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Abstract

Multiple-choice questions (MCQs) are ubiqui-001
tous in almost all levels of education since they002
are easy to administer, grade, and are a reli-003
able format in both assessments and practices.004
An important aspect of MCQs is the distrac-005
tors, i.e., incorrect options that are designed to006
target specific misconceptions or insufficient007
knowledge among students. To date, the task008
of crafting high-quality distractors largely re-009
mains a labor-intensive process for teachers010
and learning content designers, which has lim-011
ited scalability. In this work, we study the task012
of automated distractor generation in the do-013
main of math MCQs and explore a wide va-014
riety of large language model (LLM)-based015
approaches, from in-context learning to fine-016
tuning. We conduct extensive experiments us-017
ing a real-world math MCQ dataset and find018
that although LLMs can generate some mathe-019
matically valid distractors, they are less adept at020
anticipating common errors or misconceptions021
among real students.022

1 Introduction023

Multiple-choice questions (MCQs) are widely used024

to evaluate students’ knowledge because they en-025

able quick and accurate administration and grading.026

MCQs are reliable because they are designed to027

measure specific learning objectives consistently028

(Nitko, 1996; Airasian, 2001; Kubiszyn and Borich,029

2016). MCQs are constructed in a specific format;030

see Figure 1 for an example. The stem refers to031

the statement on the problem setup and context,032

followed by a question that needs to be answered.033

Among the options, the correct one can be referred034

to as the key, while incorrect ones can be referred035

to as distractors. As the name implies, distractors036

in MCQs are typically formulated to align with the037

common errors students would make or misconcep-038

tions students would exhibit. These distractors are039

chosen because students either i) lack the necessary040

knowledge of the skills tested in the MCQ to accu- 041

rately identify the key as the correct answer, or ii) 042

hold misconceptions that result in selecting a spe- 043

cific distractor as the correct answer. While MCQs 044

offer many advantages for students’ knowledge 045

evaluation, manually crafting high-quality MCQs 046

is a demanding and labor-intensive process (Kelly 047

et al., 2013). Specifically, high-quality distractors 048

should be plausible enough to mislead students and 049

not so evidently incorrect to be identified easily. 050

Prior work on automatic distractor generation 051

primarily focuses on language learning and reading 052

comprehension tasks, where distractors are used 053

to assess students’ comprehension of a given text 054

or article. Early works use a ranking approach 055

based on semantic similarity and word colloca- 056

tion information or a pre-defined ontology to pro- 057

duce distractors (Susanti et al., 2018; Stasaski and 058

Hearst, 2017; Alsubait et al., 2014). More recent 059

works use encoder-decoder models with attention 060

mechanisms for distractor generation, resulting in 061

longer and higher-quality distractors (Qiu et al., 062

2020; Shuai et al., 2023; Xie et al., 2021; Gao 063

et al., 2019). Additionally, several recent works use 064

pre-trained large language models (LLMs) such as 065

BERT and T5 for distractor generation in the con- 066

text of Swedish reading and Cloze test (Kalpakchi 067

and Boye, 2021; Chiang et al., 2022; Rodriguez- 068

Torrealba et al., 2022). Other works prompt LLMs 069

such as ChatGPT and GPT-4 to generate distrac- 070

tors, either by providing detailed instructions or 071

in-context examples in their prompts, for computer 072

science course quiz questions and questions testing 073

language mastery or factual knowledge (Tran et al., 074

2023; Bitew et al., 2023). 075

However, there is limited work on automatic 076

distractor generation for math MCQs. This prob- 077

lem is more challenging than generating distractors 078

for reading comprehension tasks because plausi- 079

ble distractors are not necessarily contained or can 080

be inferred from the passage. A model for math 081
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Figure 1: Different parts of math MCQs and the terminology we use, illustrated with an example.

