

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 flop: TRAINING CRITICS VIA FLOW-MATCHING FOR SCALING COMPUTE IN VALUE-BASED RL

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 A hallmark of modern generative models is their reliance on training objectives
012 that construct the target output iteratively, with dense supervision provided at
013 intermediate steps, e.g., teacher forcing the next token in language models or
014 step-by-step denoising in diffusion models. Such objectives allow models to
015 capture complex functions in a broadly generalizable way. Motivated by this
016 observation, we study the benefits of iterative computation for temporal difference
017 (TD) methods in reinforcement learning (RL). Typically they represent value
018 functions in a monolithic fashion, without iterative compute. We introduce *flop*
019 (*flow-matching Q-functions*), an approach that parameterizes the Q-function using a
020 velocity field and trains it using techniques from flow-matching. This velocity field
021 underneath the flow is trained using a TD-learning objective, which bootstraps from
022 Q-values produced by a target velocity field, computed by running multiple steps
023 of numerical integration. Crucially, *flop* allows for more fine-grained control and
024 scaling of the Q-function capacity than monolithic architectures, by appropriately
025 setting the number of integration steps. Across a suite of challenging offline RL
026 benchmarks and online fine-tuning tasks, *flop* improves performance by nearly
027 $1.8\times$. *flop* scales capacity far better than standard TD-learning architectures,
highlighting the potential of iterative computation for value learning.

1 INTRODUCTION

030 A key principle in building effective models in
031 various areas of machine learning is the use of
032 **iterative computation**: producing complex output
033 functions by composing a sequence of simpler
034 operations. E.g., language models based
035 on transformers (Vaswani et al., 2017) can
036 generate coherent text by predicting the next
037 token or by composing atomic reasoning
038 strategies (Gandhi et al., 2025). Similarly, diffusion
039 and flow-matching models (Ho et al., 2020;
040 Sohl-Dickstein et al., 2015; Lipman et al., 2023;
041 Albergo & Vanden-Eijnden, 2023) synthesize
042 images by progressively denoising small
043 perturbations. Effective results from these models
044 suggests that iterative computation is a powerful
045 tool for modeling complex functions with deep
046 networks, by scaling compute appropriately.

047 Motivated by these results, in this paper, we ask:
048 **can iterative computation also improve value
049 estimation in reinforcement learning (RL)?**
050 Specifically, we are interested in improving the
051 estimation of the Q-value function. While Q-
052 functions map state-action inputs to a scalar value,
053 they are known to be highly complex and difficult
to fit accurately (e.g., (Dong et al., 2020)). Standard temporal-difference (TD) learning used to train
Q-functions struggles to leverage capacity of deep networks (Kumar et al., 2021; 2022; Bjorck et al.,
2021; Lyle et al., 2022; Gulcehre et al., 2022), often resulting in poor generalization. These problems

Figure 1: **flop architecture.** We model the Q-function via a velocity field of a flow-matching model. Over multiple calls, this velocity field converts a randomly sampled input $z(0)$ into a sample from the Dirac-delta distribution centered at the mean Q-value. We build a flow-matching loss for training. Doing this enables us to scale computation by running numerical integration, with multiple calls to the velocity field. To train *flop*, we utilize a categorical representation of input z_t (Farebrother et al., 2024) and a Fourier representation of t .

054 are further exacerbated in the offline RL problem setting (Levine et al., 2020; Kumar et al., 2019),
 055 where we must learn entirely from static datasets. This motivates exploring architectures that spend
 056 compute iteratively to estimate value functions, potentially yielding better Q-values and policies.
 057

058 A natural starting point for using iterative compute in value-based RL is to utilize a ResNet (He et al.,
 059 2016) Q-function, where stacking more residual blocks provides a way to run iterative computation.
 060 Recent work has obtained modest gains with ResNets (Kumar et al., 2023a;b; Farebrother et al.,
 061 2024; Nauman et al., 2024), but these methods need normalization and regularizers to enable stable
 062 training (Bjorck et al., 2021; Nauman et al., 2024; Lee et al., 2024; Kumar et al., 2023a). Despite
 063 improvements, these approaches lack one ingredient that makes iterative computation effective in
 064 transformers or diffusion models: *supervision at every step* of the iterative process. Just as next-
 065 token prediction supervises each generated token and diffusion supervises each denoising step, we
 066 hypothesize that stepwise loss supervision applied to TD learning might lead to improvements.
 067

068 With this observation, to effectively leverage iterative computation with dense supervision, we design
 069 a novel architecture for parameterizing Q-functions. Instead of using a single monolithic network,
 070 we represent the Q-function as a *velocity field* over a scalar value (Figure 1). Our approach, `floq`
 071 (flow-matching Q-functions) samples a scalar uniformly distributed noise and maps it to the Q-value
 072 by numerically integrating the predictions of the velocity field. We train the velocity with a linear
 073 flow-matching objective (Albergo & Vanden-Eijnden, 2023; Lipman et al., 2023), supervised to
 074 match the evolving TD-targets. At each step, we minimize the deviation between the current Q-value
 075 estimate and the corresponding TD-target. We introduce several design choices that stabilize training
 076 and help the architecture scale capacity effectively. These include appropriately setting the support of
 077 initial noise, using a categorical representation to handle non-stationary inputs and a Fourier time
 078 embedding to allow the velocity predictions to vary meaningfully across integration steps (Figure 2).
 079

080 We use `floq` to represent the Q-function for a number of complex RL (Levine et al., 2020; Kumar
 081 et al., 2019) tasks from the OGBench (Park et al., 2025a) benchmark, previously studied by Park
 082 et al. (2025d). In aggregate, we find that `floq` outperforms offline RL algorithms that represent Q-
 083 functions using a monolithic network by nearly 1.8 \times . `floq` is superior even when these approaches
 084 are provided with more parameters, and more complex and higher capacity architectures. `floq` also
 085 outperforms existing methods when running online fine-tuning after offline RL pre-training. We
 086 also show that increasing the number of flow-matching steps results in better downstream policy
 087 performance. Allocating the same capacity via Q-network ensembles or ResNets performs worse.
 088

089 2 RELATED WORK

090 **Expressive generative models in RL.** The most typical use of conventional generative models
 091 in RL has been to represent the policy, with several adoptions of diffusion policies (Wang et al.;
 092 Hansen-Estruch et al., 2023; Yang et al., 2023; Bansal et al., 2023; Li et al., 2024; Ren et al., 2024),
 093 flow-based policies (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Park et al., 2025d), and
 094 sequence policies (Janner et al., 2021; Lee et al., 2022; Yamagata et al., 2023). This shift is motivated
 095 by evidence that policy learning is often a significant bottleneck in offline RL (Kostrikov et al.; Park
 096 et al., 2024). In parallel, policy-agnostic frameworks such as PA-RL (Mark et al., 2024) decouple
 097 algorithmic progress from specific architectural choices, enabling the use of diffusion, flows, or
 098 transformers interchangeably. Complementarily, we do not focus on policy expressivity and instead
 099 aim to utilize more expressive Q-functions, and opt to study `floq` on top of FQL for simplicity.
 100

101 **Scaling Q-functions.** Efforts to scale Q-functions in RL have taken multiple directions with new
 102 training objectives such as classification losses (Kumar et al., 2023a; Farebrother et al., 2024; Nauman
 103 et al., 2025; Seo et al., 2025), architectures (He et al., 2016; Kumar et al., 2023b; Chebotar et al., 2023;
 104 Obando-Ceron et al., 2024), and regularization strategies (Kumar et al., 2021; Lyle et al., 2021; Kumar
 105 et al., 2022; Nauman et al., 2024; Bhatt et al., 2024). Previous work has also attempted to develop
 106 scaling laws for TD learning (Rybkin et al., 2025; Fu et al., 2025) and showing that alternatives to TD
 107 can scale to deeper architectures (Wang et al., 2025). Despite these advances, a clear recipe for scaling
 108 value-based RL with TD-learning has yet to emerge. Our work demonstrates that compute-efficient
 109 scaling can be realized not simply by increasing depth or width, but by introducing dense intermediate
 110 supervision through multiple integration steps of the Q-function. `floq` introduces a novel axis of
 111 scaling, allowing for compute scaling through additional integration steps rather than depth or width.
 112

113 **Scaling inference compute.** A complementary line of work studies how more inference-time compute
 114 can be traded for performance. Classical MPC-style planners coupled with learned dynamics models

such as PETS (Chua et al., 2018), MPPI (Williams et al., 2017), and PDDM (Nagabandi et al., 2018) naturally allow scaling. In offline RL, MBOP (Argenson & Dulac-Arnold, 2020) explicitly adopts planning with a learned model, a behavior prior, and a terminal value to extend the effective horizon. Generative world models enable similar test-time scaling by planning inside the learned model (Janner et al., 2021; 2022). Similarly, performance of MCTS-style methods improves with more simulation (Schrittwieser et al., 2020; Hubert et al., 2021; Danihelka et al., 2022; Ye et al., 2021). Across all methods listed in this paragraph, the general pattern is that increasing test-time budget (i.e. simulations, horizon, candidate trajectories) improves returns up to the limit set by model bias and value estimation error. However, none of these works use more test-time compute to better estimate a value function. Our results show that `floq` can not only use more integration steps at inference time to amplify the “capacity” of the Q-function, but also that doing so during training helps us learn better Q-functions in the first place. We are the first to show that using more integration steps is a viable and effective path to scaling compute for critic networks.

3 PRELIMINARIES AND NOTATION

The goal in RL is to learn the optimal policy $\pi : \mathcal{S} \mapsto \mathcal{A}$ for an MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \rho, \gamma)$ that maximizes cumulative discounted value function, denoted by $V^\pi(s) = \sum_t \mathbb{E}_{a_t \sim \pi(s_t)} [\gamma^t r(s_t, a_t) | s_0 = s]$. \mathcal{S}, \mathcal{A} denote the state and action spaces. $P(s'|s, a)$ and $r(s, a)$ are the dynamics and reward functions. $\rho(s)$ denotes the initial state distribution and $\gamma \in (0, 1)$ denotes the discount factor. The Q-function of a policy π is defined as $Q^\pi(s, a) = \sum_t \mathbb{E}_{a_t \sim \pi(s_t)} [\gamma^t r(s_t, a_t) | s_0 = s, a_0 = a]$, and we use Q_θ^π to denote the estimate of the Q-function of a policy π as obtained via a neural net with parameters θ . Value-based RL methods train a Q-network by minimizing the temporal difference (TD) error:

$$L(\theta) = \mathbb{E}_{(s, a, s') \sim \mathcal{D}, a' \sim \pi(\cdot | s')} \left[(r(s, a) + \gamma \bar{Q}(s', a') - Q_\theta(s, a))^2 \right], \quad (3.1)$$

where \mathcal{D} is the offline dataset, \bar{Q} is the target Q-network, s denotes a state, and a' is an action from policy $\pi(\cdot | s)$ that aims to maximize $Q_\theta(s, a)$. Offline RL methods are discussed in Appendix A.2.

