

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BREAKING DEPTH ESTIMATION MODELS WITH SEMANTIC ADVERSARIAL ATTACKS

Anonymous authors

Paper under double-blind review

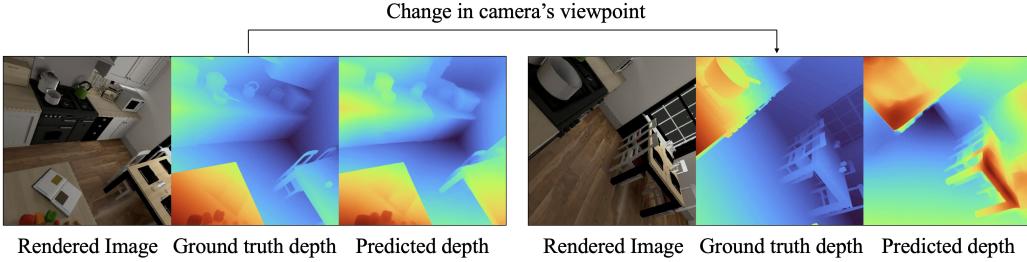


Figure 1: Starting from a view of a 3D scene where a depth estimation model works well (left), our method changes the camera’s viewpoint so that the model’s prediction is no longer accurate.

ABSTRACT

Monocular depth estimation models have advanced significantly in recent years, where it seems as if they can provide accurate depth information for any arbitrary scene. In this work, we develop a framework to see if this indeed is true by stress-testing them in different indoor environments. Specifically, our goal is to study how robust various models are to changes in camera viewpoint. Rather than conducting an exhaustive search over all possible viewpoints in a scene, we employ adversarial attacks leveraging a differentiable rendering framework applied to 3D assets. By initializing from a given camera position, we optimize the camera’s rotation and translation parameters through backpropagation to update prediction errors. To ensure meaningful failure cases, we implement strategies that prevent trivial adversarial shortcuts. To make all of this possible, we also construct a dataset comprising of complex, efficiently renderable 3D assets, enabling rigorous evaluation of four recently published depth estimation models. The key insight from our experiments is that all of those models, including the very recent state-of-the-art, fail on the adversarial viewpoints discovered through our framework, i.e., their predictions deviate significantly from the ground-truth depth. Our work establishes a new robustness benchmark for monocular depth estimation task.

1 INTRODUCTION

Predicting depth from an RGB image is a crucial task for many computer vision applications. The initial algorithms tackled this problem for localized settings; neural networks were trained to work on specific domains, e.g., only for self-driving car datasets Geiger et al. (2013) or only for indoor scenes Silberman et al. (2012). This paradigm changed for monocular depth estimation (MDE) task through methods that enable training the same model on diverse datasets of much bigger scale Ranftl et al. (2020). Consequently, we now have a suite of MDE models that seem to work pretty well on images in the wild Yang et al. (2024a;b).

Given how powerful these models seem to be, it is natural to ask if they fail at all. In this work, we study the robustness of MDE models to semantic properties of the image; specifically, to camera’s position. Imagine if a camera had the liberty to move around anywhere in a 3D scene, capturing images from all sorts of viewpoints; getting close to objects, flying above them looking top down, going into a corner of the room etc. Would these powerful models remain powerful for images

054 captured from all of these viewpoints? Or can they fail at certain viewpoints? Questions such as these
 055 are important because such scenarios can naturally arise in the real world when, e.g., a robot moves
 056 through an environment estimating depth as it goes. The naive way to study such a property could be
 057 to exhaustively sample images from many viewpoints in the scene from a real world, obtain their
 058 ground-truth depth using some appropriate device (e.g., Microsoft Kinect), and measure dissimilarity
 059 with the model’s prediction. However, finding failure cases this way will be very time consuming. A
 060 better alternative could be to do this study on rendered images from 3D assets where the rendering
 061 tool can automatically compute the ground-truth depth. Even in this case, one will need to search
 062 over many viewpoints to find ones where the model fails.

063 Our algorithmic contribution is to make this search process *directed* by updating the camera position
 064 so that it moves to locations where the model fails. We do this with the help of a differentiable
 065 renderer. Given a 3D asset, a starting camera position parameterized by rotation and translation
 066 matrix, we render the RGB image and obtain its ground-truth depth. Both are computed differentiably
 067 with respect to the camera’s parameters. Feeding the image into the MDE model, we compute the
 068 loss between the predicted and ground-truth depth and backpropagate the gradients to update the
 069 rotation and translation parameters to increase the loss. We also apply a penalty so that no shortcuts
 070 are taken to increase the loss, e.g., by going inside an object, or by going outside the 3D mesh, both
 071 of which will render meaningless images. Performing this gradient ascent over a series of steps helps
 072 us find the meaningful failure modes for many different models across multiple 3D assets.

073 This whole process relies not only on the availability of 3D assets that can be rendered not just
 074 differentiably, but also quickly, since a new scene has to be rendered after each update. Since no
 075 such dataset of complex scenes exists to the best of our knowledge, we collect nine public 3D assets,
 076 and convert them into a format usable with PyTorch. Using this dataset, we study four major depth
 077 estimation models that have been proposed in the last five years, including state of the art Depth
 078 Anything v1/v2. We find that all models fail in providing accurate depth prediction for adversarial
 079 viewpoints. The objective of our work is less to study the precise nature of scene factors that break a
 080 model (e.g., specific viewpoint) but more to develop a benchmark to stress-test MDE models to see
 081 how robust they can be in certain environments. Overall, our contributions are the following:

- 082 • We propose and formulate a new task of finding failure cases of modern depth estimation
 083 algorithms with respect to camera’s external parameters.
- 084 • To do that, we propose 3D assets that can be rendered differentiably and quickly. We plan to
 085 release the assets.
- 086 • Using these assets, we create an adversarial attack framework that optimizes camera’s
 087 parameters, without taking shortcuts, to maximize depth prediction errors.
- 088 • We study four state-of-the-art monocular depth estimation algorithms, and find that our
 089 toolbox can discover failure cases for all of them.

091 2 RELATED WORK

094 **Depth Estimation.** The task of depth estimation involves predicting the distance of objects present
 095 in an image from the camera. Traditionally, this was done in a stereo setting, using left and right
 096 camera images Scharstein & Szeliski (2003); Kusupati et al. (2020). More recently with the pro-
 097 liferation of deep learning systems, it is becoming possible to do the same task using just a single
 098 image, i.e., monocular depth estimation. Within this line of work, there are two broad categories;
 099 models which predict metric depth Yin et al. (2023); Bhat et al. (2023), and those which predict
 100 relative depth Lee & Kim (2019); Chen et al. (2016). For the latter category, MiDaS Ranftl et al.
 101 (2020) made a crucial breakthrough by developing a scale and shift invariant objective function that
 102 allows training the same model across multiple types of datasets. This key idea was further used to
 103 enable using huge amounts of unlabeled images to create very powerful depth estimation model -
 104 DepthAnything Yang et al. (2024a). A follow up work made use of the higher quality ground-truth
 105 depth information from synthetic datasets to propose a stronger model DepthAnything V2 Yang et al.
 106 (2024b). More recently, there has been an attempt to re-purpose image generative models into depth
 107 estimators Ke et al. (2024). All of these models that have come out in the last few years seem capable
 108 to be deployed for all kinds of scenes in the wild. However, it is not clear how these new models can
 109 fail. In this work, we study whether they do struggle with camera viewpoint changes.