MCQ distractor generation should have some math082

problem-solving capability and more importantly,083

an understanding of the common errors or miscon-084

ceptions among real students. Existing works ei-085

ther use constraint logic programming (Tomás and086

Leal, 2013) or manually constructed rules (Prakash087

et al., 2023) to generate distractors. However, these088

works only applies to math MCQs generated by089

templates. The work in (Dave et al., 2021) explores090

generating distractors using a neural network. How-091

ever, their approach is training a math problem092

solver model and treating the incorrect outputs as093

distractors, which cannot capture common errors094

or misconceptions among real students.095

1.1 Contributions096

In this work, we investigate the task of automat-097

ically generating plausible distractors for math098

MCQs using LLMs. Our contributions include:099

• We explore a variety of approaches to this task,100

including in-context learning, fine-tuning, and101

chain-of-thought prompting, together with102

rule- and sampling-based baselines.103

• We conduct extensive quantitative and quali-104

tative experiments on a real-world dataset of105

math MCQs. We find that the most effective106

approach is in-context learning, where we se-107

lect a few example MCQs as input to the LLM,108

which can serve as a baseline for future work.109

• We conduct a human evaluation and find that110

although the LLM-generated distractors are111

close to the human-authored ones in terms of112

mathematical validity, they do not necessar-113

ily reflect common errors or misconceptions114

among real students.115

2 Task and Approaches 116

In this section, we first formally define relevant 117

mathematical notation in MCQs and the automated 118

distractor generation task. We then detail the LLM- 119

based approaches and baselines that we explore. 120

2.1 Task Definition 121

We define an MCQ Q as a set of textual compo- 122

nents, i.e., Q “ ts, k, ek, D, F u.1 Each MCQ con- 123

tains a stem s, a key k, an (optional) explanation 124

of the key ek, and a set of distractors D; each of 125

which has an (optional) corresponding feedback 126

message fi which is shown to a student upon select- 127

ing a distractor di P D. All of these components 128

are sequences of words and math symbols (e.g., 129

s “ tw1, . . . , wLu where L is the length of the 130

sequence s). Similar to (Qiu et al., 2020), we for- 131

mulate the task of distractor generation as learning 132

a function gdis that outputs a set of distractors D̂ for 133

an MCQ given the question stem and (optionally) 134

key and its explanation, i.e., 135

gdisps, k, ekq Ñ D̂. (1) 136

Our goal is to generate distractors that students 137

with insufficient knowledge on skills required for 138

the MCQ or specific misconceptions will select. 139

This way, the MCQ can better distinguish between 140

students that master all the required skills and those 141

who do not. Below, we detail various LLM-based 142

distractor generation approaches and several base- 143

lines that we explore. 144

We note that in this work, we study the problem 145

of generating a set of distractors D̂ given a single 146

1In this paper, we do not consider MCQs that contain
diagrams or images; extending our work to multi-modal MCQ
content is left for future work.
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Figure 2: Overview of the kNN approach illustrated with a math MCQ on “compound percentage decrease”.

question stem . This setting is different from a pos-147

sible alternative setting where we generate distrac-148

tors one-by-one, each corresponding to a common149

error or misconception among real students. The150

latter is applicable to the related problem of feed-151

back generation (Prihar et al., 2023), which inves-152

tigates the task of generating a feedback message153

fi for a distractor di. Providing feedback messages154

to students who select distractors can help them155

identify their errors or misconceptions and guide156

them towards the correct answer, which may expe-157

dite their learning process. In this work, we only158

treat the feedback message as an additional rea-159

soning pathway to help LLMs generate plausible160

distractors and do not study the quality of feedback161

messages, which we leave for future work.162

2.2 Approaches163

The first approach is in-context learning or few-164

shot prompting, i.e., the LLM is expected to gen-165

erate desired outputs for a new task by learning166

from the given examples (Brown et al., 2020). To167

select examples, we select the k-nearest neighbor168

(kNN) MCQs from a real-world math MCQ dataset,169

which we detail in Section 3.1, to the target MCQ.170

After conducting tests with various values of k, we171

find that this approach achieves the best distractor172

generation performance when k “ 3. To deter-173

mine similarity, we calculate the cosine similarity174

between vectorized textual encodings of MCQs.175

Specifically, we use the pre-trained SBERT en-176

coder MPNet (Reimers and Gurevych, 2019) to177

calculate the textual encoding of the question stem178

and (optionally) key and its explanation. Figure 2179

provides a visual representation of this approach.180

The intuition for this approach is that MCQs with181

similar question stems may have distractors that182

correspond to similar student errors or misconcep-183

tions that are feasible to the target MCQ, which 184

may help the LLM to generate plausible distrac- 185

tors. Even though textual similarity may not be an 186

appropriate representation for mathematical errors, 187

these in-context examples should at least inform the 188

LLM on distractor formatting (Chen et al., 2023; 189

Lyu et al., 2023). We use ChatGPT in this ap- 190

proach for its proficiency in understanding tasks 191

and delivering strong performance when provided 192

with in-context examples. 193

The second approach is LLM fine-tuning (FT) 194

to help pre-trained LLMs to adapt to the distrac- 195

tor generation task. We use the real-world math 196

MCQ dataset to fine-tune the LLM in the format of 197

Eq. 1, i.e., outputting all distractors given the ques- 198

tion stem and (optionally) key and its explanation 199

as input. We use ChatGPT (gpt-3.5-turbo-1106) 200

(OpenAI, 2022), the largest base LLM that can be 201

fine-tuned, in this approach. 202

The third approach is chain-of-thought prompt- 203

ing (CoT) (Wei et al., 2022). We provide the LLM 204

with the question stem and (optionally) key and 205

its explanation and detailed guidelines on distrac- 206

tor generation as input and ask it to first generate 207

potential erroneous steps a student may take, fol- 208

lowed by an incorrect answer, which we use as a 209

distractor. This approach operates in a zero-shot 210

manner and requires no access to any real MCQ 211

data. Therefore, the performance depends solely 212

on the LLM’s ability in mathematical reasoning 213

and anticipating students’ errors or misconceptions. 214

Given the demanding nature of this approach, we 215

use a strong base LLM GPT-4 (OpenAI, 2023). 216

The fourth approach is a rule-based (RB) base- 217

line, which can be used to generate different ver- 218

sions of the same MCQ with different numerical 219

values. We emphasize that in many real-world ed- 220
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ucational platforms, content creators do not use221