Flow-matching. Given a target data distribution $p(\mathbf{x})$ over $\mathbf{x} \in \mathbb{R}^d$, flow-matching (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023) attempts to fit a time-dependent **velocity field**, $v_\theta(t, \mathbf{x}) : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ such that the solution $\psi_\theta(t, \mathbf{x})$ to the ODE: $\frac{d}{dt} \psi_\theta(t, \mathbf{x}) = v_\theta(t, \psi_\theta(t, \mathbf{x})), \psi_\theta(0, \mathbf{x}(0)) = \mathbf{x}(0)$ transforms samples $\mathbf{x}(0)$ from a simple base distribution (e.g., standard Gaussian or uniform, as we consider in this work) into samples from $p(\mathbf{x})$ at time $t = 1$. The most widely used approach is linear flow matching (Lipman et al., 2023), which trains the velocity flow to predict the gradient obtained along the linear interpolating path between $\mathbf{x}(0)$ and $\mathbf{x}(1)$ at all intermediate points. Concretely, define $\mathbf{x}(0) \sim p_0(\mathbf{x})$ be a sample from a simple initial distribution, $\mathbf{x}(1) \sim p(\mathbf{x})$ be a sample from the target distribution, and $t \sim \text{Unif}([0, 1])$, we define interpolated points as $\mathbf{x}(t) = (1 - t) \cdot \mathbf{x}(0) + t \cdot \mathbf{x}(1)$, and train the velocity field to minimize the squared error from the slope of the straight line connecting $\mathbf{x}(0)$ and $\mathbf{x}(1)$. After training the velocity field $v_\theta(t, \mathbf{x}(t))$, flow-matching runs numerical integration to compute $\psi_\theta(t, \mathbf{x}(0))$. This numerical integration procedure makes several calls to compute the velocity field.

4 FLOQ: TRAINING Q-FUNCTIONS WITH FLOW-MATCHING

In this section, we introduce the our proposed approach, `floq` (flow-matching Q-functions), which leverages iterative computation with dense supervision to train Q-functions. To do so, we address the two central questions needed to make `floq` work: **(a)** how to handle moving target values in the training loss for a flow-based Q-function and **(b)** how to do effective flow-matching over scalar Q-values without collapse for learning. Flow-matching preliminaries are discussed in Appendix A.2.

4.1 FLOQ PARAMETERIZATION

In contrast to standard deep Q-networks that map state-action pairs to scalar values, `floq` parameterizes a time-dependent, state-action-conditioned velocity field $v_\theta(t, \mathbf{z} | s, a)$ over a one-dimensional latent input $\mathbf{z} \in \mathbb{R}$. At $t = 0$, this input \mathbf{z} is sampled from the uniform distribution $\text{Unif}[l, u]$, where l and u are scalars that define the range of initial sample noise used for training. The velocity field transforms the initial sample \mathbf{z} into a distribution over the Q-value. We will train `floq` such that the learned distribution of Q-values match a Dirac-Delta around the groundtruth Q-function, i.e., $\psi_\theta(1, \mathbf{z} | s, a) \sim \delta_{Q^\pi(s, a)}$ at $t = 1$. We can obtain the Q-value sample by numerically integrating the

162 ODE using the Euler method. One instantiation is shown below. $\forall j \leq K$:
 163
 164 $\psi_\theta(j/K, \mathbf{z} | s, a) = \mathbf{z} + \frac{1}{K} \sum_{i=1}^j v_\theta\left(\frac{i}{K}, \psi_\theta(i-1/K, \mathbf{z} | s, a) | s, a\right), Q(s, a, \mathbf{z}) := \psi_\theta(1, \mathbf{z} | s, a)$ (4.1)
 165

166 An example illustration of this process is shown in Figure 1. This iterative process enables us to
 167 dynamically adjust the Q-function by varying the number of integration steps K , by controlling the
 168 number of evaluations of the velocity field v_θ , and thereby the “depth” of the model. Finally, we
 169 remark that although Equation 4.1 may appear similar to performing averaging like an ensemble,
 170 it is fundamentally different: the inputs passed to the velocity field v_θ at each step i depend on its
 171 own outputs from the previous step $i - 1$. This recursive dependence introduces a form of iterative
 172 computation that is absent in conventional ensembles, that perform computation in parallel. As
 173 we demonstrate in our experiments (Section 5), this formulation enjoys greater benefits of scale
 174 than simply ensembling independent neural networks without iterative computation. In practice, the
 175 velocity field $v_\theta(i/K, \cdot | s, a)$ can be conditioned on the various representations of the intermediate
 176 Q-values $\psi_\theta(i-1/K, \cdot | s, a)$ to improve the effectiveness of learning. We opt to use a categorical
 177 representation of ψ_θ when passing it as input to the velocity network. We discuss this in Section 4.3.

177 4.2 TRAINING LOSS FOR THE `FLOQ` ARCHITECTURE

178 With this parameterization in place, the next step is to design a training loss for the velocity field.
 179 Building upon TD-learning and flow-matching methods, a natural starting point is to iteratively
 180 train the velocity field using a loss that resembles linear flow-matching (Equation 4.2), but with
 181 targets obtained via Bellman bootstrapping. This is akin to TD-flows (Farebrother et al., 2025) and
 182 γ -models (Janner et al., 2020) that train a generative dynamics model with TD-bootstrapped targets.
 183 To do so, we introduce a target velocity field $\tilde{v}_\theta(t, \mathbf{z} | s, a)$, parameterized as a stale moving average
 184 of the main velocity field v_θ , similar to target networks in standard value-based RL. Given a transition
 185 (s, a, r, s') , we first sample an action $a' \sim \pi(\cdot | s')$ from the current policy at the next state s' , and
 186 compute target Q-value samples $\psi_{\tilde{\theta}}(1, \mathbf{z}' | s', a')$ by integrating the target flow, starting from some
 187 \mathbf{z}' (via Euler integration) to obtain the predicted Q-value sample, $\psi_{\tilde{\theta}}(1, \mathbf{z}' | s', a')$.

188 We then average these predicted Q-value samples $\psi_{\tilde{\theta}}(1, \mathbf{z}' | s', a')$ for several values of the initial
 189 noise \mathbf{z}' to compute an estimate of the target expected Q-value $Q_{\tilde{\theta}}(s', a')$. The bootstrapped TD-
 190 target is given by: $y(s, a) = r(s, a) + \gamma \frac{1}{m} \sum_{j=1}^m \psi_{\tilde{\theta}}(1, \mathbf{z}'_j | s', a')$, where $r(s, a)$ denotes the reward
 191 estimate for transition (note that this is distinct from distributional RL). We use this mean Q-target
 192 to train the Q-value at state-action pair (s, a) by regressing to the target $y(s, a)$ via a linear flow-
 193 matching loss. Concretely, given a $t \sim \text{Unif}[0, 1]$, we construct an **interpolant** between noise \mathbf{z}
 194 sampled at the initial step and the target Q-value $y, \mathbf{z}(t) = (1-t) \cdot \mathbf{z} + t \cdot y(s, a)$, and train the velocity
 195 at this interpolant to match the displacement from $\mathbf{z}(0)$ to y via flow-matching (Equation 4.2):
 196

$$197 \mathcal{L}_{\text{floq}}(\theta) = \mathbb{E}_{\mathbf{z}, t} \left[\left\| v_\theta(t, \mathbf{z}(t) | s, a) - \frac{(y(s, a) - \mathbf{z})}{1 - 0} \right\|_2^2 \right]. \quad (4.2)$$

200 4.3 PREVENTING FLOW COLLAPSE: HOW TO MAKE `FLOQ` WORK WELL?

201 So far, we have introduced a conceptual recipe for parameterizing and training a Q-function critic
 202 via flow matching. However, a naïve instantiation of this idea performed no better than a standard
 203 monolithic Q-function in our initial experiments. This performance is the result of the inability of the
 204 network to meaningfully condition on the interpolant $\mathbf{z}(t)$, leading the flow model to often collapse
 205 to a monolithic Q-network (Figure 2). Interestingly, we find that this problem can be a result of two
 206 peculiarities associated with applying flow-matching to TD: training with constantly evolving targets
 207 and running the flow on a scalar Q-values. We describe our approach for handling these pathologies,
 208 and to do so, we first answer: *what constitutes a “healthy” `floq` velocity field?* Then we introduce
 209 two crucial modifications to the `floq` architecture that enable learning healthy `floq` networks.

210 **When is `floq` effective?** Unlike traditional applications of flows, `floq` applies them to scalar
 211 Q-values. How does flow matching on a scalar work? Consider the trajectory traced by the flow
 212 during inference, as it evolves from initial noise ($t = 0$) to the Q-value estimate produced by the
 213 network ($t = 1$) (Figure 2; left). If this trajectory is a straight line, the velocity field $v_\theta(\mathbf{z}(t), t)$
 214 does not need to depend on t and predicting a constant velocity proportional to the target Q-value is
 215 sufficient. In this case, flow matching provides no additional capacity beyond a monolithic Q-network.
 In contrast, if the trajectory is curved, the velocity field must utilize the interpolant $\mathbf{z}(t)$ and time t to

Figure 2: **Illustrating the role of our design choices.** **Left:** When the width of the interval $[l, u]$ is small, and the overlap between this interval and the range of target Q-values we hope to see is minimal, we would expect to see more straight flow traversals, that might be independent of interpolant z . However, with wider intervals $[l, u]$, the flow traversal would depend on z , and hence span a curved path when running numerical integration during inference. **Right:** Illustrating how we transform an input interpolant z into a categorical representation (top) and converting time t into a Fourier-basis embedding (bottom).

predict customized velocities and be able to integrate to an accurate Q-value estimate at $t = 1$. Thus, even though training uses a simple linear flow-matching loss, extra capacity emerges only when the learned flows produce (slightly) curved trajectories. Here, iterative computation amplifies model capacity, allowing f1oq to outperform monolithic Q-networks. Note that overly curved flows are also problematic as they amplify errors in the integration process itself. Therefore, we want to attain an intermediate sweet spot in regards to the straightness of the traversals (see Figure 13).

Design choice 1: Distribution of the initial noise sample. As shown in prior works (Lipman et al., 2023; Liu et al., 2023), rescaling the source noise leaves the target distribution unchanged, but it alters the curvature of the transport trajectories. Interestingly, this effect seems to be particularly pronounced when applying flow-matching to scalar TD-learning (see Figure 13 in experiments). As such, we find that that setting the bounds l and u for the distribution of the initial noise, $\text{Unif } [l, u]$ greatly affects the performance of f1oq . We hypothesize that two aspects are important: (a) how close the target Q-values during training are to the chosen interval $[l, u]$, and (b) the width of the interval $u - l$. If the width $u - l$ is too small, then the interpolants $z(t)$ span only a very limited range of values. When we then run (imperfect) TD-loss training on these interpolants, the network parameterizing the velocity field receives little meaningful variation in $z(t)$ to associate changes in target values with. As a result, the model fails to exploit $z(t)$ effectively and degenerates into behaving like a standard monolithic Q-function. Likewise, if the interval $[l, u]$ is very disjoint from the range of target Q-values during training, then all interpolants $z(t)$ are forced to predict large velocities pointing in the general direction of the target Q-value. This reduces the need to learn calibrated velocity predictions conditioned on $z(t)$ and time t . We show this in Figure 2, left.

Thus, we propose to choose l and u using a simple heuristic. We set $u = Q_{\max}$ ($=0$ for most of our tasks). We then choose $l \geq Q_{\min}$ to maximize the interval width $u - l$ while yielding stable learning curves and TD-error values comparable to a monolithic network. Here Q_{\min} and Q_{\max} denote the minimal and maximal possible Q-value achievable on the task. Thus, the interval $[l, u]$ is likely to overlap well with the target Q-values the velocity field must predict during training. We remark that this heuristic relies on the assumption that over the course of learning, Q-value predictions will evolve from near-zero values to the target value. Since standard network initializations already produce values near zero, this assumption is not limiting and helps cover the target Q-value range we see.

