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ABSTRACT

A hallmark of modern generative models is their reliance on training objectives
that construct the target output iteratively, with dense supervision provided at
intermediate steps, e.g., teacher forcing the next token in language models or
step-by-step denoising in diffusion models. Such objectives allow models to
capture complex functions in a broadly generalizable way. Motivated by this
observation, we study the benefits of iterative computation for temporal difference
(TD) methods in reinforcement learning (RL). Typically they represent value
functions in a monolithic fashion, without iterative compute. We introduce £ 1oqg
(flow-matching Q-functions), an approach that parameterizes the Q-function using a
velocity field and trains it using techniques from flow-matching. This velocity field
underneath the flow is trained using a TD-learning objective, which bootstraps from
Q-values produced by a target velocity field, computed by running multiple steps
of numerical integration. Crucially, £1oq allows for more fine-grained control and
scaling of the Q-function capacity than monolithic architectures, by appropriately
setting the number of integration steps. Across a suite of challenging offline RL
benchmarks and online fine-tuning tasks, £1oqg improves performance by nearly
1.8x. flogq scales capacity far better than standard TD-learning architectures,

highlighting the potential of iterative computation for value learning.

1 INTRODUCTION

A key principle in building effective models in
various areas of machine learning is the use of
iterative computation: producing complex out-
put functions by composing a sequence of sim-
pler operations. E.g., language models based
on transformers (Vaswani et al., 2017) can gen-
erate coherent text by predicting the next to-
ken or by composing atomic reasoning strate-
gies (Gandhi et al., 2025). Similarly, diffu-
sion and flow-matching models (Ho et al., 2020;
Sohl-Dickstein et al., 2015; Lipman et al., 2023;
Albergo & Vanden-Eijnden, 2023) synthesize
images by progressively denoising small per-
turbations. Effective results from these models
suggests that iterative computation is a powerful
tool for modeling complex functions with deep
networks, by scaling compute appropriately.

Motivated by these results, in this paper, we ask:
can iterative computation also improve value
estimation in reinforcement learning (RL)?
Specifically, we are interested in improving the
estimation of the Q-value function. While Q-
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Figure 1: £loq architecture. We model the Q-
function via a velocity field of a flow-matching model.
Over multiple calls, this velocity field converts a ran-
domly sampled input z(0) into a sample from the Dirac-
delta distribution centered at the mean Q-value. We build
a flow-matching loss for training. Doing this enables us
to scale computation by running numerical integration,
with multiple calls to the velocity field. To train £1oq,
we utilize a categorical representation of input z; (Fare-
brother et al., 2024) and a Fourier representation of ¢.

functions map state-action inputs to a scalar value, they are known to be highly complex and difficult
to fit accurately (e.g., (Dong et al., 2020)). Standard temporal-difference (TD) learning used to train
Q-functions struggles to leverage capacity of deep networks (Kumar et al., 2021; 2022; Bjorck et al.,
2021; Lyle et al., 2022; Gulcehre et al., 2022), often resulting in poor generalization. These problems
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are further exacerbated in the offline RL problem setting (Levine et al., 2020; Kumar et al., 2019),
where we must learn entirely from static datasets. This motivates exploring architectures that spend
compute iteratively to estimate value functions, potentially yielding better Q-values and policies.

A natural starting point for using iterative compute in value-based RL is to utilize a ResNet (He et al.,
2016) Q-function, where stacking more residual blocks provides a way to run iterative computation.
Recent work has obtained modest gains with ResNets (Kumar et al., 2023a;b; Farebrother et al.,
2024; Nauman et al., 2024), but these methods need normalization and regularizers to enable stable
training (Bjorck et al., 2021; Nauman et al., 2024; Lee et al., 2024; Kumar et al., 2023a). Despite
improvements, these approaches lack one ingredient that makes iterative computation effective in
transformers or diffusion models: supervision at every step of the iterative process. Just as next-
token prediction supervises each generated token and diffusion supervises each denoising step, we
hypothesize that stepwise loss supervision applied to TD learning might lead to improvements.

With this observation, to effectively leverage iterative computation with dense supervision, we design
a novel architecture for parameterizing Q-functions. Instead of using a single monolithic network,
we represent the Q-function as a velocity field over a scalar value (Figure 1). Our approach, f1oqg
(flow-matching Q-functions) samples a scalar uniformly distributed noise and maps it to the Q-value
by numerically integrating the predictions of the velocity field. We train the velocity with a linear
flow-matching objective (Albergo & Vanden-Eijnden, 2023; Lipman et al., 2023), supervised to
match the evolving TD-targets. At each step, we minimize the deviation between the current Q-value
estimate and the corresponding TD-target. We introduce several design choices that stabilize training
and help the architecture scale capacity effectively. These include appropriately setting the support of
initial noise, using a categorical representation to handle non-stationary inputs and a Fourier time
embedding to allow the velocity predictions to vary meaningfully across integration steps (Figure 2).

We use £1og to represent the Q-function for a number of complex RL (Levine et al., 2020; Kumar
et al., 2019) tasks from the OGBench (Park et al., 2025a) benchmark, previously studied by Park
et al. (2025d). In aggregate, we find that £1oqg outperforms offline RL algorithms that represent Q-
functions using a monolithic network by nearly 1.8 x. £1oq is superior even when these approaches
are provided with more parameters, and more complex and higher capacity architectures. £1oq also
outperforms existing methods when running online fine-tuning after offline RL pre-training. We
also show that increasing the number of flow-matching steps results in better downstream policy
performance. Allocating the same capacity via Q-network ensembles or ResNets performs worse.

2 RELATED WORK

Expressive generative models in RL. The most typical use of conventional generative models
in RL has been to represent the policy, with several adoptions of diffusion policies (Wang et al.;
Hansen-Estruch et al., 2023; Yang et al., 2023; Bansal et al., 2023; Li et al., 2024; Ren et al., 2024),
flow-based policies (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Park et al., 2025d), and
sequence policies (Janner et al., 2021; Lee et al., 2022; Yamagata et al., 2023). This shift is motivated
by evidence that policy learning is often a significant bottleneck in offline RL (Kostrikov et al.; Park
et al., 2024). In parallel, policy-agnostic frameworks such as PA-RL (Mark et al., 2024) decouple
algorithmic progress from specific architectural choices, enabling the use of diffusion, flows, or
transformers interchangeably. Complementarily, we do not focus on policy expressivity and instead
aim to utilize more expressive Q-functions, and opt to study £1oqg on top of FQL for simplicity.

Scaling Q-functions. Efforts to scale Q-functions in RL have taken multiple directions with new
training objectives such as classification losses (Kumar et al., 2023a; Farebrother et al., 2024; Nauman
etal., 2025; Seo et al., 2025), architectures (He et al., 2016; Kumar et al., 2023b; Chebotar et al., 2023;
Obando-Ceron et al., 2024), and regularization strategies (Kumar et al., 2021; Lyle et al., 2021; Kumar
et al., 2022; Nauman et al., 2024; Bhatt et al., 2024),. Previous work has also attempted to develop
scaling laws for TD learning (Rybkin et al., 2025; Fu et al., 2025) and showing that alternatives to TD
can scale to deeper architectures (Wang et al., 2025). Despite these advances, a clear recipe for scaling
value-based RL with TD-learning has yet to emerge. Our work demonstrates that compute-efficient
scaling can be realized not simply by increasing depth or width, but by introducing dense intermediate
supervision through multiple integration steps of the Q-function. £1oq introduces a novel axis of
scaling, allowing for compute scaling through additional integration steps rather than depth or width.