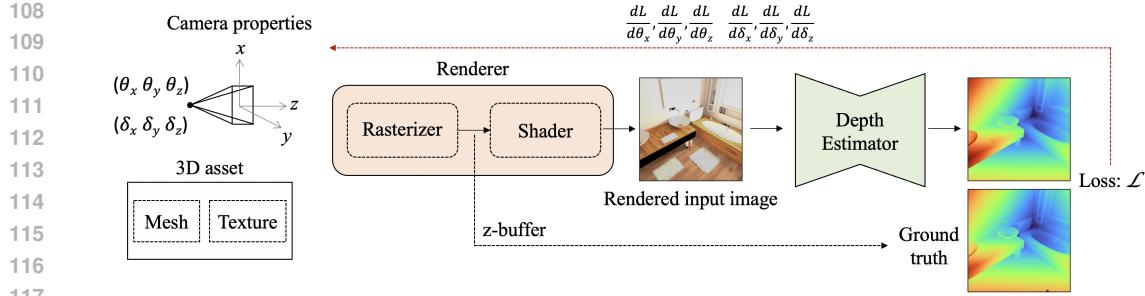


Figure 2: Our overall pipeline for finding failure modes. Given a 3D asset and a camera initialized with some rotation $\theta = \{\theta_x, \theta_y, \theta_z\}$ and translation parameters $\delta = \{\delta_x, \delta_y, \delta_z\}$, PyTorch3D renders the image $\mathcal{I}_{\theta, \delta}$ in a differentiable way. We obtain ground-truth depth $\mathcal{D}_{\theta, \delta}$ through an intermediate step producing z-buffer values. The rendered image goes to an arbitrary model ϕ which predicts depth $\hat{\mathcal{D}}_{\theta, \delta}$. Camera parameters are updated to increase the discrepancy between $\mathcal{D}_{\theta, \delta}$ and $\hat{\mathcal{D}}_{\theta, \delta}$.

Adversarial attack Neural networks have been shown to be susceptible to adversarial attacks, where a purposefully crafted imperceptible noise added to the input completely changes a model’s output. This was first studied for image classification Goodfellow et al. (2015); Kurakin et al. (2017), where the noise was added onto the pixels of the image. This was extended to other computer vision tasks, like semantic segmentation Xie et al. (2017); Arnab et al. (2018), object detection Liu et al. (2019), depth estimation Zhang et al. (2020); Zheng et al. (2024). There has also been a line of work which goes beyond pixel level attacks to more semantic attacks; e.g., fooling classifiers by changing lighting condition, surface normals Zeng et al. (2019); Jain et al. (2020), by imperceptibly changing the mesh Xiao et al. (2019), by changing camera viewpoint Dong et al. (2022). Since these works optimize factor(s) in the semantic feature space, they often use some form of differentiable rendering Ravi et al. (2020); Li et al. (2018); Kato et al. (2018); Jakob et al. (2022) or Nerf-based techniques Mildenhall et al. (2020). Any adversarial attack is essentially trying to optimize some property to progressively deviate a model’s prediction from the ground-truth. A key similarity in all of the works is that this ground-truth (e.g., class label, ground-truth depth) is assumed to be constant throughout the optimization process. Our objective in this work differs in this key aspect; since our goal is to change the camera viewpoint, the ground-truth depth at each step also changes. We make use of the differentiable rendering tool to handle this.

3 METHOD

An RGB image captured with a camera has a corresponding ground-truth depth map whose each pixel indicates the distance of the corresponding object from the camera. The task of a monocular depth estimation model is to process the RGB image and estimate this ground-truth depth. Our goal is to find cases where this estimation fails because of changes in the camera viewpoint. That is, starting from a location of the camera where a MDE model predicts depth accurately, find a location within the same scene where it does not do a good job.

This problem formulation has two requirements. First, we should be able to change camera location and render a new image of the same scene. Second, for each camera location, we also need access to ground-truth depth information of the corresponding RGB image. Consequently, we work with 3D-assets of indoor scenes. Please see the appendix why 3DGS/NeRF based techniques cannot give us accurate depth of the scenes. We first give an overview of how a camera, the factor that we want study, is parameterized for 3D computer vision tasks. Following that, we explain how its parameterization, along with 3D assets, can be used to find the camera viewpoints where a model struggles.

3.1 PRELIMINARY NOTES

A camera has many properties. Of particular interest to us in this work are those which define its position and orientation in the 3D world. The orientation of the camera can be described using the three axis angles - $\theta = \{\theta_x, \theta_y, \theta_z\}$ - in the world coordinate system. The axis angles can be

162 converted into the more common form of a 3×3 rotation matrix. All valid rotation matrices can be
 163 represented using θ_{rot} . The position of the camera can be described using three translation parameters
 164 - $\delta = \{\delta_x, \delta_y, \delta_z\}$ which define the 3×1 translation vector. Collectively, these two form the extrinsic
 165 matrix, which describes how to transform the points from the world coordinate system to camera
 166 coordinates. Henceforth, we refer to θ_{rot} and δ_{shift} as θ and δ respectively for simplicity. These six
 167 parameters can represent a camera in any location looking at any direction.

168 Given this transformation, the image gets rendered through a sequence of steps (e.g., projection,
 169 rasterization). One of the intermediate steps of the rendering process also computes the z-component
 170 of the Euclidean distance of a point in a scene from the camera, a.k.a, depth map. This will serve as
 171 our ground-truth depth. Both spatial signals, the rendered RGB image and its ground-truth depth, are
 172 functions of the rotation and translation properties of the camera - $\mathcal{I}_{\theta, \delta}$ and $\mathcal{D}_{\theta, \delta}$. $\mathcal{I}_{\theta, \delta} \in R^{H \times W \times 3}$
 173 and $\mathcal{D}_{\theta, \delta} \in R^{H \times W}$, where H, W are height and width of the rendered image. We use a differentiable
 174 renderer (PyTorch3D) to compute both of these values, which will be critical, as we later explain, to
 175 update θ and δ given a model's accuracy.