Design choice 2: Representing interpolant inputs to the velocity network. The second challenge arises because the magnitudes of the scalar interpolant $z(t)$ evolve during training. While standard TD-learning naturally handles non-stationary outputs (Q-values growing from near-zero random initialization), this is usually manageable with best practices such as activation normalization (Nauman et al., 2024). In contrast, f1oq must cope with non-stationarity at the *input*, since the interpolant $z(t)$ is fed into the velocity flow. As training progresses, its magnitude grows, leading to large gradients and activations in the network. To address this, we adopt a categorical representation of *input* $z(t)$ (output is still scalar like baselines), inspired by the HL-Gauss encoding of Farebrother et al. (2024), which prevents $z(t)$'s magnitude from skewing activations. Concretely, we add Gaussian noise with standard deviation σ , then convert the resulting PDF $\mathcal{N}(z(t), \sigma^2)$ into a categorical histogram over N bins spanning the expected Q-value range. In contrast to Farebrother et al. (2024), we use a larger σ , such that roughly 80% of bins receive non-zero mass at initialization, encouraging broader coverage.

270 Finally, we also utilized a Fourier basis representation of the time variable t , provided as input to the
 271 velocity network $v_\theta(t, z(t))$. This is illustrated in Figure 2 (right). We show in our experiments than
 272 doing so helps substantially by encouraging the network to meaningfully utilize this time.
 273

274 **Summary: `floq` architecture and training**

275 `floq` parameterizes the Q-function via a learned velocity field, trained with a linear flow-
 276 matching loss against the target Q-value (Eq.4.2). To scale capacity, we sample initial noise
 277 $\text{Unif}[l, u]$ broadly to overlap with target Q-values. The interpolant is encoded categorically,
 278 and the input t to v_θ is Fourier-encoded. See Algorithm1 for details.
 279

280 **Additional implementation details.** We build on FQL, and use a similar approach for training
 281 the policy. This way, we isolate the performance differences to our proposed flow-matching critic.
 282 In addition, because `floq` parameterizes a flow-matching critic, extracting reparameterized policy
 283 gradients requires computing gradients through the full integration process with respect to the input
 284 action, which is costly. To alleviate this, we adapt a technique from Park et al. (2025d) for flow-
 285 matching policies and apply it to critics. Specifically, we train a *distilled critic*, $Q_\psi^{\text{distill}}(s, a)$, to
 286 approximate the predictions obtained by integrating the flow critic, $Q_\theta^{\text{flow}}(s, a, z)$. Policy extraction
 287 is then performed directly on the distilled critic. We illustrate this idea in Algorithm 1.
 288

5 EXPERIMENTAL EVALUATION

290 The goal of our experiments is to evaluate the efficacy of `floq` in improving offline RL and online
 291 fine-tuning. To this end, we compare `floq` to state-of-the-art methods, and answer the following
 292 questions: **(1)** Does `floq` improve performance when compared to using similar-sized networks on
 293 benchmark tasks? and **(2)** How does the use of iterative computation via `floq` compare with the use
 294 of “parallel” computation of a neural network ensemble and “sequential” iterative computation driven
 295 by ResNets of comparable size? We then run several experiments to understand the behavior of `floq`
 296 critics. Furthermore, we run a variety of ablation studies to understand the design choices that drive
 297 the efficient use of iterative computation, including the roles of **a**) tuning the width of initial noise
 298 sample, **b**) categorical representations of the interpolant input, and **c**) Fourier-basis time embeddings.
 299

5.1 MAIN OFFLINE RL RESULTS

300 **Offline RL tasks and datasets.** Following evaluation protocols from recent work in offline RL (Park
 301 et al., 2025d; Wagenmaker et al., 2025; Espinosa-Dice et al., 2025), we use the **OGBench** task
 302 suite (Park et al., 2025a) as our main evaluation benchmark (see Figure 18). OGBench provides
 303 a number of diverse, challenging tasks across robotic locomotion and manipulation, where these
 304 tasks are generally more challenging than standard D4RL tasks (Fu et al., 2020), which have been
 305 saturated as of 2024 (Tarasov et al., 2023; Rafailov et al., 2024; Park et al., 2024). While OGBench
 306 was originally designed for benchmarking offline goal-conditioned RL, we use its reward-based
 307 single-task variants (“-singletask” from Park et al. (2025d)). We employ 5 locomotion and
 308 5 manipulation environments where each environment provides 5 tasks, totaling to **50** state-based
 309 OGBench tasks. Some tasks are more challenging and longer-horizon (e.g., marked in the table).
 310

311 **Comparisons and evaluation protocol.** In addition to a `floq` critic, our experiments use flow-
 312 matching policies. Thus, flow-Q learning (**FQL**) (Park et al., 2025d), which utilizes a flow-matching
 313 policy with a monolithic Q-network, is our main comparison. FQL reports results with 1M training
 314 steps; we additionally re-run FQL for 2M steps and report both results. We run `floq` with a default
 315 set of hyperparameters across tasks, but on the more challenging `humanoidmaze-large` and
 316 `antmaze-giant` tasks we found a larger batch size of 512 to be more effective, which we use for
 317 both FQL and `floq`. Beyond FQL, we compare against three recent SOTA offline RL algorithms, all
 318 of which rely on monolithic Q-functions: (i) **ReBRAC** (Tarasov et al., 2023), the strongest-performing
 319 method with a monolithic Q-network and a Gaussian policy; (ii) **DSRL** (Wagenmaker et al., 2025)
 320 that adapts a diffusion-based behavior cloning policy by performing RL over its latent noise space,
 321 improving over FQL; and (iii) **SORL** (Espinosa-Dice et al., 2025) that leverages shortcut flow models
 322 to improve upon FQL. Note that none of them utilize a flow-matching Q-function, but do innovate
 323 across various properties of policy training. Comparing to the strongest methods that innovate on the
 324 policy allows us to evaluate the importance of a flow-matching Q-function.

325 **floq configuration.** We run `floq` in two configurations. The “default” configuration utilizes
 326 the same hyperparameters across tasks, whereas the “best” configuration uses environment-specific

324
 325
 326
 327
 328
 329
Table 1: Offline RL results (all tasks). floq achieves competitive or superior performance compared to
 330 prior approaches. ‘‘Hard’’ environments refers to the set of environments where the FQL approach attains below
 331 50% performance, averaged over the 5 tasks. floq is especially more performant on these hard environments
 332 over prior comparisons, where its performance (with best configuration) is around $1.8 \times$ of FQL. We don’t report
 333 DSRL (Wagenmaker et al., 2025) here as this prior work does not run on the exhaustive set of tasks (see Table 2
 334 for these). A comparison on just the default tasks reveals floq outperforms DSRL by $> 2 \times$.
 335
 336
 337
 338

Env. (5 tasks each)	Gaussian Policy		Flow Policy			Flow Q-function (Ours)	
	BC	ReBRAC	SORL	FQL (1M)	FQL(2M)	floq (Def.)	floq (Best)
antmaze-large	11 ± 1	81 ± 5	89 ± 2	79 ± 3	83 ± 5	91 ± 5	91 ± 5
antmaze-giant (Hard)	0 ± 0	26 ± 8	9 ± 6	22 ± 19	27 ± 23	36 ± 21	51 ± 12
hmmaze-medium	2 ± 1	22 ± 8	64 ± 4	57 ± 5	69 ± 20	82 ± 10	82 ± 10
hmmaze-large (Hard)	1 ± 0	2 ± 1	5 ± 2	9 ± 6	16 ± 9	28 ± 9	28 ± 9
antsoccer-arena	1 ± 0	0 ± 0	69 ± 2	60 ± 2	61 ± 10	65 ± 12	65 ± 12
cube-single	5 ± 1	91 ± 2	97 ± 1	96 ± 1	94 ± 5	98 ± 3	98 ± 3
cube-double (Hard)	2 ± 1	12 ± 1	25 ± 3	29 ± 2	25 ± 6	47 ± 15	47 ± 15
scene	5 ± 1	41 ± 3	57 ± 2	56 ± 2	57 ± 4	58 ± 6	58 ± 6
puzzle-3x3 (Hard)	2 ± 0	21 ± 1	—	30 ± 1	29 ± 5	37 ± 7	37 ± 7
puzzle-4x4 (Hard)	0 ± 0	14 ± 1	—	17 ± 2	9 ± 3	21 ± 5	28 ± 6
Avg Score (All Envs.)	3	31	—	46	47	56	59
Avg Score (Hard Envs.)	1	15	—	21	21	34	38

341
 342
 343
 344
 345
 346
 347
Figure 3: Learning curves for online fine-tuning of floq and FQL. floq not only provides a stronger
 348 initialization from offline RL training but also maintains its advantage throughout online fine-tuning on the
 349 hardest tasks, leading to faster adaptation, and higher final performance. The shaded area denotes offline RL.
 350

351 hyperparameters that still are fixed across all tasks in that environment, to get a sense of the upper
 352 bound with floq . Even the default configuration of floq substantially outperforms all prior
 353 methods. The default configuration utilizes $K = 8$ flow steps and sets the width of $u - l$ to be
 354 $\kappa \times (Q_{\max} - Q_{\min})$, where $\kappa = 0.1$. The best configuration tunes the number of flow steps $K \in \{4, 8\}$
 355 and $\kappa \in \{0.1, 0.25\}$ per environment (*not* per task). For a fair comparison with FQL, we use a 4-layer
 356 flow critic in all environments, except in the cube (single and double) environments where we employ
 357 a smaller 2-layer flow critic because we saw training instabilities with 4-layer critics.

358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
Empirical results. Observe in Table 1 that floq outperforms prior methods, including FQL, on
 372 average across all 50 tasks, evaluated over 3 seeds for each task. Also note that floq improves
 373 over FQL most on the harder environments, where FQL attains performance below 50% success
 374 rate (antmaze-giant, hmmaze-large, cube-double, puzzle-3x3, and puzzle-4x4). For a statistically
 375 rigorous evaluation, we adopt techniques from Agarwal et al. (2021) and plot various statistics of
 376 the comparisons between floq and FQL: 1) median and IQM scores in Figure 8, where we do not
 377 observe *any* overlap between the confidence intervals; 2) performance profile and $P(X > Y)$ statistic
 378 in Figure 9, which are both strictly in favor of floq . Since DSRL (Wagenmaker et al., 2025) only
 379 evaluates on the 10 default OGBench tasks, we also provide an additional results table on only the
 380 default tasks in each environment in the appendix (Table 2). On the default tasks, we find that floq
 381 outperforms DSRL (20% for DSRL vs. 45% for floq), improving by over $2 \times$ in success rate. These
 382 results establish the efficacy of floq . While floq uses an expected Q-value backup it still learns a
 383 stochastic Q-function. Thus, we also compare floq to a representative distributional RL approach
 384 (IQN (Dabney et al., 2017)) in Table 2, and we observe that floq outperforms IQN.

385 5.2 MAIN ONLINE FINE-TUNING RESULTS

386 Next, we evaluate floq in the online RL fine-tuning setting. Here, we first train agents completely
 387 offline for $1M$ steps and subsequently fine-tune them online for an additional $2M$ steps (Figure 3).
 388 Across four challenging tasks (humanoidmaze-medium, humanoidmaze-large, antmaze-giant, and
 389 antsoccer-arena), floq provides a substantially stronger initialization, faster learning during on-
 390 line interaction, and converges to higher final performance than FQL. Our complete set of results
 391 (Figure 10), show a similar trend establishing the efficacy of floq in online fine-tuning.

Figure 4: **Effect of integration steps on flog .** Performance of flog with varying flow steps, compared against a monolithic Q-function (FQL). More flow steps generally improve performance, but too many steps can lead to diminishing or negative returns (e.g., antmaze-giant). That said, in all configurations, flog outperforms FQL, and utilizing a moderately large number of flow steps is important.

