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ABSTRACT

Training with larger mini-batches improves the convergence rate and can yield
superior performance. However, training with large mini-batches becomes pro-
hibitive for Large Language Models (LLMs), due to the large GPU memory re-
quirement. To address this problem, an effective approach is finding small mini-
batch coresets that closely match the gradient of larger mini-batches. However,
this approach becomes infeasible and ineffective for LLMs, due to the highly im-
balanced nature of the sources in language data, use of the Adam optimizer, and
the very large gradient dimensionality of LLMs. In this work, we address the
above challenges by proposing Coresets for Training LLMs (CoLM). First, we
show that mini-batch coresets found by gradient matching do not contain repre-
sentative examples of the small sources w.h.p., and thus including all examples of
the small sources in the mini-batch coresets is crucial for optimal performance.
Second, we normalize the gradients by their historical exponential to find mini-
batch coresets for training with Adam. Finally, we leverage zeroth-order methods
to find smooth gradient of the last V -projection matrix and sparsify it to keep the
dimensions with the largest normalized gradient magnitude. We apply CoLM to
fine-tuning Phi-2, Phi-3, and Zephyr with LoRA on MathInstruct and SuperGLUE
benchmark. Remarkably, CoLM reduces the memory requirement of fine-tuning
by 2x and even outperforms training with 4x larger mini-batches. Notably, CoLM
easily stack with existing memory-efficient training methods, such as LoRA.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in a variety of tasks, ranging
from machine translation to conversational AI. However, pretraining and fine-tuning LLMs with
billions of parameters requires a large amount of compute and GPU memory, not only to store
the parameters but also to compute gradients and optimizer states (e.g., momentum and historical
gradients in Adam). For example, full finetuning a relatively small LLM, such as Phi-2 with 2.7B
parameters, using a batch size of 128 requires at least 44 GB of GPU memory. The large memory
requirement makes it prohibitive to train such models with larger batch sizes, which effectively
improves the convergence and can improve performance. This raises a key question: can we train
LLMs with smaller mini-batches and get the benefits of training with larger batch sizes?

To address this problem, many memory-efficient techniques have been recently proposed, mainly
to enable efficient fine-tuning of pretrained language models. At a high level, such methods aim
to find a smaller set of parameters (Adelman et al., 2021), or find low-rank (Hu et al., 2021; Zhao
et al., 2024b) or quantized (Dettmers et al., 2022) weights or optimizer states to train the model
in a memory-efficient manner. There have also been efforts to adapt gradient-free optimization for
training LLMs (Malladi et al., 2023). Yet, most memory-efficient techniques cannot achieve a com-
parable performance to training the full model parameters, or considerably increase the training time.

In this work, we address the above problem from the data perspective. Specifically, we target find-
ing smaller mini-batches of examples that simulate or outperform training with larger mini-batches.
If this can be done, it directly improves the convergence rate of training or fine-tuning with mini-
batch stochastic gradient methods, and can yield superior performance. To achieve this, an effective
approach is to find smaller mini-batches that closely capture the gradient of large random batches
(Yang et al., 2023). Smaller mini-batches (coresets) selected by this approach are medoids (cen-
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troids) of the data in gradient space, weighted by their corresponding cluster size (Mirzasoleiman
et al., 2020). Despite its promise on classification tasks, this approach is infeasible and ineffective
for pre-training or fine-tuning LLMs, as we discuss below.

Firstly, language data is often a mixture of highly imbalanced sources (e.g. categories or types of
instructions). In this case, we show that smaller mini-batch coresets do not contain representative
examples from the small sources, and obtain poor performance. Secondly, Adam is the standard op-
timizer for training LLMs, and small mini-batches that capture the vanilla gradient of larger batches
are not optimal for training with Adam. Finally, the very large dimensionality of the LLM gradients
makes pairwise distances vacuous and the medoids cannot be found accurately. These challenges
make finding mini-batch coresets for training LLMs inherently much more challenging to address.

In this work,we propose Coresets for Training LLMs(CoLM) by making the following contributions:
• First, we show that w.h.p. mini-batch coresets only contain medoids of the big sources with

a large-enough number of samples. Thus, examples selected via gradient matching from small
sources are not representative and do not benefit learning other examples in their sources. There-
fore, it is crucial to include all examples of the small sources in the mini-batch coresets. Besides,
to enhance learning small sources, we weight all examples in the mini-batch coresets uniformly.

• Next, to find mini-batch coresets for training with Adam, we normalize gradients by their histor-
ical exponential average, where the historical terms are only calculated for examples in the big
sources. We find medoids of the big sources based on their normalized gradients.

• Finally, to enable finding medoids in the very high-dimensional gradient space, we use zeroth-
order methods to find smooth gradient of the last V -projection matrix in a memory-efficient
way, and sparsify it via a source-wise mask, which keeps dimensions with the largest normalized
gradient magnitude. We use ℓ1 distance between sparse gradients to find medoids of big sources.

• We evaluate CoLM on the challenging task of mathematical problem-solving, by fine-tuning Phi-
2, Phi-3 (Li et al., 2023b), and Zephyr (Tunstall et al., 2023) using LoRA on the MathInstruct
dataset (Yue et al., 2023) containing 14 highly imbalanced sources. Additionally, we apply
CoLM to datasets in SuperGLUE benchmark (Wang et al., 2019), where we find sources by
clustering the model’s hidden states during the training. Remarkably, CoLM reduces the memory
requirement of fine-tuning by 2x and even outperforms training with 4x larger random mini-
batches. Compare to mini-batch of the same size, CoLM outperforms by up to 7.1% and 20%
on several in- and out-domain tasks.

Notably, our approach can be easily stacked with LoRA, and other memory-efficient training meth-
ods to further reduce the memory requirements of training LLMs, as we confirm in our experiments.

2 RELATED WORK

Memory-efficient training of LLMs. To address the large memory requirements of training LLMs,
several methods have been recently proposed. LoRA (Hu et al., 2021) freezes the pre-trained model
weights and trains two low-rank adaptor weight matrices to adapt the weights of each layer. How-
ever, LoRA suffers from a performance drop compared to training with full-rank matrices. To im-
prove upon this, several variations of LoRA (Liu et al., 2024; Renduchintala et al., 2023; Xia et al.,
2024b) have been proposed. Besides, GaLore (Zhao et al., 2024b) proposed to reduce the mem-
ory cost of optimizer states by calculating the gradients and projecting them into a low-rank space.
However, the above approaches also lead to increased computational costs.

Another line of methods approximate backpropagation by sparsifying gradients (Frantar and Alis-
tarh, 2023), subsampling the computational graph (Adelman et al., 2021), gradient check-pointing
(Chen et al., 2016), and quantization of weights and optimizer states (Dettmers et al., 2022).
However, these approaches can incur large approximation errors and cause performance drops.
Zeroth-order gradient approximation has also been used for memory-efficient training (Malladi
et al., 2023). However, this approach cannot reach a comparable performance to normal training.

Our method can be easily stacked with existing memory-efficient methods to improve convergence
and further reduce memory requirements.

Data selection for training LLMs. Data selection for training LLMs has garnered significant at-
tention due to its potential to enhance model performance while reducing computational costs. For
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pre-training, examples with middle perplexity rankings are shown beneficial (Marion et al., 2023).
Clustering based on embeddings of a pretrained model and sampling from the clusters to drop re-
dundancies has been also investigated (Tirumala et al., 2024).