Scaling inference compute. A complementary line of work studies how more inference-time compute
can be traded for performance. Classical MPC-style planners coupled with learned dynamics models
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such as PETS (Chua et al., 2018), MPPI (Williams et al., 2017), and PDDM (Nagabandi et al.,
2018) naturally allow scaling. In offline RL, MBOP (Argenson & Dulac-Arnold, 2020) explicitly
adopts planning with a learned model, a behavior prior, and a terminal value to extend the effective
horizon. Generative world models enable similar test-time scaling by planning inside the learned
model (Janner et al., 2021; 2022). Similarly, performance of MCTS-style methods improves with
more simulation (Schrittwieser et al., 2020; Hubert et al., 2021; Danihelka et al., 2022; Ye et al.,
2021). Across all methods listed in this paragraph, the general pattern is that increasing test-time
budget (i.e. simulations, horizon, candidate trajectories) improves returns up to the limit set by model
bias and value estimation error. However, none of these works use more test-time compute to better
estimate a value function. Our results show that £1oqg can not only use more integration steps at
inference time to amplify the “capacity” of the Q-function, but also that doing so during training
helps us learn better Q-functions in the first place. We are the first to show that using more integration
steps is a viable and effective path to scaling compute for critic networks.

3 PRELIMINARUES AND NOTATION

The goal in RL is to learn the optimal policy for an MDP M = (S, A, P,r,p,7). S,.A denote
the state and action spaces. P(s’|s,a) and r(s,a) are the dynamics and reward functions. p(s)
denotes the initial state distribution. v € (0,1) denotes the discount factor. Formally, the goal
is to learn a policy 7 : § — A that maximizes cumulative discounted value function, denoted
by V7(s) = ﬁ i Bayn(s) (Y7 (se,a¢)|s0 = s]. The Q-function of a policy 7 is defined as
Q7 (s,a) = ﬁ >t Eaymn(s) (V7 (5, a1)|50 = 5,00 = a], and we use QF to denote the estimate of
the Q-function of a policy 7 as obtained via a neural net with parameters 6. Value-based RL methods
train a Q-network by minimizing the temporal difference (TD) error:

L(0) = Es 0,0, | (7(5:0) +9Q(s', @) = Qo(s,0))°] (3.1

where D is the offline dataset, Q is the target Q-network, s denotes a state, and a’ is an action from
policy 7(-|s) that aims to maximize Qg (s, a). Offline RL methods are discussed in Appendix A.2.

4 r1roQ: TRAINING Q-FUNCTIONS WITH FLOW-MATCHING

In this section, we introduce the our proposed approach, £1oqg (flow-matching Q-functions), which
leverages iterative computation with dense supervision to train Q-functions. To do so, we address
the two central questions needed to make £1oqg work: (a) how to handle moving target values in
the training loss for a flow-based Q-function and (b) how to do effective flow-matching over scalar
Q-values without collapse for learning. Flow-matching preliminaries are discussed in Appendix A.2.

4.1 rF1rLoo PARAMETERIZATION

In contrast to standard deep Q-networks that map state-action pairs to scalar values, £1oq parameter-
izes a time-dependent, state-action-conditioned velocity field vy (¢, z | s, a) over a one-dimensional
latent input z € R. At ¢ = 0, this input z is sampled from the uniform distribution Unif [I, u], where
[ and u are scalars that define the range of initial sample noise used for training. The velocity field
transforms the initial sample z into a distribution over the Q-value. We will train £1oqg such that
the learned distribution of Q-values match a Dirac-Delta around the groundtruth Q-function, i.e.,
Yo(1, 2|s,a) ~ dgr(s,a) att = 1. We can obtain the Q-value sample by numerically integrating the
ODE using the Euler method. One instantiation is shown below. Vj < K:

oli/i,2 | 5,0) =2+ % Yy vo (.00 (7Y, 2 | 5,0)

S,(I) 5 Q(S,G,Z) = ¢0(17z | S,CL) (41)

An example illustration of this process is shown in Figure 1. This iterative process enables us to
dynamically adjust the Q-function by varying the number of integration steps K, by controlling the
number of evaluations of the velocity field vy, and thereby the “depth” of the model. Finally, we
remark that although Equation 4.1 may appear similar to performing averaging like an ensemble,
it is fundamentally different: the inputs passed to the velocity field vg at each step ¢ depend on its
own outputs from the previous step ¢ — 1. This recursive dependence introduces a form of iterative
computation that is absent in conventional ensembles, that perform computation in parallel. As
we demonstrate in our experiments (Section 5), this formulation enjoys greater benefits of scale
than simply ensembling independent neural networks without iterative computation. In practice, the
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velocity field vy (?/K, -|s, a) can be conditioned on the various representations of the intermediate
Q-values ¥y (i~1/K, -|s, a) to improve the effectiveness of learning. We opt to use a categorical
representation of 109 when passing it as input to the velocity network. We discuss this in Section 4.3.

4.2 TRAINING LOSS FOR THE FL0Q ARCHITECTURE

With this parameterization in place, the next step is to design a training loss for the velocity field.
Building upon TD-learning and flow-matching methods, a natural starting point is to iteratively
train the velocity field using a loss that resembles linear flow-matching (Equation A.2), but with
targets obtained via Bellman bootstrapping. This is akin to TD-flows (Farebrother et al., 2025) and
~v-models (Janner et al., 2020) that train a generative dynamics model with TD-bootstrapped targets.
To do so, we introduce a target velocity field ¥y (¢, z | s, a), parameterized as a stale moving average
of the main velocity field vy, similar to target networks in standard value-based RL. Given a transition
(s,a,r,s"), we first sample an action a’ ~ 7(- | s’) from the current policy at the next state s’, and
compute target Q-value samples 1;(1, 2" | s’, a’) by integrating the target flow, starting from some
z' (via Euler integration) to obtain the predicted Q-value sample, 15(1, 2’ | s’,a’).

We then average these predicted Q-value samples v;(1, 2’ | s’, a’) for several values of the initial
noise z’ to compute an estimate of the target expected Q-value Q;(s’, a’). The bootstrapped TD-
target is given by: y(s, a) = r(s,a) + yL >y (1, 2] | ' a’), where (s, a) denotes the reward
estimate for transition (note that this is distinct from distributional RL). We use this mean Q-target
to train the Q-value at state-action pair (s, a) by regressing to the target y(s,a) via a linear flow-
matching loss. Concretely, given a ¢t ~ Unif|0, 1], we construct an interpolant between noise z
sampled at the initial step and the target Q-value y, z(t) = (1—1t)-z+t-y(s, a), and train the velocity
at this interpolant to match the displacement from z(0) to y via flow-matching (Equation A.2):

(y(s,a) = 2)

vg(t, z(t) | s,a) — 10

Efloq(a) = Ez,t [

2
] . 4.2)

2

4.3 PREVENTING FLOW COLLAPSE: HOW TO MAKE Fr.0og WORK WELL?

So far, we have introduced a conceptual recipe for parameterizing and training a Q-function critic
via flow matching. However, a naive instantiation of this idea performed no better than a standard
monolithic Q-function in our initial experiments. This performance is the result of the inability of the
network to meaningfully condition on the interpolant z(¢), leading the flow model to often collapse
to a monolithic Q-network (Figure 2). Interestingly, we find that this problem can is a result of two
peculiarities associated with applying flow-matching to TD: training with constantly evolving targets
and running the flow on a scalar Q-values. We describe our approach for handling these pathologies,
and to do so, we first answer: what constitutes a “healthy” £1oq velocity field? Then we introduce
two crucial modifications to the £ 1oq architecture that enable learning healthy f1oqg networks.

When is £loq effective? Unlike traditional applications of flows, £1oq applies them to scalar
Q-values. How does flow matching on a scalar work? Consider the trajectory traced by the flow
during inference, as it evolves from initial noise (f = 0) to the Q-value estimate produced by the
network (¢t = 1) (Figure 2; left). If this trajectory is a straight line, the velocity field vg(z(t),t)
does not need to depend on ¢ and predicting a constant velocity proportional to the target Q-value is
sufficient. In this case, flow matching provides no additional capacity beyond a monolithic Q-network.
In contrast, if the trajectory is curved, the velocity field must utilize the interpolant z(¢) and time ¢ to
predict customized velocities and be able to integrate to an accurate Q-value estimate at ¢ = 1. Thus,
even though training uses a simple linear flow-matching loss, extra capacity emerges only when the
learned flows produce (slightly) curved trajectories. Here, iterative computation amplifies model
capacity, allowing £1oq to outperform monolithic Q-networks. Note that overly curved flows are
also problematic as they amplify errors in the integration process itself. Therefore, we want to attain
an intermediate sweet spot in regards to the straightness of the traversals (see Figure 12).