177 3.2 FORWARD PASS

179 Given a 3D asset, we first initialize θ and δ to some values so that (i) the rendered image is some
 180 reasonable, commonplace view of the scene, and (ii) a depth estimation model ϕ performs reasonably
 181 well on that image. The image is then passed into a MDE model, ϕ , that is of interest to us (e.g.,
 182 DepthAnything Yang et al. (2024a)). The predicted depth, which is also a function of the same
 183 camera parameters, is denoted as $\phi(\mathcal{I}_{\theta, \delta}) = \hat{\mathcal{D}}_{\theta, \delta}$. Both, the ground truth and predicted depth maps
 184 are normalized to have values in $[0, 1]$. The models that we are interested in studying are big and
 185 powerful enough so that for such commonplace views, $\hat{\mathcal{D}}_{\theta, \delta} \approx \mathcal{D}_{\theta, \delta}$ typically. We want to update θ
 186 and δ to some values so that $\hat{\mathcal{D}}_{\theta, \delta} \neq \mathcal{D}_{\theta, \delta}$.

187 To do that, we first need a metric to determine how similar or dissimilar two depth maps are.
 188 Measuring distance on pixel level doesn't always correspond well to humans' judgments of similarity.
 189 A common example is an image and its blurrier version; humans can recognize their differences,
 190 something that pixel-wise L2 distance, which is somewhat low for the pair, does not show. This
 191 was studied extensively for RGB images in Zhang et al. (2018), and the authors found perceptual
 192 loss Johnson et al. (2016), which measures the same L1 distance in a more semantic feature space, to
 193 better correspond to human judgments. On account of similar requirements, we employ the same
 194 loss for our task. We pass both $\mathcal{D}_{\theta, \delta}$ and $\hat{\mathcal{D}}_{\theta, \delta}$ into a VGG-16 Simonyan & Zisserman (2015) model
 195 pre-trained on ImageNet dataset Deng et al. (2009), which we denote as ψ . Across a pre-defined
 196 set of layers in ψ , $L = \{l_1, l_2, \dots\}$, we extract features for $\mathcal{D}_{\theta, \delta}$ and $\hat{\mathcal{D}}_{\theta, \delta}$ and compute averaged L1
 197 difference. The process can be summarized formally as following:

$$198 \quad \mathcal{L}_{depth}(\mathcal{D}_{\theta, \delta}, \hat{\mathcal{D}}_{\theta, \delta}) = \sum_{j \in L} \frac{1}{C_j H_j W_j} |\psi_j(\mathcal{D}_{\theta, \delta}) - \psi_j(\hat{\mathcal{D}}_{\theta, \delta})| \quad (1)$$

202 where ψ_j denotes output after j^{th} layer, and H_j, W_j, C_j denote its height, width, channels.

204 3.3 ADVERSARIAL ATTACK

206 Once \mathcal{L}_{depth} is computed, our next goal is to maximize it. This bears similarity to the traditional
 207 adversarial attack for image classification models where noise is added to an image to increase the
 208 cross entropy loss in order to flip the label predicted by the model. However, there is a crucial
 209 difference. For image classification, the attack is L_∞ norm bounded, restricting the added noise to
 210 remain imperceptible to the human eye. Because of this, the attack objective assumes the ground-truth
 211 label of the adversarial image to remain constant. In our case, we are interested in *exploring* the whole
 212 scene to find failure cases, because of which we do not impose any analogous imperceptibility bound
 213 on θ and δ . However, because of that, each update $\theta \rightarrow \theta', \delta \rightarrow \delta'$ also changes the ground-truth
 214 depth ($\mathcal{D}_{\theta, \delta} \rightarrow \mathcal{D}_{\theta', \delta'}$). So, when we perform gradient *ascent* to maximize $\mathcal{L}_{depth}(\mathcal{D}_{\theta, \delta}, \hat{\mathcal{D}}_{\theta, \delta})$, we
 215 backpropagate the gradients through both $\mathcal{D}_{\theta, \delta}$ and $\hat{\mathcal{D}}_{\theta, \delta}$. The forward and backward passes are
 depicted in Fig. 2. Each step updates the six parameters ($\theta + \delta$) of the camera.

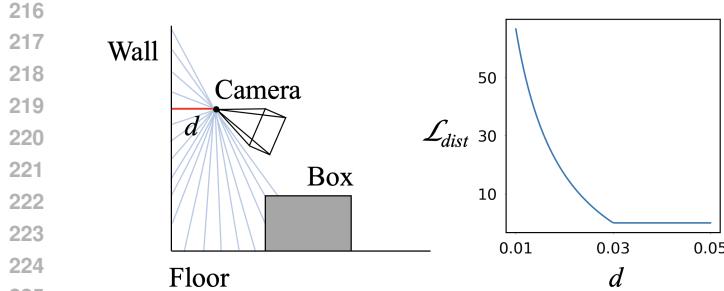


Figure 3: **Left.** A toy example where distance of the camera is computed from all nearby mesh surfaces (light blue lines). d is set to be the shortest distance among them (red line). **Right.** Plot showing how the loss function \mathcal{L}_{dist} varies as d changes. Here, d_{th} is set to be 0.03. There is penalty only when the camera comes very close to a surface ($d < d_{th}$).

3.4 PREVENTING SHORTCUTS

There are some problems with maximizing $\mathcal{L}_{depth}(\mathcal{D}_{\theta, \delta}, \hat{\mathcal{D}}_{\theta, \delta})$ without any constraints on θ and δ . After being initialized at a reasonable place, successive updates can move the camera so that it either clips into an object (partially or completely) or goes outside the mesh altogether. Both of these cases will result in rendered image $\mathcal{I}_{\theta, \delta}$ being unnatural, on which failure of the MDE model ϕ will be meaningless. We penalize such shortcuts from being taken. The process is explained in Fig. 3(left). At each step, we compute the distance of the optical center of the camera to the closest mesh surface, denoted as d . When d becomes less than a threshold, d_{th} , we introduce a penalty term inversely proportional to d . Formally, we define the penalty, \mathcal{L}_{dist} as follows:

$$\mathcal{L}_{dist} = \begin{cases} \frac{1}{d} - \frac{1}{d_{th}}, & \text{if } d < d_{th} \\ 0, & \text{otherwise.} \end{cases} \quad (2)$$

We subtract a constant of $\frac{1}{d_{th}}$ so that the resulting curve of \mathcal{L}_{dist} vs d , which is shown in Fig. 3(right), is relatively smooth at $d = d_{th}$. This penalty spikes up whenever the camera gets very close to any object (e.g., a table, wall, floor) in the 3D asset. Our final loss function is $\mathcal{L} = \max_{\theta, \delta} \mathcal{L}_{depth} + \min_{\theta, \delta} \mathcal{L}_{dist}$

3.5 VISUALIZING FAILURE MODES

We evaluate each MDE model on nine assets. For each asset/scene, we initialize the camera at ten different viewpoints which produce reasonable images of the scene, ensuring that in all cases the starting camera's position has $d > d_{th}$. We denote this set as `init-params` $= \{(\theta^0, \delta^0), (\theta^1, \delta^1), \dots, (\theta^{10}, \delta^{10})\}$. From each viewpoint, we run the optimization described above five times, each time for $N_{steps} = 400$ steps, and select the run where $\hat{\mathcal{D}}_{\theta, \delta}$ deviates most from $\mathcal{D}_{\theta, \delta}$ during the trajectory. We do multiple runs because each run is different due to some inherent stochasticity of the rendering process (please see appendix for details). For an arbitrary starting location (θ^i, δ^i) , the selected run is essentially a sequence of camera's trajectory which we denote as $\{(\theta_0^i, \delta_0^i), (\theta_1^i, \delta_1^i), \dots, (\theta_{400}^i, \delta_{400}^i)\}$, where (θ_j^i, δ_j^i) is the position of the camera after j^{th} iteration after starting from i^{th} viewpoint. Note that $(\theta^i, \delta^i) = (\theta_0^i, \delta_0^i)$.