For fine-tuning, training on manually crafted high-quality instruction/response pairs has shown
highly effective (Zhou et al., 2023a). Building on this observation, data selection using LLMs such
as ChatGPT or training on textbooks is proposed (Eldan and Li, 2023; Li et al., 2023c; Chen et al.,
2024; Li et al., 2023a), and metrics such as diversity (Bukharin and Zhao, 2023; Du et al., 2023),
difficulty (Bhatt et al., 2024; Marion et al., 2023; Zhou et al., 2023b), and completion length (Zhao
et al., 2024a) are shown relevant. Given a high-quality validation set, using influence functions to
select the most beneficial subsets of fine-tuning data has been also explored (Xia et al., 2024a). How-
ever, a high-quality validation set is not always available (e.g. for MathInstruct). Existing methods
select data in a one-shot manner before fine-tuning, and either require access to another open LLM
or a large preprocessing time to fine-tune the original or a proxy LLM on the target data.

We study data selection from a different perspective, i.e. by selecting small mini-batches that match
the performance of training with larger mini-batches. As baselines, we adapt several one-shot
methods based on loss (Jiang et al., 2019), gradient norm (Katharopoulos and Fleuret, 2018), middle
perplexity (Marion et al., 2023), completion length (Zhao et al., 2024a), confidence, and hidden-state
centrality (Bhatt et al., 2024) to iteratively select small mini-batches from larger random batches.

3 PRELIMINARY: MATCHING GRADIENT OF LARGE BATCHES

Consider training a machine learning model on a dataset indexed by V , by minimizing the loss
function L(θθθ) = Ei∈V [Li(θθθ)]. Mini-batch SGD with learning rate η iteratively updates the model
parameters as θθθt+1 = θθθt− η gMt,t, where gMt,t = Ei∈Mt [gi,t] is the gradient of a mini-batchMt

of random examples, and gi,t = ∇Li(θθθt). As long as the mini-batch size b = |Mt| is not too large,
the convergence rate of mini-batch SGD directly scales with a factor of 1/b. Formally, for a non-
convex L-gradient Lipschitz loss, mini-batch SGD with a small enough η will visit an ϵ-stationary
point w.h.p. at least once in the following number of iterations (Ghadimi and Lan, 2013):

Õ
(
L(L(θθθ0)− L∗)

ϵ2

(
1 +

σ2

bϵ2

))
, (1)

where Ei∈V [(gi,. − gV,.)
2] ≤ σ2 is the variance of the individual gradients.

To improve convergence of mini-batch SGD with mini-batch b, one can iteratively find weighted
subsets (mini-batch coresets) of size b that closely match the gradients of large random batchesML

t
of size r>b (Yang et al., 2023). As the mini-batch coresets have a similar gradient to large batches,
they have a smaller variance of σ2/r. Thus, they improve the convergence of mini-batch SGD by
r/b. The mini-batch coresets found by gradient matching are medoids (centroids) of the larger batch
in the gradient space, weighted by their corresponding cluster size, and can be found by maximizing
a monotone submodular1 facility location function, via the greedy algorithm (Mirzasoleiman et al.,
2020):

St
∗ ∈ argmax

S⊂ML
t ,|S|≤b

∑
i∈ML

t

max
s∈S

[C − ∥gi,t − gs,t∥], (2)

where C is a big constant. To find subsets efficiently, gradient of the loss w.r.t the input to the last
layer of the model (which best captures the variation of gradient norm (Katharopoulos and Fleuret,
2018)) is commonly used (Mirzasoleiman et al., 2020; Pooladzandi et al., 2022; Yang et al., 2023).

4 COLM: MINI-BATCH CORESETS FOR TRAINING LLMS

Despite its success of image classification tasks (Yang et al., 2023), the above gradient matching
formulation performs poorly for training LLMs, due to the following reasons:

• Highly Imbalanced Language Data. Language data often contain highly imbalanced sources
(e.g. categories or types of instructions). For example, the ratio of the largest to smallest source

1A set function F : 2V → R+ is submodular if F (e|S) = F (S ∪ {e})− F (S) ≥ F (T ∪ {e})− F (T ),
for any S ⊆ T ⊆ V and e ∈ V \ T . F is monotone if for all S ⊂ T , F (S) ≤ F (T ).
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Figure 1: A toy imbalance data. (Left) Full data V with two big (blue, green) and one small sources
(purple). k = 3 medoids of the data are shown in red. (Middle & right) Two random samples of the
data, with their corresponding k = 3 medoids. The α⋆-neighborhoods of big sources are dense and
thus medoids of random samples contain central examples of the big sources. However, the medoids
of random sample do not necessarily contain central examples of the small source.

size in the MathInstruct data is 300. Here, subsets found by gradient matching do not contain
representative examples (medoids) of the small sources and yield suboptimal performance.

• Adam optimizer. Adam (Kingma and Ba, 2014) is the commonly used optimizer for language
tasks. Adam scales each gradient dimension to speed up learning along flatter dimensions and
slow down learning along sharper ones. Matching the vanilla gradient of large batches yields
suboptimal performance when training with Adam.

• Very Large Gradient Dimensionality. Finding medoids via Eq. (2) requires calculating pair-
wise distances between per-example gradients. But, in the very high-dimensional gradient
space of LLMs, distances become vacuous. Even the last layer is too high-dimensional to find
medoids accurately. For instance, the dimensionality of the last V -projection matrix of Phi-2 is
6.5M when training the full parameters and 327K (matrix B) when using LoRA with rank 128.

Next, we will discuss how we address each of the above challenges.

4.1 DEALING WITH THE IMBALANCED LANGUAGE DATA

First, we address the challenge of dealing with language data containing highly imbalanced sources.
Our key observation is that larger random batches contain many examples from the big sources.
Thus, mini-batch coresets selected via gradient matching contain central examples of the big source.
In this case, training on the coresets benefits learning other examples in the big sources. On the
other hand, small sources have a few examples in the large batches. Hence, the mini-batch coresets
do not contain central examples of the small sources. In this case, training on the coresets does
not benefit learning other examples from small sources. This implies that one cannot reliably select
representative examples of small sources from the larger batches. Indeed, for optimal performance,
it is crucial to train on all examples of small sources in the larger batches.

Next, we formalize this problem. Consider a dataset V containing Q sources, i.e., V = {V1 ∪
· · · ∪ VQ}. Suppose gradients of examples in source Vq at iteration t are drawn from an underlying
infinite set, according to an unknown probability distribution. Let At

q be the set of k medoids of
the infinite set, such that around each i ∈ At

q there is a neighborhood of radius at least α∗, where
the probability density is at least β at all points, for some constants α∗, β. This implies that the
medoids are from reasonably dense and therefore representative regions of the gradient space. Let
us consider g : R → R, to be the volume of a ball of radius α centered at a point in the metric
space. The following theorem shows that for a large enough source that is randomly partitioned into
m parts, there are many examples from the dense neighborhoods in every partition.

