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ABSTRACT

A hallmark of modern generative models is their reliance on training objectives
that construct the target output iteratively, with dense supervision provided at
intermediate steps, e.g., teacher forcing the next token in language models or
step-by-step denoising in diffusion models. Such objectives allow models to
capture complex functions in a broadly generalizable way. Motivated by this
observation, we study the benefits of iterative computation for temporal difference
(TD) methods in reinforcement learning (RL). Typically they represent value
functions in a monolithic fashion, without iterative compute. We introduce floq
(flow-matching Q-functions), an approach that parameterizes the Q-function using a
velocity field and trains it using techniques from flow-matching. This velocity field
underneath the flow is trained using a TD-learning objective, which bootstraps from
Q-values produced by a target velocity field, computed by running multiple steps
of numerical integration. Crucially, floq allows for more fine-grained control and
scaling of the Q-function capacity than monolithic architectures, by appropriately
setting the number of integration steps. Across a suite of challenging offline RL
benchmarks and online fine-tuning tasks, floq improves performance by nearly
1.8×. floq scales capacity far better than standard TD-learning architectures,
highlighting the potential of iterative computation for value learning.

1 INTRODUCTION
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Figure 1: floq architecture. We model the Q-
function via a velocity field of a flow-matching model.
Over multiple calls, this velocity field converts a ran-
domly sampled input z(0) into a sample from the Dirac-
delta distribution centered at the mean Q-value. We build
a flow-matching loss for training. Doing this enables us
to scale computation by running numerical integration,
with multiple calls to the velocity field. To train floq,
we utilize a categorical representation of input zt (Fare-
brother et al., 2024) and a Fourier representation of t.

A key principle in building effective models in
various areas of machine learning is the use of
iterative computation: producing complex out-
put functions by composing a sequence of sim-
pler operations. E.g., language models based
on transformers (Vaswani et al., 2017) can gen-
erate coherent text by predicting the next to-
ken or by composing atomic reasoning strate-
gies (Gandhi et al., 2025). Similarly, diffu-
sion and flow-matching models (Ho et al., 2020;
Sohl-Dickstein et al., 2015; Lipman et al., 2023;
Albergo & Vanden-Eijnden, 2023) synthesize
images by progressively denoising small per-
turbations. Effective results from these models
suggests that iterative computation is a powerful
tool for modeling complex functions with deep
networks, by scaling compute appropriately.

Motivated by these results, in this paper, we ask:
can iterative computation also improve value
estimation in reinforcement learning (RL)?
Specifically, we are interested in improving the
estimation of the Q-value function. While Q-
functions map state-action inputs to a scalar value, they are known to be highly complex and difficult
to fit accurately (e.g., (Dong et al., 2020)). Standard temporal-difference (TD) learning used to train
Q-functions struggles to leverage capacity of deep networks (Kumar et al., 2021; 2022; Bjorck et al.,
2021; Lyle et al., 2022; Gulcehre et al., 2022), often resulting in poor generalization. These problems
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are further exacerbated in the offline RL problem setting (Levine et al., 2020; Kumar et al., 2019),
where we must learn entirely from static datasets. This motivates exploring architectures that spend
compute iteratively to estimate value functions, potentially yielding better Q-values and policies.

A natural starting point for using iterative compute in value-based RL is to utilize a ResNet (He et al.,
2016) Q-function, where stacking more residual blocks provides a way to run iterative computation.
Recent work has obtained modest gains with ResNets (Kumar et al., 2023a;b; Farebrother et al.,
2024; Nauman et al., 2024), but these methods need normalization and regularizers to enable stable
training (Bjorck et al., 2021; Nauman et al., 2024; Lee et al., 2024; Kumar et al., 2023a). Despite
improvements, these approaches lack one ingredient that makes iterative computation effective in
transformers or diffusion models: supervision at every step of the iterative process. Just as next-
token prediction supervises each generated token and diffusion supervises each denoising step, we
hypothesize that stepwise loss supervision applied to TD learning might lead to improvements.

With this observation, to effectively leverage iterative computation with dense supervision, we design
a novel architecture for parameterizing Q-functions. Instead of using a single monolithic network,
we represent the Q-function as a velocity field over a scalar value (Figure 1). Our approach, floq
(flow-matching Q-functions) samples a scalar uniformly distributed noise and maps it to the Q-value
by numerically integrating the predictions of the velocity field. We train the velocity with a linear
flow-matching objective (Albergo & Vanden-Eijnden, 2023; Lipman et al., 2023), supervised to
match the evolving TD-targets. At each step, we minimize the deviation between the current Q-value
estimate and the corresponding TD-target. We introduce several design choices that stabilize training
and help the architecture scale capacity effectively. These include appropriately setting the support of
initial noise, using a categorical representation to handle non-stationary inputs and a Fourier time
embedding to allow the velocity predictions to vary meaningfully across integration steps (Figure 2).

We use floq to represent the Q-function for a number of complex RL (Levine et al., 2020; Kumar
et al., 2019) tasks from the OGBench (Park et al., 2025a) benchmark, previously studied by Park
et al. (2025d). In aggregate, we find that floq outperforms offline RL algorithms that represent Q-
functions using a monolithic network by nearly 1.8×. floq is superior even when these approaches
are provided with more parameters, and more complex and higher capacity architectures. floq also
outperforms existing methods when running online fine-tuning after offline RL pre-training. We
also show that increasing the number of flow-matching steps results in better downstream policy
performance. Allocating the same capacity via Q-network ensembles or ResNets performs worse.

2 RELATED WORK

Expressive generative models in RL. The most typical use of conventional generative models
in RL has been to represent the policy, with several adoptions of diffusion policies (Wang et al.;
Hansen-Estruch et al., 2023; Yang et al., 2023; Bansal et al., 2023; Li et al., 2024; Ren et al., 2024),
flow-based policies (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Park et al., 2025d), and
sequence policies (Janner et al., 2021; Lee et al., 2022; Yamagata et al., 2023). This shift is motivated
by evidence that policy learning is often a significant bottleneck in offline RL (Kostrikov et al.; Park
et al., 2024). In parallel, policy-agnostic frameworks such as PA-RL (Mark et al., 2024) decouple
algorithmic progress from specific architectural choices, enabling the use of diffusion, flows, or
transformers interchangeably. Complementarily, we do not focus on policy expressivity and instead
aim to utilize more expressive Q-functions, and opt to study floq on top of FQL for simplicity.

Scaling Q-functions. Efforts to scale Q-functions in RL have taken multiple directions with new
training objectives such as classification losses (Kumar et al., 2023a; Farebrother et al., 2024; Nauman
et al., 2025; Seo et al., 2025), architectures (He et al., 2016; Kumar et al., 2023b; Chebotar et al., 2023;
Obando-Ceron et al., 2024), and regularization strategies (Kumar et al., 2021; Lyle et al., 2021; Kumar
et al., 2022; Nauman et al., 2024; Bhatt et al., 2024),. Previous work has also attempted to develop
scaling laws for TD learning (Rybkin et al., 2025; Fu et al., 2025) and showing that alternatives to TD
can scale to deeper architectures (Wang et al., 2025). Despite these advances, a clear recipe for scaling
value-based RL with TD-learning has yet to emerge. Our work demonstrates that compute-efficient
scaling can be realized not simply by increasing depth or width, but by introducing dense intermediate
supervision through multiple integration steps of the Q-function. floq introduces a novel axis of
scaling, allowing for compute scaling through additional integration steps rather than depth or width.

Scaling inference compute. A complementary line of work studies how more inference-time compute
can be traded for performance. Classical MPC-style planners coupled with learned dynamics models
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such as PETS (Chua et al., 2018), MPPI (Williams et al., 2017), and PDDM (Nagabandi et al.,
2018) naturally allow scaling. In offline RL, MBOP (Argenson & Dulac-Arnold, 2020) explicitly
adopts planning with a learned model, a behavior prior, and a terminal value to extend the effective
horizon. Generative world models enable similar test-time scaling by planning inside the learned
model (Janner et al., 2021; 2022). Similarly, performance of MCTS-style methods improves with
more simulation (Schrittwieser et al., 2020; Hubert et al., 2021; Danihelka et al., 2022; Ye et al.,
2021). Across all methods listed in this paragraph, the general pattern is that increasing test-time
budget (i.e. simulations, horizon, candidate trajectories) improves returns up to the limit set by model
bias and value estimation error. However, none of these works use more test-time compute to better
estimate a value function. Our results show that floq can not only use more integration steps at
inference time to amplify the “capacity” of the Q-function, but also that doing so during training
helps us learn better Q-functions in the first place. We are the first to show that using more integration
steps is a viable and effective path to scaling compute for critic networks.

3 PRELIMINARIES AND NOTATION

The goal in RL is to learn the optimal policy π : S 7→ A for an MDP M = (S,A, P, r, ρ, γ) that max-
imizes cumulative discounted value function, denoted by V π(s) =

∑
t Eat∼π(st) [γtr(st, at)|s0 = s].