rules to design distractors; in practice, not a lot222

of MCQs are created from templates and only dif-223

fer by numerical values or named entities in their224

question stems. Therefore, we approximately fol-225

low the baseline approach in (Dave et al., 2021)226

and manually construct 444 distinct error explana-227

tions, such as “confuses factor and multiples” for228

question-distractor pairs that correspond to com-229

mon errors or misconceptions among real students.230

This process is extremely time-consuming and re-231

quires significant manual effort. We then provide232

the LLM with the question stem and (optionally)233

key and its explanation and a pool of error explana-234

tions that are feasible under the MCQ’s topic (i.e.,235

fractions, rounding, etc.), and ask LLM to select 3236

relevant ones and generate the corresponding dis-237

tractors. We use GPT-4 in this approach for the238

same reason as CoT.239

The fifth approach is an improved version of240

the sampling-based (SB) baseline in (Dave et al.,241

2021). This approach fine-tunes a base LLM on242

MCQ answering, i.e., outputting the key given the243

question stem as input. Then, we randomly sam-244

ple up to 20 output answers from the trained LLM245

given a question stem as input and choose 3 distinct246

incorrect ones as distractors. This approach implic-247

itly assumes that LLMs make similar errors as real248

students. We use ChatGPT in this approach for249

the same reason as FT.250

3 Experiments251

In this section, we detail the specifics of our dataset,252

the evaluation metrics, the experimental setup, and253

report results from a series of quantitative, qualita-254

tive experiments, and human evaluation.255

3.1 Dataset256

Our dataset consists of 1.4K MCQs from a large257

digital learning platform, and all MCQs are writ-258

ten in English. We filter out questions with im-259

ages/diagrams. Each question has 1 key and 3 dis-260

tractors designed according to common student er-261

rors or misconceptions. The questions are sourced262

from the broad mathematical topic titled “Num-263

ber” with subtopics including “Basic Arithmetic”,264

“Fractions”, and “Rounding and Estimating”. The265

questions are primarily targeted towards students266

aged between 10 to 13. Each MCQ also has some267

additional metadata, e.g., the “topic” on 3 different268

granularity levels and the option selection distribu-269

tion, i.e., the proportion of students who selected 270

each option. The option selection distribution is 271

computed on an average of 4000 student responses, 272

with more than 900 student responses available in 273

over 75% of the MCQs. We divided the dataset 274

into two subsets, namely a training set and a test 275

set, using an 80:20 ratio. We use the training set to 276

select MCQs as in-context examples or fine-tune 277

LLMs and the test set for evaluation. 278

3.2 Evaluation Metrics 279

Our main evaluation metric is a set of alignment- 280

based metrics, which quantifies the extent to 281

which the LLM-generated distractors align with 282

the human-authored ones. We denote the LLM- 283

generated distractors as D̂ where |D̂| “ N . We 284

utilize 3 measures for this evaluation, two binary 285

and one continuous. The binary metrics are Ex- 286

act match he, i.e., whether all LLM-generated dis- 287

tractors match human-authored ones, and Partial 288

match hp, i.e., whether at least one LLM-generated 289

distractor matches human-authored ones. These 290

measures are formally defined as 291

hepD, D̂q “

#

1 @d̂i P D̂ : d̂i “ di

0 otherwise.
292

and 293

hppD, D̂q “

#

1 Dd̂i P D̂ : d̂i “ di

0 otherwise
294

We also use a continuous measure in the range 295

r0, 1s that we call Proportional match hn, i.e., the 296

portion of LLM-generated distractors that match 297

human-authored ones, defined as 298

hnpD, D̂q “

ř

i“1 1i:d̂i“di
N

299

where 1 denotes an indicator function. We report 300

all metrics by averaging across all MCQs in the test 301

set and scale the values of metrics by a factor of 302

100 into percentages. 303

Additionally, we experiment with a non- 304

standard, distribution-based metric, which tries to 305

predict how often a distractor is selected by real stu- 306

dents. This metric is motivated by the observation 307

(See Section 3.5 for a detailed qualitative analysis) 308

that human-authored distractors are sometimes not 309

plausible or complete: for some MCQs, there may 310

only be one highly common error or misconception 311

among real students so teachers often have to throw 312
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Approach Exact Partial Proportional

kNN 9.89 72.44 37.10
CoT 4.24 63.96 29.92
RB 4.59 59.01 27.80
FT 2.83 57.60 25.32
SB 0.00 10.25 3.65

Table 1: Results on distractor generation on alignment-
based metrics, where in-context learning with kNN ex-
ample selection outperforms other approaches.

in a few more that will be selected by almost no313

one, while for other MCQs, there may be numer-314

ous plausible distractors that cannot all be included.315

Therefore, our goal is to use the percentages of316

students who selected each option to train a model317

that predicts how feasible a distractor is. Since we318

cannot reach high predictive accuracy on the real319

dataset we have, we relegate the details on this met-320

ric and experimental results to the Supplementary321

Material Section A.322

3.3 Experimental Setup323

For all approaches except SB, we use a uniform for-324

mat to represent the target MCQ. This format com-325

prises a concatenation of 3 elements: the question326

stem, key, and its explanation. We use this struc-327

ture since it encapsulates the most comprehensive328

information about the target MCQ. Furthermore,329

based on CoT, we instruct the LLM to first generate330

feedback message and then the distractor, which331

intends to simulate a reasoning pathway, providing332

a scaffold that guides the subsequent generation333

of plausible distractors. We use greedy decoding334

and a maximum output length of 350 tokens for335

distractor generation. Additional hyperparameters336

and model details are in Supplementary Material337

Section B. We also provide our prompts for CoT,338

RB, and kNN in Tables 7, 8, and 9 respectively.339

3.4 Results and Discussion340

Table 1 shows the results on distractor generation341

for the 5 approaches we explore. Overall, kNN out-342

performs the other approaches. This result is not343

surprising since examples that are textually sim-344

ilar to the target MCQ often contain distractors345

that correspond to plausible errors or misconcep-346

tions among real students for both MCQs. There-347

fore, the LLM can generate distractors that match348

the human-authored ones by simply replicating the349

style of the in-context examples. This approach is350

Approach Exact Partial Proportional

kNNall 9.89 72.44 37.10
kNNkey 10.95 69.26 36.75
kNNnone 8.83 66.08 34.39
Random 2.12 54.77 23.44
Promptkey 8.13 65.72 33.33
Promptnone 2.83 36.04 16.96
kNNall