Theorem 4.1. Let examples in Vq be partitioned into m parts. A number of examples |Vq| ≥
2km log(km/δ)

βg(α) , where α ≤ α⋆, is suffice to (1) have at least km log(km/δ) elements in the
α-neighborhood of each i ∈ At

q and (2) have each partition contain elements from all k α-
neighborhoods with probability at least (1− δ) for a small δ > 0.

Next, we show that the medoids of every partition are central examples from the dense neighbor-
hoods of the (infinite) data, with a high probability. That is, they are in α-neighborhood of At

q .
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Theorem 4.2. Let δ, ϵ > 0 and let nq = |Vq| and n0 be an integer such that for nq ≥ n0 we have
nq

ln(nq)
≥ mk

ϵ2 . If nq ≥ max
(
n0,

m log(2m/δ)
ϵ2

)
, with a probability of at least 1 − δ, medoids found

by the greedy algorithm from every partition are in α-neighborhoods of each i ∈ At
q .

Note that in every large random batch, there is a part of every source Vq , with expected number of
examples |Vq|/|V |. Hence, the above theorems imply that for small sources without a large-enough
sample size, coresets found by gradient matching do not necessarily contain their central examples.
Hence, training on them yields a poor performance on small sources. Fig 1 shows an illustration.

Coresets for Imbalanced Data. Consider a data V = {V1 ∪ · · · ∪ Vp ∪ Vp+1 ∪ · · ·VQ}, with
p small and Q − p large sources. To learn the small sources, we include all of their examples
from the large batch in the small mini-batch coreset. That is, St

s = {v ∈ ML
t |v ∈ ∪i∈[p]Vi}.

But, for every big source Vq where q ∈ {p + 1, · · · , Q}, we apply the greedy algorithm to its
examples in the larger batch V t

q = {v ∈ ML
t |v ∈ Vq} and add its medoids St

q ∈ V t
q to the small

mini-batch coreset, where bq = |St
q| is proportional to the number of examples from Vq inML

t , i.e.,
bq = (b−|St

s|).|V t
q |/(|ML

t |−|St
s|). The mini-batch coreset at step t is St = {St

s∪ St
p+1∪· · ·∪St

Q}.
We note that sources are mostly separable based on their gradients. Thus, one subset can be found
from all examples of big sources in the larger batch. However, selecting subsets separately yields a
slightly better performance, as we show in our experiments. Finally, to ensure learning various big
and small groups at a more uniform speed, we assign uniform weights to all the selected examples.
For datasets such as MathInstruct, the sources are labeled in the training data. For datasets without
specified sources, we cluster the hidden state of the model to find sources during fine-tuning.

Small sources. For a dataset with c sources, we regard small sources as those with less than |V |/c
examples.

The following theorem shows that the small mini-batch coresets have a smaller variance compared
to random mini-batches of the same size. Therefore, they guarantee superior convergence rate.

Theorem 4.3 (Variance reduction). Let the number of outliers which do not belong to any k dense
areas be κ. Let αu > α⋆ be the largest distance from an outlier to any centroids. Assume that all the
selected samples St

q belong to the dense areas. The variance of the mini-batch coresets of size b is
smaller than the variance of the random subset of size b by up to κ

m (αu−α⋆)(2α⋆ + κ
m (αu−α⋆)).

4.2 FINDING CORESETS FOR TRAINING WITH ADAM OPTIMIZER

Next, we address finding mini-batch coresets for training with Adam optimizer. Adam adapts the
learning rate across dimensions by scaling the gradient updates by square roots of exponential mov-
ing averages of squared past gradients. In doing so, it reduces the learning rate across sharp dimen-
sions and increases the learning rate across flatter dimensions to improve convergence. Formally,

mmmt =
β1mmmt−1 + (1− β1)gt

1− βt
1

, vvvt =
β2vvvt−1 + (1− β2)g

2
t

1− βt
2

, θθθt = θθθt−1 − η
mmmt

ϵ+
√
vvvt

. (3)

For selecting mini-batch coresets for training with Adam, matching the vanilla gradient is not
enough. To do so, we normalize every gradient dimension by the exponential average of its his-
torical values. Additionally, as we only select medoids of big sources, we calculate the historical
terms mmm,vvv only based on the big groups’ gradients, which we denote by m̂mm, v̂vv. This allows a more
precise selection of the subsets, as we also confirm in our experiments. Formally, we select the
medoids of the normalized gradients of big sources, by solving the following submodular facility
location function:

Sq
t
∗ ∈ argmax

S⊂V t
q ,|S|≤bq

∑
i∈V t

q

max
s∈S

[C − ∥ m̂mmt,i

ϵ+
√
v̂vvi,t
− m̂mmt,s

ϵ+
√
v̂vvs,t
∥]. (4)

The very high dimensional gradient of LLMs makes solving Eq. (4) prohibitively expensive. Be-
sides, in such a high dimensional space, pair-wise distances become vacuous. Next, we discuss
lowering the gradient dimensionality to find medoids of big sources more accurately.
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4.3 FINDING LOWER-DIMENSIONAL GRADIENT ESTIMATES

The very high-dimensional gradients of LLMs are very noisy. To find smoother lower dimensional
gradients in a memory efficient manner, we use zeroth-order methods to calculate the gradient of the
last V -projection matrix, and then sparsify it to lower its dimensionality. The V -projections matrix
allows finding higher-quality subsets, as we will confirm in our experiments. Notably, this approach
stacks well with memory-efficient training methods such as LoRA, as we will confirm empirically.

Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992) is a zeroth-order tech-
nique that estimates the gradient as:

ĝ =
L(θθθ + ϵzzz)− L(θθθ − ϵzzz)

2ϵ
zzz ≈ zzzzzzTg, (5)

where zzz ∈ Rd is a random vector with zzz ∼ N (0, IIId), and d is the number of model parameters and
ϵ is the perturbation scale. As ϵ → 0, the SPSA estimate provides a rank-1 reconstruction of the
gradient, and this is smoother than the actual gradient calculated with backpropation. SPSA requires
two forward passes through the model to compute the gradient estimate.

Estimating the Last V -Projection Gradient. To get the gradient of the last V -projection matrix for
example i, instead of perturbing all the parameters, we sample random perturbations for parameters
corresponding to the last (LoRA) V -projection in the perturbation vector zzz, and use zero for the
other entries:

ĝvp
i,t =

Li(θθθt + ϵzzzvp)− Li(θθθt − ϵzzzvp)

2ϵ
zzzvp, (6)

where zzzvp ∈ Rdvp with zzz = [000d−dvp
, zzzvp] and zzzvp ∼ N (0, IIIdvp

), and dvp is the dimensionality of
the flattened last V -projection matrix. Eq. (6) can be calculated very efficiently in just one forward
pass. To do so, we first make a forward pass to get the activations XXXL−1 of the penultimate layer
of the model. Then, we perturb the last-layer parameters twice to calculate ĝvp

i,t based on the pre-
calculated XXXL−1. The time of getting the lower dimensional last-layer gradients will be dominated
by the time of computing XXXL−1, and the cost of the second step is negligible. To minimize the
memory requirement, one can follow (Malladi et al., 2023) to use a fix seed to generate the same
perturbation zzzvp multiple times. Hence, the memory overhead is also negligible.

We use the zeroth-order gradient estimates in Eq. (6) to calculate normalized gradients m̂mmt, v̂vvt for the
big sources. Nevertheless, these gradients are still too high-dimensional to find medoids accurately.