S,A denote the state and action spaces. P (s′|s, a) and r(s, a) are the dynamics and reward functions.
ρ(s) denotes the initial state distribution and γ ∈ (0, 1) denotes the discount factor. The Q-function
of a policy π is defined as Qπ(s, a) =

∑
t Eat∼π(st) [γtr(st, at)|s0 = s, a0 = a], and we use Qπθ to

denote the estimate of the Q-function of a policy π as obtained via a neural net with parameters θ.
Value-based RL methods train a Q-network by minimizing the temporal difference (TD) error:

L(θ) = E(s,a,s′)∼D,a′∼π(·|s′)

[(
r(s, a) + γQ̄(s′, a′)−Qθ(s, a)

)2]
, (3.1)

where D is the offline dataset, Q̄ is the target Q-network, s denotes a state, and a′ is an action from
policy π(·|s) that aims to maximize Qθ(s, a). Offline RL methods are discussed in Appendix A.2.

Flow-matching. Given a target data distribution p(x) over x ∈ Rd, flow-matching (Lipman
et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023) attempts to fit a time-dependent
velocity field, vθ(t,x) : [0, 1]× Rd → Rd such that the solution ψθ(t,x) to the ODE: d

dtψθ(t,x) =
vθ(t, ψθ(t,x)), ψθ(0,x(0)) = x(0) transforms samples x(0) from a simple base distribution (e.g.,
standard Gaussian or uniform, as we consider in this work) into samples from p(x) at time t = 1.
The most widely used approach is linear flow matching (Lipman et al., 2023), which trains the
velocity flow to predict the gradient obtained along the linear interpolating path between x(0) and
x(1) at all intermediate points. Concretely, define x(0) ∼ p0(x) be a sample from a simple initial
distribution, x(1) ∼ p(x) be a sample from the target distribution, and t ∼ Unif([0, 1]), we define
interpolated points as x(t) = (1− t) · x(0) + t · x(1), and train the velocity field to minimize the
squared error from the slope of the straight line connecting x(0) and x(1). After training the velocity
field vθ(t,x(t)), flow-matching runs numerical integration to compute ψθ(t,x(0)). This numerical
integration procedure makes several calls to compute the velocity field.

4 FLOQ : TRAINING Q-FUNCTIONS WITH FLOW-MATCHING

In this section, we introduce the our proposed approach, floq (flow-matching Q-functions), which
leverages iterative computation with dense supervision to train Q-functions. To do so, we address
the two central questions needed to make floq work: (a) how to handle moving target values in
the training loss for a flow-based Q-function and (b) how to do effective flow-matching over scalar
Q-values without collapse for learning. Flow-matching preliminaries are discussed in Appendix A.2.

4.1 FLOQ PARAMETERIZATION

In contrast to standard deep Q-networks that map state-action pairs to scalar values, floq parameter-
izes a time-dependent, state-action-conditioned velocity field vθ(t, z | s, a) over a one-dimensional
latent input z ∈ R. At t = 0, this input z is sampled from the uniform distribution Unif [l, u], where
l and u are scalars that define the range of initial sample noise used for training. The velocity field
transforms the initial sample z into a distribution over the Q-value. We will train floq such that
the learned distribution of Q-values match a Dirac-Delta around the groundtruth Q-function, i.e.,
ψθ(1, z|s, a) ∼ δQπ(s,a) at t = 1. We can obtain the Q-value sample by numerically integrating the
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ODE using the Euler method. One instantiation is shown below. ∀j ≤ K:

ψθ(j/K,z | s, a)=z+ 1
K

∑j
i=1 vθ

(
i
K , ψθ (

i−1/K,z | s, a)
∣∣∣s, a) , Q(s, a, z) := ψθ(1, z | s, a) (4.1)

An example illustration of this process is shown in Figure 1. This iterative process enables us to
dynamically adjust the Q-function by varying the number of integration steps K, by controlling the
number of evaluations of the velocity field vθ, and thereby the “depth” of the model. Finally, we
remark that although Equation 4.1 may appear similar to performing averaging like an ensemble,
it is fundamentally different: the inputs passed to the velocity field vθ at each step i depend on its
own outputs from the previous step i− 1. This recursive dependence introduces a form of iterative
computation that is absent in conventional ensembles, that perform computation in parallel. As
we demonstrate in our experiments (Section 5), this formulation enjoys greater benefits of scale
than simply ensembling independent neural networks without iterative computation. In practice, the
velocity field vθ(i/K, ·|s, a) can be conditioned on the various representations of the intermediate
Q-values ψθ(i−1/K, ·|s, a) to improve the effectiveness of learning. We opt to use a categorical
representation of ψθ when passing it as input to the velocity network. We discuss this in Section 4.3.

4.2 TRAINING LOSS FOR THE FLOQ ARCHITECTURE

With this parameterization in place, the next step is to design a training loss for the velocity field.
Building upon TD-learning and flow-matching methods, a natural starting point is to iteratively
train the velocity field using a loss that resembles linear flow-matching (Equation 4.2), but with
targets obtained via Bellman bootstrapping. This is akin to TD-flows (Farebrother et al., 2025) and
γ-models (Janner et al., 2020) that train a generative dynamics model with TD-bootstrapped targets.
To do so, we introduce a target velocity field ṽθ(t, z | s, a), parameterized as a stale moving average
of the main velocity field vθ, similar to target networks in standard value-based RL. Given a transition
(s, a, r, s′), we first sample an action a′ ∼ π(· | s′) from the current policy at the next state s’, and
compute target Q-value samples ψθ̃(1, z

′ | s′, a′) by integrating the target flow, starting from some
z′ (via Euler integration) to obtain the predicted Q-value sample, ψθ̃(1, z

′ | s′, a′).
We then average these predicted Q-value samples ψθ̃(1, z

′ | s′, a′) for several values of the initial
noise z′ to compute an estimate of the target expected Q-value Qθ̃(s

′, a′). The bootstrapped TD-
target is given by: y(s, a) = r(s, a) + γ 1

m

∑m
j=1 ψθ̃(1, z

′
j | s′, a′), where r(s, a) denotes the reward

estimate for transition (note that this is distinct from distributional RL). We use this mean Q-target
to train the Q-value at state-action pair (s, a) by regressing to the target y(s, a) via a linear flow-
matching loss. Concretely, given a t ∼ Unif[0, 1], we construct an interpolant between noise z
sampled at the initial step and the target Q-value y, z(t) = (1−t) ·z+t ·y(s, a), and train the velocity
at this interpolant to match the displacement from z(0) to y via flow-matching (Equation 4.2):

Lfloq(θ) = Ez,t

[∥∥∥∥vθ(t, z(t) | s, a)− (y(s, a)− z)

1− 0

∥∥∥∥2
2

]
. (4.2)

4.3 PREVENTING FLOW COLLAPSE: HOW TO MAKE FLOQ WORK WELL?

So far, we have introduced a conceptual recipe for parameterizing and training a Q-function critic
via flow matching. However, a naı̈ve instantiation of this idea performed no better than a standard
monolithic Q-function in our initial experiments. This performance is the result of the inability of the
network to meaningfully condition on the interpolant z(t), leading the flow model to often collapse
to a monolithic Q-network (Figure 2). Interestingly, we find that this problem can is a result of two
peculiarities associated with applying flow-matching to TD: training with constantly evolving targets
and running the flow on a scalar Q-values. We describe our approach for handling these pathologies,
and to do so, we first answer: what constitutes a “healthy” floq velocity field? Then we introduce
two crucial modifications to the floq architecture that enable learning healthy floq networks.

When is floq effective? Unlike traditional applications of flows, floq applies them to scalar
Q-values. How does flow matching on a scalar work? Consider the trajectory traced by the flow
during inference, as it evolves from initial noise (t = 0) to the Q-value estimate produced by the
network (t = 1) (Figure 2; left). If this trajectory is a straight line, the velocity field vθ(z(t), t)
does not need to depend on t and predicting a constant velocity proportional to the target Q-value is
sufficient. In this case, flow matching provides no additional capacity beyond a monolithic Q-network.
In contrast, if the trajectory is curved, the velocity field must utilize the interpolant z(t) and time t to

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Illustrating the role of our design choices. Left: When the width of the interval [l, u] is small, and
the overlap between this interval and the range of target Q-values we hope to see is minimal, we would expect
to see more straight flow traversals, that might be independent of interpolant z. However, with wider intervals
[l, u], the flow traversal would depend on z, and hence span a curved path when running numerical integration
during inference. Right: Illustrating how we transform an input interpolant z into a categorical representation
(top) and converting time t into a Fourier-basis embedding (bottom).

predict customized velocities and be able to integrate to an accurate Q-value estimate at t = 1. Thus,
even though training uses a simple linear flow-matching loss, extra capacity emerges only when the
learned flows produce (slightly) curved trajectories. Here, iterative computation amplifies model
capacity, allowing floq to outperform monolithic Q-networks. Note that overly curved flows are
also problematic as they amplify errors in the integration process itself. Therefore, we want to attain
an intermediate sweet spot in regards to the straightness of the traversals (see Figure 13).