␣T 3.20 57.60 26.15

FTgpt3.5 2.83 57.60 25.32
FTllama2 0.35 40.99 16.02

RBselect 4.59 59.01 27.80
RBrandom 1.06 52.65 23.20

Table 2: Results on ablation study on alignment-based
metrics with different settings of kNN, FT, and RB.

especially effective for MCQs that have highly sim- 351

ilar structures and differ in only numerical values. 352

The advantage of CoT over FT reflects the strong 353

mathematical reasoning capability of GPT-4, 354

which results in a performance gap that not even 355

fine-tuning ChatGPT on human-authored distrac- 356

tors can make up. Instead of acting as an oracle, 357

RB underperforms this expectation and does not 358

even outperform CoT, despite requiring significant 359

human expertise and effort. This result is likely 360

due to the fact that despite extensive effort in label- 361

ing error explanations, we cannot come up with a 362

comprehensive list of them; as a result, many target 363

MCQs are not matched with error explanations for 364

GPT-4 to select from. Overall, we observe that 365

GPT-4 can often generate mathematically valid 366

distractors but is unaware of what errors or miscon- 367

ceptions are common among real students. There- 368

fore, CoT and RB do not perform as well as kNN. 369

Among all approaches we explored, SB has by 370

far the worst performance, which is not surprising, 371

since when we train LLMs to answer math MCQs 372

correctly, the incorrect answers they generate are 373

either only marginally different than the key or 374

completely unrelated to the question stem. There- 375

fore, this approach generates distractors without 376

coherent reasoning and do not resemble how real 377

students make mistakes. 378

3.4.1 Ablation Study 379

In this ablation study, we investigate the impact 380

of different configurations of kNN on its perfor- 381

mance and summarize these results in the first part 382

of Table 2. We explore how different ways of using 383

different parts of the MCQ in the textual encoder 384
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for nearest neighbor search could affect kNN’s per-385

formance. We experiment with 3 different settings:386

using just the question stem (kNNnone); using the387

question stem and key (kNNkey); and using the388

question stem, key, and its explanation (kNNall),389

which is the best performing setting. For compar-390

ison, we also experiment with a simple random391

heuristic (Random) that chooses examples from392

the training set randomly without any specific cri-393

teria. We see that although using only the ques-394

tion stem captures the math skill covered by an395

MCQ and helps kNN find examples that have the396

same format as the target MCQ, adding the key397

and explanation helps kNN find better examples398

that use similar problem-solving strategies to the399

target MCQ. We also explore how different prompt400

formats could affect kNN’s performance. We ex-401

periment with 3 different prompt formats. The best-402

performing setting (kNNall) includes the question403

stem, key, and explanation for both the target MCQ404

and the in-context examples. The in-context exam-405

ples also contain feedback on the distractors, and406

we ask the LLM to generate the feedback, followed407

by the distractor. The other settings are to not in-408

clude feedback messages for the distractors and409

the explanation for the key (Promptkey), and not410

including the key either (Promptnone). We see that411

including the key significantly improves kNN’s per-412

formance and asking the LLM to generate feedback413

followed by the distractor further improves perfor-414

mance. This result again reinforces the importance415

of math problem-solving strategies and CoT reason-416

ing on the distractor generation performance . We417

also explore the impact of not allowing MCQs with418

the same topic to be selected as examples on kNN’s419

performance (kNNall
␣T ). We see that doing so re-420

sults in a huge performance drop-off from kNNall.421

This result suggests that most errors or misconcep-422

tions behind distractors are topic-specific and do423

not generalize across topics.424

Next, we investigate the impact of different425

base LLMs on FT’s performance and summarize426

these results in the second part of Table 2. We427

compare ChatGPT against LLAMA2-7B (Tou-428

vron et al., 2023), which is one of the biggest429

open-sourced generative LLMs (FTllama2). We see430

that ChatGPT outperforms LLAMA2-7B on all431

3 alignment-based metrics. This result suggests432

that larger models that are better at mathematical433

reasoning are more likely to generate plausible dis-434

tractors. We also investigate the impact of different435

error selection approaches on RB’s performance436

Target
Quesiton stem: which multiplier can be used to find the
value after an amount has decreased in value by 8% for 4
years?

Explanation: As its is a decrease, we need 100% - 8% which
is 92% which is the same as 0.92. We then use the number
of years as the power of 4.

Answer: ˆ0.924

Example 1
Quesiton stem: which multiplier can be used to find the
value after an amount has decreased in value by 5% for 5
years?

Explanation: As its is a decrease, we need 100% - 5% which
is 95% which is the same as 0.95. We then use the number
of years as the power of 5.

Answer: ˆ0.955

Example 2
Quesiton stem: the value of a laptop that initially cost $1100,
declines in value by 15% a year. if you wanted to calculate
the value of the tablet at the end of 6 years, what number
would replace the square? 1100 ˆ ˝

6

Explanation: As the value decreases by 15%, we have 100%
- 15% = 85% = 0.85 as the multiplier.