Design choice 1: Distribution of the initial noise sample. As shown in prior works (Lipman et al.,
2023; Liu et al., 2023), rescaling the source noise leaves the target distribution unchanged, but it
alters the curvature of the transport trajectories. Interestingly, this effect seems to be particularly
pronounced when applying flow-matching to scalar TD-learning (see Figure 12 in experiments). As
such, we find that that setting the bounds [ and  for the distribution of the initial noise, Unif [I, u]
greatly affects the performance of £1oqg. We hypothesize that two aspects are important: (a) how
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Figure 2: Illustrating the role of our design choices. Left: When the width of the interval [, u] is small, and
the overlap between this interval and the range of target Q-values we hope to see is minimal, we would expect
to see more straight flow traversals, that might be independent of interpolant z. However, with wider intervals
[, u], the flow traversal would depend on z, and hence span a curved path when running numerical integration
during inference. Right: Illustrating how we transform an input interpolant z into a categorical representation
(top) and converting time ¢ into a Fourier-basis embedding (bottom).

close the target Q-values during training are to the chosen interval [I, ], and (b) the width of the
interval u — [. If the width w — [ is too small, then the interpolants z(¢) span only a very limited
range of values. When we then run (imperfect) TD-loss training on these interpolants, the network
parameterizing the velocity field receives little meaningful variation in z(t) to associate changes
in target values with. As a result, the model fails to exploit z(¢) effectively and degenerates into
behaving like a standard monolithic Q-function. Likewise, if the interval [I, u] is very disjoint from
the range of target Q-values during training, then all interpolants z(t¢) are forced to predict large
velocities pointing in the general direction of the target Q-value. This reduces the need to learn
calibrated velocity predictions conditioned on z(¢) and time ¢. We show this in Figure 2, left.

Thus, we propose to choose [ and « using a simple heuristic. We set u = @Qax (=0 for most of our
tasks). We then choose | > @i, to maximize the interval width w — [ while yielding stable learning
curves and TD-error values comparable to a monolithic network. Here @i, and Q,ax denote the
minimal and maximal possible Q-value achievable on the task. Thus, the interval [I, u] is likely to
overlap well with the target Q-values the velocity field must predict during training. We remark that
this heuristic relies on the assumption that over the course of learning, Q-value predictions will evolve
from near-zero values to the target value. Since standard network initializations already produce
values near zero, this assumption is not limiting and helps cover the target Q-value range we see.

Design choice 2: Representing interpolant inputs to the velocity network. The second challenge
arises because the magnitudes of the scalar interpolant z(t) evolve during training. While standard
TD-learning naturally handles non-stationary outputs (Q-values growing from near-zero random
initialization), this is usually manageable with best practices such as activation normalization (Nauman
et al., 2024). In contrast, £1oqg must cope with non-stationarity at the input, since the interpolant z(t)
is fed into the velocity flow. As training progresses, its magnitude grows, leading to large gradients
and activations in the network. To address this, we adopt a categorical representation of input z(t)
(output is still scalar like baselines), inspired by the HL-Gauss encoding of Farebrother et al. (2024),
which prevents z(¢)’s magnitude from skewing activations. Concretely, we add Gaussian noise with
standard deviation o, then convert the resulting PDF N (2(t), 02) into a categorical histogram over N
bins spanning the expected Q-value range. In contrast to Farebrother et al. (2024), we use a larger o,
such that roughly 80% of bins receive non-zero mass at initialization, encouraging broader coverage.
Finally, we also utilized a Fourier basis representation of the time variable ¢, provided as input to the
velocity network vg (¢, z(t)). This is illustrated in Figure 2 (right). We show in our experiments than
doing so helps substantially by encouraging the network to meaningfully utilize this time.

Summary: f1log architecture and training

f1oqg parameterizes the Q-function via a learned velocity field, trained with a linear flow-
matching loss against the target Q-value (Eq.4.2). To scale capacity, we sample initial noise
Unif([l, u] broadly to overlap with target Q-values. The interpolant is encoded categorically,
and the input ¢ to vy is Fourier-encoded. See Algorithm1 for details.
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Table 1: Offline RL results (all tasks). £1og achieves competitive or superior performance compared to
prior approaches. “Hard” environments refers to the set of environments where the FQL approach attains below
50% performance, averaged over the 5 tasks. £1oq is especially more performant on these hard environments
over prior comparisons, where its performance (with best configuration) is around 1.8 x of FQL. We don’t report
DSRL (Wagenmaker et al., 2025) here as this prior work does not run on the exhaustive set of tasks (see Table 2
for these). A comparison on just the default tasks reveals £1oqg outperforms DSRL by > 2x.

Gaussian Policy Flow Policy Flow Q-function (Ours)
Env. (5 tasks each) BC ReBRAC SORL FQL (1M) FQL(2M) ‘floq (Def.) flog (Best)
antmaze-large 11 +1 81 +5 89 +2 79 +3 83 +5 91 45 91 +5
antmaze-giant 0 +o 26 +8 9 +6 22 +19 27 +23 36 +21 51 +12
hmmaze-medium 241 22 48 64 +4 57 +5 69 +20 82 +10 82 +10
hmmaze-large 1 +o0 2 +1 5 42 9 +6 16 +9 28 19 28 19
antsoccer-arena 1 +o0 0 +o 69 +2 60 +2 61 +10 65 +12 65 +12
cube-single 5 +1 91 +2 97 +1 96 +1 94 +5 98 +3 98 +3
cube-double 2 +1 12 +1 25 +3 29 +2 25 +6 47 +15 47 +15
scene 5 +1 41 +3 57 +2 56 +2 57 +4 58 16 58 +6
puzzle-3x3 2 +0 21 +1 — 30 1 29 +5 37 +7 37 +7
puzzle-4x4 0 +o 14 +1 — 4 17 +2 9 +3 21 45 28 +6
Avg Score (All Envs.) 3 31 — 46 47 56 59
Avg Score (Hard Envs.) 1 15 — 21 21 34 38

5 EXPERIMENTAL EVALUATION

The goal of our experiments is to evaluate the efficacy of £1oq in improving offline RL and online
fine-tuning. To this end, we compare f1oq to state-of-the-art methods, and answer the following
questions: (1) Does f£1oqg improve performance when compared to using similar-sized networks on
benchmark tasks? and (2) How does the use of iterative computation via £1oqg compare with the use
of “parallel” computation of a neural network ensemble and “sequential” iterative computation driven
by ResNets of comparable size? We then run several experiments to understand the behavior of £1og
critics. Furthermore, we run a variety of ablation studies to understand the design choices that drive
the efficient use of iterative computation, including the roles of a) tuning the width of initial noise
sample, b) categorical representations of the interpolant input, and ¢) Fourier-basis time embeddings.

5.1 MAIN OFFLINE RL RESULTS

Offline RL tasks and datasets. Following evaluation protocols from recent work in offline RL (Park
et al., 2025d; Wagenmaker et al., 2025; Espinosa-Dice et al., 2025), we use the OGBench task
suite (Park et al., 2025a) as our main evaluation benchmark (see Figure 16). OGBench provides
a number of diverse, challenging tasks across robotic locomotion and manipulation, where these
tasks are generally more challenging than standard D4RL tasks (Fu et al., 2020), which have been
saturated as of 2024 (Tarasov et al., 2023; Rafailov et al., 2024; Park et al., 2024). While OGBench
was originally designed for benchmarking offline goal-conditioned RL, we use its reward-based
single-task variants (“-singletask” from Park et al. (2025d)). We employ 5 locomotion and
5 manipulation environments where each environment provides 5 tasks, totaling to 50 state-based
OGBench tasks. Some tasks are more challenging and longer-horizon (e.g., marked in the table).