Design choice 1: Distribution of the initial noise sample. As shown in prior works (Lipman et al.,
2023; Liu et al., 2023), rescaling the source noise leaves the target distribution unchanged, but it
alters the curvature of the transport trajectories. Interestingly, this effect seems to be particularly
pronounced when applying flow-matching to scalar TD-learning (see Figure 13 in experiments). As
such, we find that that setting the bounds l and u for the distribution of the initial noise, Unif [l, u]
greatly affects the performance of floq. We hypothesize that two aspects are important: (a) how
close the target Q-values during training are to the chosen interval [l, u], and (b) the width of the
interval u − l. If the width u − l is too small, then the interpolants z(t) span only a very limited
range of values. When we then run (imperfect) TD-loss training on these interpolants, the network
parameterizing the velocity field receives little meaningful variation in z(t) to associate changes
in target values with. As a result, the model fails to exploit z(t) effectively and degenerates into
behaving like a standard monolithic Q-function. Likewise, if the interval [l, u] is very disjoint from
the range of target Q-values during training, then all interpolants z(t) are forced to predict large
velocities pointing in the general direction of the target Q-value. This reduces the need to learn
calibrated velocity predictions conditioned on z(t) and time t. We show this in Figure 2, left.

Thus, we propose to choose l and u using a simple heuristic. We set u = Qmax (=0 for most of our
tasks). We then choose l ≥ Qmin to maximize the interval width u− l while yielding stable learning
curves and TD-error values comparable to a monolithic network. Here Qmin and Qmax denote the
minimal and maximal possible Q-value achievable on the task. Thus, the interval [l, u] is likely to
overlap well with the target Q-values the velocity field must predict during training. We remark that
this heuristic relies on the assumption that over the course of learning, Q-value predictions will evolve
from near-zero values to the target value. Since standard network initializations already produce
values near zero, this assumption is not limiting and helps cover the target Q-value range we see.

Design choice 2: Representing interpolant inputs to the velocity network. The second challenge
arises because the magnitudes of the scalar interpolant z(t) evolve during training. While standard
TD-learning naturally handles non-stationary outputs (Q-values growing from near-zero random
initialization), this is usually manageable with best practices such as activation normalization (Nauman
et al., 2024). In contrast, floq must cope with non-stationarity at the input, since the interpolant z(t)
is fed into the velocity flow. As training progresses, its magnitude grows, leading to large gradients
and activations in the network. To address this, we adopt a categorical representation of input z(t)
(output is still scalar like baselines), inspired by the HL-Gauss encoding of Farebrother et al. (2024),
which prevents z(t)’s magnitude from skewing activations. Concretely, we add Gaussian noise with
standard deviation σ, then convert the resulting PDF N (z(t), σ2) into a categorical histogram over N
bins spanning the expected Q-value range. In contrast to Farebrother et al. (2024), we use a larger σ,
such that roughly 80% of bins receive non-zero mass at initialization, encouraging broader coverage.
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Finally, we also utilized a Fourier basis representation of the time variable t, provided as input to the
velocity network vθ(t, z(t)). This is illustrated in Figure 2 (right). We show in our experiments than
doing so helps substantially by encouraging the network to meaningfully utilize this time.

Summary: floq architecture and training

floq parameterizes the Q-function via a learned velocity field, trained with a linear flow-
matching loss against the target Q-value (Eq.4.2). To scale capacity, we sample initial noise
Unif[l, u] broadly to overlap with target Q-values. The interpolant is encoded categorically,
and the input t to vθ is Fourier-encoded. See Algorithm1 for details.

Additional implementation details. We build on FQL, and use a similar approach for training
the policy. This way, we isolate the performance differences to our proposed flow-matching critic.
In addition, because floq parameterizes a flow-matching critic, extracting reparameterized policy
gradients requires computing gradients through the full integration process with respect to the input
action, which is costly. To alleviate this, we adapt a technique from Park et al. (2025d) for flow-
matching policies and apply it to critics. Specifically, we train a distilled critic, Qdistill

ψ (s, a), to
approximate the predictions obtained by integrating the flow critic, Qflow

θ (s, a,z). Policy extraction
is then performed directly on the distilled critic. We illustrate this idea in Algorithm 1.

5 EXPERIMENTAL EVALUATION

The goal of our experiments is to evaluate the efficacy of floq in improving offline RL and online
fine-tuning. To this end, we compare floq to state-of-the-art methods, and answer the following
questions: (1) Does floq improve performance when compared to using similar-sized networks on
benchmark tasks? and (2) How does the use of iterative computation via floq compare with the use
of “parallel” computation of a neural network ensemble and “sequential” iterative computation driven
by ResNets of comparable size? We then run several experiments to understand the behavior of floq
critics. Furthermore, we run a variety of ablation studies to understand the design choices that drive
the efficient use of iterative computation, including the roles of a) tuning the width of initial noise
sample, b) categorical representations of the interpolant input, and c) Fourier-basis time embeddings.

5.1 MAIN OFFLINE RL RESULTS

Offline RL tasks and datasets. Following evaluation protocols from recent work in offline RL (Park
et al., 2025d; Wagenmaker et al., 2025; Espinosa-Dice et al., 2025), we use the OGBench task
suite (Park et al., 2025a) as our main evaluation benchmark (see Figure 18). OGBench provides
a number of diverse, challenging tasks across robotic locomotion and manipulation, where these
tasks are generally more challenging than standard D4RL tasks (Fu et al., 2020), which have been
saturated as of 2024 (Tarasov et al., 2023; Rafailov et al., 2024; Park et al., 2024). While OGBench
was originally designed for benchmarking offline goal-conditioned RL, we use its reward-based
single-task variants (“-singletask” from Park et al. (2025d)). We employ 5 locomotion and
5 manipulation environments where each environment provides 5 tasks, totaling to 50 state-based
OGBench tasks. Some tasks are more challenging and longer-horizon (e.g., marked in the table).

Comparisons and evaluation protocol. In addition to a floq critic, our experiments use flow-
matching policies. Thus, flow-Q learning (FQL) (Park et al., 2025d), which utilizes a flow-matching
policy with a monolithic Q-network, is our main comparison. FQL reports results with 1M training
steps; we additionally re-run FQL for 2M steps and report both results. We run floq with a default
set of hyperparameters across tasks, but on the more challenging humanoidmaze-large and
antmaze-giant tasks we found a larger batch size of 512 to be more effective, which we use for
both FQL and floq. Beyond FQL, we compare against three recent SOTA offline RL algorithms, all
of which rely on monolithic Q-functions: (i) ReBRAC (Tarasov et al., 2023), the strongest-performing
method with a monolithic Q-network and a Gaussian policy; (ii) DSRL (Wagenmaker et al., 2025)
that adapts a diffusion-based behavior cloning policy by performing RL over its latent noise space,
improving over FQL; and (iii) SORL (Espinosa-Dice et al., 2025) that leverages shortcut flow models
to improve upon FQL. Note that none of them utilize a flow-matching Q-function, but do innovate
across various properties of policy training. Comparing to the strongest methods that innovate on the
policy allows us to evaluate the importance of a flow-matching Q-function.

floq configuration. We run floq in two configurations. The “default” configuration utilizes
the same hyperparameters across tasks, whereas the “best” configuration uses environment-specific
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Table 1: Offline RL results (all tasks). floq achieves competitive or superior performance compared to
prior approaches. “Hard” environments refers to the set of environments where the FQL approach attains below
50% performance, averaged over the 5 tasks. floq is especially more performant on these hard environments
over prior comparisons, where its performance (with best configuration) is around 1.8× of FQL. We don’t report
DSRL (Wagenmaker et al., 2025) here as this prior work does not run on the exhaustive set of tasks (see Table 2
for these). A comparison on just the default tasks reveals floq outperforms DSRL by > 2×.

Gaussian Policy Flow Policy Flow Q-function (Ours)

Env. (5 tasks each) BC ReBRAC SORL FQL (1M) FQL(2M) floq (Def.) floq (Best)

antmaze-large 11 ±1 81 ±5 89 ±2 79 ±3 83 ±5 91 ±5 91 ±5

antmaze-giant (Hard) 0 ±0 26 ±8 9 ±6 22 ±19 27 ±23 36 ±21 51 ±12

hmmaze-medium 2 ±1 22 ±8 64 ±4 57 ±5 69 ±20 82 ±10 82 ±10

hmmaze-large (Hard) 1 ±0 2 ±1 5 ±2 9 ±6 16 ±9 28 ±9 28 ±9

antsoccer-arena 1 ±0 0 ±0 69 ±2 60 ±2 61 ±10 65 ±12 65 ±12

cube-single 5 ±1 91 ±2 97 ±1 96 ±1 94 ±5 98 ±3 98 ±3

cube-double (Hard) 2 ±1 12 ±1 25 ±3 29 ±2 25 ±6 47 ±15 47 ±15

scene 5 ±1 41 ±3 57 ±2 56 ±2 57 ±4 58 ±6 58 ±6

puzzle-3x3 (Hard) 2 ±0 21 ±1 − ±− 30 ±1 29 ±5 37 ±7 37 ±7

puzzle-4x4 (Hard) 0 ±0 14 ±1 − ±− 17 ±2 9 ±3 21 ±5 28 ±6

Avg Score (All Envs.) 3 31 − 46 47 56 59
Avg Score (Hard Envs.) 1 15 − 21 21 34 38

