Deng et al. (2009), which we denote as ψ. Across a pre-defined
set of layers in ψ, L = {l1, l2, ...}, we extract features for Dθ,δ and D̂θ,δ and compute averaged L1
difference. The process can be summarized formally as following:

Ldepth(Dθ,δ, D̂θ,δ) =
∑
j∈L

1

CjHjWj
|ψj(Dθ,δ)− ψj(D̂θ,δ)| (1)

where ψj denotes output after jth layer, and Hj ,Wj , Cj denote its height, width, channels.

3.3 ADVERSARIAL ATTACK

Once Ldepth is computed, our next goal is to maximize it. This bears similarity to the traditional
adversarial attack for image classification models where noise is added to an image to increase the
cross entropy loss in order to flip the label predicted by the model. However, there is a crucial
difference. For image classification, the attack is L∞ norm bounded, restricting the added noise to
remain imperceptible to the human eye. Because of this, the attack objective assumes the ground-truth
label of the adversarial image to remain constant. In our case, we are interested in exploring the whole
scene to find failure cases, because of which we do not impose any analogous imperceptibility bound
on θ and δ. However, because of that, each update θ → θ′, δ → δ′ also changes the ground-truth
depth (Dθ,δ → Dθ′,δ′). So, when we perform gradient ascent to maximize Ldepth(Dθ,δ, D̂θ,δ), we
backpropagate the gradients through both Dθ,δ and D̂θ,δ. The forward and backward passes are
depicted in Fig. 2. Each step updates the six parameters (θ + δ) of the camera.
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Figure 3: Left. A toy example where
distance of the camera is computed
from all nearby mesh surfaces (light
blue lines). d is set to be the short-
est distance among them (red line).
Right. Plot showing how the loss
function Ldist varies as d changes.
Here, dth is set to be 0.03. There is
penalty only when the camera comes
very close to a surface (d < dth).

3.4 PREVENTING SHORTCUTS

There are some problems with maximizing Ldepth(Dθ,δ, D̂θ,δ) without any constraints on θ and δ.
After being initialized at a reasonable place, successive updates can move the camera so that it either
clips into an object (partially or completely) or goes outside the mesh altogether. Both of these cases
will result in rendered image Iθ,δ being unnatural, on which failure of the MDE model ϕ will be
meaningless. We penalize such shortcuts from being taken. The process is explained in Fig. 3(left).
At each step, we compute the distance of the optical center of the camera to the closest mesh surface,
denoted as d. When d becomes less than a threshold, dth, we introduce a penalty term inversely
proportional to d. Formally, we define the penalty, Ldist as follows:

Ldist =

{
1
d − 1

dth
, if d < dth

0, otherwise.
(2)

We subtract a constant of 1
dth

so that the resulting curve of Ldist vs d, which is shown in Fig. 3(right),
is relatively smooth at d = dth. This penalty spikes up whenever the camera gets very close to any
object (e.g., a table, wall, floor) in the 3D asset. Our final loss function is L = max

θ,δ
Ldepth+min

θ,δ
Ldist

3.5 VISUALIZING FAILURE MODES

We evaluate each MDE model on nine assets. For each asset/scene, we initialize the cam-
era at ten different viewpoints which produce reasonable images of the scene, ensuring that in
all cases the starting camera’s position has d > dth. We denote this set as init-params
= {(θ0, δ0), (θ1, δ1), ...(θ10, δ10)}. From each viewpoint, we run the optimization described above
five times, each time for Nsteps = 400 steps, and select the run where D̂θ,δ deviates most from
Dθ,δ during the trajectory. We do multiple runs because each run is different due to some inherent
stochasticity of the rendering process (please see appendix for details). For an arbitrary starting
location (θi, δi), the selected run is essentially a sequence of camera’s trajectory which we denote
as {(θi0, δi0), (θi1, δi1), ...(θi400, δi400)}, where (θij , δ

i
j) is the position of the camera after jth iteration

after starting from ith viewpoint. Note that (θi, δi) = (θi0, δ
i
0).

We consider our whole setup of the differentiable rendering of the 3D assets + the adversarial attack
as a toolbox for the users to diagnose a MDE model. The sequence of θ, δ returned from the algorithm
could be studied as a video of the camera’s movement in the scene leading to its failure. Or we
can sample Nadv = 5 positions (θ + δ) from this trajectory where Ldepth is highest, which can be
considered as adversarial viewpoints.