We consider our whole setup of the differentiable rendering of the 3D assets + the adversarial attack as a toolbox for the users to diagnose a MDE model. The sequence of θ, δ returned from the algorithm could be studied as a video of the camera's movement in the scene leading to its failure. Or we can sample $N_{adv} = 5$ positions $(\theta + \delta)$ from this trajectory where \mathcal{L}_{depth} is highest, which can be considered as adversarial viewpoints.

4 3D ASSETS CREATION

The method described above is feasible only if there are 3D assets that can be rendered differentiably. So, there are three requirements from the assets - (i) they need to be depicting somewhat complex scenes, e.g., living room, since those are the scenarios where modern MDE models are deployed (assets of singular objects will therefore won't be of much help); (ii) the asset files need to be in a format compatible with PyTorch3D; (iii) they should be publicly accessible so that others can use our final toolbox, or build upon it. To the best of our knowledge, we could not find any existing repository

Figure 4: Images from the 6 (out of 9) 3D assets that we use in this work.

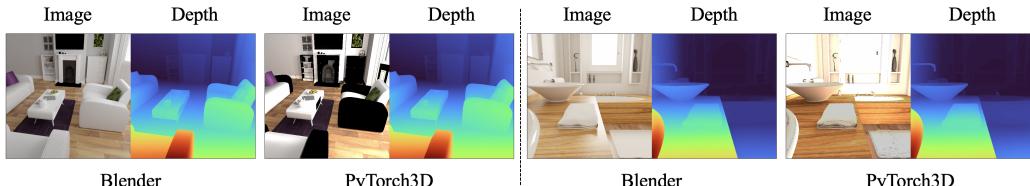


Figure 5: Two sample scenes (left and right halves) showing how the 3D asset looks after being rendered using Blender (left) and PyTorch3D (right). The depth maps obtained using Depth Anything-V2 Yang et al. (2024b) for both images are similar, despite the small quality drop in RGB image.

of 3D assets of complex scenes that can be rendered using PyTorch3D. So, we took nine publicly available 3D assets of complex scenes created for traditional renderers, e.g., Blender, and converted them into PyTorch3D compatible format. We show some samples in Fig. 4. Next, in Fig. 5, we show two sample conversions; on top are two images rendered using Blender, and on bottom are the same assets converted and rendered using PyTorch3D. The difference in rendering techniques (ray tracing for blender and rasterization for PyTorch3D) leads to some difference in the quality of the rendered images. We study if this difference is important later on in Sec. 5.1.

5 EXPERIMENTS

We first discuss the different MDE models that we study in this work. Then, we do a small study to confirm whether those MDE models' behavior on PyTorch3D rendered scenes is still comparable to the original Blender scenes. Finally, we discuss our experiments where we try to find adversarial viewpoints for those different MDE models.

Models studied. (i) MiDaS Ranftl et al. (2020), which was a seminal work enabling training models across multiple datasets. It has multiple variants based on model’s size - small, medium and large, and we use the largest and strongest version in this work. (ii) ZoeDepth Bhat et al. (2023), which was proposed as a way to combine relative and metric depth estimation. We use the version finetuned on NYU Silberman et al. (2012) and KITTI Geiger et al. (2013) dataset. (iii) DepthAnythingV1 Yang et al. (2024a), which proposed using unlabeled images for better performance. (iv) DepthAnythingV2 Yang et al. (2024b), which was partly trained on synthetically rendered images (initial training was done on 500k synthetic images and then trained on 62 million real images).

Asset ID								
1	2	3	4	5	6	7	8	9
0.97	0.91	0.93	0.93	0.98	0.91	0.78	0.94	0.81

Table 1: From the same viewpoint in a 3D scene, we render images from Blender and PyTorch3D and obtain their respective depth maps using Depth Anything V2 Yang et al. (2024b). We measure their similarity using δ_1 score, which can be from [0,1] (\uparrow means more similar).

5.1 RELIABILITY OF PYTORCH3D RENDERINGS

The ultimate goal of the paper is to study how sensitive MDE models could be to uncommon viewpoints in the real world. But since we cannot algorithmically test a model in the real world,

324 we approximate the domain of its images through PyTorch3D renderings of scenes. However, as
 325 explained in Sec. 4, the (converted) assets rendered through PyTorch3D cannot completely match the
 326 quality of renderings produced through Blender. So, in this section, we investigate whether the depth
 327 prediction of a model on an RGB image is roughly the same whether the image is rendered using
 328 PyTorch3D or Blender.

329 Specifically, for each asset, we consider the 10 different viewpoints specified by `init-params`.
 330 For each such viewpoint, we generate image using PyTorch3D - $\mathcal{I}_{\theta,\delta}^{Pt}$, and Blender - $\mathcal{I}_{\theta,\delta}^{Bl}$. Then, we
 331 using Depth Anything V2 as ϕ , we obtain two depth maps $\phi(\mathcal{I}_{\theta,\delta}^{Pt})$ and $\phi(\mathcal{I}_{\theta,\delta}^{Bl})$. We measure how
 332 similar these predicted maps are using threshold accuracy δ_1 , which measures the percentage of
 333 predicted pixels that differ from the ground-truth pixels by no more than 25% (higher is better). We
 334 do this across all the nine assets.

335 First, we show the qualitative results in Fig. 5, where we see that the depth maps predicted for $\mathcal{I}_{\theta,\delta}^{Pt}$ and
 336 $\mathcal{I}_{\theta,\delta}^{Bl}$ roughly look the same to the human eye for two different scenes. We include more qualitative
 337 results in the appendix. Next, we show the quantitative results in Table 1, where we see that across
 338 all the nine assets, δ_1 score (\uparrow means similar) is consistently high. The results indicate that, despite
 339 some quality difference, the performance of ϕ on our PyTorch3D renderings can be indicative of its
 340 behavior in higher quality renderings as well.