Comparisons and evaluation protocol. In addition to a f1oq critic, our experiments use flow-
matching policies. Thus, flow-Q learning (FQL) (Park et al., 2025d), which utilizes a flow-matching
policy with a monolithic Q-network, is our main comparison. FQL reports results with 1M training
steps; we additionally re-run FQL for 2M steps and report both results. We run £1oqg with a default
set of hyperparameters across tasks, but on the more challenging humanoidmaze-large and
antmaze—giant tasks we found a larger batch size of 512 to be more effective, which we use for
both FQL and f1og. Beyond FQL, we compare against three recent SOTA offline RL algorithms, all
of which rely on monolithic Q-functions: (i) ReBRAC (Tarasov et al., 2023), the strongest-performing
method with a monolithic Q-network and a Gaussian policy; (ii) DSRL (Wagenmaker et al., 2025)
that adapts a diffusion-based behavior cloning policy by performing RL over its latent noise space,
improving over FQL; and (iii) SORL (Espinosa-Dice et al., 2025) that leverages shortcut flow models
to improve upon FQL. Note that none of them utilize a flow-matching Q-function, but do innovate
across various properties of policy training. Comparing to the strongest methods that innovate on the
policy allows us to evaluate the importance of a flow-matching Q-function.

floqg configuration. We run floq in two configurations. The “default” configuration utilizes
the same hyperparameters across tasks, whereas the “best” configuration uses environment-specific
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Figure 3: Learning curves for online fine-tuning of £1oqg and FQL. f1og not only provides a stronger
initialization from offline RL training but also maintains its advantage throughout online fine-tuning on the
hardest tasks, leading to faster adaptation, and higher final performance. The shaded area denotes offline RL.
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Figure 4: Effect of integration steps on £log. Performance of £1oq with varying flow steps, compared
against a monolithic Q-function (FQL). More flow steps generally improve performance, but too many steps
can lead to diminishing or negative returns (e.g., antmaze-giant). That said, in all configurations, f1oqg
outperforms FQL, and utilizing a moderately large number of flow steps is important.

hyperparameters that still are fixed across all tasks in that environment, to get a sense of the upper
bound with f1oqg. Even the default configuration of £1loqg substantially outperforms all prior
methods. The default configuration utilizes X' = 8 flow steps and sets the width of u — [ to be
KX (Qmax—@Qmin ), where k£ = 0.1. The best configuration tunes the number of flow steps K € {4, 8}
and x € {0.1,0.25} per environment (not per task). For a fair comparison with FQL, we use a 4-layer
flow critic in all environments, except in the cube (single and double) environments where we employ
a smaller 2-layer flow critic because we saw training instabilities with 4-layer critics.

Empirical results. Observe in Table 1 that £1oqg outperforms prior methods, including FQL, on
average across all 50 tasks, evaluated over 3 seeds for each task. Also note that £1oqg improves
over FQL most on the harder environments, where FQL attains performance below 50% success
rate (antmaze-giant, hmmaze-large, cube-double, puzzle-3x3, and puzzle-4x4). For a statistically
rigorous evaluation, we adopt techniques from Agarwal et al. (2021) and plot various statistics of
the comparisons between £ 1oqg and FQL: 1) median and IQM scores in Figure 8, where we do not
observe any overlap between the confidence intervals; 2) performance profile and P(X > Y') statistic
in Figure 9, which are both strictly in favor of £10q. Since DSRL (Wagenmaker et al., 2025) only
evaluates on the 10 default OGBench tasks, we also provide an additional results table on only the
default tasks in each environment in the appendix (Table 2). On the default tasks, we find that f1og
outperforms DSRL (20% for DSRL vs. 45% for £10q), improving by over 2X in success rate. These
results establish the efficacy of £1oqg. While £1oq uses an expected Q-value backup it still learns a
stochastic Q-function. Thus, we also compare £1oq to a representative distributional RL approach
(IQN (Dabney et al., 2017)) in Table 2, and we observe that £1oqg outperforms IQN.

5.2 MAIN ONLINE FINE-TUNING RESULTS

Next, we evaluate £1oq in the online RL fine-tuning setting. Here, we first train agents completely
offline for 1M steps and subsequently fine-tune them online for an additional 2M steps (Figure 3).
Across four challenging tasks (humanoidmaze-medium, humanoidmaze-large, antmaze-giant, and
antsoccer-arena), £ 1oqg provides a substantially stronger initialization, faster learning during on-
line interaction, and converges to higher final performance than FQL. Our complete set of results
(Figure 10), show a similar trend establishing the efficacy of £1oq in online fine-tuning.

5.3 UNDERSTANDING THE SCALING PROPERTIES AND BEHAVIOR OF FL0OQ

To better understand the benefits of iterative compute in £1oq, we analyze its scaling behavior and
compare it to different approaches. Specifically, we study: (i) how the number of flow-integration steps
controls the expressivity of £1og; (ii) how £1og’s iterative computation compares to monolithic
critic scaling; and (iii) the importance of applying supervision to the velocity field at every flow step.
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Figure 6: Comparison of £1oq with monolithic ensembles. We evaluate ensembles of size 1, 2, 4, and 8
of FQL critics. While larger ensembles do better, even an 8-critic ensemble falls short of £1oqg with the same
number of flow steps, showing that flow critics provide gains beyond parallel compute.

1) How does the performance of £loq depend on the number of integration steps for the flow?
We now study the effect of varying the number of integration steps for the flow in floqg. In
Figure 4, we report the success rate of £log with K € {1,2,4,8,16} flow steps, alongside a
monolithic Q-function (FQL) using the same architecture. Increasing the number of flow steps
generally improves the performance of £1oq, with notable gains on harder tasks, hmmaze-large
and antmaze-giant. Importantly, even with just 4 flow steps, £1oq already outperforms FQL,
and the gap widens further with additional steps. However, we also observe diminishing returns and,
in some cases, slight degradation beyond a moderate number of steps (e.g., on antmaze-giant,
where 8 and 16 steps perform worse than 4). We suspect that this degradation stems from overfitting
when the number of integration steps for computing the target is excessive, and often manifests as
unstable dynamics of TD-errors. A similar degradation is observed for ResNets in Figure 5.

3) How does £1loq compare against
increasing ‘“‘sequential” compute of
monolithic critics? One hypothesis >
is that £1oqg could be implementing
a similar iterative computation strat-
egy such as ResNet (He et al., 2016).
Unlike £1o0qg, ResNet does not utilize

dense supervision after each computa- = Foa (aayer i) 10 2o Mo atayer mip)
tion block. To test whether this mat- i% 16 2 A a5 16 )

ters, we compare flogq to a ResNet. FIOPs FLOPs
Specifically, we use the same 4-layer Figure 5: Comparison of £1ogwith ResNet critics on the hardest
flow critic from before and benchmark fasks: hmmaze-large, antmaze—giant. A 4-layer flow critic
it against the best-performing ResNets outperforms the best ResNets under a total budget on forward pass
with FQL. We ran a “cross-product” capacity, even after tuning over multiple residual configurations. For
over possible ResNet configurations 21y given value on the X-axis, we plot th.e performance of the best
with various block sizes (2,4, 8,16 performing ResNet configuration at that inference cost. For £1oq,

we run more integration steps at inference. Thus, our approach of
layers) and blocks (8, 4, 2). These con- training £ 1oqg does not simply add more depth.
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figurations represent all ways to build
a ResNet where 32 layers are involved in a forward pass.

We compare £ 1o to the best ResNet configuration under a given total inference compute budget (i.e.,
given an upper bound on number of feed-forward layers) on humanoidmaze-large and antmaze-giant,
since these hard environments should benefit from bigger ResNets. Observe in Figure 5, while ResNet
critics do improve over FQL, they still remain worse than £1og, even under matched inference
compute. Note that £1oq does not itself utilize a ResNet (though its velocity network could use
residual layers). Also note that while ResNet architectures instantiate a new set of parameters for
every new layer added into the network, £ 1ogq still only utilizes parameters from a single 4-layer MLP
for all values of inference capacity. This indicates that the gains of flow critics cannot be attributed
to adding more residual layers or more parameters, but rather the dense supervision provided by
supervising the velocity field at each step of iterative computation. It also indicates that flow critics
can perform better by scaling test-time compute without any extra parameters.