4 3D ASSETS CREATION

The method described above is feasible only if there are 3D assets that can be rendered differentiably.
So, there are three requirements from the assets - (i) they need to be depicting somewhat complex
scenes, e.g., living room, since those are the scenarios where modern MDE models are deployed
(assets of singular objects will therefore won’t be of much help); (ii) the asset files need to be in a
format compatible with PyTorch3D; (iii) they should be publicly accessible so that others can use our
final toolbox, or build upon it. To the best of our knowledge, we could not find any existing repository
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Figure 4: Images from the 6 (out of 9) 3D assets that we use in this work.

Figure 5: Two sample scenes (left and right halves) showing how the 3D asset looks after being
rendered using Blender (left) and PyTorch3D (right). The depth maps obtained using Depth Anything-
V2 Yang et al. (2024b) for both images are similar, despite the small quality drop in RGB image.

of 3D assets of complex scenes that can be rendered using PyTorch3D. So, we took nine publicly
available 3D assets of complex scenes created for traditional renderers, e.g., Blender, and converted
them into PyTorch3D compatible format. We show some samples in Fig. 4. Next, in Fig. 5, we show
two sample conversions; on top are two images rendered using Blender, and on bottom are the same
assets converted and rendered using PyTorch3D. The difference in rendering techniques (ray tracing
for blender and rasterization for PyTorch3D) leads to some difference in the quality of the rendered
images. We study if this difference is important later on in Sec. 5.1.

5 EXPERIMENTS

We first discuss the different MDE models that we study in this work. Then, we do a small study to
confirm whether those MDE models’ behavior on PyTorch3D rendered scenes is still comparable
to the original Blender scenes. Finally, we discuss our experiments where we try to find adversarial
viewpoints for those different MDE models.

Models studied. (i) MiDaS Ranftl et al. (2020), which was a seminal work enabling training
models across multiple datasets. It has multiple variants based on model’s size - small, medium
and large, and we use the largest and strongest version in this work. (ii) ZoeDepth Bhat et al.
(2023), which was proposed as a way to combine relative and metric depth estimation. We use
the version finetuned on NYU Silberman et al. (2012) and KITTI Geiger et al. (2013) dataset. (iii)
DepthAnythingV1 Yang et al. (2024a), which proposed using unlabeled images for better performance.
(iv) DepthAnythingV2 Yang et al. (2024b), which was partly trained on synthetically rendered images
(initial training was done on 500k synthetic images and then trained on 62 million real images).

Asset ID

1 2 3 4 5 6 7 8 9

0.97 0.91 0.93 0.93 0.98 0.91 0.78 0.94 0.81

Table 1: From the same viewpoint in a 3D scene, we render images from Blender and PyTorch3D
and obtain their respective depth maps using Depth Anything V2 Yang et al. (2024b). We measure
their similarity using δ1 score , which can be from [0,1] (↑ means more similar).

5.1 RELIABILITY OF PYTORCH3D RENDERINGS

The ultimate goal of the paper is to study how sensitive MDE models could be to uncommon
viewpoints in the real world. But since we cannot algorithmically test a model in the real world,
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we approximate the domain of its images through PyTorch3D renderings of scenes. However, as
explained in Sec. 4, the (converted) assets rendered through PyTorch3D cannot completely match the
quality of renderings produced through Blender. So, in this section, we investigate whether the depth
prediction of a model on an RGB image is roughly the same whether the image is rendered using
PyTorch3D or Blender.

Specifically, for each asset, we consider the 10 different viewpoints specified by init-params.
For each such viewpoint, we generate image using PyTorch3D - IPt

θ,δ, and Blender - IBl
θ,δ. Then, we

using Depth Anything V2 as ϕ, we obtain two depth maps ϕ(IPt
θ,δ) and ϕ(IBl

θ,δ). We measure how
similar these predicted maps are using threshold accuracy δ1, which measures the percentage of
predicted pixels that differ from the ground-truth pixels by no more than 25% (higher is better). We
do this across all the nine assets.