Figure 5: **Comparison of flog with monolithic ensembles.** We evaluate ensembles of size 1, 2, 4, and 8 of FQL critics. While larger ensembles do better, even an 8-critic ensemble falls short of flog with the same number of flow steps, showing that flow critics provide gains beyond parallel compute.

5.3 UNDERSTANDING THE SCALING PROPERTIES AND BEHAVIOR OF flog

To better understand the benefits of iterative compute in flog , we analyze its scaling behavior and compare it to different approaches. Specifically, we study: (i) how the number of flow-integration steps controls the expressivity of flog ; (ii) how flog ’s iterative computation compares to monolithic critic scaling; and (iii) the importance of applying supervision to the velocity field at every flow step.

1) How does the performance of flog depend on the number of integration steps for the flow? We now study the effect of varying the number of integration steps for the flow in flog . In Figure 4, we report the success rate of flog with $K \in \{1, 2, 4, 8, 16\}$ flow steps, alongside a monolithic Q-function (FQL) using the same architecture. Increasing the number of flow steps generally improves the performance of flog , with notable gains on harder tasks, hm maze-large and antmaze-giant. Importantly, even with just 4 flow steps, flog already outperforms FQL, and the gap widens further with additional steps. However, we also observe diminishing returns and, in some cases, slight degradation beyond a moderate number of steps (e.g., on antmaze-giant, where 8 and 16 steps perform worse than 4). We suspect that this degradation stems from overfitting when the number of integration steps for computing the target is excessive. A similar degradation is observed for ResNets in Figure 6. We discuss this further in Appendix A.12.

2) How does flog compare against increasing “sequential” compute of monolithic critics? One hypothesis is that flog could be implementing a similar iterative computation strategy such as ResNet (He et al., 2016). Unlike flog , ResNet does not utilize dense supervision after each computation block. To test whether this matters, we compare flog to a ResNet. We use the same 4-layer flow critic from before and benchmark it against the best-performing ResNets with FQL. We ran a cross-product over possible ResNet configurations with block sizes of 2, 4, 8, 16 layers and blocks of 8, 4, 2. These configurations cover all ways to build a ResNet where 32 layers are involved in a forward pass. We compare

Figure 6: **Comparison of flog with ResNet critics on the hardest tasks:** hm maze-large, antmaze-giant. A 4-layer flow critic outperforms the best ResNets under a total budget on forward pass capacity, even after tuning over multiple residual configurations. For any given value on the x-axis, we plot the performance of the best performing ResNet configuration at that inference cost. For flog , we run more integration steps at inference. Thus, our approach of training flog does not simply add more depth.

432 floq to the best ResNet configuration under a fixed total inference compute budget (that is, an upper
 433 bound on the number of feed-forward layers) on humanoidmaze-large and antmaze-giant, since these
 434 harder environments should benefit from bigger ResNets. As shown in Figure 6, while ResNet critics
 435 do improve over FQL, they remain worse than floq even under matched inference compute. Note
 436 that floq does not itself utilize a ResNet, though its velocity network could use residual layers. Also
 437 note that while ResNet architectures instantiate a new set of parameters for every layer added to the
 438 network, floq uses parameters from a single 4-layer MLP for all values of inference capacity. This
 439 shows that the gains of flow critics are not due to adding more residual layers or parameters, but rather
 440 the dense supervision provided by supervising the velocity field at each step of iterative computation.
 441

3) How does floq compare to scaling monolithic critics with ensembles? A common way to
 442 expand Q-function capacity is through ensembling, averaging predictions from multiple critics for
 443 backups and policy updates. This increases parallel rather than sequential compute, and is attractive if
 444 effective. We trained ensembles of 1, 2, 4, and 8 critics (each the same size as the base FQL critic) and
 445 compared them to floq. As shown in Figure 5, ensembles yield only modest gains over FQL, and
 446 even 8 critics fail to match floq. Notably, floq also uses 8 forward passes (via integration steps),
 447 so the compute is comparable. Thus, the benefits of flow critics stem not from parallel averaging.
 448

4) Does floq benefit from densely supervising the velocity at all time steps? To answer this question,
 449

We trained a variant of floq where
 450 the velocity field was supervised only
 451 at $t = 0$ with a single flow step. While
 452 one might think that training floq at
 453 $t = 0$ is equivalent to baseline FQL,
 454 this is not the case. Even with one
 455 integration step, the input to the ve-
 456 locity network is still a scalar noise.
 457 The velocity field is trained to predict
 458 the difference between the target Q-
 459 value and this noise for all noise val-
 460 ues, creating several auxiliary tasks
 461 rather than the single task in baseline
 462 FQL (noise set to 0). We hypothesize
 463 that fitting these auxiliary tasks yields
 464 representational benefits, consistent with prior observations
 465 linking auxiliary losses with improved TD representations (Lyle et al., 2021). As shown in Figure 7,
 466 this restricted variant outperforms FQL but still underperforms floq, which supervises velocity at
 467 all $t \in [0, 1]$ and uses multiple steps. On humanoidmaze-large, performance improves from 14%
 468 (FQL) to 49% with only $t = 0$ training, while full floq reaches 56%. On antmaze-giant, the pattern
 469 is stronger, with scores of 11%, 39%, and 86%. Similar trends hold on hm-medium (58%, 94%,
 470 98%) and cube-double (36%, 38%, 72%). The smaller gap on hm-medium likely reflects its lower
 471 difficulty. Thus, while $t = 0$ already provides meaningful gains, supervising across all t and using
 472 multiple steps is important for realizing the full potential of floq.
 473

Figure 7: **Comparing FQL, training floq only at $t = 0$, and full floq** with supervision across all t (and optimal integration steps k chosen from $\{4, 8, 16\}$). While $t = 0$ training improves over FQL, full floq consistently achieves the best performance, showing the benefits from training at all integration steps.

that fitting these auxiliary tasks yields representational benefits, consistent with prior observations
 462 linking auxiliary losses with improved TD representations (Lyle et al., 2021). As shown in Figure 7,
 463 this restricted variant outperforms FQL but still underperforms floq, which supervises velocity at
 464 all $t \in [0, 1]$ and uses multiple steps. On humanoidmaze-large, performance improves from 14%
 465 (FQL) to 49% with only $t = 0$ training, while full floq reaches 56%. On antmaze-giant, the pattern
 466 is stronger, with scores of 11%, 39%, and 86%. Similar trends hold on hm-medium (58%, 94%,
 467 98%) and cube-double (36%, 38%, 72%). The smaller gap on hm-medium likely reflects its lower
 468 difficulty. Thus, while $t = 0$ already provides meaningful gains, supervising across all t and using
 469 multiple steps is important for realizing the full potential of floq.
 470

Takeaways: properties and behavior of floq

More integration steps help, but performance saturates and can degrade at very high values.
 floq outperforms approaches that scale either parallel or sequential compute for monolithic
 Q-functions, and multiple steps are needed for best performance.

5.4 ABLATION STUDIES FOR FLOQ

Finally, in Appendix A.6, we present experiments ablating various design choices and hyperparameters. We evaluate the sensitivity of floq to these choices and give thumb rules for tuning them. The choices are: **a**) the range $[l, u]$, for the support for the initial noise sample $z(0)$, **b**) the approach for embedding the flow step “time” t , and **c**) the approach for embedding the interpolant $z(t)$.

Takeaways: ablation studies for floq

1) Utilizing an HL-Gauss embedding for $z(t)$ is crucial (Figure 14). 2) Utilizing a Fourier-basis embedding of time is critical (Figure 12). 3) A moderate width of the initial noise distribution improves flow curvature, and performs best (Figure 13).

486 REFERENCES
487

488 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Bellemare.
489 Deep reinforcement learning at the edge of the statistical precipice. In *Neural Information*
490 *Processing Systems (NeurIPS)*, 2021.

491 Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
492 In *International Conference on Learning Representations (ICLR)*, 2023.

493 Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. *arXiv preprint*
494 *arXiv:2008.05556*, 2020.

495 Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie Li, Hamid Kazemi, Furong Huang, Micah Goldblum,
496 Jonas Geiping, and Tom Goldstein. Cold diffusion: Inverting arbitrary image transforms without
497 noise. *Advances in Neural Information Processing Systems*, 36:41259–41282, 2023.

498 Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
499 and Jan Peters. CrossQ: Batch normalization in deep reinforcement learning for greater sample
500 efficiency and simplicity. In *International conference on learning representations (ICLR)*, 2024.

501 Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learning.
502 *arXiv preprint arXiv:2106.01151*, 2021.

503 Yevgen Chebotar, Quan Ho Vuong, Alex Irpan, Karol Hausman, F. Xia, Yao Lu, Aviral Kumar,
504 Tianhe Yu, Alexander Herzog, Karl Pertsch, Keerthana Gopalakrishnan, Julian Ibarz, Ofir Nachum,
505 Sumedh Anand Sontakke, Grecia Salazar, Huong Tran, Jodilyn Peralta, Clayton Tan, Deeksha
506 Manjunath, Jaspiar Singht, Brianna Zitkovich, Tomas Jackson, Kanishka Rao, Chelsea Finn,
507 and Sergey Levine. Q-transformer: Scalable offline reinforcement learning via autoregressive
508 q-functions. In *Conference on Robot Learning*, 2023.

509 Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
510 learning in a handful of trials using probabilistic dynamics models. *Advances in neural information*
511 *processing systems*, 31, 2018.

512 Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement
513 learning with quantile regression. *arXiv preprint arXiv:1710.10044*, 2017.

514 Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning
515 with gumbel. In *International Conference on Learning Representations*, 2022.

516 Sudeep Dasari, Oier Mees, Sebastian Zhao, Mohan Kumar Srirama, and Sergey Levine. The
517 ingredients for robotic diffusion transformers. *arXiv preprint arXiv:2410.10088*, 2024.

518 Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the expressivity of neural
519 networks for deep reinforcement learning. In *International Conference on Machine Learning*, pp.
520 2627–2637. PMLR, 2020.

521 Nicolas Espinosa-Dice, Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy, Kiante
522 Brantley, and Wen Sun. Scaling offline rl via efficient and expressive shortcut models. *arXiv*
523 *preprint arXiv:2505.22866*, 2025.

524 Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex
525 Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training
526 value functions via classification for scalable deep rl. *arXiv preprint arXiv:2403.03950*, 2024.

527 Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and Ahmed
528 Touati. Temporal difference flows. *arXiv preprint arXiv:2503.09817*, 2025.

529 Justin Fu, Aviral Kumar, Ofir Nachum, G. Tucker, and Sergey Levine. D4rl: Datasets for deep
530 data-driven reinforcement learning. *ArXiv*, abs/2004.07219, 2020.

531 Preston Fu, Oleh Rybkin, Zhiyuan Zhou, Michal Nauman, Pieter Abbeel, Sergey Levine, and Aviral
532 Kumar. Compute-optimal scaling for value-based deep rl. *arXiv preprint arXiv:2508.14881*, 2025.

540 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
 541 *Advances in neural information processing systems*, 34:20132–20145, 2021.
 542

543 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive
 544 behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL
 545 <https://arxiv.org/abs/2503.01307>.

546 Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
 547 without entropy. In *International Conference on Learning Representations (ICLR)*, 2023.

548 Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar, Matt
 549 Hoffman, Razvan Pascanu, and Arnaud Doucet. An empirical study of implicit regularization in
 550 deep offline rl. *arXiv preprint arXiv:2207.02099*, 2022.

551 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 552 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 553 via reinforcement learning. *ArXiv*, abs/2501.12948, 2025.

554 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
 555 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
 556 and applications. Technical report, 2018.