2) How does £log compare to scaling monolithic critics with ensembles? A common way to
expand Q-function capacity is through ensembling—averaging predictions from multiple critics for
backups and policy updates. This increases parallel rather than sequential compute, and is attractive if
effective. We trained ensembles of 1, 2, 4, and 8 critics (each the same size as the base FQL critic) and
compared them to £1oqg. As shown in Figure 6, ensembles yield only modest gains over FQL, and
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even 8 critics fail to match £1o0q. Notably, £10qg also uses 8 forward passes (via integration steps),
so the compute is comparable. Thus, the benefits of flow critics stem not from parallel averaging.

4) Does floq benefit from densely Train for all t + optimal integration vs. train at t =0 only
supervising the velocity at all time 100 g

steps? To answer this question, we e L S .
trained a variant of £1oqg where we
supervised the velocity field was su-
pervised only at £ = 0 and used only
a single flow step. Note that while
0

one might think that training £ 1oq at
t = O iS equivalent to baseline FQL, ) HM-Large Antmaze-Giant HM-Medium Cube-Double Overall

this is not the case. This is because Tigure 7: Comparing FQL, training £logonly at t = 0, and full
while we do use only oneintegration flog with supervision across all ¢ (and optimal integration steps k

. . chosen from {4, 8,16}). While ¢ = 0 training improves over FQL,
.Step’. the input to th.e velocity netwqu full £1oqg consistently achieves the best performance, showing the
is still a scalar noise. The velocity

. - . - benefits from training at all integration steps.
field is trained to predict the differ-
ence between the target Q-value and this input noise, for all different values of this noise. This
presents several “auxiliary tasks” for fitting the Q-function as opposed to just one in baseline FQL
(i.e., the noise is set to 0 only). We hypothesize training the network to fit these auxiliary tasks does
result in representational benefits, consistent with conventional wisdom in TD-learning that relates
auxiliary losses with representational benefits (Lyle et al., 2021).

2> o o
s & o

Performance

~N
o

As shown in Figure 7, this restricted variant substantially outperforms FQL but consistently under-
performs f£1og, which supervises velocity at all ¢ € [0, 1] and leverages multiple steps. On the
humanoidmaze-large environment, performance increases from 14% (FQL) to 49% with only ¢t = 0
training of £1ogq, but full £1oqg achieves 56%. On antmaze-giant, the gap is more pronounced, with
scores of 11%, 39%, and 86%, respectively. We observed similar patterns on hm-medium (58%,
94%, 98%) and cube-double (36%, 38%, 72%). We hypothesize that the gain from multiple steps on
hm-medium is smaller because it is a simpler task. Thus, while ¢ = 0 already brings notable benefits,
supervising at all £ and multi-step integration is important for unlocking the full potential of £1o04q.

Takeaways: properties and behavior of f1oqg

More integration steps are better, but performance saturates and can degrade at very high
values. £1oqg outperforms approaches for scaling parallel compute or sequential compute
for monolithic Q-functions. £1oqg outperforms monolithic Q-functions even with just one
integration step, though multiple integration steps are required for best performance.

5.4 ABLATION STUDIES FOR FLOQ

Finally, in Appendix A.4, we present experiments ablating various design choices and hyperparame-
ters in £1oqg. Our goal is to evaluate the sensitivity of £1oq to these choices and prescribe thumb
rules for tuning them. Concretely, the design choices we ablate in this section include: a) the range
[1, u] that provides the support for the initial noise sample z(0), b) the approach for embedding “time”
of the flow step ¢ and ¢) the approach for embedding the interpolant z(¢). We present our results for
a) here and for b), ¢) in Appendix A.4, but the main findings for all are summarized below.

Takeaways: ablation studies for f1oqg

1) Utilizing an HL-Gauss embedding for z(t) is crucial. Generally, the larger the coverage
over bins, the better the performance of £loqg (Figure 13). 2) Utilizing a Fourier-basis
embedding of time is critical for meaningfully conditioning on it (Figure 11). 3) A moderate
width of the initial noise distribution improves flow curvature, and performs best (Figure 12).

Discussion, conclusion, and future work. This work introduced f£1oq, a flow-matching approach
to training critics that scales Q-function capacity through iterative integration and dense supervision,
achieving state-of-the-art offline RL results and online fine-tuning results. Future directions include
understanding how to set integration steps, exploiting £ 1 oq’s cascaded family of critics for efficiency,
and combining sequential test-time scaling with ensembles. Theoretically, it is important to study
how curved flows enable error correction when learning Q-values for TD-learning.
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A APPENDICES

A.1 DISCUSSION AND PERSPECTIVES ON FUTURE WORK

In this paper, we presented £1oq, an approach for training critics in RL using flow-matching. f1og
formulates value learning as transforming noise into the value function via integration of a learned
velocity field. This formulation enables scaling Q-function capacity by utilizing more compute
during the process of integration to compute the Q-function. As a result of utilizing a flow-matching
objective for training, £1oq utilizes dense supervision at every step of the integration process. We
describe some important design choices to train flow-matching critics to make meaningful use of
integration steps. Through our experiments, we show that £1oq attains state-of-the-art results on a
suite of commonly-used offline RL tasks, and outperforms other ways of expanding capacity of a
Q-function (e.g., via a ResNet or monolithic Q-function ensemble). We also show the necessity of
learning curved flow traversals to make effective use of capacity and utilizing the design choices we
prescribe in this work.

Future work. We believe £1o0qg presents an exciting approach to scale Q-function capacity. Thus,
there are a number of both theoretical and empirical open questions. From an empirical standpoint,
it is important to understand how to appropriately set the number of integration steps as excessive
steps may degrade Q-function quality. This degradation, however, is not localized to just flows but
also to ResNets (Figure 5), indicating that this is perhaps a bigger issue with TD-learning. Another
interesting direction is to build new methods and workflows for using Q-functions that rely on the
property that £1oqg inherently represents a “cascaded” family of critics with different capacities—all
within one network. Can this property be used for tuning network size upon deployment, cross-
validation of model size, or improving efficiency of policy extraction? Answering this question
would be interesting for future work. Finally, £1oq also provides one possibility for sequential or
“depth”-based test-time scaling for value functions. Studying how this sort of sequential scaling can
be combined with parallel scaling (i.e., ensembles) and horizon reduction techniques (Park et al.,
2025b) would be interesting as well.

From a theoretical standpoint, quantifying iterative computation properties of £1oqg would be
impactful: in principle, curved flow traversals should enable the critic network to spend more test-
time compute (i.e., integration steps) to perform equivalents of “error correction” and “backtracking”
from large language models (LLMs) (Guo et al., 2025), but now in the space of scalar, continuous
values to better approximate the target Q-function. We believe formalizing this aspect would not
only be impactful for value-based RL, but could also shed light on methods to use test-time compute
in flow/diffusion models in other domains. Second, our results show that there are substantial
representation learning benefits of £1o0qg. We believe that studying the mechanisms and differences
between feature learning induced by £1oqg compared to standard TD-learning with regression (Kumar
et al., 2022) or classification (Farebrother et al., 2024) would be interesting for future value-based
methods. £1oqg also provides a rich family of auxiliary tasks to train a critic, which provides another
angle to explain and study its properties. All of these are impactful directions to study in future work.

A.2 BACKGROUND AND PRELIMINARIES

We operate in the offline RL (Levine et al., 2020) problem setting, where the replay buffer P
corresponds to a static dataset of transitions D = {(s, a,r, s’)} collected using a behavior policy 7.
Our goal in this setting is to train a good policy using the offline dataset D alone. The Q-network, Qg
is typically parameterized by a deep network (e.g., an MLP).