Sparsifying the Last-layer Normalized Gradient Estimates for Adam. To further reduce the
gradient dimensionality, we sparsify the normalized V -projection gradients. The subsets are selected
for each big source separately. Thus, for every big source q, we find dimensions that best preserve
the normalized gradient norm of its examples V t

q ⊆ML
t in the larger random batch. The normalized

gradient norm to the first order indicates how much each gradient update achieves a loss reduction:

∆L(θθθ) = lim
ϵ→0

L(θθθ + ϵ mmm/(ϵ+
√
vvvt))− L(θθθ)

ϵ
= (

mmm

ϵ+
√
vvv
)T

mmm

ϵ+
√
vvv
. (7)

Dimensions that best preserve the normalized gradient norm are those with the largest magnitude.
Therefore, for every big source, we sparsify the normalized zeroth-order gradient m̂mmt/(ϵ+

√
v̂vvt) of

the last (LoRA) V -projection by a mask vector M t
q , which has 1 for the top h parameters with the

largest magnitudes and 0 elsewhere.

Using ℓ1 distance in high dimensions. We calculate the pair-wise normalized gradient dissimilarity
between sparsified gradients using ℓ1 distance, which is preferable to Euclidean distance in high
dimensions (Aggarwal et al., 2001). The medoids for each big source are found by solving:

St
q
∗ ∈ argmax

S⊂V t
q ,|S|≤ki

∑
i∈V t

q

max
s∈S

[C − ∥ m̂mmt,i

ϵ+
√
v̂vvt,i
⊙M t

q −
m̂mmt,s

ϵ+
√
v̂vvt,s
⊙M t

q∥1]. (8)

In our experiments, we show that selecting as small as 0.7% of the (LoRA) last layer gradient
dimensions enables finding high-quality subsets efficiently. Additionally, we show that compared
to random projection (Johnson, 1984), this approach enables finding higher-quality subsets and is
orders of magnitude faster in practice.

The pseudo-code of CoLM is illustrated in Alg. 1 in Appendix C.
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Table 1: Accuracies (↑) on in-domain and out-of-domain datasets when fine-tuning Phi-2 with LoRA
on the MathInstruct for 1K iterations. One-shot selection techniques (CL, GN, LC, FL, MP) are
adapted to select small mini-batches on the fly. CoLM with batch size (bs = 64) outperforms all
the baselines. Notably, CoLM even outperforms fine-tuning with bs = 256, while using 45% less
memory, and achieves similar performance to fine-tuning for 2K iterations with bs = 128.

Method In-domain Out-domain Avg All
GSM8K MATH NumGLUE Avg SVAMP Math. SimulEq Avg

Pretrained 52.9 16.4 35.0 34.8 67.9 31.9 28.8 42.9 38.8

FT (bs=64) 66.5±0.8 28.4±0.3 50.2±0.9 48.3±0.2 79.2±0.4 52.4±0.8 24.1±1.5 51.9±0.2 50.1±0.2

CL 56.1±3.2 26.4±0.5 32.9±3.2 38.5±2.2 33.3±4.9 46.9±4.9 11.9±3.2 30.7±2.8 34.6±2.5

BL 58.0±0.5 21.1±0.5 43.7±2.0 40.9±0.8 77.1±0.7 38.0±4.4 18.4±0.6 44.5±1.3 42.7±1.0

GN 65.0±1.2 24.9±1.0 45.5±1.2 45.1±1.1 76.7±1.3 42.9±2.7 16.8±2.3 45.5±2.0 45.3±1.6

LC 59.3±0.9 24.0±0.7 48.0±0.5 43.8±0.4 79.5±0.8 45.9±0.3 23.6±2.6 49.7±1.1 46.7±0.7

FL 68.0±1.1 29.2±0.3 51.4±1.3 49.5±0.7 80.4±0.3 55.6±1.2 30.5±2.5 55.5±1.3 52.5±1.0

MP 65.3±0.2 28.4±0.2 54.6±1.6 49.4±0.5 79.8±0.9 53.6±1.0 36.6±3.0 56.7±0.9 53.0±0.7

CoLM (Ours) 68.4±0.3 29.8±0.4 57.3±0.4 51.9±0.3 80.2±1.0 59.8±1.1 44.1±2.8 61.4±1.6 56.6±0.9

FT (bs=128) 67.4±0.5 28.8±0.3 53.2±1.2 49.8±0.5 80.4±1.3 55.6±0.4 29.9±2.4 55.3±1.0 52.6±0.6

FT (bs=256) 67.5±0.1 29.6±0.2 58.3±1.2 51.8±0.4 79.8±1.1 56.3±0.7 40.5±2.1 58.9±1.2 55.3±0.5

FT (bs=128) 2K 67.7±0.8 30.3±0.4 58.4±0.8 52.1±0.3 79.5±0.4 57.9±0.5 45.5±0.7 60.9±0.4 56.5±0.3

5 EXPERIMENTS

In this section, we evaluate the performance of CoLM, for fine-tuning LLMs, by comparing the
performance, memory requirement, and wall-clock training time of training with small and large
random mini-batches, with that of our method. We also do an ablation study showing the effective-
ness of different design choices of CoLM.

5.1 SETTINGS

Datasets. We use the MathInstruct (Yue et al., 2023) dataset for the challenging task of mathematical
reasoning. MathInstruct consists of about 260K instruction tuning examples, curated from 14 highly
imbalanced open-source math datasets, with broad coverage of mathematical fields and a wide range
of difficulty levels. The ratio of the largest to smallest source in MathInstruct is almost 300, and the
distribution of sources can be found in Fig 4 in the Appendix. Fine-tuning on MathInstruct has
shown state-of-the-art performance on a variety of standard math evaluation benchmarks. We use
three datasets from the SuperGLUE benchmark (Wang et al., 2019) for the classification task: SST-
2, CB, and MultiRC. For CB, we use the full training dataset, which consists of 250 examples. For
SST-2 and MultiRC, we randomly sample 3K examples for fine-tuning. Notably, compared to the
1K example setting used in (Malladi et al., 2023), we sample more data for datasets with larger sizes
because we use a much larger batch size.

Models. We utilize the Phi-2, Phi-3 (Li et al., 2023b), and Zephyr (Tunstall et al., 2023), which are
2.7B, 3.8B, 3B parameter LLMs. Phi-2, Phi-3 models outperform much larger models on multi-step
reasoning tasks, by utilizing high-quality, curated training data and advanced scaling techniques.

Training details. We use LoRA with a rank of 128, alpha of 512, and dropout rate of 0.05. For Phi
models, we apply LoRA to all attention matrices (i.e. QKV proj) and two fully connected layers
while for Zephyr, we apply LoRA to all attention matrices (i.e. QKVO proj). All experiments are
run on 4 NVIDIA A40 GPUs. We repeat each experiment three times.

Baselines. We compare CoLM with normal fine-tuning (FT) using small and large batch sizes and
an online selection method called Big Loss (BL) (Jiang et al., 2019). In addition, we adapt one-
shot selection techniques, including Grad Norm (GN) (Katharopoulos and Fleuret, 2018), Middle
Perplexity (MP) (Marion et al., 2023), Completion Length (CL) (Zhao et al., 2024a), Least Confi-
dence (LC), and selecting centroids of the model’s hidden state by maximizing submodular facility
location (FL) (Bhatt et al., 2024), to select small mini-batches from larger ones during fine-tuning.