557 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
 558 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint*
 559 *arXiv:2304.10573*, 2023.

560 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 561 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 562 pp. 770–778, 2016.

563 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *ArXiv*, abs/1606.08415, 2016.

564 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Neural
 565 Information Processing Systems (NeurIPS)*, 2020.

566 Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
 567 Schmitt, and David Silver. Learning and planning in complex action spaces. In *International
 568 Conference on Machine Learning*, pp. 4476–4486. PMLR, 2021.

569 Michael Janner, Igor Mordatch, and Sergey Levine. γ -models: Generative temporal difference
 570 learning for infinite-horizon prediction. In *Advances in Neural Information Processing Systems*,
 571 2020.

572 Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
 573 modeling problem. In *Advances in Neural Information Processing Systems*, 2021.

574 Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
 575 flexible behavior synthesis. In *International Conference on Machine Learning*, 2022.

576 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International
 577 Conference on Learning Representations (ICLR)*, 2015.

578 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 579 q-learning. In *International Conference on Learning Representations*.

580 Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
 581 q-learning via bootstrapping error reduction. In *Advances in Neural Information Processing
 582 Systems*, pp. 11761–11771, 2019.

583 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 584 reinforcement learning. *Advances in Neural Information Processing Systems*, 33:1179–1191, 2020.

585 Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
 586 inhibits data-efficient deep reinforcement learning. In *International Conference on Learning
 587 Representations*, 2021.

594 Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.
 595 DR3: Value-based deep reinforcement learning requires explicit regularization. *International*
 596 *Conference on Learning Representations*, 2022.

597

598 Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline Q-
 599 learning on diverse multi-task data both scales and generalizes. In *International Conference on*
 600 *Learning Representations*, 2023a.

601 Aviral Kumar, Anikait Singh, Frederik Ebert, Yanlai Yang, Chelsea Finn, and Sergey Levine. Pre-
 602 training for robots: Offline rl enables learning new tasks from a handful of trials. *RSS 2023*;
 603 *arXiv:2210.05178*, 2023b.

604

605 Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
 606 Peter R Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. SimBa: Simplicity bias for scaling
 607 up parameters in deep reinforcement learning. *arXiv preprint*, 2024.

608 Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
 609 Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers.
 610 *arXiv preprint arXiv:2205.15241*, 2022.

611

612 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
 613 review, and perspectives on open problems. *arXiv preprint*, 2020.

614 Zechu Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
 615 Learning multimodal behaviors from scratch with diffusion policy gradient. In *The Thirty-*
 616 *eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=vU1SiBb57j>.

617

618 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 619 for generative modeling. In *International Conference on Learning Representations (ICLR)*, 2023.

620

621 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
 622 and transfer data with rectified flow. In *The Eleventh International Conference on Learning*
 623 *Representations (ICLR)*, 2023.

624

625 Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary tasks on
 626 representation dynamics. In *International Conference on Artificial Intelligence and Statistics*, pp.
 627 1–9. PMLR, 2021.

628

629 Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, and Yarin Gal. Learning dynamics and
 630 generalization in deep reinforcement learning. In *International Conference on Machine Learning*,
 631 pp. 14560–14581. PMLR, 2022.

632

633 Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
 634 Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any class
 635 and backbone. *ArXiv*, abs/2412.06685, 2024.

636

637 Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
 638 Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
 639 learning. *arXiv preprint arXiv:1803.11347*, 2018.

640

641 Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Bigger,
 642 regularized, optimistic: Scaling for compute and sample-efficient continuous control. *Advances in*
 643 *Neural Information Processing Systems*, 2024.

644

645 Michal Nauman, Marek Cygan, Carmelo Sferrazza, Aviral Kumar, and Pieter Abbeel. Bigger,
 646 regularized, categorical: High-capacity value functions are efficient multi-task learners. *arXiv*
 647 *preprint arXiv:2505.23150*, 2025.

648

649 Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Foerster,
 650 Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts unlock
 651 parameter scaling for deep rl. *arXiv preprint arXiv:2402.08609*, 2024.

648 Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
 649 bottleneck in offline rl? *arXiv preprint arXiv:2406.09329*, 2024.
 650

651 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
 652 offline goal-conditioned rl. In *International Conference on Learning Representations (ICLR)*,
 653 2025a.

654 Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
 655 Levine. Horizon reduction makes rl scalable. *arXiv preprint arXiv:2506.04168*, 2025b.
 656

657 Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. *ArXiv*, abs/2502.02538, 2025c.
 658

659 Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. *arXiv preprint arXiv:2502.02538*,
 660 2025d.

661 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 662 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.
 663

664 Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
 665 space control. In *International Conference on Machine Learning (ICML)*, 2007.

666 Rafael Rafailov, Kyle Beltran Hatch, Anikait Singh, Aviral Kumar, Laura Smith, Ilya Kostrikov,
 667 Philippe Hansen-Estruch, Victor Kolev, Philip J Ball, Jiajun Wu, et al. D5rl: Diverse datasets for
 668 data-driven deep reinforcement learning. In *Reinforcement Learning Conference (RLC)*, 2024.
 669

670 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
 671 Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
 672 *arXiv preprint arXiv:2409.00588*, 2024.

673 Oleh Rybkin, Michal Nauman, Preston Fu, Charlie Snell, Pieter Abbeel, Sergey Levine, and Aviral
 674 Kumar. Value-based deep rl scales predictably. *arXiv preprint arXiv:2502.04327*, 2025.
 675

676 Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
 677 Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
 678 go, chess and shogi by planning with a learned model. *Nature*, 588(7839):604–609, 2020.

679 Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter
 680 Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. *arXiv
 681 preprint arXiv:2505.22642*, 2025.

682 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 683 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learning
 684 (ICML)*, 2015.

685 Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
 686 minimalist approach to offline reinforcement learning. In *Neural Information Processing Systems
 687 (NeurIPS)*, 2023.

688 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 689 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 690 systems*, 30, 2017.

691 Andrew Wagenmaker, Mitsuhiro Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub, Anusha
 692 Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with latent space
 693 reinforcement learning. *arXiv preprint arXiv:2506.15799*, 2025.

694 Kevin Wang, Ishaan Javali, Michał Bortkiewicz, Benjamin Eysenbach, et al. 1000 layer networks
 695 for self-supervised rl: Scaling depth can enable new goal-reaching capabilities. *arXiv preprint
 696 arXiv:2503.14858*, 2025.

697 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 698 class for offline reinforcement learning.
 699

700

702 Ziyun Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott E. Reed, Bobak
 703 Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Manfred Otto Heess, and Nando
 704 de Freitas. Critic regularized regression. In *Neural Information Processing Systems (NeurIPS)*,
 705 2020.

706 Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive path integral
 707 control: From theory to parallel computation. *Journal of Guidance, Control, and Dynamics*, 40(2):
 708 344–357, 2017.

709 Yifan Wu, G. Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. *ArXiv*,
 710 abs/1911.11361, 2019.

711 Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Chan, and Xianyuan Zhan.
 712 Offline rl with no ood actions: In-sample learning via implicit value regularization. In *International
 713 Conference on Learning Representations (ICLR)*, 2023.

714 Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
 715 Leveraging dynamic programming for conditional sequence modelling in offline rl. In *International
 716 Conference on Machine Learning*, pp. 38989–39007. PMLR, 2023.

717 Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
 718 Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
 719 reinforcement learning. *arXiv preprint arXiv:2305.13122*, 2023.

720 Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
 721 with limited data. *Advances in neural information processing systems*, 34:25476–25488, 2021.

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

A APPENDICES

757

A.1 DISCUSSION AND PERSPECTIVES ON FUTURE WORK

759 In this paper, we presented f1oq , an approach for training critics in RL using flow-matching. f1oq
 760 formulates value learning as transforming noise into the value function via integration of a learned
 761 velocity field. This formulation enables scaling Q-function capacity by utilizing more compute
 762 during the process of integration to compute the Q-function. As a result of utilizing a flow-matching
 763 objective for training, f1oq utilizes dense supervision at every step of the integration process. We
 764 describe some important design choices to train flow-matching critics to make meaningful use of
 765 integration steps. Through our experiments, we show that f1oq attains state-of-the-art results on a
 766 suite of commonly-used offline RL tasks, and outperforms other ways of expanding capacity of a
 767 Q-function (e.g., via a ResNet or monolithic Q-function ensemble). We also show the necessity of
 768 learning curved flow traversals to make effective use of capacity and utilizing the design choices we
 769 prescribe in this work.

770 **Future work.** We believe f1oq presents an exciting approach to scale Q-function capacity. Thus,
 771 there are a number of both theoretical and empirical open questions. From an empirical standpoint,
 772 it is important to understand how to appropriately set the number of integration steps as excessive
 773 steps may degrade Q-function quality. This degradation, however, is not localized to just flows but
 774 also to ResNets (Figure 6), indicating that this is perhaps a bigger issue with TD-learning. Another
 775 interesting direction is to build new methods and workflows for using Q-functions that rely on the
 776 property that f1oq inherently represents a “cascaded” family of critics with different capacities—all
 777 within one network. Can this property be used for tuning network size upon deployment, cross-
 778 validation of model size, or improving efficiency of policy extraction? Answering this question
 779 would be interesting for future work. Finally, f1oq also provides one possibility for sequential or
 780 “depth”-based test-time scaling for value functions. Studying how this sort of sequential scaling can
 781 be combined with parallel scaling (i.e., ensembles) and horizon reduction techniques (Park et al.,
 782 2025b) would be interesting as well.

783 From a theoretical standpoint, quantifying iterative computation properties of f1oq would be
 784 impactful: in principle, curved flow traversals should enable the critic network to spend more test-
 785 time compute (i.e., integration steps) to perform equivalents of “error correction” and “backtracking”
 786 from large language models (LLMs) (Guo et al., 2025), but now in the space of scalar, continuous
 787 values to better approximate the target Q-function. We believe formalizing this aspect would not
 788 only be impactful for value-based RL, but could also shed light on methods to use test-time compute
 789 in flow/diffusion models in other domains. Second, our results show that there are substantial
 790 representation learning benefits of f1oq . We believe that studying the mechanisms and differences
 791 between feature learning induced by f1oq compared to standard TD-learning with regression (Kumar
 792 et al., 2022) or classification (Farebrother et al., 2024) would be interesting for future value-based
 793 methods. f1oq also provides a rich family of auxiliary tasks to train a critic, which provides another
 794 angle to explain and study its properties. All of these are impactful directions to study in future work.

795

A.2 OFFLINE RL PRELIMINARIES

796 We operate in the offline RL (Levine et al., 2020) problem setting, where the replay buffer \mathcal{P}
 797 corresponds to a static dataset of transitions $\mathcal{D} = \{(s, a, r, s')\}$ collected using a behavior policy π_β .
 798 Our goal in this setting is to train a good policy using the offline dataset \mathcal{D} alone. The Q-network, Q_θ
 799 is typically parameterized by a deep network (e.g., an MLP).

800 **Offline RL algorithms.** Offline RL methods aim to learn a policy that maximizes reward while
 801 penalizing deviation from the behavior policy π_β , in order to mitigate the challenge of distributional
 802 shift. This objective has been instantiated in various ways, including behavioral regularization (Wu
 803 et al., 2019; Fujimoto & Gu, 2021; Tarasov et al., 2023; Park et al., 2025d; Kumar et al., 2019),
 804 pessimistic value function regularization (Kumar et al., 2020), implicit policy constraints (Peters
 805 & Schaal, 2007; Peng et al., 2019; Wang et al., 2020; Mark et al., 2024), and in-sample maximization
 806 (Kostrikov et al.; Xu et al., 2023; Garg et al., 2023). While our proposed f1oq architecture for
 807 Q-function parameterization is agnostic to the choice of offline RL algorithm, we instantiate it on top
 808 of FQL (Park et al., 2025d) that utilizes a flow-matching policy to better model multimodal action
 809 distributions. FQL trains the Q-function using the standard temporal-difference (TD) error from soft
 810 actor-critic (SAC) (Haarnoja et al., 2018), shown in Equation 3.1, and optimizes the policy to stay
 811 close to a behavior policy estimated via flow-matching.