First, we show the qualitative results in Fig. 5, where we see that the depth maps predicted for IPt
θ,δ and

IBl
θ,δ roughly look the same to the human eye for two different scenes. We include more qualitative

results in the appendix. Next, we show the quantitative results in Table 1, where we see that across
all the nine assets, δ1 score (↑ means similar) is consistently high. The results indicate that, despite
some quality difference, the performance of ϕ on our PyTorch3D renderings can be indicative of its
behavior in higher quality renderings as well.

5.2 SEMANTIC ADVERSARIAL ATTACK

Now, using the same 3D assets developed for rendering using PyTorch3D, we perform the adversarial
attack as described in Sec. 3.4. Our experimental setup is the following. For each 3D asset and each
starting camera location in init-params, obtain top Nadv viewpoints from the returned trajectory.
We can measure how successful these adversarial viewpoints are in two ways. First is by qualitatively
and quantitatively evaluating a model ϕ’s performance on the images rendered from adversarial
viewpoints. Second is by quantitatively studying how bad model’s performance is with respect to the
starting (benign) viewpoint. We do this across all the four models described above.

Visualizing failure cases. First, we show the qualitative results in Fig. 6. Each cell corresponds to
an adversarial viewpoint, and is a triplet where the left, middle and right entities are rendered image,
ground-truth depth and predicted depth respectively. The results for different models are in different
rows. Our first takeaway is that every model breaks for certain viewpoints where it struggles to
predict accurate depth. While the objective of our work is not to describe the precise conditions under
which a particular model fails, we nonetheless observe certain patterns. Sometimes, the distribution
of the predicted depth values is a bit off, where the close by objects are not predicted as close enough
compared to ground-truth, e.g., row three, right cell. There are cases where a model predicts depth
incorrectly for an object or for multiple objects, e.g., row 5, left cell. In other cases, the model fails to
mimic the fine-grained textured nature of the ground-truth depth, e.g., row 1, right cell. Other times,
a model fails when the rendered view of the scene contains an object or a part of the object apparently
hanging in the air; e.g., row 4/6 right cell, Fig. 9 rightmost. Qualitative results for Depth Anything
V2 are presented in the appendix. The final point to note is that while the manner in which failure
happens is different, they all correspond to a high value of Ldepth, as we see next. This is because
perceptual loss, which operates in a semantic feature space, captures and responds to many types of
image dissimilarities.

Quantitative results. Next, we quantify these failure cases using two metrics; Ldepth and δ1. While
δ1 is a standard metric whose value (between 0 and 1; 1 means most similar) can indicate the degree
of depth prediction failure, the same is not true for the value of Ldepth. So, to aid the reader in
visualizing Ldepth score, we show four degrees of depth prediction failure in Fig. 9. Each pair has the
corresponding Ldepth score at its top. From this, a general rule of thumb can be that Ldepth > 0.8
means that deviation of prediction is big enough to be considered a failure case.

In Table 2, we report these two scores achieved by the adversarial viewpoints. Each column
corresponds to one of the nine assets, and each row corresponds to a different MDE model. Each
score is averaged across the adversarial viewpoints obtained from all ten starting viewpoints from
init-params. Again, the first take away is that all MDE models achieve a high Ldepth (> 0.9)
and low δ1 score (< 0.33). This means that predictions sufficiently deviate from ground-truth depth.
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Figure 6: Adversarial viewpoints obtained for different models. Each triplet contains rendered image,
ground-truth and predicted depth.

Figure 7: Predicted and ground-truth depth map pairs from four different camera viewpoints. The
viewpoints are sampled from a trajectory during the optimization process, and the value of Ldepth is
increasing from left to right. The figure illustrates what different values of Ldepth mean visually.

However, we also note that, generally speaking, more recent and powerful models like DepthAnything
V1 and V2 (DA V1 and V2) fail less than their predecessors MiDaS and ZoeDepth. For example,
the average δ1 score for DA V1/V2 (0.29) is ∼ 40% higher than the score for the remaining two
models (0.21). This is expected as the more recent models were built upon the earlier ones with the
added advantage of a much bigger dataset. Among these, the adversarial attack is least successful for
DA V2. The reason for this could be the way DA V2 was trained using synthetic data. Specifically,
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Model Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8 Asset 9 Avg
Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1