Evaluation datasets. Following (Yue et al., 2023), we use a variety of popular datasets across
both in-domain and out-of-domain datasets. The in-domain datasets include GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), and NumGLUE (Mishra et al., 2022). For the out-of-domain
datasets, we include SVAMP (Patel et al., 2021), Mathematics (Davies et al., 2021), and SimulEq

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Zephyr-3B Phi-2 Phi-335

40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

FT (bs=64)
FT (bs=128)
CoLM (bs=64)

(a) CoLM applied to different LLMs

FT (bs=64)
1K iters

FT (bs=128)
1K iters

FT (bs=256)
1K iters

FT (bs=128)
2K iters

CoLM (bs=64)
1K iters

0

2000

4000

6000

8000

10000

12000

Tr
ai

ni
ng

 ti
m

e 
(s

)

Time
Accuracy

48

50

52

54

56

58

60

Ac
cu

ra
cy

 (%
)

(b) Training time vs performance

Figure 2: (a) CoLM with bs = 64 (from 128) outperforms fine-tuning different models with bs = 64
and bs = 128 by a large margin; (b) Wall-clock time (including the time for CoLM’s selection) and
performance of fine-tuning. CoLM outperforms normal fine-tuning for 1K iterations with bs = 128,
and 1K iterations with bs = 256, while being 1.3x and 2.7x faster, respectively.
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Figure 3: Fine-tuning Phi-2 on MathInstruct. (a) CoLM converges much faster than normal fine-
tuning (FT); (b) CoLM has a smaller variance than random mini-batches of the same size; (c) CoLM
improves the performance of training with different batch sizes. The size of each circle is propor-
tional to the training time of the corresponding method.

(Koncel-Kedziorski et al., 2016). These datasets collectively cover a wide range of mathemati-
cal areas such as algebra, probability, number theory, calculus, and geometry. Furthermore, some
questions in these datasets require the application of commonsense, reading comprehension, and
multi-step reasoning. All questions are formatted as open-ended.

Additional training details and evaluation metrics are specified in Appendix B.

5.2 MAIN RESULTS: MATHINSTRUCT

CoLM achieves a superior performance with limited memory. Table 1 shows the in-distribution
and out-of-distribution accuracies of fine-tuning Phi-2 with LoRA on the MathInstruct dataset for
1K iterations. First, we see that using a larger mini-batch size improves the performance, which
is consistent with the theoretical results in Eq. (1). Besides, we note that training for 1K steps
with a mini-batch size of 64, 128, 256 corresponds to training on 25%, 50% and 100% of the data,
respectively. Remarkably, training on only 25% of the data with CoLM with bs = 64 (selected from
128) outperforms all the baselines and achieves a similar performance to fine-tuning for 2K iterations
with bs = 128, which is nearly the optimal performance for this setting. Interestingly, training for 1K
iterations with CoLM using bs = 64 even outperforms training with bs = 256, with 45% less memory.

CoLM speeds up training and improves convergence. Fig. 2b compares the wall-clock time
and average performance of CoLM and normal fine-tuning Phi-2, using LoRA. For CoLM, the
wall-clock time includes the time for selecting the mini-batches. Remarkably, CoLM with bs = 64
(selected from 128) speeds up training for 2K iterations with bs = 128 and 1K iterations with bs
= 256 by 2.7x, while having 20% and 45% less memory requirements, and superior performance.
Figure 3b shows that throughout training, the variance of CoLM (bs = 64) gradients is smaller than
normal fine-tuning with bs = 64, which confirms our theoretical results in Sec. 4.1. This yields
a faster convergence compared to random mini-batches of the same size, as shown in Fig 3a. At
the same time, although random bs = 128 has a lower variance than CoLM with bs = 64, the more
uniform speed of learning sources by CoLM enables it to obtain a superior performance.
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Table 2: Effect of different components in CoLM.

Method In-domain Out-domain Avg

Weighted medoids 48.5±1.1 53.8±0.7 51.1±0.9

Medoids (using cosine distance) 48.7±0.3 54.0±1.6 51.3±0.9

Medoids (using ℓ1 distance) 48.6±0.3 54.4±0.8 51.5±0.5

Medoids of big sources & keep small sources 50.9±1.0 58.4±0.8 54.6±0.6

Medoids of big sources selected separately & keep small sources 50.6±0.2 59.6±0.9 55.1±0.5

CoLM: Medoids of big sources selected separately for Adam & keep small sources 51.9±0.3 61.4±1.6 56.6±0.9

CoLM improves the performance of different models and batch sizes. Figure 2a shows that
CoLM significantly outperforms normal fine-tuning of other model architectures, namely Phi-3, and
Zephyr-3B. Specifically, fine-tuning Phi-3 for 4K iterations using CoLM with bs = 64 (from 128)
outperforms normal fine-tuning for 4K iterations with bs = 64 and bs = 128 by 5% and 4.2%. For
fine-tuning Zephyr-3B for 2K iterations, CoLM improvement is 2.2% and 1.9%, respectively. No-
tably, for better-performing models, CoLM provides more performance improvement. This confirms
its applicability to state-of-the-art architectures. Fig. 3c shows that CoLM improves the performance
of different batch sizes, including bs = 32, bs = 64, and bs = 128, without significantly increasing the
training time. Notably, CoLM with bs = 64 or 128 outperforms normal fine-tuning with bs = 256.

5.3 ABLATION STUDIES

The importance of different components. Tab 2 highlights the importance of different components
in CoLM. Notably, including all examples of the small data sources improves the accuracy signif-
icantly by around 3% on average. This finding well aligns with our analysis in Sec. 4.1. Selecting
subsets separately per source and normalizing gradients for Adam further boost the performance by
0.5% and 1.5%, respectively, justifying our methods in Sections 4.2 and 4.3. Using uniform weights
for selected example slightly improves the performance by 0.4%.

Sparsification criteria for V -projection. Table 3 compares the performance of CoLM for different
sparsification criteria. Keeping parameters with the largest gradient magnitude achieves the best
performance. This result is consistent with that of (Guo et al., 2024), which show that parameters
with the largest gradient magnitude are the most salient. Weight magnitude, a common approach in
network pruning (Han et al., 2015), yields a slightly lower performance than random sparsification.

Sparsity level. Table 4 illustrates the performance of CoLM when changing the dimensionality (h)
of the sparsified gradients. The accuracy peaked at h = 2560, which equals the dimensionality of
the hidden state of Phi-2, and gradually decreases for larger values of h. This result is expected as
gradients in high dimension suffer from the curse of dimensionality, yielding a sub-optimal solution.

Choices of low-dimensional gradient approximations. We compare the usage of sparse MeZO
gradients in our method with the sparse actual gradients (via backprop) and projected gradients.
For the projected gradient, we apply a random projection to the actual gradient and leverage the
memory-efficient implementation introduced by Park et al. (2023). Table 5 shows that the sparse
MeZO gradient has a clear margin over the other two choices of low-dimensional gradient estimates.