Answer: 0.85

Example 3
Quesiton stem: a car depreciates in value by 15% each
year. if a car was bought for $3500, which of the following
calculations would find the new value of the car after 3 years?

Explanation: The multiplier is 1 - 0.15 = 0.85, and as we are
using compound interest, we raise this to the power of 3.

Answer: 3500 ˆ 0.853

Table 3: Three in-context learning examples retrieved
by kNN; we see that Example 1 is very similar to the
target MCQ, except for different numerical values.

and summarize these results in the third part of 437

Table 2. We experiment with a variant of RB that 438

randomly selects error explanations under the same 439

math topic (RBrandom) instead of asking GPT-4 440

to select 3 relevant ones (RBselect). We see that 441

asking the LLM to select error explanations outper- 442

forms selecting error explanations randomly, but 443

not by a significant margin compared to other abla- 444

tions. This result suggests that even though LLMs 445

can generate many mathematically valid distractors, 446

their ability to recognize which error explanations 447

are popular among students is limited. 448

3.5 Qualitative Analysis 449

We now qualitatively investigate the distractors gen- 450

erated by the best approach, kNN, to extract some 451

insights on the distractor generation task and how 452

to improve performance. We group the 283 total 453
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MCQs in the test set into 4 categories, according454

to the number of LLM-generated distractors that455

match the human-authored ones, from 0 to 3.456

For the group where all LLM-generated distrac-457

tors match the human-authored ones (3 out of 3),458

we find that, in all but 2 of the 28 such cases, there459

is an in-context example that is very similar to460

the target MCQ, with the only difference being461

different numerical values or named entities. See462

Table 3 for an example. However, this situation463

sometimes appears in other groups too, which is464

perhaps surprising since it implies that the presence465

of a near-identical in-context example alone is not466

sufficient for an LLM to generate plausible distrac-467

tors. We investigate further into such cases and find468

that even for two MCQs with near-identical ques-469

tion stem, their sets of distractors and the errors or470

misconceptions underlying each distractor may dif-471

fer even though both are plausible. This situation472

occurs when there are more than 3 plausible errors473

or misconceptions given a question stem.

Question Stem
Craig and Isaac share some fruit. Isaac gets three-
quarters of the fruit. In what ratio do they share
the fruit? (Isaac’s part second)

Key
1 : 3

LLM-generated Distractors
3 : 1 3 : 4 4 : 1

Human-authored Distractors
1 : 4 1 : 2 4 : 3

Table 4: Example of LLM-generated distractors that are
mathematically valid and plausible but do not match
human-authored ones.

474
For the group where none of the LLM-generated475

distractors match the human-authored ones, we476

randomly select 20 of the 78 cases to analyze.477

We find that in 14 of the 20 cases (70%), the478

LLM-generated distractors are plausible and the479

human-authored ones are not superior to the LLM-480

generated distractors. See Table 4 for an example.481

While this observation is entirely subjective, it high-482

lights that alignment-based metrics may not be an483

appropriate metric to measure the quality of LLM-484

generated distractors because human-authored ones485

may not be optimal. This observation is also part486

of our motivation in developing distribution-based487

metrics to predict how likely a LLM-generated dis-488

tractor will be selected by real students with insuf- 489

ficient knowledge. Moreover, since many LLM- 490

generated distractors are valid and plausible even 491

if they are not the same with the human-authored 492

ones, there is promise in using automated distractor 493

generation for teacher support during the genera- 494

tion of MCQs.

Question Stem
Convert 0.6 to a fraction in its simplest form.

Key
3
5

LLM-generated Distractors
6
10

5
3

6
5

Human-authored Distractors
6
10

60
100

1
6

Table 5: Example of LLM-generated distractors where
the plausible one, 6

10 matches the human-authored ones,
while the rest of human-authored ons are placeholders.
In this case, 6

10 is selected by 28% of students while
other distractors are rarely being selected.

495
Finally, for the group where 1 or 2 LLM- 496

generated distractors match the human-authored 497

ones, we examine which human-authored distrac- 498

tor(s) are generated and which are not. We find that 499

in many cases, the generated distractors that match 500

to the human-authored ones seem to contain typi- 501

cal errors or misconceptions related to the question 502

stem, while the other human-authored ones are not. 503

See Table 5 for an example. This observation is 504

further supported by selections made by real stu- 505

dents, where the distractor that corresponds to the 506

typical error or misconception is the one most of- 507

ten selected by students in 44 of 108 (40.7%) cases 508

and 46 of 63 (73%) cases for 1 and 2 matches, re- 509

spectively, while the rest are rarely being selected. 510

This result suggests that many MCQs have only 511

one highly plausible distractor while the others are 512

placeholders. Again, using human-authored ones 513

as the ground truth on alignment-based metrics is 514

not ideal, which justifies our motivation in devel- 515

oping the distribution-based metric. 516

3.6 Human Evaluation 517

We conduct a human evaluation to assess the qual- 518

ity of LLM-generated distractors. This evaluation 519

is motivated by observations from the qualitative 520

analysis that the generated distractors are often 521

mathematically valid even though they may differ 522

7



QWK Average Ratings

LLM Human LLM Human

Validity 0.34 0.23 3.28 3.99˚

Plausibility 0.54 0.54 2.68 3.72˚

Table 6: QWK and average ratings among human eval-
uators on LLM-generated and human-authored distrac-
tors for validity and plausibility. Under a Student’s
t-test, human evaluators prefer human-authored distrac-
tors with statistical significance (p ă 0.05˚).