Offline RL algorithms. Offline RL methods aim to learn a policy that maximizes reward while
penalizing deviation from the behavior policy 73, in order to mitigate the challenge of distributional
shift. This objective has been instantiated in various ways, including behavioral regularization (Wu
et al., 2019; Fujimoto & Gu, 2021; Tarasov et al., 2023; Park et al., 2025d; Kumar et al., 2019),
pessimistic value function regularization (Kumar et al., 2020), implicit policy constraints (Peters
& Schaal, 2007; Peng et al., 2019; Wang et al., 2020; Mark et al., 2024), and in-sample maximiza-
tion (Kostrikov et al.; Xu et al., 2023; Garg et al., 2023). While our proposed £ 1oq architecture for
Q-function parameterization is agnostic to the choice of offline RL algorithm, we instantiate it on top
of FQL (Park et al., 2025d) that utilizes a flow-matching policy to better model multimodal action
distributions. FQL trains the Q-function using the standard temporal-difference (TD) error from soft
actor-critic (SAC) (Haarnoja et al., 2018), shown in Equation 3.1, and optimizes the policy to stay
close to a behavior policy estimated via flow-matching.
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Flow-matching. Flow-matching (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden,
2023) is an approach for training generative models by integrating deterministic ordinary differential
equations (ODESs), which also makes use of iterative computation. Flow-matching is often posed as a
deterministic alternative to denoising diffusion models (Ho et al., 2020; Song et al., 2021) that utilize
stochastic differential equations (SDEs) for generating complex outputs. Concretely, given a target
data distribution p(x) over z € R, flow-matching attempts to fit a time-dependent velocity field,
vg(t, ) : [0,1] x R? — R? such that the solution 1) (¢, x) to the ODE:

Sa(t,@) = vo(t,bat,3)), 10(0,2(0)) = 2(0) AD

transforms samples x(0) from a simple base distribution (e.g., standard Gaussian or uniform, as
we consider in this work) into samples from p(x) at time ¢ = 1. While there are several methods
to train a velocity flow, perhaps the simplest and most widely-utilized approach is linear flow
matching (Lipman et al., 2023), which trains the velocity flow to predict the gradient obtained along
the linear interpolating path between «(0) and x(1) at all intermediate points. Concretely, define
x(0) ~ po(x) be a sample from a simple initial distribution, (1) ~ p(x) be a sample from the target
distribution, and ¢ ~ Unif([0, 1]), we define interpolated points as x(t) = (1 —t) - (0) + ¢ - (1),
and train the velocity field to minimize the squared error from the slope of the straight line connecting
2(0) and x(1) as follows:

(2(1) — =(0))

vo(t, x(t)) — 0

2
] . (A.2)

min Eg0),2(1),¢ [
0 2

After training the velocity field vg (¢, z(t)), flow-matching runs numerical integration to compute
1 (t, 2(0)). This numerical integration procedure makes several calls to compute the velocity field.
Each subsequent call runs the velocity field, vg (¢, (¢)) on input x(¢) generated as output from the
previous call, representing a form of an iterative computation process.

A.3 ADDITIONAL RESULTS FOR FL0OQ

In this section, we provide some additional and complete results supplementing the ones in main
paper.

1. Figure 8 presents median and IQM scores and Figure 9 presents performance profiles and
P(X >Y) statistic comparing £1oqg with FQL on all the 50 tasks studied in the paper.

2. Figure 10 presents results for online fine-tuning on all 10 default tasks.

Median 1QM Mean Optimality Gap
flog(Best) 1 1 1 1
flog(Def. ) 1 1 1 1
max (FQL(1M), FQL(2M)) I ] mm ]
FQL (2M) 1 1 1 1
FQL (1M)  mms | | |

030 0.45 0.60 0.40 0.48 0.56 064 0.45 0.50 0.55 0.60 0.45 0.50 0.55
Success Rate
Figure 8: Comparison of £1oq against the baseline FQL across median, interquartile mean (IQM), mean and
optimality gap, following Agarwal et al. (2021). Results show that £1oq consistently outperform FQL across
all evaluation criteria with no confidence interval overlap in all cases, meaning that the gains from f£1loq are
significant.
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Figure 9: Comparison of £1oq against baseline FQL, following Agarwal et al. (2021). Left: Probability of
Improvement P(X > Y') showing that £1oqg consistently outperform FQL across OGBench tasks. Right:
Performance profiles illustrating that £1oqg achieves higher scores across a larger fraction of runs compared to

FQL.
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Figure 10: Learning curves for online fine-tuning of £1oq and FQL across all default tasks. f1loqg not
only provides a stronger initialization from offline RL training but also maintains its advantage through online
fine-tuning, leading to faster adaptation and higher final success rates. The shaded gray area denotes offline RL

training.
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Table 2: Offline RL results (Default Tasks). £1oq achieves competitive or superior performance compared
to the baselines. “Hard” tasks refers to the set of default tasks where the FQL baseline score is below 50%
performance. f£loq is especially more performant on these hard tasks, more than doubling FQL’s baseline
performance.

Gaussian Policy Diff. Policy Flow Policy Flow Q-function (Ours)

Env (Default Task) BC ReBRAC DSRL SORL IQN FQL (1M) FQL(2M) ‘floq (Def.) flog (Best)
antmaze-large 0 +o 91 +10 40 +29 93 +2 86 +1 80 +s 85 +4 94 14 94 14
antmaze-giant 0 +o 27 +22 0 +o 1246 56 11 16 14 220 70 s 86 +a
hmmaze-medium 1+o0 16 +o 34 +20 67 +4 27 +17 19 +12 58 +25 98 11 98 11
hmmaze-large 0 +o 2 +1 10 12 20 +9 22 45 8 45 14 +10 52 48 52 18
antsoccer-arena 10 0 o 28 +o 54 5 44 +3 39 +6 49 11 49 +10 49 +10
cube-single 341 92 44 93 +14 99 10 98 +1 96 +1 94 15 99 12 99 12
cube-double 0 o0 T3 53 +14 3348 BT +2 36 +6 29 +8 72 x5 72 15
scene 141 50 +13 88 +o 89 19 80 x4 76 +o 78 7 83 =10 83 10
puzzle-3x3 141 2 +1 0 +o - 2013 16 +5 14 +4 17 +6 17 +6
puzzle-4x4 0 +o 10 +3 37 13 - 16 +1 11 43 542 12 44 19 45
Average Score (All Tasks) 1 30 38 - 45 40 44 64 66
Average Score (Hard Tasks) 0 8 21 - 22 20 21 45 50

Table 3: FOL ResNet performace on humanoidmaze—large and antmaze—giant. (m,n) indicates
n blocks each of depth m. For each fixed number of FLOPs m X n, the best-performing architecture per
environment is in bold.

FLOPs (m X n)| HM-Large |Antmaze-Giant

4 35 +19(2,2) 13 +12(2,2)
14 +10(4,1) 11 +16(4,1)
8 46 + 11 (2,4) 31 +13(2,4)
21 £11(4,2) 22 +£9(4,2)
22 +11(8,1) 32 +14(8,1)
16 41 +7(2,8) 32 +13(2,8)
34 +8(4,4) 17 +£8(4,4)
26 +£9(8,2) 46 +11(8,2)
24 +22 (16,1) 0=+o0(l16,1)
32 25 +£10(2,16) 23 +£11(2,16)
28 +13 (4,8) 18 + 14 (4,8)
38 +£19(8,4) 30 +£9(8,4)
0+0(16,2) 0+0(16,2)

A.4 ADDITIONAL ABLATION STUDIES FOR FLOQ

1) Ablations for the width of the
[[,u] interval. We study the effect
of varying the variance of the initial
noise sample used in critic flow match-
ing by expanding the width u—1 of the
interval that the initial noise is sam-
pled from. We present the results in
Figure 12. On the left, we observe
that the performance across several
tasks typically peaks at intermediate
variance values (note that the black

Performance
P
5 8

N
S

[ Scalar Time Embed
B Fourier Time Embed (Ours)

Time Embedding Ablation

L

HM-Medium Cube-Double

il

HM-Large

Antmaze-Giant Overall

Figure 11: Time embedding. Replacing the Fourier-basis embed-
ding of time with a scalar embedding results in significantly worse

performance, highlighting the importance of Fourier features for

circles marking the setting that yields Tmar 4
conditioning on time.

the best success rate for each environ-
ment). This means that choosing an interval [I, u] with a non-trivial width is important. As discussed
in Section 4.3, Figure 12 (right) shows that the curvature of the learned flow increases as the width
of the interval grows. We measure curvature by computing the magnitude of the derivative of the
velocity field as a function of time using finite differences. Concretely, we measured the expected
value of |dve(t,2(%))/at| across state-action pairs in the offline dataset, averaged through training.