0 1M 2M 3M
0

20

40

60

80

100
humanoidmaze-medium-navigate

0 1M 2M 3M

humanoidmaze-large-navigate

0 1M 2M 3M

antmaze-giant-navigate

0 1M 2M 3M

antsoccer-arena-navigate

Steps

Su
cc

es
s R

at
e

floq FQL

Figure 3: Learning curves for online fine-tuning of floq and FQL. floq not only provides a stronger
initialization from offline RL training but also maintains its advantage throughout online fine-tuning on the
hardest tasks, leading to faster adaptation, and higher final performance. The shaded area denotes offline RL.

hyperparameters that still are fixed across all tasks in that environment, to get a sense of the upper
bound with floq. Even the default configuration of floq substantially outperforms all prior
methods. The default configuration utilizes K = 8 flow steps and sets the width of u − l to be
κ×(Qmax−Qmin), where κ = 0.1. The best configuration tunes the number of flow stepsK ∈ {4, 8}
and κ ∈ {0.1, 0.25} per environment (not per task). For a fair comparison with FQL, we use a 4-layer
flow critic in all environments, except in the cube (single and double) environments where we employ
a smaller 2-layer flow critic because we saw training instabilities with 4-layer critics.

Empirical results. Observe in Table 1 that floq outperforms prior methods, including FQL, on
average across all 50 tasks, evaluated over 3 seeds for each task. Also note that floq improves
over FQL most on the harder environments, where FQL attains performance below 50% success
rate (antmaze-giant, hmmaze-large, cube-double, puzzle-3x3, and puzzle-4x4). For a statistically
rigorous evaluation, we adopt techniques from Agarwal et al. (2021) and plot various statistics of
the comparisons between floq and FQL: 1) median and IQM scores in Figure 8, where we do not
observe any overlap between the confidence intervals; 2) performance profile and P (X > Y ) statistic
in Figure 9, which are both strictly in favor of floq. Since DSRL (Wagenmaker et al., 2025) only
evaluates on the 10 default OGBench tasks, we also provide an additional results table on only the
default tasks in each environment in the appendix (Table 2). On the default tasks, we find that floq
outperforms DSRL (20% for DSRL vs. 45% for floq), improving by over 2× in success rate. These
results establish the efficacy of floq. While floq uses an expected Q-value backup it still learns a
stochastic Q-function. Thus, we also compare floq to a representative distributional RL approach
(IQN (Dabney et al., 2017)) in Table 2, and we observe that floq outperforms IQN.

5.2 MAIN ONLINE FINE-TUNING RESULTS

Next, we evaluate floq in the online RL fine-tuning setting. Here, we first train agents completely
offline for 1M steps and subsequently fine-tune them online for an additional 2M steps (Figure 3).
Across four challenging tasks (humanoidmaze-medium, humanoidmaze-large, antmaze-giant, and
antsoccer-arena), floq provides a substantially stronger initialization, faster learning during on-
line interaction, and converges to higher final performance than FQL. Our complete set of results
(Figure 10), show a similar trend establishing the efficacy of floq in online fine-tuning.
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Figure 4: Effect of integration steps on floq. Performance of floq with varying flow steps, compared
against a monolithic Q-function (FQL). More flow steps generally improve performance, but too many steps
can lead to diminishing or negative returns (e.g., antmaze-giant). That said, in all configurations, floq
outperforms FQL, and utilizing a moderately large number of flow steps is important.
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Figure 5: Comparison of floq with monolithic ensembles. We evaluate ensembles of size 1, 2, 4, and 8
of FQL critics. While larger ensembles do better, even an 8-critic ensemble falls short of floq with the same
number of flow steps, showing that flow critics provide gains beyond parallel compute.

5.3 UNDERSTANDING THE SCALING PROPERTIES AND BEHAVIOR OF FLOQ

To better understand the benefits of iterative compute in floq, we analyze its scaling behavior and
compare it to different approaches. Specifically, we study: (i) how the number of flow-integration steps
controls the expressivity of floq; (ii) how floq’s iterative computation compares to monolithic
critic scaling; and (iii) the importance of applying supervision to the velocity field at every flow step.

1) How does the performance of floq depend on the number of integration steps for the flow?
We now study the effect of varying the number of integration steps for the flow in floq. In
Figure 4, we report the success rate of floq with K ∈ {1, 2, 4, 8, 16} flow steps, alongside a
monolithic Q-function (FQL) using the same architecture. Increasing the number of flow steps
generally improves the performance of floq, with notable gains on harder tasks, hmmaze-large
and antmaze-giant. Importantly, even with just 4 flow steps, floq already outperforms FQL,
and the gap widens further with additional steps. However, we also observe diminishing returns and,
in some cases, slight degradation beyond a moderate number of steps (e.g., on antmaze-giant,
where 8 and 16 steps perform worse than 4). We suspect that this degradation stems from overfitting
when the number of integration steps for computing the target is excessive. A similar degradation is
observed for ResNets in Figure 6. We discuss this further in Appendix A.12.
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Figure 6: Comparison of floq with ResNet critics on the hardest
tasks: hmmaze-large, antmaze-giant. A 4-layer flow critic
outperforms the best ResNets under a total budget on forward pass
capacity, even after tuning over multiple residual configurations. For
any given value on the x-axis, we plot the performance of the best
performing ResNet configuration at that inference cost. For floq,
we run more integration steps at inference. Thus, our approach of
training floq does not simply add more depth.

2) How does floq compare against
increasing “sequential” compute of
monolithic critics? One hypothesis
is that floq could be implement-
ing a similar iterative computation
strategy such as ResNet (He et al.,
2016). Unlike floq, ResNet does not
utilize dense supervision after each
computation block. To test whether
this matters, we compare floq to a
ResNet. We use the same 4-layer flow
critic from before and benchmark it
against the best-performing ResNets
with FQL. We ran a cross-product
over possible ResNet configurations
with block sizes of 2, 4, 8, 16 layers
and blocks of 8, 4, 2. These configura-
tions cover all ways to build a ResNet where 32 layers are involved in a forward pass. We compare
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floq to the best ResNet configuration under a fixed total inference compute budget (that is, an upper
bound on the number of feed-forward layers) on humanoidmaze-large and antmaze-giant, since these
harder environments should benefit from bigger ResNets. As shown in Figure 6, while ResNet critics
do improve over FQL, they remain worse than floq even under matched inference compute. Note
that floq does not itself utilize a ResNet, though its velocity network could use residual layers. Also
note that while ResNet architectures instantiate a new set of parameters for every layer added to the
network, floq uses parameters from a single 4-layer MLP for all values of inference capacity. This
shows that the gains of flow critics are not due to adding more residual layers or parameters, but rather
the dense supervision provided by supervising the velocity field at each step of iterative computation.

3) How does floq compare to scaling monolithic critics with ensembles? A common way to
expand Q-function capacity is through ensembling,averaging predictions from multiple critics for
backups and policy updates. This increases parallel rather than sequential compute, and is attractive if
effective. We trained ensembles of 1, 2, 4, and 8 critics (each the same size as the base FQL critic) and
compared them to floq. As shown in Figure 5, ensembles yield only modest gains over FQL, and
even 8 critics fail to match floq. Notably, floq also uses 8 forward passes (via integration steps),
so the compute is comparable. Thus, the benefits of flow critics stem not from parallel averaging.

4) Does floq benefit from densely supervising the velocity at all time steps? To answer this question,
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Train for all t + optimal integration vs. train at t = 0 only
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Train at t = 0 only
Ours: train all t + optimal integration

Figure 7: Comparing FQL, training floq only at t = 0, and full
floq with supervision across all t (and optimal integration steps k
chosen from {4, 8, 16}). While t = 0 training improves over FQL,
full floq consistently achieves the best performance, showing the
benefits from training at all integration steps.

We trained a variant of floq where
the velocity field was supervised only
at t = 0 with a single flow step. While
one might think that training floq at
t = 0 is equivalent to baseline FQL,
this is not the case. Even with one
integration step, the input to the ve-
locity network is still a scalar noise.
The velocity field is trained to predict
the difference between the target Q-
value and this noise for all noise val-
ues, creating several auxiliary tasks
rather than the single task in baseline
FQL (noise set to 0). We hypothesize
that fitting these auxiliary tasks yields representational benefits, consistent with prior observations
linking auxiliary losses with improved TD representations (Lyle et al., 2021). As shown in Figure 7,
this restricted variant outperforms FQL but still underperforms floq, which supervises velocity at
all t ∈ [0, 1] and uses multiple steps. On humanoidmaze-large, performance improves from 14%
(FQL) to 49% with only t = 0 training, while full floq reaches 56%. On antmaze-giant, the pattern
is stronger, with scores of 11%, 39%, and 86%. Similar trends hold on hm-medium (58%, 94%,
98%) and cube-double (36%, 38%, 72%). The smaller gap on hm-medium likely reflects its lower
difficulty. Thus, while t = 0 already provides meaningful gains, supervising across all t and using
multiple steps is important for realizing the full potential of floq.