MiDaS 1.53 0.26 1.11 0.10 1.19 0.20 1.06 0.22 1.15 0.18 1.73 0.32 2.35 0.17 1.17 0.29 1.88 0.26 1.46 0.22
ZoeDepth 1.42 0.22 0.95 0.09 1.30 0.10 1.11 0.21 1.05 0.14 1.61 0.32 2.48 0.24 1.31 0.13 1.83 0.33 1.45 0.20
Depth Anything V1 1.26 0.31 0.74 0.23 1.04 0.20 0.99 0.09 0.94 0.20 1.23 0.50 1.74 0.37 1.06 0.38 1.75 0.22 1.19 0.28
Depth Anything V2 1.07 0.42 0.68 0.35 0.85 0.24 0.76 0.09 0.67 0.11 0.99 0.35 1.28 0.46 0.98 0.44 1.23 0.29 0.95 0.31

Table 2: Ldepth and δ1 scores depicting discrepancy between depth predicted from adversarial
viewpoints and the corresponding ground-truth. ↑ Ldepth and ↓ δ1 denote more discrepancy.

Model Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8 Asset 9 Avg
Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1 Ldepth δ1

MiDaS 0.66 0.33 0.57 0.54 0.41 0.33 0.35 0.19 0.64 0.54 0.85 0.27 0.67 0.08 0.42 0.2 0.56 0.09 0.57 0.29
ZoeDepth 0.47 0.20 0.28 0.08 0.48 0.31 0.33 0.45 0.32 0.11 0.51 0.25 0.69 0.00 0.4 0.29 0.54 0.07 0.45 0.20
Depth Anything V1 0.63 0.47 0.33 0.6 0.54 0.40 0.51 0.75 0.55 0.69 0.54 0.34 0.43 0.19 0.46 0.39 0.71 0.21 0.52 0.45
Depth Anything V2 0.59 0.49 0.37 0.56 0.45 0.34 0.38 0.78 0.38 0.77 0.46 0.45 0.30 0.18 0.45 0.36 0.44 0.32 0.42 0.47

Table 3: Difference in Ldepth score for adversarial and initial viewpoints. A positive value means
Ldepth increased for adversarial viewpoint. Similarly, we also show the negative of difference (for
better readability) in δ1 scores for initial and adversarial viewpoints. A positive score indicates that
δ1 score decreased for adversarial viewpoint, meaning deviating away from the ground-truth.

one of the synthetic datasets used during its training, Hypersim (Roberts et al., 2021), is created
through realistic renderings of 3D assets, where from the same asset, multiple scenes are captured in
a camera trajectory designed by an artist. Hence, we can expect DA V2 to be somewhat more robust
to different camera viewpoints in our evaluation.

Adversarial vs benign viewpoints. So far, we saw that MDE models fail to produce accurate
depth on the adversarial viewpoints returned from our toolbox. However, the scores for adversarial
viewpoints can be even better understood in the context of the scores for more benign viewpoints.
More specifically, we study how these scores look for images rendered from the initialized viewpoints
(init-params). For each starting position in init-params, we compute Ladv

depth − Linit
depth.

Similarly, we compute δinit1 − δadv1 . We reverse the order of operands so that a positive difference
value implies the same trend for Ldelta and δ1. We create a difference Table 3, similar to Table 2,
by averaging these differences across the ten viewpoints, for each asset, model combination. The
first thing to notice is that all entries are positive, which means that predicted depth maps become
less accurate for all assets and models, measured by both the metrics. The next worthwhile thing
to notice is the degree to which depth maps become worse compared to the initial position. For all
models, the average change in δ1 is more than 0.2, and for DA V1/V2, it is more than 0.4. The same
story exists for Ldepth, where the average increase across all the models is 0.49. Fig. 9 can again
give a visual depiction of what a change of 0.49 in Ldepth might mean for depth prediction. This
shows that, starting from a place where ϕ works fine, the adversarial attack does move the camera to
locations where it struggles.