810 A.3 ADDITIONAL RESULTS FOR f_{loq}
811812 In this section, we provide some additional and complete results supplementing the ones in main
813 paper.814
815 1. Figure 8 presents median and IQM scores and Figure 9 presents performance profiles and
816 $P(X > Y)$ statistic comparing f_{loq} with FQL on all the 50 tasks studied in the paper.
817 2. Figure 10 presents results for online fine-tuning on all 10 default tasks.824
825 Figure 8: Comparison of f_{loq} against the baseline FQL across median, interquartile mean (IQM),
826 mean and optimality gap, following Agarwal et al. (2021). Results show that f_{loq} consistently outperform FQL across
827 all evaluation criteria with no confidence interval overlap in all cases, meaning that the gains from f_{loq} are
828 significant.839
840 Figure 9: Comparison of f_{loq} against baseline FQL, following Agarwal et al. (2021). **Left:** Probability of
841 Improvement $P(X > Y)$ showing that f_{loq} consistently outperform FQL across OGBench tasks. **Right:**
842 Performance profiles illustrating that f_{loq} achieves higher scores across a larger fraction of runs compared to
843 FQL.858
859 Figure 10: **Learning curves for online fine-tuning** of f_{loq} and FQL across all default tasks. f_{loq} not
860 only provides a stronger initialization from offline RL training but also maintains its advantage through online
861 fine-tuning, leading to faster adaptation and higher final success rates. The shaded gray area denotes offline RL
862 training.

863

Table 2: **Offline RL results (Default Tasks).** *floq* achieves competitive or superior performance compared to the baselines. “Hard” tasks refers to the set of default tasks where the FQL baseline score is below 50% performance. *floq* is especially more performant on these hard tasks, more than doubling FQL’s baseline performance.

Env	Gaussian Policy			Diff. Policy			Flow Policy			Flow Q-function (Ours)		
	BC	ReBRAC	DSRL	SORL	IQN	C51	FQL (1M)	FQL (2M)	flop	Def.	flop	Best
antmaze-large	0 ±0	91 ±10	40 ±29	93 ±2	86 ±1	79 ±3	80 ±8	85 ±4		94 ±4		94 ±4
antmaze-giant	0 ±0	27 ±22	0 ±0	12 ±6	5 ±0	0 ±0	11 ±16	14 ±29		70 ±8		86 ±4
hmmaze-medium	1 ±0	16 ±9	34 ±20	67 ±4	27 ±17	23 ±16	19 ±12	58 ±25		98 ±1		98 ±1
hmmaze-large	0 ±0	2 ±1	10 ±12	20 ±2	22 ±5	6 ±2	8 ±5	14 ±10		52 ±8		52 ±8
antsoccer-arena	1 ±0	0 ±0	28 ±0	54 ±5	44 ±3	36 ±7	39 ±6	49 ±11		49 ±10		49 ±10
cube-single	3 ±1	92 ±4	93 ±14	99 ±0	98 ±1	98 ±1	96 ±1	94 ±5		99 ±2		99 ±2
cube-double	0 ±0	7 ±3	53 ±14	33 ±5	57 ±4	40 ±11	36 ±6	29 ±8		72 ±15		72 ±15
scene	1 ±1	50 ±13	88 ±9	89 ±0	80 ±1	82 ±11	76 ±9	78 ±7		83 ±10		83 ±10
puzzle-3x3	1 ±1	2 ±1	0 ±0	—	20 ±3	13 ±4	16 ±5	14 ±4		17 ±6		17 ±6
puzzle-4x4	0 ±0	10 ±3	37 ±13	—	16 ±1	16 ±2	11 ±3	5 ±2		12 ±4		19 ±5
Average Score (All)	1	30	38	—	45	39	40	44		64		66
Average Score (Hard)	0	8	21	—	22	21	20	21		45		50

Table 3: **FQL ResNet performance on humanoidmaze-large and antmaze-giant.** (m, n) indicates n blocks each of depth m . For each fixed number of FLOPs $m \times n$, the best-performing architecture per environment is in bold.

FLOPs ($m \times n$)	HM-Large	Antmaze-Giant
4	35 \pm 19 (2,2) 14 \pm 10 (4,1)	13 \pm 12 (2,2) 11 \pm 16 (4,1)
8	46 \pm 11 (2,4) 21 \pm 11 (4,2) 22 \pm 11 (8,1)	31 \pm 13 (2,4) 22 \pm 9 (4,2) 32 \pm 14 (8,1)
16	41 \pm 7 (2,8) 34 \pm 8 (4,4) 26 \pm 9 (8,2) 24 \pm 22 (16,1)	32 \pm 13 (2,8) 17 \pm 8 (4,4) 46 \pm 11 (8,2) 0 \pm 0 (16,1)
32	25 \pm 10 (2,16) 28 \pm 13 (4,8) 38 \pm 19 (8,4) 0 \pm 0 (16,2)	23 \pm 11 (2,16) 18 \pm 14 (4,8) 30 \pm 9 (8,4) 0 \pm 0 (16,2)

A.4 COMPATIBILITY OF FLOQ WITH DIVERSE POLICY CLASSES

One natural question is whether the benefits of `fløq` arise specifically from pairing it with a flow-based policy, or whether the FloQ critic alone provides value when combined with standard policy architectures. To study this, we evaluate all combinations in the grid:

(Monolithic critic vs. flog critic) \times (Gaussian policy vs. Flow policy).

In particular, we add the missing configuration: **floq critic + Gaussian policy**.

To isolate the effect of the critic, we integrate the `floq` critic into the ReBRAC framework, which employs a Gaussian policy. The policy architecture and actor update rules are unchanged; only the Q-function parameterization is replaced with the `floq` critic.

Table 4 summarizes the results across the 10 default OGBench tasks. The `floq` critic yields substantial improvements over ReBRAC, increasing the average score from 30 → 41. Gains are particularly large on sparse-reward, long-horizon environment such as ANTAZEE-GIANT (27 → 91) and HMMAZE-MEDIUM (16 → 57). These improvements demonstrate that the `floq` critic offers benefits even when the policy is Gaussian.

Combined with the results in the main text (`floq` with FQL), these findings show that the `floq` critic is modular and compatible with diverse policy classes. Its advantages are not tied to flow-based policies, but instead arise from its parameterization of the Q value.

918
919 **Table 4: FloQ critic is compatible with Gaussian policies.** Performance on the 10 default OGBench tasks
920 when integrating the FloQ critic into the ReBRAC framework (Gaussian policy). The FloQ critic improves
921 ReBRAC significantly, showing that FloQ’s benefits are not tied to the flow policy used in FQL.

Environment (Default Task)	ReBRAC	FloQ (ReBRAC)	FQL	FloQ (FQL)
antmaze-large	95 \pm 4	97 \pm 3	85 \pm 4	94 \pm 4
antmaze-giant	27 \pm 22	91 \pm 6	14 \pm 20	70 \pm 8
hmmaze-medium	16 \pm 9	57 \pm 12	58 \pm 25	98 \pm 1
hmmaze-large	2 \pm 1	0 \pm 1	14 \pm 10	52 \pm 8
antsoccer-arena	0 \pm 0	1 \pm 2	49 \pm 11	49 \pm 10
cube-single	92 \pm 4	89 \pm 4	94 \pm 5	99 \pm 2
cube-double	7 \pm 3	3 \pm 3	36 \pm 6	72 \pm 15
scene	50 \pm 13	58 \pm 8	78 \pm 7	83 \pm 10
puzzle-3x3	2 \pm 1	9 \pm 6	16 \pm 5	17 \pm 6
puzzle-4x4	10 \pm 3	6 \pm 4	11 \pm 3	12 \pm 4
Average Score	30	41	45	64

934 **Table 5: Offline RL Results on D4RL Tasks.** `floq` performs similarly to the FQL baseline on the D4RL
935 benchmarks, showing its robustness. Values show normalized returns (mean \pm std).

Environment	FQL	FloQ
antmaze-large-diverse-v2	85 \pm 5	82 \pm 5
antmaze-large-play-v2	82 \pm 8	75 \pm 8
antmaze-medium-diverse-v2	73 \pm 6	71 \pm 10
antmaze-medium-play-v2	76 \pm 7	80 \pm 7
antmaze-umaze-diverse-v2	85 \pm 7	78 \pm 17
antmaze-umaze-v2	96 \pm 2	97 \pm 2
pen-human-v1	51 \pm 10	58 \pm 9
pen-cloned-v1	78 \pm 8	72 \pm 5
pen-expert-v1	140 \pm 5	140 \pm 8
door-human-v1	0 \pm 0	0 \pm 0
door-cloned-v1	3 \pm 1	3 \pm 2
door-expert-v1	104 \pm 0	104 \pm 0
hammer-human-v1	1 \pm 1	1 \pm 1
hammer-cloned-v1	15 \pm 13	10 \pm 8
hammer-expert-v1	125 \pm 3	125 \pm 2
relocate-human-v1	0 \pm 0	0 \pm 0
relocate-cloned-v1	0 \pm 0	0 \pm 0
relocate-expert-v1	106 \pm 2	108 \pm 2

955 **Figure 11: Aggregate Performance on D4RL Tasks.** Comparison of `floq` and FQL on D4RL using Median,
956 IQM, Mean, and Optimality Gap metrics shows that they perform similarly.

A.5 RESULTS ON THE D4RL BENCHMARK

964 To further evaluate the robustness of `floq`, we also compare its performance to FQL on the standard
965 D4RL benchmark. As shown in Table 5, `floq` performs similarly to the FQL baseline across all
966 D4RL tasks, with nearly identical normalized returns on average. These tasks are considerably
967 simpler than the long-horizon, sparse-reward OGBench environments used in the main evaluation,
968 and the comparable results on D4RL demonstrate that `floq` does not sacrifice performance on easier
969 benchmarks. In addition to per-task results, Figure 11 presents aggregate metrics using the reliable
970 framework, including Median, IQM, Mean, and Optimality Gap. Across all four metrics, `floq` and
971 FQL exhibit closely aligned confidence intervals, further indicating that their performance on D4RL
972 is statistically indistinguishable.

Figure 13: *Effect of variance of the initial noise sampling distribution on f1oq.* **Left:** Success rates across environments as a function of the initial noise scaling factor (black circles denote the best setting per environment). **Right:** Flow curvature in HM-Medium increases with noise variance, highlighting the tradeoff between too little curvature (flow collapses to monolithic critic) and too much curvature (difficult numerical integration).

Together, the table and aggregate statistics confirm that f1oq is robust across both challenging and standard offline RL benchmarks, matching FQL on D4RL while significantly outperforming it on the more challenging OGBench tasks.

A.6 ADDITIONAL ABLATION STUDIES FOR F1OQ

1) Ablations for the width of the $[l, u]$ interval. We study the effect of varying the variance of the initial noise sample used in critic flow matching by expanding the width $u - l$ of the interval that the initial noise is sampled from. We present the results in Figure 13. On the left, we observe that the performance across several tasks typically peaks at intermediate variance values (note that the black circles marking the setting that yields the best success rate for each environment). This means that choosing an interval $[l, u]$ with a non-trivial width is important. As discussed in Section 4.3, Figure 13 (right) shows that the curvature of the learned flow increases as the width of the interval grows. We measure curvature by computing the magnitude of the derivative of the velocity field as a function of time using finite differences. Concretely, we measured the expected value of $|dv_\theta(t, z(t))/dt|$ across state-action pairs in the offline dataset, averaged through training.