Takeaways: properties and behavior of floq

More integration steps help, but performance saturates and can degrade at very high values.
floq outperforms approaches that scale either parallel or sequential compute for monolithic
Q-functions, and multiple steps are needed for best performance.

5.4 ABLATION STUDIES FOR FLOQ

Finally, in Appendix A.6, we present experiments ablating various design choices and hyperparame-
ters. We evaluate the sensitivity of floq to these choices and give thumb rules for tuning them. The
choices are: a) the range [l, u], for the support for the initial noise sample z(0), b) the approach for
embedding the flow step “time” t, and c) the approach for embedding the interpolant z(t).

Takeaways: ablation studies for floq

1) Utilizing an HL-Gauss embedding for z(t) is crucial (Figure 14). 2) Utilizing a Fourier-
basis embedding of time is critical (Figure 12). 3) A moderate width of the initial noise
distribution improves flow curvature, and performs best (Figure 13).
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A APPENDICES

A.1 DISCUSSION AND PERSPECTIVES ON FUTURE WORK

In this paper, we presented floq, an approach for training critics in RL using flow-matching. floq
formulates value learning as transforming noise into the value function via integration of a learned
velocity field. This formulation enables scaling Q-function capacity by utilizing more compute
during the process of integration to compute the Q-function. As a result of utilizing a flow-matching
objective for training, floq utilizes dense supervision at every step of the integration process. We
describe some important design choices to train flow-matching critics to make meaningful use of
integration steps. Through our experiments, we show that floq attains state-of-the-art results on a
suite of commonly-used offline RL tasks, and outperforms other ways of expanding capacity of a
Q-function (e.g., via a ResNet or monolithic Q-function ensemble). We also show the necessity of
learning curved flow traversals to make effective use of capacity and utilizing the design choices we
prescribe in this work.

Future work. We believe floq presents an exciting approach to scale Q-function capacity. Thus,
there are a number of both theoretical and empirical open questions. From an empirical standpoint,
it is important to understand how to appropriately set the number of integration steps as excessive
steps may degrade Q-function quality. This degradation, however, is not localized to just flows but
also to ResNets (Figure 6), indicating that this is perhaps a bigger issue with TD-learning. Another
interesting direction is to build new methods and workflows for using Q-functions that rely on the
property that floq inherently represents a “cascaded” family of critics with different capacities—all
within one network. Can this property be used for tuning network size upon deployment, cross-
validation of model size, or improving efficiency of policy extraction? Answering this question
would be interesting for future work. Finally, floq also provides one possibility for sequential or
“depth”-based test-time scaling for value functions. Studying how this sort of sequential scaling can
be combined with parallel scaling (i.e., ensembles) and horizon reduction techniques (Park et al.,
2025b) would be interesting as well.

From a theoretical standpoint, quantifying iterative computation properties of floq would be
impactful: in principle, curved flow traversals should enable the critic network to spend more test-
time compute (i.e., integration steps) to perform equivalents of “error correction” and “backtracking”
from large language models (LLMs) (Guo et al., 2025), but now in the space of scalar, continuous
values to better approximate the target Q-function. We believe formalizing this aspect would not
only be impactful for value-based RL, but could also shed light on methods to use test-time compute
in flow/diffusion models in other domains. Second, our results show that there are substantial
representation learning benefits of floq. We believe that studying the mechanisms and differences
between feature learning induced by floq compared to standard TD-learning with regression (Kumar
et al., 2022) or classification (Farebrother et al., 2024) would be interesting for future value-based
methods. floq also provides a rich family of auxiliary tasks to train a critic, which provides another
angle to explain and study its properties. All of these are impactful directions to study in future work.

A.2 OFFLINE RL PRELIMINARIES

We operate in the offline RL (Levine et al., 2020) problem setting, where the replay buffer P
corresponds to a static dataset of transitions D = {(s, a, r, s′)} collected using a behavior policy πβ .
Our goal in this setting is to train a good policy using the offline dataset D alone. The Q-network, Qθ
is typically parameterized by a deep network (e.g., an MLP).

Offline RL algorithms. Offline RL methods aim to learn a policy that maximizes reward while
penalizing deviation from the behavior policy πβ , in order to mitigate the challenge of distributional
shift. This objective has been instantiated in various ways, including behavioral regularization (Wu
et al., 2019; Fujimoto & Gu, 2021; Tarasov et al., 2023; Park et al., 2025d; Kumar et al., 2019),
pessimistic value function regularization (Kumar et al., 2020), implicit policy constraints (Peters
& Schaal, 2007; Peng et al., 2019; Wang et al., 2020; Mark et al., 2024), and in-sample maximiza-
tion (Kostrikov et al.; Xu et al., 2023; Garg et al., 2023). While our proposed floq architecture for
Q-function parameterization is agnostic to the choice of offline RL algorithm, we instantiate it on top
of FQL (Park et al., 2025d) that utilizes a flow-matching policy to better model multimodal action
distributions. FQL trains the Q-function using the standard temporal-difference (TD) error from soft
actor-critic (SAC) (Haarnoja et al., 2018), shown in Equation 3.1, and optimizes the policy to stay
close to a behavior policy estimated via flow-matching.
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A.3 ADDITIONAL RESULTS FOR FLOQ

In this section, we provide some additional and complete results supplementing the ones in main
paper.

1. Figure 8 presents median and IQM scores and Figure 9 presents performance profiles and
P (X > Y ) statistic comparing floq with FQL on all the 50 tasks studied in the paper.

2. Figure 10 presents results for online fine-tuning on all 10 default tasks.

0.30 0.45 0.60
FQL (1M)
FQL (2M)

max (FQL(1M), FQL(2M))
floq(Def. )
floq(Best)

Median

0.40 0.48 0.56 0.64

IQM

0.45 0.50 0.55 0.60

Mean

0.45 0.50 0.55

Optimality Gap

Success Rate

Figure 8: Comparison of floq against the baseline FQL across median, interquartile mean (IQM), mean and
optimality gap, following Agarwal et al. (2021). Results show that floq consistently outperform FQL across
all evaluation criteria with no confidence interval overlap in all cases, meaning that the gains from floq are
significant.
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Figure 9: Comparison of floq against baseline FQL, following Agarwal et al. (2021). Left: Probability of
Improvement P (X > Y ) showing that floq consistently outperform FQL across OGBench tasks. Right:
Performance profiles illustrating that floq achieves higher scores across a larger fraction of runs compared to
FQL.
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Figure 10: Learning curves for online fine-tuning of floq and FQL across all default tasks. floq not
only provides a stronger initialization from offline RL training but also maintains its advantage through online
fine-tuning, leading to faster adaptation and higher final success rates. The shaded gray area denotes offline RL
training.
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Table 2: Offline RL results (Default Tasks). floq achieves competitive or superior performance compared
to the baselines. “Hard” tasks refers to the set of default tasks where the FQL baseline score is below 50%
performance. floq is especially more performant on these hard tasks, more than doubling FQL’s baseline
performance.

Gaussian Policy Diff. Policy Flow Policy Flow Q-function (Ours)

Env BC ReBRAC DSRL SORL IQN C51 FQL (1M) FQL (2M) floq (Def.) floq (Best)

antmaze-large 0 ±0 91 ±10 40 ±29 93 ±2 86 ±1 79 ±3 80 ±8 85 ±4 94 ±4 94 ±4

antmaze-giant 0 ±0 27 ±22 0 ±0 12 ±6 5 ±6 0 ±0 11 ±16 14 ±29 70 ±8 86 ±4

hmmaze-medium 1 ±0 16 ±9 34 ±20 67 ±4 27 ±17 23 ±16 19 ±12 58 ±25 98 ±1 98 ±1

hmmaze-large 0 ±0 2 ±1 10 ±12 20 ±9 22 ±5 6 ±2 8 ±5 14 ±10 52 ±8 52 ±8

antsoccer-arena 1 ±0 0 ±0 28 ±0 54 ±5 44 ±3 36 ±7 39 ±6 49 ±11 49 ±10 49 ±10

cube-single 3 ±1 92 ±4 93 ±14 99 ±0 98 ±1 98 ±1 96 ±1 94 ±5 99 ±2 99 ±2

cube-double 0 ±0 7 ±3 53 ±14 33 ±8 57 ±2 40 ±11 36 ±6 29 ±8 72 ±15 72 ±15

scene 1 ±1 50 ±13 88 ±9 89 ±9 80 ±4 82 ±11 76 ±9 78 ±7 83 ±10 83 ±10

puzzle-3x3 1 ±1 2 ±1 0 ±0 – 20 ±3 13 ±4 16 ±5 14 ±4 17 ±6 17 ±6

puzzle-4x4 0 ±0 10 ±3 37 ±13 – 16 ±1 16 ±2 11 ±3 5 ±2 12 ±4 19 ±5

Average Score (All) 1 30 38 – 45 39 40 44 64 66
Average Score (Hard) 0 8 21 – 22 21 20 21 45 50

Table 3: FQL ResNet performace on humanoidmaze-large and antmaze-giant. (m,n) indicates
n blocks each of depth m. For each fixed number of FLOPs m × n, the best-performing architecture per
environment is in bold.