from human-authored ones.523

3.6.1 Evaluation Design524

We recruited 2 graduate students who have expe-525

rience teaching math or related topics as human526

evaluators. They were presented with the same set527

of 20 MCQs that were randomly sampled from the528

test set, each accompanied by a mixture of 4 or 6529

distractors. To ensure a balanced assessment, half530

of these were LLM-generated distractors, while the531

remaining were human-authored ones. To elimi-532

nate any potential ordering bias, the sequence of the533

distractors was randomized for each question. They534

were asked to rate the distractors on two aspects:535

mathematical validity (validity) and plausibility536

for middle school math students (plausibility). Va-537

lidity measures whether a distractor is relevant to538

the question stem and can be tangibly reached by539

some incorrect reasoning. Plausibility measures540

how likely a distractor is to be selected by real541

students. Each aspect is scored on a scale from542

1 to 5, with 1 being the lowest: a distractor that543

is irrelevant to the question stem or one that no544

student would select, while 5 being the highest:545

a distractor that is highly relevant to the question546

stem or one that is highly likely to trick students547

with insufficient math skills into selecting it. Addi-548

tional evaluation setup details are in Supplementary549

Material Section C.550

3.6.2 Evaluation Result and Discussion551

Table 6 shows the inter-rater agreement, measured552

using quadratic weighted Kappa (QWK) (Brenner553

and Kliebsch, 1996) and the average rating, across554

2 human evaluators for both LLM-generated and555

human-authored distractors. The QWK scores indi-556

cate a fair to moderate level of agreement between557

two human evaluators regarding both the validity558

and plausibility aspects of distractors. This ob-559

servation suggests that measuring the quality of560

distractors based on their validity and plausibility561

is consistent at certain level and can be used in 562

future assessments of distractors. We conduct a 563

Student’s t-test (Semenick, 1990) to compare the 564

ratings for LLM-generated and human-authored 565

distractors and find that on both aspects, there is a 566

statistically significant difference (p ă 0.05). This 567

result shows that human evaluators generally prefer 568

human-authored ones over LLM-generated distrac- 569

tors on both aspects. Furthermore, we observe 570

that the gap between validity and plausibility is 571

much higher for LLM-generated distractors than 572

for human-authored ones. This observation indi- 573

cates that LLMs exhibit a higher proficiency in gen- 574

erating mathematically valid distractors compared 575

to understanding what errors or misconceptions are 576

plausible among real students. This result is not 577

surprising since LLMs, which have not been ex- 578

tensively trained on erroneous answers provided 579

by real students, may struggle to understand stu- 580

dents’ misconceptions or the various ways in which 581

students are prone to making errors. Therefore, 582

there is still considerable room for improvement 583

for LLMs in their capacity to understand errors or 584

misconceptions among real students. 585

4 Conclusions and Future Work 586

In this paper, we explore automated distractor gen- 587

eration for math multiple-choice questions via large 588

language models. We conduct experiments on a 589

real-world math MCQ dataset and find that the in- 590

context learning-based approach kNN, achieves 591

the best performance when compared to other 592

approaches such as fine-tuning, chain-of-thought 593

prompting, and various baselines. We also con- 594

duct human evaluation and observe that LLMs are 595

capable of generating mathematically valid distrac- 596

tors but are not fully aware of common errors or 597

misconceptions among real students. Our initial 598

exploration of this task opens up many avenues for 599

future work. For example, we need to further re- 600

fine the distribution-based metrics that predict the 601

percentage of students who select each distractor. 602

We also need to develop modified text encoding 603

approaches that are closely aligned with errors or 604

misconceptions among real students for in-context 605

example selection. Furthermore, we aim to ex- 606

plore the generation of distractors, each of which 607

corresponds to a specific error or misconception, 608

as well as the generation of high-quality feedback 609

messages for each distractor. 610
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Limitations611

Being the attempt at the task of generating plau-612

sible distractors for math MCQs using LLMs, we613

find several limitations in our current setup. First,614

our best approach, kNN, is constrained to general-615

ize beyond the range of topics represented within616

the question pool. This is due to its reliance on617

selecting in-context examples that have the closest618

semantic meaning of the question stem, key, and619

its explanation. Second, we find that some human-620

authored distractors have low quality, and using621

them as demonstrations may lead to the generation622

of distractors that do not contain common student623

errors or misconceptions to effectively evaluate the624

students’ knowledge. Third, the alignment-based625

metrics may not accurately measure the quality626

of generated distractors because some MCQs may627

have more than 3 plausible distractors.628

Ethical Considerations629

The focus of our work is to automatically gen-630

erate plausible distractors for math MCQs using631

LLM. By automating part of the MCQ generation,632

we aim to save educators and teachers from time-633

consuming MCQ generation and allow them to634

dedicate more effort to teaching and student en-635

gagement. Based on our analysis on the generated636

distractors, we acknowledge that not every distrac-637

tor generated by our work is plausible. Therefore,638

we strongly advise that our work should be adopted639

as an auxiliary tool in the generation of MCQs. All640

automatically generated distractors should undergo641

a careful review by educators and teachers before642

being utilized in real tests for students.643
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Supplementary Material808