Choices of layers. We replace the last V -projection layer with the last FC layer and the combination
of the last Q,K, V projections in CoLM. As can be seen in Table 6, using the MeZO gradient of the
last V projection matrix yields a gap of almost 2% compared to other choices of layers.

Completion length. (Zhao et al., 2024a) found that fine-tuning on examples with the longest com-
pletion length improves the performance. Figure 5 in the Appendix shows that CoLM, in contrast,
selects examples with shorter answers (avg length ≈ 120) than the average completion length of the
data, which is about 130. Nevertheless, CoLM significantly improves over selecting examples with
the longest completion length (avg length ≈ 210) in random mini-batch as indicated in Table 1.

5.4 DATASETS WITHOUT SPECIFIC SOURCES: SUPERGLUE BENCHMARK

We apply CoLM to fine-tuning Phi-2 with bs = 64 (selected from 128) for 80 iterations on three
classification datasets (SST-2, CB, MultiRC) in the SuperGLUE benchmark. Note that the Super-
GLUE datasets do not have any source information. To find sources, we warm up the model for 20
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Table 3: Effect of the sparsification criteria.

Criteria In-domain Out-domain Avg

random 51.1±0.9 59.6±2.5 55.4±1.7

weight 51.1±0.7 59.6±0.1 55.3±0.3

weight × grad 51.4±0.3 58.8±1.5 55.1±0.9

grad 51.9±0.3 61.4±1.6 56.6±0.9

Table 4: Effect of the sparsity level.

Dim In-domain Out-domain Avg

1280 50.4±0.8 57.8±1.8 54.1±1.3

2560 51.9±0.3 61.4±1.6 56.6±0.9

5120 51.2±0.1 60.1±0.9 55.7±0.5

10240 51.6±0.5 59.4±0.7 55.5±0.4

Table 5: Comparison between different low-
dimensional gradient approximations.

Approx In-domain Out-domain Avg

Actual grad 51.0±0.3 58.3±0.3 54.7±0.3

Proj grad 50.9±0.5 59.4±0.4 55.2±0.4

MeZO grad 51.9±0.3 61.4±1.6 56.6±0.9

Table 6: Comparison between different
choices of layers.

Layer(s) In-domain Out-domain Avg

FC 50.6±0.8 58.4±0.6 54.5±0.1

V proj 51.9±0.3 61.4±1.6 56.6±0.9

QKV projs 51.3±1.0 58.2±1.1 54.7±1.0

Table 7: Accuracies (↑) when fine-tuning Phi-2 with LoRA on three datasets from the SuperGLUE
benchmark for 80 iterations. CoLM with bs = 64 (from 128) effectively improves the performance
of normal fine-tuning with bs = 64. When using clusters found by the fine-tuned model, CoLM
outperforms fine-tuning with bs = 128.

SST-2 CB MultiRC Avg

Pretrained 56.6 45.5 46.3 49.5

FT (bs=64) 91.4±0.2 69.1±1.8 62.0±2.2 74.2±1.4

CoLM (clustering during fine-tuning) 92.0±0.8 71.8±0.9 63.7±1.0 75.8±0.9

CoLM (clustering of the fine-tuned model) 92.4±0.1 78.2±1.8 75.0±4.3 81.9±2.1

FT (bs=128) 92.1±1.0 72.1±0.8 72.6±5.2 78.9±2.3

iterations with bs = 64, and then cluster the model’s hidden states. We consider each cluster as a
source and define small sources as those with less than |V |/c examples, where c is the number of
clusters. We update the clustering four times during fine-tuning. As shown in Table 7, CoLM out-
performs normal fine-tuning with bs = 64 by 1.6% on average. This shows CoLM’s applicability to
datasets without specified sources. Additionally, we find that clusters found by the fine-tuned model
can significantly enhance the results. Compared to updating the clusters during training, using the
clusters by a fine-tuned model improved the performance by 6.1% on average. Compared to stan-
dard fine-tuning with bs=128, CoLM also improved the performance by 2%. To leverage this, one
can fine-tune a smaller proxy model on a smaller random subset of the data and cluster its hidden
states to find sources more accurately, without a large overhead.

6 CONCLUSION

To simulate training with larger mini-batch sizes with limited memory, an effective approach is to
find small mini-batch coresets that match the gradient of larger random batches. We showed that for
language data with highly imbalanced sources, mini-batch coresets found by gradient matching do
not contain representative examples of the small sources. Thus, one should keep all examples of the
small sources and augment them with examples that match the gradient of big sources in the larger
batch. To enable solving the gradient matching problem effectively, we used techniques from zeroth-
order optimization and model pruning to find lower-dimensional gradient estimates. We also showed
that matching the normalized gradient of larger batches provides superior performance for training
with Adam. Our method, CoLM, outperforms fine-tuning Phi models on MathInstruct with 4x larger
batch size, while being 2.7x faster, and also improves fine-tuning on the SuperGLUE benchmark.
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A VARIANCE REDUCTION BY FACILITY LOCATION

Outline. In this section, we present the proofs for our theoretical results in Section 4.1. Firstly,
we introduce the notations, problem formulation, and all assumptions. Secondly, Theorem 4.1 is
the result of Lemma A.4 and the first part of Lemma A.6. In addition, we provide a bound for the
local optimal solution in Corollary A.7. Thirdly, we prove Theorem 4.2 using Lemma A.8. Finally,
Theorem 4.3 is subsequent to Lemma A.9.

Notations. d(·, ·) : V ×V → R is the distance between two elements. Nα(v) = {w : d(v, w) ≤ α}
is the set of elements within a distance α from v, called α-neighborhood. g(α) : R → R is the
volume of a ball radius α centered at a point in the metric space. In RD, we have g(α) = O(αD).

Facility Location. For a set V , we solve the k-medoid problem by finding a subset S such that
|S| = k and S minimizes L(S) = 1

|V |
∑

v∈V mine∈S d(v, e). We can turn L into a monotone
submodular function by using an auxiliary element v0: f(S) = L({v0})− L(S ∪ {v0}).
Settings. We have a dataset V with n examples in RD which is drawn from an underlying infinite
set, according to some unknown probability distribution. Let A such that |A| = k be the global
optimal solution of the facility location problem in the infinite set.
Assumption A.1 (Data structure). For each ei ∈ A, there is a neighborhood of radius at least α⋆,
where the probability is at least β at all points, for some constant α⋆ and β.

It is known that f is decomposable. In other words, f can be written as sum of (non-negative)
monotone submodular functions as follows: f(S) = 1

|V |
∑

v∈V fv(S). We define the evaluation of
f restricted to D ⊆ V as follows: fD(S) = 1

|D|
∑

i∈D fi(S). Assume that the objective function f

have the following two properties.
Assumption A.2 (Lipschitz property). f : 2V → R is λ−Lipschitz. In other words, for equal
sized sets S = {v1, v2, . . . , vk} and S′ = {v′1, v′2, . . . , v′k} and for any matching of elements M =
{(v1, v′1), (v2, v′2), . . . , (vk, v′k)}, the difference between f(S) and f(S′) is bounded by the total of
distances between respective elements |f(S)− f(S′)| ≤ λ

∑
i d(vi, v

′
i).

Assumption A.3 (Bound property). fi is bounded, and without loss of generality 0 ≤ fi(S) ≤ 1
for 1 ≤ i ≤ |V |, S ⊆ V .