6 DISCUSSION AND LIMITATIONS

When a MDE model fails to give accurate depth for an image, the underlying causes could be
multifaceted; it could be the camera viewpoint itself, or the specific combination of objects in a
certain lighting condition etc. Consequently, we do not intend our framework to present analysis
such as “for any scene when yaw & pitch of the camera exceed x◦ and y◦, the MDE model will fail”.
This is because such values (x◦, y◦) will very much depend on the particular scene. Hence, the more
appropriate way to view our framework is something similar to a testbed which assesses how robust
MDE models can be for these 3D scenes if we give the camera full flexibility to move around in the
scene. This framework does have its limitations. First, the lack of availability of free-to-use 3D assets
that can be converted into an appropriate format. Consequently, our own dataset size is not too big
at the moment, focusing only on indoor scenes. Second, while synthetic datasets have been used to
train MDE models which then work well for natural images (DA V2 Yang et al. (2024b)), it is not
completely clear how well failures on synthetic images translate to failure in real world images.
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Figure 8: Sample trajectories visualized from the same initialization. Note that while all trajectories
lead to a decrease in the negative loss value, each trajectory is different due to the accumulated errors
from each render.

A 3D ASSETS CREATION DETAILS

When working with complex 3D scenes, especially those created in traditional 3D modeling software
like Blender, adapting these assets for use with PyTorch3D presents several challenges. A key
limitation is that PyTorch3D supports only a single texture per object, which restricts the direct use of
assets designed with multiple textures for detailed appearances. Additionally, maintaining the relative
positions of objects within a scene requires manually storing positional data and loading each mesh
and its corresponding texture, a tedious process that becomes increasingly cumbersome as scene
complexity grows.

To address these challenges, we converted publicly available 3D assets of complex scenes—originally
created for traditional renderers like Blender1 into formats compatible with PyTorch3D. This process
involves merging all objects in the scene into a single mesh, generating a unified UV map using
Blender’s Smart UV unwrap, baking all object textures into a single 8K texture map using Blender’s
Cycles Renderer, and finally loading the processed mesh and texture into PyTorch3D while preserving
spatial relationships. By undertaking this conversion, we created a repository of 3D assets that can be
rendered directly in PyTorch3D, streamlining workflows for 3D rendering and analysis.

B MULTI-RUN STOCHASTICITY

An interesting observation we made during our experiments was the inherent stochasticity in the
rendering process. Specifically, we noticed that with PyTorch3D, the exact same viewpoint produces
images with small variations on the order of 1e−4. This generally accumulates over a trajectory
leading to slightly different trajectories across multiple runs done from the same initial camera
position. This is a known issue with the PyTorch3D renderer nh236 (2023). We also include a
visualization of the variance between runs initialized from the same starting point in Figure.8 by
running multiple optimizations from the same initialization and plotting the loss over time. The
y-axis measures the loss value, and x-axis is the number of iterations. As we can see, the runs deviate
with time. Hence, we run our approach five times and pick the best, as described in the main paper
(Sec. 3.5). We run our experiments on NVIDIA RTX A4500 GPUs. Overall, obtaining the results
of four MDE models on nine assets, as descibed in Sec. 3.5 took about 3 days of runtime on eight
NVIDIA RTX A4500 GPUs, each having 20GB RAM.

1https://mitsuba.readthedocs.io/en/stable/src/gallery.html
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Figure 9: Figure similar to Fig. 6 in main paper, showing how a 3D asset rendered using Blender
(top row) looks after being converted and rendered using PyTorch3D (bottom row). The depth maps
obtained using Depth Anything-V2 Yang et al. (2024b) for both images are similar, despite the small
quality drop in RGB image.

Figure 10: Adversarial viewpoints obtained for Depth Anything V2. Each triplet contains rendered
image, ground-truth and predicted depth.

C EVALUATING SCENES ON NERF/GAUSSIAN SPLATS

While 3DGS and NeRF provide ways to scale the toolbox for more photorealistic large 3D scenes, we
found that neither method accurately resolves the scene’s depth. In both cases, depth is estimated as
part of the rasterization process. For NeRF, depth is determined by estimating the point of termination
for each ray. However, this estimation is often inaccurate, as shown in Deng et al. (2024). While
this and other works Deng et al. (2024); Rau et al. (2024); Dadon et al. (2023) attempt to improve
accuracy by using depth priors, the results still do not match the ground truth generated by rendering
a 3D asset. A similar issue arises in 3DGS Xu et al. (2024) and Chung et al. (2023). Additionally, we
have observed that large Gaussians in 3DGS can produce inaccurate depth rasters. Neither model
generalizes well to viewpoints outside the training distribution, meaning that unbounded camera
optimization would require extensive scene coverage. Hence, in this work, we rely on 3D assets that
we can be certain will provide accurate depth maps.
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Figure 11: Images from all the nine 3D assets that we use in this work.
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