Putting results in Figure 13 together, we note that some degree of curvature is necessary for best performance, which is expected because otherwise, the flow collapses to behave like a monolithic critic. That said, excessive curvature makes the flow numerically harder to integrate, ultimately degrading performance. Based on these observations, we recommend practitioners use $\kappa := (u - l)/(Q_{\max} - Q_{\min})$ in the range of $\{0.1, 0.25\}$ as reliable starting points when tuning f1oq critic.

2) Ablations for the time embedding. In the default configuration of f1oq, we used a 64-dimensional Fourier embedding for the time t , provided as input to the velocity field (also see Dasari et. al Dasari et al. (2024) for a recent work training a diffusion policy also using Fourier embedding of t). As shown in Figure 12, replacing this Fourier embedding with a simple scalar embedding of t leads to a significant drop in performance on several tasks. This highlights the importance of the Fourier embedding, which allow the velocity function to be meaningfully conditioned on t , enabling it to produce distinct behaviors at different integration times. Without such rich embeddings, the critic struggles to leverage temporal information effectively, and again collapse to the monolithic architecture. We therefore recommend that practitioners carefully utilize high-dimensional embeddings of time when using f1oq.

3) How does the approach of embedding the interpolant $z(t)$ affect f1oq performance? We observe that the approach of embedding $z(t)$ (Design Choice 2 in Section 4.3) plays a significant role in the performance of f1oq. As shown in Figure 14, HL-Gauss embeddings of $z(t)$ provide

Figure 14: **Comparison of different approaches for representing the input interpolant in $\mathbf{f1oq}$.** **Left:** performance on two representative tasks where that HL-Gauss embeddings outperform scalar and normalized scalar embeddings by reducing sensitivity to non-stationary inputs. **Right:** Ablation over HL-Gauss embedding scale σ for the scalar flow interpolant input, showing that larger values provide broader bin coverage and stronger performance. Default $\sigma = 16.0$.

Figure 16: **Effect of the number of integration steps used for policy extraction on $\mathbf{f1oq}$ performance.** Even though computing the target values for TD-learning utilizes a fixed number of 8 integration steps, in this ablation we utilize a smaller number of steps for extracting the policy. Performance is more robust to the number of integration steps used for policy extraction, suggesting that as long as target integration is sufficiently accurate, few steps suffice for policy distillation.

a significant advantage over scalar or normalized scalar embeddings. In particular, across several tasks we found HL-Gauss embeddings (with a sufficiently large value of σ) to be essential for achieving strong performance, and Figure 14 (left) highlights two representative tasks in this category. HL-Gauss embeddings with broader bin coverage helps reduce the sensitivity of the network to non-stationary inputs, thereby stabilizing training and improving performance. In domains such as HM-Large (Task 5), using raw scalar embeddings increases the training gradient norm by roughly $4\times$ compared to HL-Gauss (2.5×10^4 to 10^5), reflecting greater instability in optimization due to non-stationary conditioning (see Figure 15). While normalizing $z(t)$ helps on some tasks over using the raw value, we found that HL-Gauss embeddings generally gave the best performance. In our implementation of the velocity network, we use HL-Gauss embeddings with a default scale of $\sigma = 16.0$.

Figure 14 (right) shows an ablation over smaller values of $\sigma \in \{1.0, 2.0, 4.0, 8.0\}$. Observe that larger values of σ consistently yield stronger performance. Intuitively, increasing σ leads to broader bin coverage for the HL-Gauss distribution (see Figure 2, right), which helps mitigate the non-stationarity of the range of $z(t)$ over the course of training with TD-learning. These results highlight that selecting sufficiently large embedding scales is important for stabilizing learning and achieving strong downstream performance.

4) How does the number of critic flow steps used for the policy update affect the performance of $\mathbf{f1oq}$? We next investigate the effect of varying the number of integration steps used for calculating

Figure 15: **Training Grad Norm With and Without HL-Gauss Encoding.** In domains such as HM-Large (Task 5), using raw scalar embeddings increases the training gradient norm by roughly $4\times$ compared to HL-Gauss (2.5×10^4 to 10^5), reflecting greater instability in optimization due to non-stationary conditioning

the non-stationarity of the range of $z(t)$ over the course of training with TD-learning. These results highlight that selecting sufficiently large embedding scales is important for stabilizing learning and achieving strong downstream performance.

1080 the Q-value for the policy update. Since we build our algorithm on top of FQL, we implement the
 1081 policy update by first distilling the values produced by the flow critic into a one-step, monolithic
 1082 Q-function. Then the policy extraction procedure (akin to SAC+BC) maximize the values of this
 1083 distilled critic subject to a behavioral cloning loss. Note that this approach essentially decouples the
 1084 number of integration steps used to compute the TD-target and the number of integration steps for
 1085 policy extraction. As shown in Figure 16, as long as the number of integration steps for computing the
 1086 target value are fixed (to 8 in this case), the performance of `floq` is relatively robust to the number
 1087 of integration steps used for the policy update. Contrast this with the sensitivity to the number of
 1088 integration steps used for computing the TD-target observed in Figure 4. The results indicate that
 1089 once the target integration steps are sufficiently large (here, 8), the policy can be effectively distilled
 1090 even with a small number of integration steps.

A.7 HYPERPARAMETERS AND ADDITIONAL DETAILS

In this section, we present some details for `floq` that we could not cover in the main paper, along with a pseudocode and a complete list of hyperparameters used by our approach.

Algorithm 1 Critic Flow Matching (`floq`) in conjunction with FQL (Park et al., 2025d)

```

1097 Given: offline dataset of transitions  $\mathcal{D}$ ,  

1098 Models: a flow critic,  $Q_\theta^{\text{FLOW}}(s, a, \mathbf{z})$ , a distilled critic,  $Q_\psi^{\text{distilled}}(s, a, \mathbf{z})$ , a flow policy  $\pi_\phi(\cdot|s)$ , one-step  

1099 policy  $\mu_\omega(s, \cdot)$ .  

1100 function  $Q_\theta^{\text{FLOW}}(s, a, \mathbf{z})$  ▷ Flow Q-function, introduced by floq  

1101   for  $t = 0, 1, \dots, K - 1$  do  

1102      $\mathbf{z}(t + 1) \leftarrow \mathbf{z}(t) + 1/K \cdot v_\theta(t/K, \mathbf{z}(t) | s, a)$  ▷ Euler method, time  $t$  is normalized  

1103   return  $\mathbf{z}(K)$   

1104 function  $\pi_\phi(a|s)$  ▷ Flow policy from FQL, though policy training is orthogonal to floq  

1105   for  $t = 0, 1, \dots, M - 1$  do  

1106     Sample  $\mathbf{x}(0) \sim \mathcal{N}(0, I_d)$   

1107      $\mathbf{x}(t + 1) \leftarrow \mathbf{x}(t) + 1/M \cdot w_\phi(t/M, \mathbf{x}(t) | s)$  ▷ Euler method, time  $t$  is normalized  

1108   return  $\mathbf{x}(M)$   

1109 while not converged do  

1110   Sample batch  $\{(s, a, r, s')\} \sim \mathcal{D}$   

1111   ▷ Train vector field  $v_\theta$  in flow critic  $Q_\theta^{\text{FLOW}}$   

1112    $a' \leftarrow \text{Sample}(\pi_\phi(\cdot|s'))$  ▷ Sample actions from policy, typically the one-step policy for FQL  

1113    $\mathbf{z}(0) \sim \text{Unif}[l, u]$ ,  $\mathbf{z}'(0)_{1:m} \sim \text{Unif}[l, u]$  ▷ Sample initial noise for computing the Q-value  

1114    $\mathbf{z}(1) \leftarrow r + \gamma \cdot 1/m \cdot \sum_{i=1}^m Q_\theta^{\text{FLOW}}(s', a', \mathbf{z}'(0))$  ▷ Use noise  $\mathbf{z}'(0)$  for computing TD-target  

1115    $\mathbf{z}(t) \leftarrow (1 - t) \cdot \mathbf{z}(0) + t \cdot \mathbf{z}(1)$  ▷ Compute interpolant  $\mathbf{z}(t)$  for random  $t$   

1116   Update  $\theta$  to minimize  $\mathbb{E}[(v_\theta(t, \mathbf{z}(t) | s, a) - (\mathbf{z}(1) - \mathbf{z}(0)))^2]$  ▷ Linear flow-matching loss  

1117   ▷ Train distill critic  $Q_\psi^{\text{distill}}$  for policy extraction  

1118   Update  $\psi$  to minimize  $\mathbb{E}_{\mathbf{z}(0)}[(Q_\psi^{\text{distill}}(s, a) - Q_\theta^{\text{FLOW}}(s, a, \mathbf{z}(0)))^2]$   

1119   ▷ Train a BC flow policy  $\pi_\phi$ , analogous to FQL  

1120    $\mathbf{x}(0) \sim \mathcal{N}(0, I_d)$   

1121    $\mathbf{x}(1) \leftarrow a$   

1122    $t \sim \text{Unif}([0, 1])$   

1123    $\mathbf{x}(t) \leftarrow (1 - t) \cdot \mathbf{x}(0) + t \cdot \mathbf{x}(1)$  ▷ For FQL policy, compute policy interpolant  

1124   Update  $\phi$  to minimize  $\mathbb{E}[\|w_\phi(t, \mathbf{x}(t) | s) - (\mathbf{x}(1) - \mathbf{x}(0))\|_2^2]$  ▷ Flow-matching loss for policy  

1125   ▷ Train one-step policy  $\mu_\omega$  to maximize the learned distill critic while staying close to BC flow policy  

1126    $\mathbf{x} \sim \mathcal{N}(0, I_d)$   

1127    $a^\pi \leftarrow \mu_\omega(s, \mathbf{x})$   

1128   Update  $\omega$  to minimize  $\mathbb{E}[-Q_\psi^{\text{distill}}(s, a^\pi) + \alpha \|a^\pi - \pi_\phi(s, z)\|_2^2]$   

1129   return One-step policy  $\pi_\omega$ 

```

1132 **Hyperparameters for offline RL results.** Following Park et al. Park et al. (2025d), we tune the BC
 1133 coefficient α on the `default-task` of each environment and then fix this value for the remaining
 tasks. For both FQL and `floq`, α is tuned over $\{\alpha_{\text{FQL}} - \Delta, \alpha_{\text{FQL}}, \alpha_{\text{FQL}} + \Delta\}$, where $\Delta = 100$

1134
 1135 **Table 6: Hyperparameters for f1oq .** Differences from FQL are shown in light blue within brackets. Other
 1136 hyperparameters are kept to be the same as FQL.