FLOPs (m× n) HM-Large Antmaze-Giant

4 35 ± 19 (2,2) 13 ± 12 (2,2)
14 ± 10 (4,1) 11 ± 16 (4,1)

8 46 ± 11 (2,4) 31 ± 13 (2,4)
21 ± 11 (4,2) 22 ± 9 (4,2)
22 ± 11 (8,1) 32 ± 14 (8,1)

16 41 ± 7 (2,8) 32 ± 13 (2,8)
34 ± 8 (4,4) 17 ± 8 (4,4)
26 ± 9 (8,2) 46 ± 11 (8,2)
24 ± 22 (16,1) 0 ± 0 (16,1)

32 25 ± 10 (2,16) 23 ± 11 (2,16)
28 ± 13 (4,8) 18 ± 14 (4,8)
38 ± 19 (8,4) 30 ± 9 (8,4)
0 ± 0 (16,2) 0 ± 0 (16,2)

A.4 COMPATIBILITY OF FLOQ WITH DIVERSE POLICY CLASSES

One natural question is whether the benefits of floq arise specifically from pairing it with a flow-
based policy, or whether the FloQ critic alone provides value when combined with standard policy
architectures. To study this, we evaluate all combinations in the grid:

(Monolithic critic vs. floq critic) × (Gaussian policy vs. Flow policy).

In particular, we add the missing configuration: floq critic + Gaussian policy.

To isolate the effect of the critic, we integrate the floq critic into the ReBRAC framework, which
employs a Gaussian policy. The policy architecture and actor update rules are unchanged; only the
Q-function parameterization is replaced with the floq critic.

Table 4 summarizes the results across the 10 default OGBench tasks. The floq critic yields
substantial improvements over ReBRAC, increasing the average score from 30 → 41. Gains are
particularly large on sparse-reward, long-horizon environment such as ANTMAZE-GIANT (27 → 91)
and HMMAZE-MEDIUM (16 → 57). These improvements demonstrate that the floq critic offers
benefits even when the policy is Gaussian.

Combined with the results in the main text (floq with FQL), these findings show that the floq
critic is modular and compatible with diverse policy classes. Its advantages are not tied to flow-based
policies, but instead arise from its parameterization of the Q value.
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Table 4: FloQ critic is compatible with Gaussian policies. Performance on the 10 default OGBench tasks
when integrating the FloQ critic into the ReBRAC framework (Gaussian policy). The FloQ critic improves
ReBRAC significantly, showing that FloQ’s benefits are not tied to the flow policy used in FQL.
Environment (Default Task) ReBRAC FloQ (ReBRAC) FQL FloQ (FQL)

antmaze-large 95 ±4 97 ±3 85 ±4 94 ±4

antmaze-giant 27 ±22 91 ±6 14 ±20 70 ±8

hmmaze-medium 16 ±9 57 ±12 58 ±25 98 ±1

hmmaze-large 2 ±1 0 ±1 14 ±10 52 ±8

antsoccer-arena 0 ±0 1 ±2 49 ±11 49 ±10

cube-single 92 ±4 89 ±4 94 ±5 99 ±2

cube-double 7 ±3 3 ±3 36 ±6 72 ±15

scene 50 ±13 58 ±8 78 ±7 83 ±10

puzzle-3x3 2 ±1 9 ±6 16 ±5 17 ±6

puzzle-4x4 10 ±3 6 ±4 11 ±3 12 ±4

Average Score 30 41 45 64

Table 5: Offline RL Results on D4RL Tasks. floq performs similarly to the FQL baseline on the D4RL
benchmarks, showing its robustness. Values show normalized returns (mean ± std).

Environment FQL FloQ

antmaze-large-diverse-v2 85 ±5 82 ±5

antmaze-large-play-v2 82 ±8 75 ±8

antmaze-medium-diverse-v2 73 ±6 71 ±10

antmaze-medium-play-v2 76 ±7 80 ±7

antmaze-umaze-diverse-v2 85 ±7 78 ±17

antmaze-umaze-v2 96 ±2 97 ±2

pen-human-v1 51 ±10 58 ±9

pen-cloned-v1 78 ±8 72 ±5

pen-expert-v1 140 ±5 140 ±8

door-human-v1 0 ±0 0 ±0

door-cloned-v1 3 ±1 3 ±2

door-expert-v1 104 ±0 104 ±0

hammer-human-v1 1 ±1 1 ±1

hammer-cloned-v1 15 ±13 10 ±8

hammer-expert-v1 125 ±3 125 ±2

relocate-human-v1 0 ±0 0 ±0

relocate-cloned-v1 0 ±0 0 ±0

relocate-expert-v1 106 ±2 108 ±2

69 72 75 78
FQL
floq

Median

61.5 63.0 64.5 66.0

IQM

60 61 62 63

Mean

0.12 0.15 0.18 0.21

Optimality Gap

Figure 11: Aggregate Performance on D4RL Tasks. Comparison of floq and FQL on D4RL using Median,
IQM, Mean, and Optimality Gap metrics shows that they perform similarly.

A.5 RESULTS ON THE D4RL BENCHMARK

To further evaluate the robustness of floq, we also compare its performance to FQL on the standard
D4RL benchmark. As shown in Table 5, floq performs similarly to the FQL baseline across all
D4RL tasks, with nearly identical normalized returns on average. These tasks are considerably
simpler than the long-horizon, sparse-reward OGBench environments used in the main evaluation,
and the comparable results on D4RL demonstrate that floq does not sacrifice performance on easier
benchmarks. In addition to per-task results, Figure 11 presents aggregate metrics using the rliable
framework, including Median, IQM, Mean, and Optimality Gap. Across all four metrics, floq and
FQL exhibit closely aligned confidence intervals, further indicating that their performance on D4RL
is statistically indistinguishable.
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Figure 13: Effect of variance of the initial noise sampling distribution on floq. Left: Success rates
across environments as a function of the initial noise scaling factor (black circles denote the best setting per
environment). Right: Flow curvature in HM-Medium increases with noise variance, highlighting the tradeoff
between too little curvature (flow collapses to monolithic critic) and too much curvature (difficult numerical
integration).

Together, the table and aggregate statistics confirm that floq is robust across both challenging and
standard offline RL benchmarks, matching FQL on D4RL while significantly outperforming it on the
more challenging OGBench tasks.

A.6 ADDITIONAL ABLATION STUDIES FOR FLOQ
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Figure 12: Time embedding. Replacing the Fourier-basis embed-
ding of time with a scalar embedding results in significantly worse
performance, highlighting the importance of Fourier features for
conditioning on time.

1) Ablations for the width of the
[l, u] interval. We study the effect
of varying the variance of the initial
noise sample used in critic flow match-
ing by expanding the width u−l of the
interval that the initial noise is sam-
pled from. We present the results in
Figure 13. On the left, we observe
that the performance across several
tasks typically peaks at intermediate
variance values (note that the black
circles marking the setting that yields
the best success rate for each environ-
ment). This means that choosing an interval [l, u] with a non-trivial width is important. As discussed
in Section 4.3, Figure 13 (right) shows that the curvature of the learned flow increases as the width
of the interval grows. We measure curvature by computing the magnitude of the derivative of the
velocity field as a function of time using finite differences. Concretely, we measured the expected
value of |dvθ(t,z(t))/dt| across state-action pairs in the offline dataset, averaged through training.

Putting results in Figure 13 together, we note that some degree of curvature is necessary for best
performance, which is expected because otherwise, the flow collapses to behave like a monolithic
critic. That said, excessive curvature makes the flow numerically harder to integrate, ultimately
degrading performance. Based on these observations, we recommend practitioners use κ := (u−
l)/(Qmax −Qmin) in the range of {0.1, 0.25} as reliable starting points when tuning floq critic.

2) Ablations for the time embedding. In the default configuration of floq, we used a 64-dimensional
Fourier embedding for the time t, provided as input to the velocity field (also see Dasari et. al Dasari
et al. (2024) for a recent work training a diffusion policy also using Fourier embedding of t). As
shown in Figure 12, replacing this Fourier embedding with a simple scalar embedding of t leads
to a significant drop in performance on several tasks. This highlights the importance of the Fourier
embedding, which allow the velocity function to be meaningfully conditioned on t, enabling it to
produce distinct behaviors at different integration times. Without such rich embeddings, the critic
struggles to leverage temporal information effectively, and again collapse to the monolithic architec-
ture. We therefore recommend that practitioners carefully utilize high-dimensional embeddings of
time when using floq.