341

342 5.2 SEMANTIC ADVERSARIAL ATTACK

343

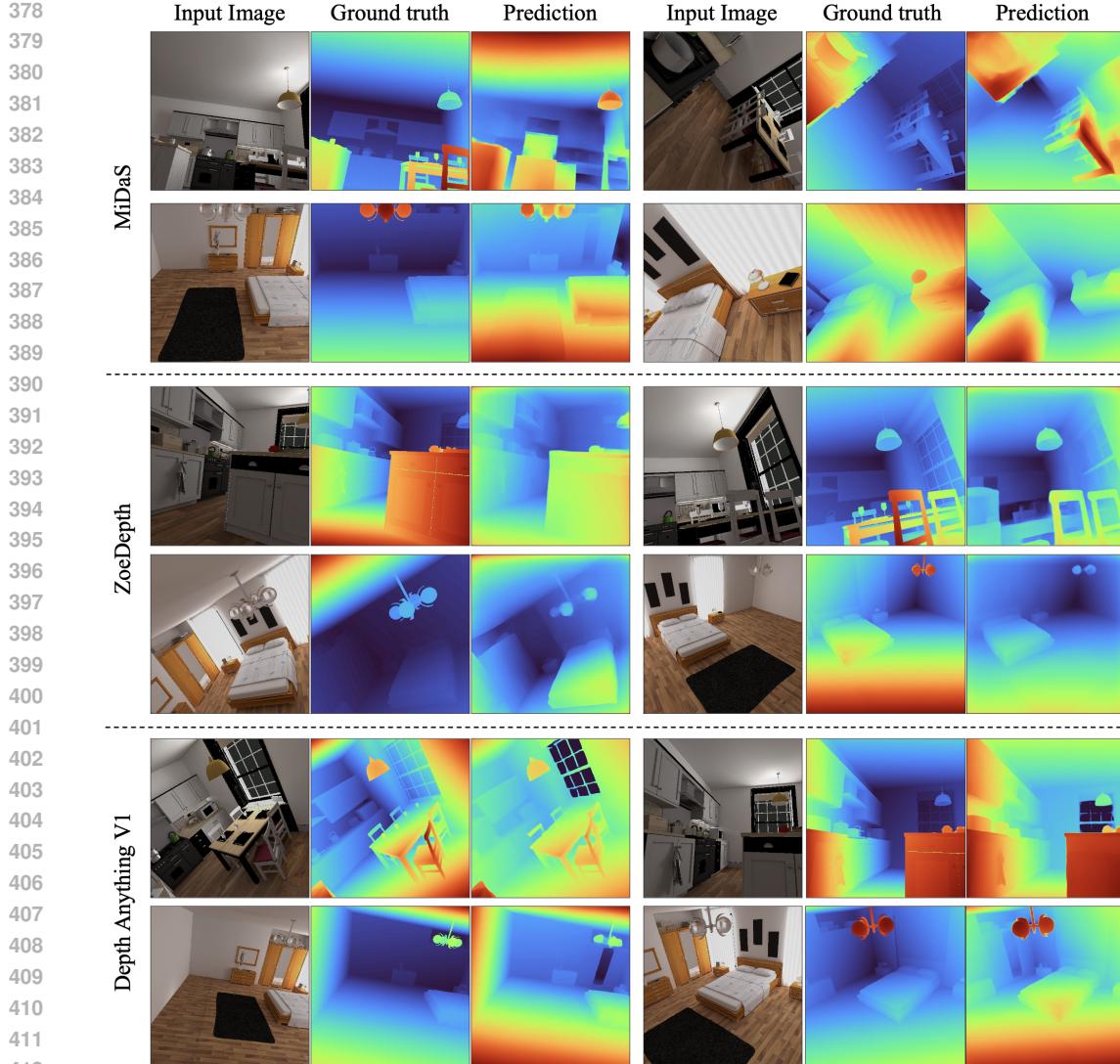
344 Now, using the same 3D assets developed for rendering using PyTorch3D, we perform the adversarial
 345 attack as described in Sec. 3.4. Our experimental setup is the following. For each 3D asset and each
 346 starting camera location in `init-params`, obtain top N_{adv} viewpoints from the returned trajectory.
 347 We can measure how successful these adversarial viewpoints are in two ways. First is by qualitatively
 348 and quantitatively evaluating a model ϕ 's performance on the images rendered from adversarial
 349 viewpoints. Second is by quantitatively studying how bad model's performance is *with respect to* the
 350 starting (benign) viewpoint. We do this across all the four models described above.

351

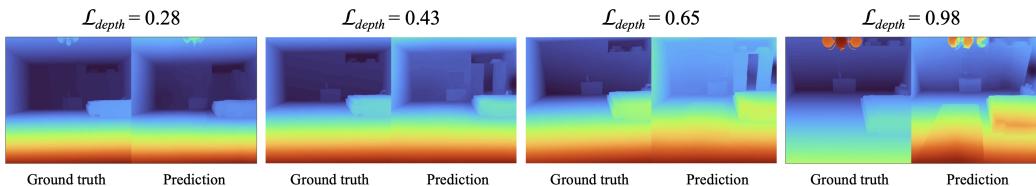
352 **Visualizing failure cases.** First, we show the qualitative results in Fig. 6. Each cell corresponds to
 353 an adversarial viewpoint, and is a triplet where the left, middle and right entities are rendered image,
 354 ground-truth depth and predicted depth respectively. The results for different models are in different
 355 rows. Our first takeaway is that every model breaks for certain viewpoints where it struggles to
 356 predict accurate depth. While the objective of our work is *not* to describe the precise conditions under
 357 which a particular model fails, we nonetheless observe certain patterns. Sometimes, the distribution
 358 of the predicted depth values is a bit off, where the close by objects are not predicted as close enough
 359 compared to ground-truth, e.g., row three, right cell. There are cases where a model predicts depth
 360 incorrectly for an object or for multiple objects, e.g., row 5, left cell. In other cases, the model fails to
 361 mimic the fine-grained textured nature of the ground-truth depth, e.g., row 1, right cell. Other times,
 362 a model fails when the rendered view of the scene contains an object or a part of the object apparently
 363 hanging in the air; e.g., row 4/6 right cell, Fig. 9 rightmost. Qualitative results for Depth Anything
 364 V2 are presented in the appendix. The final point to note is that while the manner in which failure
 365 happens is different, they all correspond to a high value of \mathcal{L}_{depth} , as we see next. This is because
 366 perceptual loss, which operates in a semantic feature space, captures and responds to many types of
 367 image dissimilarities.

368 **Quantitative results.** Next, we quantify these failure cases using two metrics; \mathcal{L}_{depth} and δ_1 . While
 369 δ_1 is a standard metric whose value (between 0 and 1; 1 means most similar) can indicate the degree
 370 of depth prediction failure, the same is not true for the value of \mathcal{L}_{depth} . So, to aid the reader in
 371 visualizing \mathcal{L}_{depth} score, we show four degrees of depth prediction failure in Fig. 9. Each pair has the
 372 corresponding \mathcal{L}_{depth} score at its top. From this, a general rule of thumb can be that $\mathcal{L}_{depth} > 0.8$
 373 means that deviation of prediction is big enough to be considered a failure case.