Putting results in Figure 12 together, we note that some degree of curvature is necessary for best
performance, which is expected because otherwise, the flow collapses to behave like a monolithic
critic. That said, excessive curvature makes the flow numerically harder to integrate, ultimately
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Noise Range vs. Success Rate Noise Range vs. Flow Curvature
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40 5

20
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= N/(Qmax = Qmin) (u = N/(Qmax = Qmin)
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—#— Antmaze-Giant = Cube-Double

Figure 12: Effect of variance of the initial noise sampling distribution on flog. Left: Success rates
across environments as a function of the initial noise scaling factor (black circles denote the best setting per
environment). Right: Flow curvature in HM-Medium increases with noise variance, highlighting the tradeoff
between too little curvature (flow collapses to monolithic critic) and too much curvature (difficult numerical
integration).

z(t) Embedding Comparison Performance vs. HL-Gauss o
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HL-Gauss z(t) Embedding o

Figure 13: Comparison of different approaches for representing the input interpolant in £loq. Left:
performance on two representative tasks where that HL-Gauss embeddings outperform scalar and normalized
scalar embeddings by reducing sensitivity to non-stationary inputs. Right: Ablation over HL-Gauss embedding
scale o for the scalar flow interpolant input, showing that larger values provide broader bin coverage and stronger
performance. Default o = 16.0.

degrading performance. Based on these observations, we recommend practitioners use k := (u —
1)/ (Qmax — Qmin) in the range of {0.1,0.25} as reliable starting points when tuning £1oq critic.

2) Ablations for the time embedding. In the default configuration of £1oqg, we used a 64-dimensional
Fourier embedding for the time ¢, provided as input to the velocity field (also see Dasari et. al Dasari
et al. (2024) for a recent work training a diffusion policy also using Fourier embedding of ). As
shown in Figure 11, replacing this Fourier embedding with a simple scalar embedding of ¢ leads
to a significant drop in performance on several tasks. This highlights the importance of the Fourier
embedding, which allow the velocity function to be meaningfully conditioned on ¢, enabling it to
produce distinct behaviors at different integration times. Without such rich embeddings, the critic
struggles to leverage temporal information effectively, and again collapse to the monolithic architec-
ture. We therefore recommend that practitioners carefully utilize high-dimensional embeddings of
time when using £1oq.

3) How does the approach of embedding the interpolant z(t) affect £loq performance? We
observe that the approach of embedding z(¢) (Design Choice 2 in Section 4.3) plays a significant
role in the performance of £1o0qg. As shown in Figure 13, HL-Gauss embeddings of z(t) provide
a significant advantage over scalar or normalized scalar embeddings. In particular, across several
tasks we found HL-Gauss embeddings (with a sufficiently large value of o) to be essential for
achieving strong performance, and Figure 13 (left) highlights two representative tasks in this category.
HL-Gauss embeddings with broader bin coverage helps reduce the sensitivity of the network to
non-stationary inputs, thereby stabilizing training and improving performance. While normalizing
z(t) helps on some tasks over using the raw value, we found that HL-Gauss embeddings generally
gave the best performance. In our implementation of the velocity network, we use HL-Gauss
embeddings with a default scale of o = 16.0. Figure 13 (right) shows an ablation over smaller values
of 0 € {1.0,2.0,4.0,8.0}. Observe that larger values of o consistently yield stronger performance.
Intuitively, increasing o leads to broader bin coverage for the HL-Gauss distribution (see Figure 2,
right), which helps mitigate the non-stationarity of the range of z(¢) over the course of training with
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Figure 14: Effect of the number of integration steps used for policy extraction on £1oq performance. Even
though computing the target values for TD-learning utilizes a fixed number of 8 integration steps, in this ablation
we utilize a smaller number of steps for extracting the policy. Performance is more robust to the number of
integration steps used for policy extraction, suggesting that as long as target integration is sufficiently accurate,
few steps suffice for policy distillation.

TD-learning. These results highlight that selecting sufficiently large embedding scales is important
for stabilizing learning and achieving strong downstream performance.

4) How does the number of critic flow steps used for the policy update affect the performance of
flog? We next investigate the effect of varying the number of integration steps used for calculating
the Q-value for the policy update. Since we build our algorithm on top of FQL, we implement the
policy update by first distilling the values produced by the flow critic into a one-step, monolithic
Q-function. Then the policy extraction procedure (akin to SAC+BC) maximize the values of this
distilled critic subject to a behavioral cloning loss. Note that this approach essentially decouples the
number of integration steps used to compute the TD-target and the number of integration steps for
policy extraction. As shown in Figure 14, as long as the number of integration steps for computing the
target value are fixed (to 8 in this case), the performance of £1o0q is relatively robust to the number
of integration steps used for the policy update. Contrast this with the sensitivity to the number of
integration steps used for computing the TD-target observed in Figure 4. The results indicate that

once the target integration steps are sufficiently large (here, 8), the policy can be effectively distilled
even with a small number of integration steps.
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A.5 HYPERPARAMETERS AND ADDITIONAL DETAILS

In this section, we present some details for £1oqg that we could not cover in the main paper, along
with a pseudocode and a complete list of hyperparameters used by our approach.

Algorithm 1 Critic Flow Matching (£10q) in conjunction with FQL (Park et al., 2025d)

Given: offline dataset of transitions D,

Models: a flow critic, Q};LOW

policy fus (s, -).

(s, a,z), adistilled critic, Q4""*(s, a, 2), a flow policy 74(:|s), one-step

function Q5% (s, a, 2) > Flow Q-function, introduced by f1og
fort=0,1,..., K —1do
| z(t+1) <« 2z(t) + Y& - v (YK, 2(t) | s,a) > Euler method, time ¢ is normalized

return z(K)

function 74 (als) > Flow policy from FQL, though policy training is orthogonal to £1og
fort=0,1,...,M — 1do

Sample z(0) ~ N(0, I4)

x(t+1) « @)+ Ym - wy (Y, z(t) | s) > Euler method, time t is normalized
return (M)

while not converged do
Sample batch {(s, a,r,s')} ~ D
FLOW

> Train vector field vy in flow critic Qg

a’ <+ Sample(ms(-|s")) > Sample actions from policy, typically the one-step policy for FQL
2(0) ~ Unif [I,u], 2"(0)1:m ~ Unif [I,u] > Sample initial noise for computing the Q-value
z(1) 714y -Ym- 37 QFOV(s,d, 2(0)) > Use noise z;(0) for computing TD-target
z(t)+— (1—1t)-2(0)+¢t-2(1) > Compute interpolant z(¢) for random ¢
Update ¢ to minimize E [(vy (¢, 2(t) | 5,a) — (2(1) — 2(0)))?] > Linear flow-matching loss

> Train distill critic Q%“‘i” for policy extraction
Update ¢ to minimize E, g, [(Q3™ (s, a) — Q5% (s, a, 2(0)))?]

> Train a BC flow policy 74, analogous to FQL

x(0) ~ N (0, Ia)

z(1) +a

t ~ Unif ([0, 1])

z(t)+ (1—-1t)-20)+t-x(1) > For FQL policy, compute policy interpolant
Update ¢ to minimize E [||w, (¢, z(t)]s) — (x(1) — (0)) |||3] > Flow-matching loss for policy

> Train one-step policy ji., to maximize the learned distill critic while staying close to BC flow policy
xr ~ N(O, Id)

a™ — po(s,x)

 Update w to minimize E [—Q3"™' (s,a™) + alla™ — w4 (s, 2)|3]

return One-step policy

Efficient policy extraction using a distilled critic. Because f1oqg parameterizes a flow-matching
critic, extracting reparameterized policy gradients requires computing gradients of the full integration
process with respect to the input action, which is a costly operation especially when using many
integration steps. To reduce this overhead, we adapt a technique introduced by Park et al. (2025d) for
flow-matching policies and apply it to critics. Specifically, we train a distilled critic, Q*""' (s, a), to
approximate the predictions obtained by integrating the flow critic, QSOW (s, a, z). Policy extraction
is then performed directly on the distilled critic. Importantly, the distilled critic is not conditioned on
the noise z, since in practice we only use the mean prediction of the flow critic. This design allows
the distilled critic to implicitly capture that behavior while eliminating unnecessary conditioning. We
illustrate this idea in Algorithm 1.