3) How does the approach of embedding the interpolant z(t) affect floq performance? We
observe that the approach of embedding z(t) (Design Choice 2 in Section 4.3) plays a significant
role in the performance of floq. As shown in Figure 14, HL-Gauss embeddings of z(t) provide
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Figure 14: Comparison of different approaches for representing the input interpolant in floq. Left:
performance on two representative tasks where that HL-Gauss embeddings outperform scalar and normalized
scalar embeddings by reducing sensitivity to non-stationary inputs. Right: Ablation over HL-Gauss embedding
scale σ for the scalar flow interpolant input, showing that larger values provide broader bin coverage and stronger
performance. Default σ = 16.0.
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Figure 16: Effect of the number of integration steps used for policy extraction on floq performance. Even
though computing the target values for TD-learning utilizes a fixed number of 8 integration steps, in this ablation
we utilize a smaller number of steps for extracting the policy. Performance is more robust to the number of
integration steps used for policy extraction, suggesting that as long as target integration is sufficiently accurate,
few steps suffice for policy distillation.

a significant advantage over scalar or normalized scalar embeddings. In particular, across several
tasks we found HL-Gauss embeddings (with a sufficiently large value of σ) to be essential for
achieving strong performance, and Figure 14 (left) highlights two representative tasks in this category.
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Figure 15: Training Grad Norm With and Without HL-
Gauss Encoding.In domains such as HM-Large (Task
5), using raw scalar embeddings increases the training
gradient norm by roughly 4× compared to HL-Gauss
(2.5× 104 to 105), reflecting greater instability in opti-
mization due to non-stationary conditioning

HL-Gauss embeddings with broader bin cover-
age helps reduce the sensitivity of the network to
non-stationary inputs, thereby stabilizing train-
ing and improving performance. In domains
such as HM-Large (Task 5), using raw scalar em-
beddings increases the training gradient norm by
roughly 4× compared to HL-Gauss (2.5× 104

to 105), reflecting greater instability in optimiza-
tion due to non-stationary conditioning (see Fig-
ure 15). While normalizing z(t) helps on some
tasks over using the raw value, we found that
HL-Gauss embeddings generally gave the best
performance. In our implementation of the ve-
locity network, we use HL-Gauss embeddings
with a default scale of σ = 16.0.

Figure 14 (right) shows an ablation over smaller
values of σ ∈ {1.0, 2.0, 4.0, 8.0}. Observe that
larger values of σ consistently yield stronger
performance. Intuitively, increasing σ leads to
broader bin coverage for the HL-Gauss distribu-
tion (see Figure 2, right), which helps mitigate the non-stationarity of the range of z(t) over the course
of training with TD-learning. These results highlight that selecting sufficiently large embedding
scales is important for stabilizing learning and achieving strong downstream performance.

4) How does the number of critic flow steps used for the policy update affect the performance of
floq? We next investigate the effect of varying the number of integration steps used for calculating
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the Q-value for the policy update. Since we build our algorithm on top of FQL, we implement the
policy update by first distilling the values produced by the flow critic into a one-step, monolithic
Q-function. Then the policy extraction procedure (akin to SAC+BC) maximize the values of this
distilled critic subject to a behavioral cloning loss. Note that this approach essentially decouples the
number of integration steps used to compute the TD-target and the number of integration steps for
policy extraction. As shown in Figure 16, as long as the number of integration steps for computing the
target value are fixed (to 8 in this case), the performance of floq is relatively robust to the number
of integration steps used for the policy update. Contrast this with the sensitivity to the number of
integration steps used for computing the TD-target observed in Figure 4. The results indicate that
once the target integration steps are sufficiently large (here, 8), the policy can be effectively distilled
even with a small number of integration steps.

A.7 HYPERPARAMETERS AND ADDITIONAL DETAILS

In this section, we present some details for floq that we could not cover in the main paper, along
with a pseudocode and a complete list of hyperparameters used by our approach.

Algorithm 1 Critic Flow Matching (floq) in conjunction with FQL (Park et al., 2025d)
Given: offline dataset of transitions D,
Models: a flow critic, QFLOW

θ (s, a,z), a distilled critic, Qdistilled
ψ (s, a, z), a flow policy πϕ(·|s), one-step

policy µω(s, ·).
function QFLOW

θ (s, a, z) ▷ Flow Q-function, introduced by floq
for t = 0, 1, . . . ,K − 1 do

z(t+ 1)← z(t) + 1/K · vθ (t/K, z(t) | s, a) ▷ Euler method, time t is normalized
return z(K)

function πϕ(a|s) ▷ Flow policy from FQL, though policy training is orthogonal to floq
for t = 0, 1, . . . ,M − 1 do

Sample x(0) ∼ N (0, Id)
x(t+ 1)← x(t) + 1/M · wϕ (t/M,x(t) | s) ▷ Euler method, time t is normalized

return x(M)

while not converged do
Sample batch {(s, a, r, s′)} ∼ D
▷ Train vector field vθ in flow critic QFLOW

θ

a′ ← Sample(πϕ(·|s′)) ▷ Sample actions from policy, typically the one-step policy for FQL
z(0) ∼ Unif [l, u], z′(0)1:m ∼ Unif [l, u] ▷ Sample initial noise for computing the Q-value
z(1)← r + γ · 1/m ·

∑m
i=1Q

FLOW
θ̄ (s′, a′,z′

i(0)) ▷ Use noise z′
i(0) for computing TD-target

z(t)← (1− t) · z(0) + t · z(1) ▷ Compute interpolant z(t) for random t
Update θ to minimize E

[
(vθ (t,z(t) | s, a)−

(
z(1)− z(0)

)
)2
]

▷ Linear flow-matching loss

▷ Train distill critic Qdistill
ψ for policy extraction

Update ψ to minimize Ez(0)

[
(Qdistill

ψ (s, a)−QFLOW
θ (s, a,z(0)))2

]
▷ Train a BC flow policy πϕ, analogous to FQL
x(0) ∼ N (0, Id)
x(1)← a
t ∼ Unif([0, 1])
x(t)← (1− t) · x(0) + t · x(1) ▷ For FQL policy, compute policy interpolant
Update ϕ to minimize E

[
∥wϕ (t,x(t)|s)− (x(1)− x(0)) ∥|22

]
▷ Flow-matching loss for policy

▷ Train one-step policy µω to maximize the learned distill critic while staying close to BC flow policy
x ∼ N (0, Id)
aπ ← µω(s,x)
Update ω to minimize E

[
−Qdistill

ψ (s, aπ) + α∥aπ − πϕ(s, z)∥22
]

return One-step policy πω

Hyperparameters for offline RL results. Following Park et al. Park et al. (2025d), we tune the BC
coefficient α on the default-task of each environment and then fix this value for the remaining
tasks. For both FQL and floq, α is tuned over {αFQL −∆, αFQL, αFQL +∆}, where ∆ = 100
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Table 6: Hyperparameters for floq. Differences from FQL are shown in light blue within brackets. Other
hyperparameters are kept to be the same as FQL.

Hyperparameter Value (floq)
Learning rate 0.0003
Optimizer Adam (Kingma & Ba, 2015 Kingma & Ba (2015))
Gradient steps 2M (Offline), 1M + 2M (Online FT)
Minibatch size 256 (default), 512 for hm-large, antmaze-giant
Flow Q Network MLP dims [512,512,512,512] (default), [512,512] for cube envs
Distill Q MLP dims [512,512,512,512] (not used in FQL)
Nonlinearity GELU (Hendrycks & Gimpel, 2016 Hendrycks & Gimpel (2016))
Target network smoothing coeff. 0.005
Discount factor γ 0.99 (default), 0.995 for antmaze-giant, humanoidmaze, antsoccer
Flow time sampling distribution Unif([0, 1])
Clipped double Q-learning False (default), True (antmaze-giant) (+ antmaze-large in FQL)
BC coefficient α Tables 7, 8
Actor Flow steps 10
Critic Flow steps 8 (default), Table 9 for env-wise (not used in FQL)
Initial Sample Range 0.1 (default), Table 9 for env-wise (not used in FQL)
Number Of Initial Noise Samples 8 (not used in FQL)
Fourier Time Embed Dimension 64 (not used in FQL)

Table 7: Environment-wise BC-Coefficient (α) for FQL and floq (Offline RL).

Environment (5 tasks each) α (FQL), α (floq)
antmaze-large 10, 10
antmaze-giant 10, 10
hmmaze-medium 30, 30
hmmaze-large 30, 20
antsoccer-arena 10, 10
cube-single 300, 300
cube-double 300, 300
scene-play 300, 300
puzzle-3x3 1000, 1000
puzzle-4x4 1000, 1000

for the puzzle, cube, and scene environments, and ∆ = 10 for the ant and humanoid
environments. The baseline values αFQL are taken from Table 6 in Park et al. Park et al. (2025d),
and the final values for both methods are reported in Table 7. For floq, after tuning α with the
default configuration (K = 8 flow steps and width (u− l) = κ(Qmax −Qmin) with κ = 0.1), we
tune K ∈ {4, 8} and κ ∈ {0.1, 0.25} on the default-task of each environment. These values,
referred to as floq(Best), are reported in Table 9. In all cases, for floq, we utilize m = 8 samples
of initial noise to compute the target Q-value as discussed in Section 4.2.