374 In Table 2, we report these two scores achieved by the adversarial viewpoints. Each column
 375 corresponds to one of the nine assets, and each row corresponds to a different MDE model. Each
 376 score is averaged across the adversarial viewpoints obtained from all ten starting viewpoints from
 377 `init-params`. Again, the first take away is that all MDE models achieve a high $\mathcal{L}_{depth} (> 0.9)$
 378 and low δ_1 score (< 0.33). This means that predictions sufficiently deviate from ground-truth depth.



413 Figure 6: Adversarial viewpoints obtained for different models. Each triplet contains rendered image,
 414 ground-truth and predicted depth.



422 Figure 7: Predicted and ground-truth depth map pairs from four different camera viewpoints. The
 423 viewpoints are sampled from a trajectory during the optimization process, and the value of \mathcal{L}_{depth} is
 424 increasing from left to right. The figure illustrates what different values of \mathcal{L}_{depth} mean visually.

425
 426
 427 However, we also note that, generally speaking, more recent and powerful models like DepthAnything
 428 V1 and V2 (DA V1 and V2) fail less than their predecessors MiDaS and ZoëDepth. For example,
 429 the average δ_1 score for DA V1/V2 (0.29) is $\sim 40\%$ higher than the score for the remaining two
 430 models (0.21). This is expected as the more recent models were built upon the earlier ones with the
 431 added advantage of a much bigger dataset. Among these, the adversarial attack is least successful for
 DA V2. The reason for this could be the way DA V2 was trained using synthetic data. Specifically,

432	Model	Asset 1		Asset 2		Asset 3		Asset 4		Asset 5		Asset 6		Asset 7		Asset 8		Asset 9		Avg	
		\mathcal{L}_{depth}	δ_1																		
433	MiDaS	1.53	0.26	1.11	0.10	1.19	0.20	1.06	0.22	1.15	0.18	1.73	0.32	2.35	0.17	1.17	0.29	1.88	0.26	1.46	0.22
434	ZoeDepth	1.42	0.22	0.95	0.09	1.30	0.10	1.11	0.21	1.05	0.14	1.61	0.32	2.48	0.24	1.31	0.13	1.83	0.33	1.45	0.20
435	Depth Anything V1	1.26	0.31	0.74	0.23	1.04	0.20	0.99	0.09	0.94	0.20	1.23	0.50	1.74	0.37	1.06	0.38	1.75	0.22	1.19	0.28
436	Depth Anything V2	1.07	0.42	0.68	0.35	0.85	0.24	0.76	0.09	0.67	0.11	0.99	0.35	1.28	0.46	0.98	0.44	1.23	0.29	0.95	0.31

Table 2: \mathcal{L}_{depth} and δ_1 scores depicting discrepancy between depth predicted from adversarial viewpoints and the corresponding ground-truth. $\uparrow \mathcal{L}_{depth}$ and $\downarrow \delta_1$ denote more discrepancy.

440	Model	Asset 1		Asset 2		Asset 3		Asset 4		Asset 5		Asset 6		Asset 7		Asset 8		Asset 9		Avg	
		\mathcal{L}_{depth}	δ_1																		
441	MiDaS	0.66	0.33	0.57	0.54	0.41	0.33	0.35	0.19	0.64	0.54	0.85	0.27	0.67	0.08	0.42	0.2	0.56	0.09	0.57	0.29
442	ZoeDepth	0.47	0.20	0.28	0.08	0.48	0.31	0.33	0.45	0.32	0.11	0.51	0.25	0.69	0.00	0.4	0.29	0.54	0.07	0.45	0.20
443	Depth Anything V1	0.63	0.47	0.33	0.6	0.54	0.40	0.51	0.75	0.55	0.69	0.54	0.34	0.43	0.19	0.46	0.39	0.71	0.21	0.52	0.45
444	Depth Anything V2	0.59	0.49	0.37	0.56	0.45	0.34	0.38	0.78	0.38	0.77	0.46	0.45	0.30	0.18	0.45	0.36	0.44	0.32	0.42	0.47

Table 3: Difference in \mathcal{L}_{depth} score for adversarial and initial viewpoints. A positive value means \mathcal{L}_{depth} increased for adversarial viewpoint. Similarly, we also show the negative of difference (for better readability) in δ_1 scores for initial and adversarial viewpoints. A positive score indicates that δ_1 score decreased for adversarial viewpoint, meaning deviating away from the ground-truth.

one of the synthetic datasets used during its training, Hypersim (Roberts et al., 2021), is created through realistic renderings of 3D assets, where from the same asset, multiple scenes are captured in a camera trajectory designed by an artist. Hence, we can expect DA V2 to be somewhat more robust to different camera viewpoints in our evaluation.

Adversarial vs benign viewpoints. So far, we saw that MDE models fail to produce accurate depth on the adversarial viewpoints returned from our toolbox. However, the scores for adversarial viewpoints can be even better understood in the context of the scores for more benign viewpoints. More specifically, we study how these scores look for images rendered from the initialized viewpoints (`init-params`). For each starting position in `init-params`, we compute $\mathcal{L}_{depth}^{adv} - \mathcal{L}_{depth}^{init}$. Similarly, we compute $\delta_1^{init} - \delta_1^{adv}$. We reverse the order of operands so that a positive difference value implies the same trend for \mathcal{L}_{delta} and δ_1 . We create a *difference* Table 3, similar to Table 2, by averaging these differences across the ten viewpoints, for each asset, model combination. The first thing to notice is that *all* entries are positive, which means that predicted depth maps become less accurate for all assets and models, measured by both the metrics. The next worthwhile thing to notice is the degree to which depth maps become worse compared to the initial position. For all models, the average change in δ_1 is more than 0.2, and for DA V1/V2, it is more than 0.4. The same story exists for \mathcal{L}_{depth} , where the average increase across all the models is 0.49. Fig. 9 can again give a visual depiction of what a change of 0.49 in \mathcal{L}_{depth} might mean for depth prediction. This shows that, starting from a place where ϕ works fine, the adversarial attack does move the camera to locations where it struggles.

6 DISCUSSION AND LIMITATIONS

When a MDE model fails to give accurate depth for an image, the underlying causes could be multifaceted; it could be the camera viewpoint itself, or the specific combination of objects in a certain lighting condition etc. Consequently, we do not intend our framework to present analysis such as “for *any* scene when yaw & pitch of the camera exceed x° and y° , the MDE model will fail”. This is because such values (x°, y°) will very much depend on the particular scene. Hence, the more appropriate way to view our framework is something similar to a testbed which assesses how robust MDE models can be for these 3D scenes if we give the camera full flexibility to move around in the scene. This framework does have its limitations. First, the lack of availability of free-to-use 3D assets that can be converted into an appropriate format. Consequently, our own dataset size is not too big at the moment, focusing only on indoor scenes. Second, while synthetic datasets have been used to train MDE models which then work well for natural images (DA V2 Yang et al. (2024b)), it is not completely clear how well failures on synthetic images translate to failure in real world images.