The dataset is randomly partition into m large mini-batches {Mj}mj=1 of size r = n
m . We denote

the local optimal solution for eachMj as Aj where |Aj | = k. We are showing in the next Lemma
that when the size of the training set is large enough, it has many examples from all the dense areas.

Lemma A.4. A number of elements n ≥ 2km log(km/δ)
βg(α) , where α ≤ α⋆ suffices to have at least

km log(km/δ) elements in the α−neighborhood of each ei ∈ A with probability at least (1 - δ), for
small values of δ.

Proof. The probability of a random element being in Nα(ei) is at least βg(α). Thus, the expected
number of α−neighbors of an ei ∈ A is E[|Nα(ei)|] ≥ 2km log(km/δ).

From the Chernoff bound, we have for every t < 0,
P [|Nα(ei)| ≤ km log(km/δ)] ≤ E[exp(t ∗ |Nα(ei)|)] exp(−t ∗ km log(km/δ))

≤ exp(t ∗ (E[|Nα(ei)|]− km log(km/δ)))

≤ exp(t ∗ km log(km/δ)). (9)

Let t = − 1
km in the above equation, we have

P [|Nα(ei)| ≤ km log(km/δ)] ≤ exp(− log(km/δ)) =
δ

km
. (10)

Therefore, the probability that some ei ∈ A does not have a large enough neighborhood is

P [

k⋃
i=1

|Nα(ei)| ≤ km log(km/δ)] ≤
k∑

i=1

P [|Nα(ei)| ≤ km log(km/δ)]

≤ k
δ

km
=

δ

m
≤ δ. (11)
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Therefore, with probability at least 1− δ, the α−neighborhood of each element ei ∈ A contains at
least km log(km/δ) elements.

Next, we prove that sampling with replacement guarantees that each mini-batch has elements from
all the dense areas.

Lemma A.5 (Sampling with replacement). If for each ei ∈ A, |Nα(ei)| = m log(k/δ), and ifMj

is a mini-batch of size n/m sampling with replacement, thenMj contains elements from all k dense
areas with probability at least (1− δ).

Proof. The number of mini-batches Mj does not contain elements from Nα(ei) is (n −
m log(k/δ))(n/m). The total number of mini-batches of size n/m is n(n/m). Thus, the probability
ofMj does not contain elements from Nα(ei) is (n−m log(k/δ)

n )(n/m) ≈ (1 − 1
n

m log(k/δ)
)(n/m) =

exp(− log(k/δ)) = δ/k. Therefore, the probability thatMj does not contain elements from all k
dense areas is

P [

k⋃
i=1

|Mj ∩Nα(ei)| = 0] ≤
k∑

i=1

P [|Mj ∩Nα(ei)| = 0] = δ. (12)

The above guarantee also holds for sampling without replacement as shown in the following lemma.

Lemma A.6 (Sampling without replacement). If for each ei ∈ A, |Nα(ei)| ≥ km log(km/δ), and
if V is partitioned into m mini-batchM1,M2, . . . ,Mm, then eachMj contains elements from all
the dense areas and |f(A)− f(Aj)| ≤ λαk with probability at least (1− δ).

Proof. Because |Nα(ei)| ≥ km log(km/δ), we can construct k mutually disjoint subsets {Si}ki=1
such that Si ∈ Nα(ei) and |Si| = m log(km/δ). Each element in Si goes into a particular Mj

with a probability of 1/m. The probability that a particularMj does not contain an element in Si

is P [|Mj ∩ Si| = 0] = (1 − 1/m)m log(km/δ) = δ
km . The last equality hold because lim

m→+∞
(1 −

1/m)m = exp(−1). The probability thatMj does not intersect with at least one Si is

P [

k⋃
i=1

|Mj ∩ Si| = 0] ≤
k∑

i=1

P [|Mj ∩ Si| = 0] =
δ

m
. (13)

Therefore, the probability that Mj contains elements from every Si is at least 1 − δ
m . Thus, the

probability that everyMj contains elements from every Si is

P [

m⋂
j=1

(

k⋂
i=1

|Mj ∩ Si| > 0)] =

m∏
j=1

P [

k⋂
i=1

|Mj ∩ Si| > 0] = (1− δ

m
)m ≈ 1− δ. (14)

Thus, with high probability 1 − δ, every Mj has a subset Sj such that are |Sj | = |A| = k and
|Sj ∩Nα(ei)| > 0 for ei ∈ A. Therefore, f(A)− f(Aj) ≤ f(A)− f(Sj) ≤ λαk.

From Lemmas A.4 and A.6, we have the following corollary

Corollary A.7 (Bound for local optimal solution). For n ≥ 2km log(4km/δ)
βg( ϵ

λk ) , where ϵ
λk ≤ α⋆, if V is

partitioned into m mini-batchesM1,M2, . . . ,Mm, then for sufficiently small values of δ, we have
|f(A)− f(Aj)| < ϵ with a probability of at least 1− δ.

Lemma A.8 (Bound for local evaluation). Let n0 be an integer such that for n ≥ n0 we have
n

ln(n) ≥
mk
ϵ2 . If n ≥ max

(
n0,

m log(2m/δ)
ϵ2

)
, with a probability of at least 1− δ, we can evaluate f

on each mini-batchMj with a small error of ϵ, i.e., |fMj (S)− f(S)| < ϵ.
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Proof. Note that each mini-batch has exactly |Mj | = n/m elements. Let us define ξj(S) the event
that |fMj

(S)−f(S)| < ϵ, for some fixed ϵ < 1 and a fixed S with |S| ≤ k. Note that ξj(S) denotes
the event that the empirical mean fMj

(S) is close to the true mean. Because f is decomposable,
we have fMj

(S) = 1
|Mj |

∑
i∈Mj

fj(S) =
∑

i∈Mj

fj(S)
|Mj | . Also remember that 0 ≤ fj(S)

|Mj | ≤
1

|Mj | .
Based on the Hoeffding inequality (without replacement) we have

P [¬ξi(S)] = P [fVi
(S)− f(S) ≥ ϵ] = P [fVi

(S)− E[fVi
(S)] ≥ ϵ]

≤ 2 exp

(
− 2ϵ2

|Vi|( 1
|Vi| − 0)2

)
= 2 exp(−2ϵ2|Vi|)
= 2 exp(−2nϵ2/m). (15)

Let ξi be an event that |fVi
(S)− f(S)| < ϵ for any S such that |S| ≤ k. Note that there are at most

nk sets of size at most k (because sampling k samples with replacement results in a subset of size at
most k). Hence,

P [¬ξi] ≤ 2nk exp(−2nϵ2/m) (16)

There are m mini-batches, by the union bound we can conclude that

P [

m⋃
i=1

¬ξi] ≤
m∑
i=1

P [¬ξi] ≤ 2mnk exp(−2nϵ2/m) (17)

The above calculation implies that we need to choose δ ≥ 2mnk exp(−2nϵ2/m) so that w.h.p
1− δ we can evaluate f locally on each mini-batch. For large n, the function n

ln(n) is an increasing
function, thus, there exists n0 such that for n ≥ n0, n

ln(n) ≥
mk
ϵ2 . Then, we choose n as follows

n = max

(
n0,

m log(2m/δ)

ϵ2

)
(18)

For |fVi(S) − f(S)| < ϵ to hold for all subsets S such that |S| ≤ k, the data distribution of Vi

should be similar to that of V . Hence, k-medoids of Vi are in close neighborhood of k-medoids of
V .
Lemma A.9 (Upper bound for the variance). Let the number of outliers which do not belong to any
k dense area be κ. Let αu > α⋆ be the largest distance from an outlier to any centroids. Assume
that all the selected samples Aj belong to the dense areas. The upper bound of the variance of the
local optimal solution Aj is smaller than that of the random subset of size k.