A Distribution ranking metric809

Since our qualitative analysis in Section 3.5 found810

that human-authored distractors are sometimes811

unplausible or incomplete, using them as the812

ground truth is not ideal. Therefore, we explore a813

distribution-based metric to evaluate the quality of814

LLM-generated distractors, based on one intuition:815

good distractors are ones that are likely going to be816

selected by many real students. Therefore, our goal817

is to train a model that can predict the portion of stu-818

dents that select each option in an MCQ. However,819

due to the highly noisy nature of this distribution,820

we opt to train a model that predicts the more often821

selected distractor among a pair, given a question822

stem, which is similar to the pairwise preference re-823

ward model in reinforcement learning from human824

feedback (RLHF) (Christiano et al., 2017). After825

training such a model, we can use it to compare826

generated distractors to human-authored ones in827

head-to-head matchups, giving us a proxy for how828

good an LLM is in terms of generating distractors829

that are likely to be selected by students.830

Formally, we train an LLM-based model831

rϕpd1, d2, s, k, ekq Ñ td1, d2u, where ϕ denotes832

the set of model parameters. We train this model833

by first constructing a dataset of all pairs of human-834

authored distractors for each MCQ and include835

both orders of each pair to avoid ordering bias, re-836

sulting in N ˆ
`

3
2

˘

ˆ2 total pairs, where N denotes837

the number of MCQs. Each pair is associated with838

a binary-valued label indicating whether d1 or d2 is839

selected by more students, which we can calculate840

from the student response records in our dataset.841

We then use this dataset to fine-tune an LLM in a842

text generation task, where the LLM receives the843

question and distractor information in its prompt844

and outputs its preference. We show our prompt845

for this task in Table 10.846

We use the same train/test split as the dis-847

tractor generation experiments, and reserve 20%848

of the train split for validation after each849

epoch and early stopping. We fine-tune the850

mistralai/Mistral-7B-v0.1 (Jiang et al.,851

2023) model, which contains 7 billion parameters,852

from HuggingFace (Wolf et al., 2019) using LoRA853

(Hu et al., 2021) with adaptors on the q_proj,854

k_proj, v_proj, and o_proj matrices, set855

r “ 32, α “ 16, dropout “ 0.05, and use 8-bit856

quantization. We train the model using the AdamW857

optimizer for 10 epochs with a learning rate of 3e- 858

5, a batch size of 16, accumulate gradients for 4 859

batches. The model converges on the validation set 860

after 6 epochs. The GPU we use to train the model 861

is NVIDIA RTX A6000. The training process 862

is completed in 10 hours. When evaluated on the 863

test set, the ranking model correctly identifies the 864

preferred distractor 61.60% of the time (random 865

guessing corresponds to 50% accuracy). This accu- 866

racy is low overall but high on subsets of distractor 867

pairs whose student selection percentages differ by 868

a large margin: on pairs with a larger than 20% 869

margin, which accounts for 6% of pairs, the accu- 870

racy jumps to 74.47%. This result is not surprising 871

since the selection percentage data is very noisy. 872

Using this trained model, we can evaluate the 873

quality of LLM-generated distractors: we compare 874

all possible head-to-head matchups between gen- 875

erated distractors and human-authored ones, and 876

record the portion of times that the generated dis- 877

tractors are preferred by the ranking model. If the 878

two distractors are the same then we record a tie. 879

In cases where the generated distractors are invalid 880

or repeated, we treat them as null and record a 881

win for the human-authored ones. Formally, we 882

define a preference score as 883

s “
1

18N

N
ÿ

i“1

3
ÿ

a“1

3
ÿ

b“1

r
piq
ϕ pd̂piqa , d

piq
b q 884

` p1 ´ r
piq
ϕ pd

piq
b , d̂piqa qq, 885

r
piq
ϕ pd1, d2q “

$

’

’

’

’

&

’

’

’

’

%

0.5 d1 “ d2

1 d2 is null
0 d1 is null
p otherwise

, 886

p “ 1
rϕpd1,d2,spiq,kpiq,e

piq

k q“d1
, 887

where d̂ are generated distractors. This score has a 888

range of r0, 1s where higher values indicate LLM- 889

generated distractors are likely to be selected by 890

more students than the human-authored ones. We 891

found that kNN scores 0.46 on the test set, which 892

indicates that the distractors it generates are almost 893

as plausible to students as human-authored ones. 894

We emphasize that this evaluation metric should 895

only be considered exploratory due to several obvi- 896

ous limitations. First, student option selection per- 897

centages create noisy labels for the ranking model, 898

limiting its accuracy. Second, using the overall 899

selection percentages also ignores the individual 900

learning context of each student since students with 901
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different knowledge levels may have different ten-902