486 REFERENCES
487

488 Anurag Arnab, Ondrej Miksik, and Philip H.S. Torr. On the robustness of semantic segmentation
489 models to adversarial attacks. In *Proceedings of the IEEE Conference on Computer Vision and*
490 *Pattern Recognition (CVPR)*, 2018.

491 Shariq Farooq Bhat, Reiner Birk, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth:
492 Zero-shot transfer by combining relative and metric depth. *arXiv:2302.12288*, 2023.

493 Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-image depth perception in the wild. In
494 *NeurIPS*, 2016.

495 Jaeyoung Chung, Jeongtaek Oh, and Kyoung Mu Lee. Depth-regularized optimization for 3d gaussian
496 splatting in few-shot images. *arXiv preprint arXiv:2311.13398*, 2023.

497 David Dadon, Ohad Fried, and Yacov Hel-Or. DDNeRF: Depth distribution neural radiance fields. In
498 *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp.
499 755–764, 2023.

500 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
501 hierarchical image database. In *CVPR*, 2009.

502 Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-supervised nerf: Fewer views
503 and faster training for free. *arXiv preprint arXiv:2107.02791*, 2024.

504 Yinpeng Dong, Shouwei Ruan, Hang Su, Caixin Kang, Xingxing Wei, and Jun Zhu. Viewfool:
505 Evaluating the robustness of visual recognition to adversarial viewpoints. *Advances in Neural*
506 *Information Processing Systems*, 2022.

507 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
508 dataset. *IJRR*, 2013.

509 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
510 examples. *arXiv*, 2015.

511 Lakshya Jain, Varun Chandrasekaran, Uyeong Jang, Wilson Wu, Andrew Lee, Andy Yan, Steven
512 Chen, Somesh Jha, and Sanjit A. Seshia. Analyzing and improving neural networks by generating
513 semantic counterexamples through differentiable rendering. *arXiv*, 2020.

514 Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini, Tizian
515 Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang. Mitsuba 3 renderer,
516 2022.

517 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
518 super-resolution. *arXiv*, 2016.

519 Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In *The IEEE*
520 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018.

521 Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad
522 Schindler. Repurposing diffusion-based image generators for monocular depth estimation. In
523 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
524 2024.

525 Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In
526 *ICLR*, 2017.

527 Uday Kusupati, Shuo Cheng, Rui Chen, and Hao Su. Normal assisted stereo depth estimation. In
528 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
529 June 2020.

530 Jae-Han Lee and Chang-Su Kim. Monocular depth estimation using relative depth maps. In *CVPR*,
531 2019.

540 Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable monte carlo ray
 541 tracing through edge sampling. *ACM Trans. Graph. (Proc. SIGGRAPH Asia)*, 2018.

542

543 Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li, and Chen Yiran. Dpatch: An adversarial
 544 patch attack on object detectors. *arXiv*, 2019.

545 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 546 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020.

547

548 nh236. Non-deterministic behaviour of meshrasterizer. [https://github.com/
 549 facebookresearch/pytorch3d/issues/1519](https://github.com/facebookresearch/pytorch3d/issues/1519), 2023. Accessed: 2025-03-08.

550 René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
 551 monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. *TPAMI*, 2020.

552

553 Anita Rau, Josiah Aklilu, F. Christopher Holsinger, and Serena Yeung-Levy. Depth-guided nerf
 554 training via earth mover's distance. *arXiv preprint arXiv:2403.13206*, 2024.

555

556 Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and
 557 Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. *arXiv:2007.08501*, 2020.

558

559 Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista, Nathan
 560 Paczan, Russ Webb, and Joshua M. Susskind. Hypersim: A photorealistic synthetic dataset for
 561 holistic indoor scene understanding. In *International Conference on Computer Vision (ICCV)*
 562 2021, 2021.

563

564 D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using structured light. In *IEEE
 565 Computer Society Conference on Computer Vision and Pattern Recognition*, 2003.

566

567 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
 568 inference from rgbd images. In *ECCV*, 2012.

569

570 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 571 recognition. *arXiv*, 2015.

572

573 Chaowei Xiao, Dawei Yang, Bo Li, Jia Deng, and Mingyan Liu. Meshadv: Adversarial meshes for
 574 visual recognition. In *CVPR*, 2019.

575

576 Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. Adversarial
 577 examples for semantic segmentation and object detection. In *ICCV*, 2017.

578

579 Haofei Xu, Songyou Peng, Fangjinhua Wang, Hermann Blum, Daniel Barath, Andreas Geiger,
 580 and Marc Pollefeys. Depthsplat: Connecting gaussian splatting and depth. *arXiv preprint
 581 arXiv:2410.13862*, 2024.

582

583 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
 584 anything: Unleashing the power of large-scale unlabeled data. In *CVPR*, 2024a.

585

586 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
 587 Zhao. Depth anything v2. *arXiv:2406.09414*, 2024b.

588

589 Wei Yin, Chi Zhang, Hao Chen, Zhipeng Cai, Gang Yu, Kaixuan Wang, Xiaozhi Chen, and Chunhua
 590 Shen. Metric3d: Towards zero-shot metric 3d prediction from a single image. In *Proceedings of
 591 the IEEE/CVF International Conference on Computer Vision*, 2023.

592

593 Xiaohui Zeng, Chenxi Liu, Yu-Siang Wang, Weichao Qiu, Lingxi Xie, Yu-Wing Tai, Chi Keung Tang,
 594 and Alan L. Yuille. Adversarial attacks beyond the image space. In *CVPR*, 2019.

595

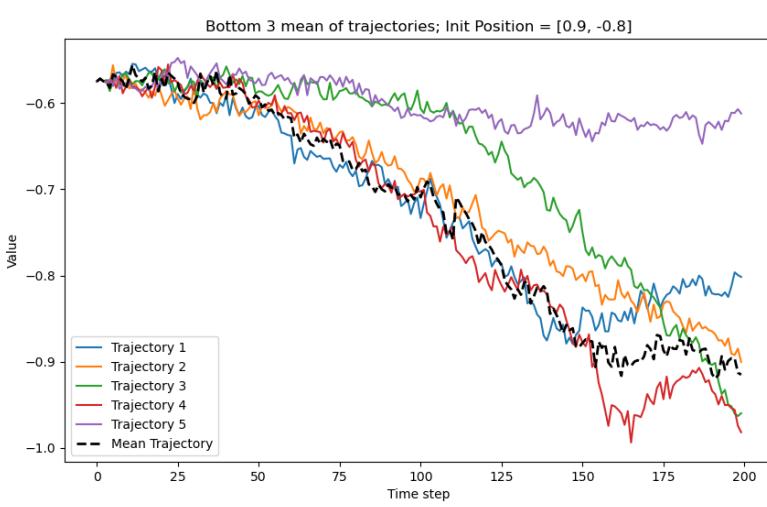
596 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 597 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

598

599 Ziqi Zhang, Xinge Zhu, Yingwei Li, Xiangqun Chen, and Yao Guo. Adversarial attacks on monocular
 600 depth estimation. *arXiv*, 2020.