Hyperparameters for online fine-tuning. Most hyperparameters (unless otherwise stated) remain
similar in online fine-tuning and offline RL pre-training. For both FQL and floq, α is tuned in the
range [10, 100] (step size 10) for the ant and humanoid environments, and in [100, 1000] (step
size 100) for the cube, scene, and puzzle environments. The selected α values are given in
Table 8.

For floq, after tuning α with the default configuration (K = 8, κ = 0.1), we tune K ∈ {4, 8, 16}
and κ ∈ {0.1, 0.25} per environment. The chosen values are reported in Table 10.

Number of seeds. We ran 3 seeds for each configuration of both floq and FQL on each task, for
both offline RL and online fine-tuning.

In summary, we tuned the common hyperparameters for floq(Def.) and FQL the same amount on
the default task for each environment (following Park et al. (2025c)). For floq(Best), we additionally
tuned the floq specific hyper-parameters K and κ on the default task.
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Table 8: Environment-wise BC-Coefficient (α) for FQL and floq (Online Fine-Tuning).

Environment (5 tasks each) α (FQL), α (floq)
antmaze-large 10, 10
antmaze-giant 10, 10
hmmaze-medium 80, 30
hmmaze-large 40, 20
antsoccer-arena 30, 30
cube-single 300, 300
cube-double 300, 300
scene-play 300, 300
puzzle-3x3 1000, 1000
puzzle-4x4 1000, 1000

Table 9: Environment-wise Initial Sample Range ( u−l
Qmax−Qmin

) and Flow Steps (K) for floq (Best) (Offline
RL).

Environment (5 tasks each) ( u−l
Qmax−Qmin

, K)

antmaze-large (0.1, 8)
antmaze-giant (0.1, 4)
hmmaze-medium (0.1, 8)
hmmaze-large (0.1, 8)
antsoccer-arena (0.1, 8)
cube-single (0.1, 8)
cube-double (0.1, 8)
scene-play (0.1, 8)
puzzle-3x3 (0.1, 8)
puzzle-4x4 (0.25, 8)

Table 10: Environment-wise Initial Sample Range ( u−l
Qmax−Qmin

) and Flow Steps (K) for floq (Online FT).

Environment (5 tasks each) ( u−l
Qmax−Qmin

, K)

antmaze-large (0.1, 8)
antmaze-giant (0.1, 4)
hmmaze-medium (0.1, 8)
hmmaze-large (0.1, 16)
antsoccer-arena (0.1, 8)
cube-single (0.1, 8)
cube-double (0.1, 8)
scene-play (0.1, 8)
puzzle-3x3 (0.1, 8)
puzzle-4x4 (0.25, 8)

A.8 FLOW VISUALIZATIONS

We visualize the evolution of the learned flow critic during training on cube-double in Figure 17,
with κ = 0.1. Because raw Q-values can have large magnitudes, directly plotting them makes it
difficult to assess the curvature of the learned flow. Instead, we plot advantage values, defined as
the gap between the predicted Q-value obtained by integrating for k flow steps at various noise
samples zi(0), namely ψ(k, zi(k) | s, a) for i ∈ [5], , k ∈ [1, . . . ,K], and the expected value of that
state–action pair afterK steps, scaled linearly to k steps. Put simply, this advantage quantifies how far
the intermediate estimate ψ(k, zi(k) | s, a) deviates from the “straight line” path between the initial
noise sample zi(0) and the final Q-value. We find that these deviations are consistently non-zero
and vary substantially across the integration process. In many cases, they exhibit a characteristic
pattern of overshooting followed by correction: larger deviations early on that diminish as integration
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Figure 17: Visualizing the evolution of the trajectories of the flow critic during training.

Figure 18: OGBench (Park et al., 2025a) domains. These tasks include high-dimensional state and action
spaces, sparse rewards, stochasticity, as well as hierarchical structure.

proceeds. These dynamics provide direct evidence that the learned flows follow curved rather than
linear trajectories. We also visualize the final Q-value output z(1) as a function of the input z(0) in
Figure 17 (bottom) and find that the final z(1) depends non-linearly on the initial noise value.

A.9 ENVIRONMENT VISUALIZATIONS

We visualize OGBench tasks in Figure 18.

A.10 WALL CLOCK RUN-TIME

We report the wall clock run-times for FQL and floq in Table 11.

Table 11: Total wall-clock runtime (in 103 seconds) for FQL and floq with varying numbers of
flow integration steps across four representative environments. Reported numbers correspond to 2M
training steps.

Environment FQL floq (Flow Steps)

1 2 4 8 16

HM-Maze Large 14 24 28 35 50 79
HM-Maze Medium 12 19 21 23 30 47
Cube-Double 10 15 16 17 19 26
Antmaze-Giant 10 20 24 30 45 74
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A.11 VARIANCE OF FLOW Q VALUE SAMPLES

To assess how much the predicted Q-values vary for a fixed (s, a) when sampling different initial
noise vectors z, we explicitly tracked the variance of the flow-matched Q-value samples during
training. As shown in Figure 19, the variance decreases steadily over the course of training and
eventually converges to a small value, consistent with the theoretical intent of representing a Dirac
delta distribution.
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Figure 19: Variance of Flow Q Value Samples. The variance decreases steadily over the course of training,
consistent with the theoretical intent of representing a Dirac distribution.

A.12 UNDERSTANDING THE PERFORMANCE DEGRADATION AT LARGE K ON
ANTMAZE-GIANT (FIGURE 6)

Observe from Figure 6 that we observe a degradation at large K not just for floq but also for the
monolithic ResNet approach. This makes us believe that the degradation in critic performance is
largely not specific to floq but also applicable to a ResNet. Diagnostic experiments suggest that a
degradation with larger K stems from overfitting to very high capacity targets for both the ResNet
and floq architecture.

For example, the best performing configuration on Antmaze-Giant (K = 4, see Figure 6) exhibits a
higher TD error than the K = 8 or K = 16 settings (see Figure 20), whose lower TD errors coincides
with worse control performance. This aligns with the view that excessively small TD error often
indicates overfitting than better value estimation. In support of this, when we add a small amount
of noise (uniformly sampled in [−0.5, 0.5]) to the TD target for the K = 16 critic, success rate
increases by 7 − 10 percent and the TD-error also increases to a healthier regime (see Figure 21).
Taken together, these results point to a shared underlying cause: very high K increases the critic
capacity in a way that encourages overfitting to sharp targets, and moderate slack or noise improves
the robustness needed for strong downstream performance.

A.13 EFFECT OF SIZE OF DISTILLED CRITIC

A natural question is whether the capacity of the distilled critic must scale with the number of flow
integration steps K. Since larger K produces a more expressive flow critic, an under-parameterized
distilled critic may be unable to represent it faithfully, potentially degrading policy performance.

To study this, we performed a controlled experiment on the HMMAZE-LARGE task, evaluating a full
cross-product of: (i) distilled critic depth: a 2-layer vs. 4-layer MLP (default), and (ii) number of
flow steps: K ∈ {4, 8}. For all runs, the flow critic is trained via flow matching as usual, and the
distilled critic is trained to regress onto the flow critic’s Q-value (computed with K integration steps).

Table 12 summarizes the results. We observe that increasing the depth of the distilled critic from two
to four layers consistently improves performance. Moreover,the gap between the 2-layer and 4-layer
variants widens substantially for K = 8. This indicates that using a small distilled critic effectively
“bottlenecks” the expressivity of the flow critic when K is large, confirming that distillation capacity
must be sufficient to preserve the benefits of larger-flow-step training.
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Figure 20: TD-Error v/s Flow-Steps. The best performing configuration on Antmaze-Giant (K = 4, see
Figure 6) exhibits a higher TD error than the K = 8 or K = 16 settings, whose lower TD errors coincides
with worse control performance (see Figure 6). This aligns with the view that excessively small TD error often
indicates overfitting than better value estimation.
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Figure 21: Effect of Target Noise on Success Rate And TD-Error (Antmaze-Giant, K = 16). Effect of
target noise magnitude on (a) the change in success rate and (b) the TD error during training. We see that small
amounts of target noise (magnitude≈ 0.5) improves performance by 7− 10 percent and also increases TD-error
to a healthier regime. However, too much target noise degrades performance, as expected.

Table 12: Effect of distilled-critic capacity for different flow-step on HMMAZE-LARGE.
A shallow (2-layer) distilled critic performs worse than a 4-layer critic, especially for larger K,
suggesting that insufficient capacity limits the distilled critic’s ability to represent the more expressive
Q-function produced by higher flow-step integration.

Distilled Critic 4 Flow Steps 8 Flow Steps

2-layer MLP 20± 4 26± 3
4-layer MLP 24± 4 52± 8

A.14 DISCUSSION, CONCLUSION, AND FUTURE WORK

This work introduced floq, a flow-matching approach to training critics that scales Q-function
capacity through iterative integration and dense supervision, achieving state-of-the-art offline RL
results and online fine-tuning results. Future directions include understanding how to set integration
steps, exploiting floq’s cascaded family of critics for efficiency, and combining sequential test-
time scaling with ensembles. Theoretically, it is important to study how curved flows enable error
correction when learning Q-values for TD-learning.
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