Hyperparameters for offline RL results. Following Park et al. Park et al. (2025d), we tune the BC
coefficient o on the default-task of each environment and then fix this value for the remaining
tasks. For both FQL and £1oq, « is tuned over {arqr, — A, arqr, arqr + A}, where A = 100
for the puzzle, cube, and scene environments, and A = 10 for the ant and humanoid
environments. The baseline values arqy, are taken from Table 6 in Park et al. Park et al. (2025d),
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Table 4: Hyperparameters for £1oq. Differences from FQL are shown in light blue within brackets. Other
hyperparameters are kept to be the same as FQL.

Hyperparameter Value (floq)

Learning rate 0.0003

Optimizer Adam (Kingma & Ba, 2015 Kingma & Ba (2015))

Gradient steps 2M (Offline), IM + 2M (Online FT)

Minibatch size 256 (default), 512 for hm—large, antmaze—-giant

Flow @) Network MLP dims [512,512,512,512] (default), [512,512] for cube envs

Distill Q MLP dims [512,512,512,512] (not used in FQL)

Nonlinearity GELU (Hendrycks & Gimpel, 2016 Hendrycks & Gimpel (2016))

Target network smoothing coeff. 0.005

Discount factor 0.99 (default), 0.995 for antmaze—giant, humanoidmaze, antsoccer

Flow time sampling distribution Unif([0, 1])

Clipped double Q-learning False (default), True (antmaze—-giant) (+ antmaze-large in FQL)

BC coefficient « Tables 5, 6

Actor Flow steps 10

Critic Flow steps 8 (default), Table 7 for env-wise (not used in FQL)

Initial Sample Range 0.1 (default), Table 7 for env-wise (not used in FQL)

Number Of Initial Noise Samples 8 (not used in FQL)

Fourier Time Embed Dimension 64 (not used in FQL)

Table 5: Environment-wise BC-Coefficient (o) for FQL and £ 1oq (Offline RL).
Environment (5 tasks each) o (FQL), o (floq)

antmaze-large 10,10
antmaze-giant 10,10
hmmaze-medium 30,30
hmmaze-large 30,20
antsoccer—-arena 10,10
cube-single 300, 300
cube-double 300, 300
scene-play 300, 300
puzzle—-3x3 1000, 1000
puzzle—4x4 1000, 1000

and the final values for both methods are reported in Table 5. For f£1og, after tuning o with the
default configuration (KX = 8 flow steps and width (v — 1) = kK(Qmax — Qmin) With K = 0.1), we
tune K € {4,8} and k € {0.1,0.25} on the default-task of each environment. These values,
referred to as £1oqg(Best), are reported in Table 7. In all cases, for £1oqg, we utilize m = 8 samples
of initial noise to compute the target Q-value as discussed in Section 4.2.

Hyperparameters for online fine-tuning. Most hyperparameters (unless otherwise stated) remain
similar in online fine-tuning and offline RL pre-training. For both FQL and f1oq, « is tuned in the
range [10, 100] (step size 10) for the ant and humanoid environments, and in [100, 1000] (step
size 100) for the cube, scene, and puzzle environments. The selected « values are given in
Table 6.

For f£1ogq, after tuning « with the default configuration (K = 8, k = 0.1), we tune K € {4,8,16}
and k € {0.1,0.25} per environment. The chosen values are reported in Table 8.

Number of seeds. We ran 3 seeds for each configuration of both £1oqg and FQL on each task, for
both offline RL and online fine-tuning.

In summary, we tuned the common hyperparameters for £1og(Def.) and FQL the same amount on
the default task for each environment (following Park et al. (2025¢)). For £1og(Best), we additionally
tuned the £1oq specific hyper-parameters K and « on the default task.
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Table 6: Environment-wise BC-Coefficient («) for FQL and f1oqg (Online Fine-Tuning).

Environment (5 tasks each) «a (FQL),a (floqg)

antmaze-large
antmaze-giant
hmmaze-medium
hmmaze-large
antsoccer—-arena
cube-single
cube-double
scene-play
puzzle—-3x3
puzzle—-4x4

10,10
10, 10
80, 30
40, 20
30, 30

300, 300
300, 300
300, 300
1000, 1000
1000, 1000

Table 7: Environment-wise Initial Sample Range (5 —*
RL).

) and Flow Steps (K) for £1oqg (Best) (Offline

Environment (5 tasks each) (m K)
antmaze-large (0.1,8)
antmaze—-giant (0. 1,4)
hmmaze-medium (0.1,8)
hmmaze-large (0.1,8)
antsoccer-arena (0.1,8)
cube-single (0.1,8)
cube-double (0.1,8)
scene-play (0.1,8)
puzzle-3x3 (0.1,8)
puzzle-4x4 (0.25,8)

Table 8: Environment-wise Initial Sample Range (5

7Q) and Flow Steps (K) for £1oq (Online FT).

Environment (5 tasks each) (me”i:ézmin, K)
antmaze-large (0.1,8)
antmaze—-giant (0.1,4)
hmmaze-medium (0.1,8)
hmmaze-large (0.1,16)
antsoccer-arena (0.1,8)
cube-single (0.1,8)
cube-double (0.1,8)
scene-play (0.1,8)
puzzle-3x3 (0.1,8)
puzzle-4x4 (0.25,8)

A.6 FLOW VISUALIZATIONS

We visualize the evolution of the learned flow critic during training on cube-double in Figure 15,
with x = 0.1. Because raw Q-values can have large magnitudes, directly plotting them makes it
difficult to assess the curvature of the learned flow. Instead, we plot advantage values, defined as
the gap between the predicted Q-value obtained by integrating for k flow steps at various noise

samples z;(0), namely ¢ (k, z;(k) | s,a) fori € [5],,k € [1,

., K], and the expected value of that

state—action pair after K steps, scaled linearly to k steps. Put simply, this advantage quantifies how far
the intermediate estimate 1 (k, z;(k) | s, a) deviates from the “straight line” path between the initial
noise sample z;(0) and the final Q-value. We find that these deviations are consistently non-zero
and vary substantially across the integration process. In many cases, they exhibit a characteristic
pattern of overshooting followed by correction: larger deviations early on that diminish as integration
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Figure 15: Visualizing the evolution of the trajectories of the flow critic during training.

Figure 16: OGBench (Park et al., 2025a) domains. These tasks include high-dimensional state and action
spaces, sparse rewards, stochasticity, as well as hierarchical structure.

proceeds. These dynamics provide direct evidence that the learned flows follow curved rather than

linear trajectories. We also visualize the final Q-value output z(1) as a function of the input z(0) in
Figure 15 (bottom) and find that the final z(1) depends non-linearly on the initial noise value.

A.7 ENVIRONMENT VISUALIZATIONS

We visualize OGBench tasks in Figure 16.

A.8 WALL CLOCK RUN-TIME
We report the wall clock run-times for FQL and £1o0qg in Table 9.
Table 9: Total wall-clock runtime (in 10 seconds) for FQL and f1oq with varying numbers of

flow integration steps across four representative environments. Reported numbers correspond to 2M
training steps.

floqg (Flow Steps)
1 2 4 8 16

HM-Maze Large 14 24 28 35 50 79
HM-Maze Medium 12 19 21 23 30 47
Cube-Double 10 15 16 17 19 26
Antmaze-Giant 10 20 24 30 45 74

Environment FQL
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