601

602 Junhao Zheng, Chenhao Lin, Jiahao Sun, Zhengyu Zhao, Qian Li, and Chao Shen. Physical 3d
 603 adversarial attacks against monocular depth estimation in autonomous driving. In *CVPR*, 2024.



¹<https://mitsuba.readthedocs.io/en/stable/src/gallery.html>

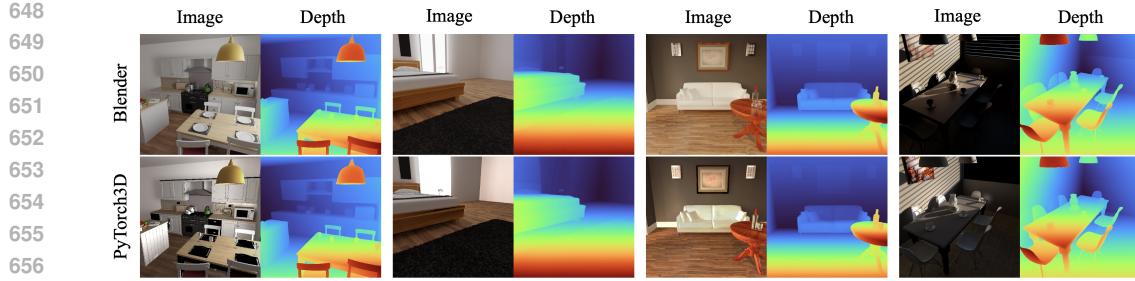


Figure 9: Figure similar to Fig. 6 in main paper, showing how a 3D asset rendered using Blender (top row) looks after being converted and rendered using PyTorch3D (bottom row). The depth maps obtained using Depth Anything-V2 Yang et al. (2024b) for both images are similar, despite the small quality drop in RGB image.

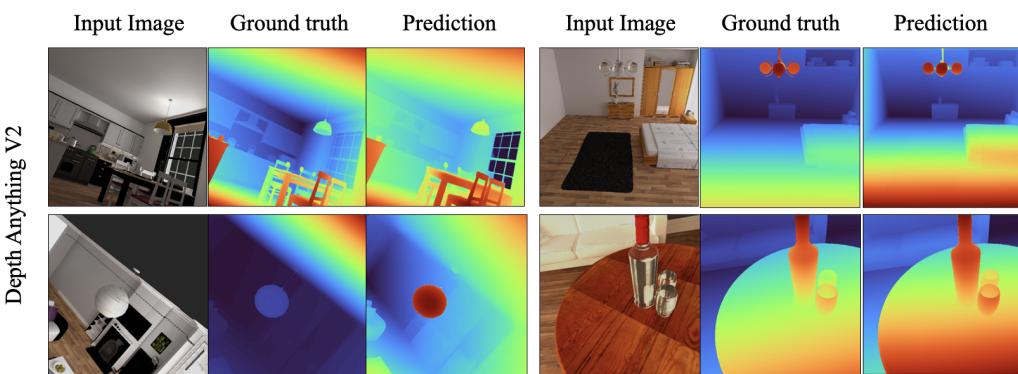
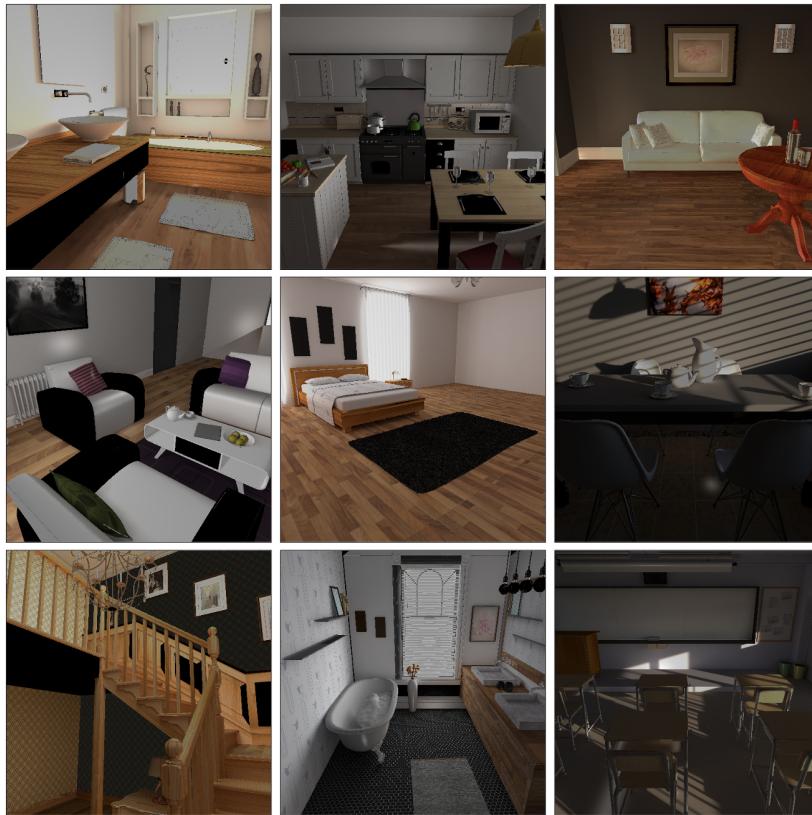


Figure 10: Adversarial viewpoints obtained for Depth Anything V2. Each triplet contains rendered image, ground-truth and predicted depth.

C EVALUATING SCENES ON NERF/GAUSSIAN SPLATS

While 3DGS and NeRF provide ways to scale the toolbox for more photorealistic large 3D scenes, we found that neither method accurately resolves the scene’s depth. In both cases, depth is estimated as part of the rasterization process. For NeRF, depth is determined by estimating the point of termination for each ray. However, this estimation is often inaccurate, as shown in Deng et al. (2024). While this and other works Deng et al. (2024); Rau et al. (2024); Dadon et al. (2023) attempt to improve accuracy by using depth priors, the results still do not match the ground truth generated by rendering a 3D asset. A similar issue arises in 3DGS Xu et al. (2024) and Chung et al. (2023). Additionally, we have observed that large Gaussians in 3DGS can produce inaccurate depth rasters. Neither model generalizes well to viewpoints outside the training distribution, meaning that unbounded camera optimization would require extensive scene coverage. Hence, in this work, we rely on 3D assets that we can be certain will provide accurate depth maps.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741



742 Figure 11: Images from all the nine 3D assets that we use in this work.
743
744
745
746
747
748
749
750
751
752
753
754
755