1137 Hyperparameter	1138 Value (f1oq)
1139 Learning rate	0.0003
1140 Optimizer	Adam (Kingma & Ba, 2015 Kingma & Ba (2015))
1141 Gradient steps	2M (Offline), 1M + 2M (Online FT)
1142 Minibatch size	256 (default), 512 for hm-large, antmaze-giant
1143 Flow Q Network MLP dims	[512,512,512,512] (default), [512,512] for cube envs
1144 Distill Q MLP dims	[512,512,512,512] (not used in FQL)
1145 Nonlinearity	GELU (Hendrycks & Gimpel, 2016 Hendrycks & Gimpel (2016))
1146 Target network smoothing coeff.	0.005
1147 Discount factor γ	0.99 (default), 0.995 for antmaze-giant, humanoidmaze, antsoccer
1148 Flow time sampling distribution	Unif([0, 1])
1149 Clipped double Q-learning	False (default), True (antmaze-giant) (+ antmaze-large in FQL)
1150 BC coefficient α	Tables 7, 8
1151 Actor Flow steps	10
Critic Flow steps	8 (default), Table 9 for env-wise (not used in FQL)
Initial Sample Range	0.1 (default), Table 9 for env-wise (not used in FQL)
Number Of Initial Noise Samples	8 (not used in FQL)
Fourier Time Embed Dimension	64 (not used in FQL)

1152
 1153 **Table 7: Environment-wise BC-Coefficient (α) for FQL and f1oq (Offline RL).**

1154 Environment (5 tasks each)	1155 $\alpha (\text{FQL}), \alpha (\text{f1oq})$
1156 antmaze-large	10, 10
1157 antmaze-giant	10, 10
1158 hmmaze-medium	30, 30
1159 hmmaze-large	30, 20
1160 antsoccer-arena	10, 10
1161 cube-single	300, 300
1162 cube-double	300, 300
1163 scene-play	300, 300
1164 puzzle-3x3	1000, 1000
puzzle-4x4	1000, 1000

1156 for the puzzle, cube, and scene environments, and $\Delta = 10$ for the ant and humanoid
 1157 environments. The baseline values α_{FQL} are taken from Table 6 in Park et al. [Park et al. \(2025d\)](#),
 1158 and the final values for both methods are reported in Table 7. For f1oq , after tuning α with the
 1159 default configuration ($K = 8$ flow steps and width $(u - l) = \kappa(Q_{\max} - Q_{\min})$ with $\kappa = 0.1$), we
 1160 tune $K \in \{4, 8\}$ and $\kappa \in \{0.1, 0.25\}$ on the default-task of each environment. These values,
 1161 referred to as $\text{f1oq}(\text{Best})$, are reported in Table 9. In all cases, for f1oq , we utilize $m = 8$ samples
 1162 of initial noise to compute the target Q-value as discussed in Section 4.2.

1163 **Hyperparameters for online fine-tuning.** Most hyperparameters (unless otherwise stated) remain
 1164 similar in online fine-tuning and offline RL pre-training. For both FQL and f1oq , α is tuned in the
 1165 range [10, 100] (step size 10) for the ant and humanoid environments, and in [100, 1000] (step
 1166 size 100) for the cube, scene, and puzzle environments. The selected α values are given in
 1167 Table 8.

1168 For f1oq , after tuning α with the default configuration ($K = 8$, $\kappa = 0.1$), we tune $K \in \{4, 8, 16\}$
 1169 and $\kappa \in \{0.1, 0.25\}$ per environment. The chosen values are reported in Table 10.

1170 **Number of seeds.** We ran 3 seeds for each configuration of both f1oq and **FQL** on each task, for
 1171 both offline RL and online fine-tuning.

1172 In summary, we tuned the common hyperparameters for $\text{f1oq}(\text{Def.})$ and **FQL** the same amount on
 1173 the default task for each environment (following [Park et al. \(2025c\)](#)). For $\text{f1oq}(\text{Best})$, we additionally
 1174 tuned the f1oq specific hyper-parameters K and κ on the default task.

1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188

1189

Table 8: Environment-wise BC-Coefficient (α) for FQL and flop (Online Fine-Tuning).

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

Environment (5 tasks each)	α (FQL), α (flop)
antmaze-large	10, 10
antmaze-giant	10, 10
hmmaze-medium	80, 30
hmmaze-large	40, 20
antsoccer-arena	30, 30
cube-single	300, 300
cube-double	300, 300
scene-play	300, 300
puzzle-3x3	1000, 1000
puzzle-4x4	1000, 1000

1205

1206

Table 9: Environment-wise Initial Sample Range ($\frac{u-l}{Q_{\max}-Q_{\min}}$) and Flow Steps (K) for flop (Best) (Offline RL).

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

Environment (5 tasks each)	$(\frac{u-l}{Q_{\max}-Q_{\min}}, K)$
antmaze-large	(0.1, 8)
antmaze-giant	(0.1, 4)
hmmaze-medium	(0.1, 8)
hmmaze-large	(0.1, 8)
antsoccer-arena	(0.1, 8)
cube-single	(0.1, 8)
cube-double	(0.1, 8)
scene-play	(0.1, 8)
puzzle-3x3	(0.1, 8)
puzzle-4x4	(0.25, 8)

1218

Table 10: Environment-wise Initial Sample Range ($\frac{u-l}{Q_{\max}-Q_{\min}}$) and Flow Steps (K) for flop (Online FT).

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

A.8 FLOW VISUALIZATIONS

We visualize the evolution of the learned flow critic during training on `cube-double` in Figure 17, with $\kappa = 0.1$. Because raw Q-values can have large magnitudes, directly plotting them makes it difficult to assess the curvature of the learned flow. Instead, we plot advantage values, defined as the gap between the predicted Q-value obtained by integrating for k flow steps at various noise samples $z_i(0)$, namely $\psi(k, z_i(k) | s, a)$ for $i \in [5], k \in [1, \dots, K]$, and the expected value of that state-action pair after K steps, scaled linearly to k steps. Put simply, this advantage quantifies how far the intermediate estimate $\psi(k, z_i(k) | s, a)$ deviates from the “straight line” path between the initial noise sample $z_i(0)$ and the final Q-value. We find that these deviations are consistently non-zero and vary substantially across the integration process. In many cases, they exhibit a characteristic pattern of overshooting followed by correction: larger deviations early on that diminish as integration

Figure 17: *Visualizing the evolution of the trajectories of the flow critic during training.*Figure 18: **OGBench** (Park et al., 2025a) domains. These tasks include high-dimensional state and action spaces, sparse rewards, stochasticity, as well as hierarchical structure.

proceeds. These dynamics provide direct evidence that the learned flows follow curved rather than linear trajectories. We also visualize the final Q-value output $z(1)$ as a function of the input $z(0)$ in Figure 17 (bottom) and find that the final $z(1)$ depends non-linearly on the initial noise value.

A.9 ENVIRONMENT VISUALIZATIONS

We visualize OGBench tasks in Figure 18.

A.10 WALL CLOCK RUN-TIME

We report the wall clock run-times for FQL and `floq` in Table 11.

Table 11: Total wall-clock runtime (in 10^3 seconds) for FQL and `floq` with varying numbers of flow integration steps across four representative environments. Reported numbers correspond to 2M training steps.

Environment	FQL	<code>floq</code> (Flow Steps)				
		1	2	4	8	16
HM-Maze Large	14	24	28	35	50	79
HM-Maze Medium	12	19	21	23	30	47
Cube-Double	10	15	16	17	19	26
Antmaze-Giant	10	20	24	30	45	74

1296
1297

A.11 VARIANCE OF FLOW Q VALUE SAMPLES

1298
1299
1300
1301
1302

To assess how much the predicted Q-values vary for a fixed (s, a) when sampling different initial noise vectors z , we explicitly tracked the variance of the flow-matched Q-value samples during training. As shown in Figure 19, the variance decreases steadily over the course of training and eventually converges to a small value, consistent with the theoretical intent of representing a Dirac delta distribution.

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316

Figure 19: **Variance of Flow Q Value Samples.** The variance decreases steadily over the course of training, consistent with the theoretical intent of representing a Dirac distribution.

1317
1318
1319
1320
1321A.12 UNDERSTANDING THE PERFORMANCE DEGRADATION AT LARGE K ON
ANTMAZE-GIANT (FIGURE 6)1322
1323
1324
1325
1326

Observe from Figure 6 that we observe a degradation at large K not just for floq but also for the monolithic ResNet approach. This makes us believe that the degradation in critic performance is largely not specific to floq but also applicable to a ResNet. Diagnostic experiments suggest that a degradation with larger K stems from overfitting to very high capacity targets for both the ResNet and floq architecture.

1327
1328
1329
1330
1331
1332
1333
1334
1335

For example, the best performing configuration on Antmaze-Giant ($K = 4$, see Figure 6) exhibits a higher TD error than the $K = 8$ or $K = 16$ settings (see Figure 20), whose lower TD errors coincides with worse control performance. This aligns with the view that excessively small TD error often indicates overfitting than better value estimation. In support of this, when we add a small amount of noise (uniformly sampled in $[-0.5, 0.5]$) to the TD target for the $K = 16$ critic, success rate increases by 7 – 10 percent and the TD-error also increases to a healthier regime (see Figure 21). Taken together, these results point to a shared underlying cause: very high K increases the critic capacity in a way that encourages overfitting to sharp targets, and moderate slack or noise improves the robustness needed for strong downstream performance.

1336
1337
1338

A.13 EFFECT OF SIZE OF DISTILLED CRITIC

1339
1340
1341

A natural question is whether the capacity of the distilled critic must scale with the number of flow integration steps K . Since larger K produces a more expressive flow critic, an under-parameterized distilled critic may be unable to represent it faithfully, potentially degrading policy performance.

1342
1343
1344
1345

To study this, we performed a controlled experiment on the HMMAZE-LARGE task, evaluating a full cross-product of: (i) distilled critic depth: a 2-layer vs. 4-layer MLP (default), and (ii) number of flow steps: $K \in \{4, 8\}$. For all runs, the flow critic is trained via flow matching as usual, and the distilled critic is trained to regress onto the flow critic’s Q-value (computed with K integration steps).

1346
1347
1348
1349

Table 12 summarizes the results. We observe that increasing the depth of the distilled critic from two to four layers consistently improves performance. Moreover, the gap between the 2-layer and 4-layer variants widens substantially for $K = 8$. This indicates that using a small distilled critic effectively “bottlenecks” the expressivity of the flow critic when K is large, confirming that distillation capacity must be sufficient to preserve the benefits of larger-flow-step training.

1363 Figure 20: **TD-Error v/s Flow-Steps.** The best performing configuration on Antmaze-Giant ($K = 4$, see
1364 Figure 6) exhibits a higher TD error than the $K = 8$ or $K = 16$ settings, whose lower TD errors coincide
1365 with worse control performance (see Figure 6). This aligns with the view that excessively small TD error often
1366 indicates overfitting than better value estimation.

1380 Figure 21: **Effect of Target Noise on Success Rate And TD-Error (Antmaze-Giant, $K = 16$).** Effect of
1381 target noise magnitude on (a) the change in success rate and (b) the TD error during training. We see that small
1382 amounts of target noise (magnitude ≈ 0.5) improves performance by 7 – 10 percent and also increases TD-error
1383 to a healthier regime. However, too much target noise degrades performance, as expected.

1384 Table 12: **Effect of distilled-critic capacity for different flow-step on HMMAZE-LARGE.**

1385 A shallow (2-layer) distilled critic performs worse than a 4-layer critic, especially for larger K ,
1386 suggesting that insufficient capacity limits the distilled critic’s ability to represent the more expressive
1387 Q-function produced by higher flow-step integration.

Distilled Critic	4 Flow Steps	8 Flow Steps
2-layer MLP	20 ± 4	26 ± 3
4-layer MLP	24 ± 4	52 ± 8

A.14 DISCUSSION, CONCLUSION, AND FUTURE WORK

This work introduced `floq`, a flow-matching approach to training critics that scales Q-function capacity through iterative integration and dense supervision, achieving state-of-the-art offline RL results and online fine-tuning results. Future directions include understanding how to set integration steps, exploiting `floq`’s cascaded family of critics for efficiency, and combining sequential test-time scaling with ensembles. Theoretically, it is important to study how curved flows enable error correction when learning Q-values for TD-learning.