dencies among MCQ options. Therefore, we leave903

a more thorough treatment of the distribution-based904

metric to future work.905

B Hyperparameters and Implementation906

Details907

We fine-tune the LLAMA2-7B model, which con-908

tains 7 billion parameters, from HuggingFace using909

LoRA with adaptors on the q_proj and v_proj910

matrices, set r “ 8, α “ 32, dropout “ 0.05,911

and use 8-bit quantization. We use 20% of the912

training set for validation. We train the model us-913

ing the AdamW optimizer for 15 epochs with a914

learning rate of 3e-4, a batch size of 16, and ac-915

cumulated gradients for 16 batches. The model916

converges on the validation set after 12 epochs.917

The selection of the aforementioned hyperparam-918

eters is guided by exploratory evaluations and no919

substantial hyper-parameter search is conducted.920

The GPU we use to train the model is NVIDIA921

RTX A6000. The training process is completed922

in 3 hours and 43 minutes. We fine-tune the923

ChatGPT model using the first 200 data points924

from the training set. We train the model using925

the OpenAI’s default fine-tuning settings, which926

we found providing the best performance, via Ope-927

nAI API. The training process is completed in 20928

minutes. We use the scikit-learn (Pedregosa929

et al., 2011) implementation to calculate QWK, and930

use the scipy (Virtanen et al., 2020) implemen-931

tation to calculate Student’s t-test. For prompting932

GPT-4 and ChatGPT using OpenAI API, we use933

temperature “ 0, max_tokens “ 350, top_p “ 1,934

frequency_penalty “ 0.0, presence_penalty “935

0.0 as our setup for greedy decoding.936

All our experiments are implemented in Python937

or Pytorch code, and We note that all software938

employed in this work is open-source, or the license939

is unspecified.940

C Human Evaluation Details941

In this work, we obtained approval from the ethics942

review board for human evaluation. We show the943

evaluation instructions to human evaluators in Ta-944

ble 11. We do not provide any compensation for945

human evaluators because their participation is en-946

tirely voluntary and we appreciate their contribu-947

tion to this work.948
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D Prompt Format 949

We provide the prompts for CoT, RB, and kNN in the work below. We use ăą to indicate that a variable 950

is filled in dynamically. 951

Prompt You are given the following math question along with the correct
answer and explanation. Please use the following template to give 3
alternative incorrect answers to be used as multiple-choice options
in a multiple-choice exam. Prior to the incorrect answer, provide
feedback to be displayed to the student as an explanation of why that
is not the correct answer.
[Template]
Distractor1 Feedback:
Distractor1:
Distractor2 Feedback:
Distractor2:
Distractor3 Feedback:
Distractor3:
Question: <question>
Explanation: <explanation>
Answer: <answer>

Table 7: CoT prompt format

Prompt You are given the following math question along with the correct
answer, explanation, and a list of errors. Please follow the template
to first select 3 most likely errors for this question and use the se-
lected errors to generate 3 alternative incorrect answers to be used
as multiple-choice options in a multiple-choice exam. Prior to the
incorrect answer, provide feedback to be displayed to the student as
an explanation of why that is not the correct answer. If the list of
errors is not given, generate 3 errors instead and do not contain any
explanation in the 3 incorrect answer.
[Template]
Error1:
Error2:
Error3:
Distractor1 Feedback:
Distractor1:
Distractor2 Feedback:
Distractor2:
Distractor3 Feedback:
Distractor3:
Question: <question>
Explanation: <explanation>
Answer: <answer>
Error list: <error list>

Table 8: RB prompt format
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Prompt Question: <in-context question>
Explanation: <in-context explanation>
Answer: <in-context answer>
Distractor1 Feedback: <in-context distractor1 feedback>
Distractor1:<in-context distractor1>
Distractor2 Feedback: <in-context distractor2 feedback>
Distractor2:<in-context distractor2>
Distractor3 Feedback:<in-context distractor3 feedback>
Distractor3:<in-context distractor3>
[stop]
Question: <target question>
Explanation: <target explanation>
Answer: <target answer>

Table 9: kNN prompt format, in practice, we use 3 in-context examples
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E Ranking Metric Examples 952

Prompt A teacher assigns the following math multiple choice question to a
class of middle school students.

Question: 3
5 of 50 “ 6

10 of ˝

Correct Answer: 50
Solution: 3/5 and 6/10 are equivalent, so 3/5 of 50 is the same as 6/10
of 50.

Here are 2 incorrect options that some students choose:
Option A: 30
Option B: 18
Which incorrect option are the students more likely to pick?

Output Preferred Answer: A

Table 10: Example prompt and output for the ranking model used in the distribution ranking metric.

F Instruction 953

You are given a csv file. Each row corresponds to a question stem and a distractor.
Your job is to rate the distractor on two aspects: mathematical validity and plausibility for middle
school math students.
Mathematical validity measures whether a distractor is relevant to the question stem and can be tangibly
reached by some incorrect reasoning. Mathematical validity is scored on a scale from 1 to 5, where 1
indicates a distractor that is irrelevant to the question stem, and 5 indicates a distractor that is highly
relevant to the question stem.
Plausibility measures how likely a distractor is to be selected by middle school students learning math.
Plausibility is scored on a scale from 1 to 5, where 1 indicates that no student would select it and 5
indicates that the distractor is highly likely to trick students with insufficient math skills into selecting
it.
please use numbers on mac to rate distractors and give 1 and 1 for both metric if the distractor is the
correct answer.
Your ratings will be used to quantitatively measures and analyzes the quality of distractors on validity
and plausibility.

Table 11: Instruction for Human Evaluation

15


	Introduction
	Contributions

	Task and Approaches
	Task Definition
	Approaches

	Experiments
	Dataset
	Evaluation Metrics
	Experimental Setup
	Results and Discussion
	Ablation Study

	Qualitative Analysis
	Human Evaluation
	Evaluation Design
	Evaluation Result and Discussion


	Conclusions and Future Work
	Distribution ranking metric
	Hyperparameters and Implementation Details
	Human Evaluation Details
	Prompt Format
	Ranking Metric Examples
	Instruction