Proof. For each subset S, we use the notation Sc to denote the centroid of this subset. Let ϵj be
the distance between the centroid of a subset Sj of size k to the centroid of A. The variance of the
subset Sj has an upper bound as follow.

Var(Sc
j ) = Var(Ac + ϵj)

= Var(ϵj)

≤ E[ϵ2j ]. (19)

For each local optimal solution Aj , we know that ϵj ≤ α⋆. For a random subset Sj of size k, there
is κ/m outliers and k − (κ/m) examples from the dense areas in the subset on average. Thus, the
distance ϵj is bounded as ϵj ≤ (1 − κ

m )α⋆ + κ
mαu ≥ α⋆. Therefore, the upper bound of a random

subset Sj is larger than that of the select subset Aj .

From the above lemma, we can conclude that
Theorem A.10 (Variance reduction). The variance of the mini-batch coresets of size b is smaller
than the variance of the random subset of size b by up to κ

m (αu − α⋆)(2α⋆ + κ
m (αu − α⋆)).
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Figure 4: Data distribution of different data sources in MathInstruct.
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Figure 5: The average completion length of examples selected by CoLM. vs. random examples, and
longest examples in random batches.

B FINE-TUNING SETTINGS

Training details. Following the setup used in (Yue et al., 2023), we adopt a training regime with
a learning rate of 2e-5 and a cosine scheduler with a 3% warm-up period, i.e. the learning rate
linearly increases from 0 to 2e-5 over the first 3% of training steps, then follows a cosine decay
to 0 at the end of training. We set a maximum sequence length of 512. For all experiments on
MathInstruct, we standardize the number of gradient steps to correspond to 1K, unless explicitly
specified. To simulate a larger batch size, we have also used a gradient accumulation step of 8 in
our experiments. We use LoRA with a rank of 128, alpha of 512, and dropout rate of 0.05. For Phi
models, we apply LoRA to all attention matrices (i.e. QKV proj) and two fully connected layers
while for Zephyr, we apply LoRA to all attention matrices (i.e. QKVO proj). All experiments are
run on 4 NVIDIA A40 GPUs. We repeat each experiment three times.

Evaluation metric. We use the standard evaluation metric for open-formed questions, exact match,
which measures the model’s accuracy by comparing its generated answers against the correct solu-
tions. For an answer to be considered correct, it must match the reference solution precisely. We
evaluate under the 0-shot setting with a maximum sequence length of 2048 tokens for decoding. The
default prompt is Program-of-Thought (PoT), falling back to Chain-of-Thought (CoT) prompting if
the former does not work (Yue et al., 2023).
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Small sources. Figure 4 visualizes the data distribution of the MathInstruct dataset. It can be seen
that the dataset is highly imbalanced with most of the samples belonging to 4 large sources (10 - 13).
Therefore, we use a simple heuristic to consider any data sources whose sizes are below the average
count as small sources.

C PSEUDO-CODE

Algorithm 1 Coresets for Training LLMs (CoLM) on Imbalanced Language Data

1: Input: θθθ ∈ Rd, loss L : Rd → R, step budget T , batch size b, learning rate schedule {ηt},
small sources {V1, · · · , Vp}, large sources {Vp+1, · · · , VQ}

2: for t = 1, · · · , T do
3: Sample batchMt ⊂ D
4: St

s ← {v ∈Mt|v ∈
⋃

i∈[p] Vp} // Keep all samples from small sources in the batch
5: for i ∈ {p+ 1, · · · , q} do
6: V t

i ← {v ∈Mt|v ∈ Vi} // Find all samples from each big source
7: bi ← (b− |Ss

t |).|V t
i |/(|Mt| − |Ss

t |) // Calculate the number of selected samples
8: Get the zeroth-order gradient ĝvpi,t of the last (LoRA) V-projection using Eq 6.

9: Calculate the normalized gradient m̂mmt,i

ϵ+
√

v̂vvt,i

from historical terms and zeroth-order gradient

ĝvpi,t uisng Eq 3.
10: Create a mask vector M t

q for top h parameters with largest magnitude.
11: St

i ← argmaxS⊂V t
i ,|S|≤bi

∑
i∈V t

i
maxs∈S [C − ∥ m̂mmt,i

ϵ+
√

v̂vvt,i

⊙ M t
i −

m̂mmt,s

ϵ+
√

v̂vvt,s

⊙ M t
i ∥1].

// Solve the submodular facility location optimization problem
12: end for
13: St ← {St

s ∪ St
p+1 ∪ · · · ∪ St

q}
14: θθθ ← θθθ − η∇LSt

(θθθ)

15: end for

D ADDITIONAL FINE-TUNING RESULTS

D.1 TRAINING LOSS

For fine-tuning LLMs, downstream performance is generally a better metric than training loss or
perplexity. In addition, perplexity does not always correlate with actual task performance on diverse
downstream tasks Liu et al. (2023). Furthermore, the MathInstruct dataset doesn’t have a held-out
validation set to calculate the perplexity. For completeness, we added the training loss in Figure 6.
CoLM consistently yields smallest loss throughout the whole training process.

D.2 COLM IS EFFECTIVE ACROSS DIFFERENT MODEL ARCHITECTURES

To demonstrate the effectiveness of our method to the recent state-of-the-art models with larger
vocabulary sizes, we fine-tuned Llama-3 models with LoRA on MathInstruct. We used the same
fine-tuning settings as Phi-2 indicated in Appendix B. We reported the average accuracy on in- and
out-of-domains in Table 8. For completeness, we also added the quantitative results of Figure 2a.
We observed that CoLM with bs=64 outperforms normal fine-tuning with bs=128 across different
model architectures and sizes.

D.3 CONVERGENCE PLOT IN TERMS OF TRAINING TIME

To highlight the faster convergence rate of CoLM, we plotted Figure 3a with training time as the x-
axis. Figure 7 still shows that our method converges faster than normal fine-tuning with both smaller
and larger batch sizes.
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Figure 6: Training loss trajectory of different methods when fine-tuning Phi-2 on MathInstruct.

Table 8: Comparing the average accuracy on in- and out-of-domain evaluation datasets across dif-
ferent model architectures and sizes.

Model FT (bs=64) FT (bs=128) CoLM (bs=64)

Llama-3.2-1B 20.2±0.2 20.3±0.1 22.0±0.4

Llama-3.2-3B 35.1±0.1 36.1±0.0 37.7±0.5

Llama-3.1-8B 45.4±0.5 47.1±0.7 51.1±0.3

Phi-2-2.7B 50.1±0.2 52.6±0.6 56.5±0.9

Phi-3-4B 60.4±0.3 61.2±0.6 65.4±0.5

Zephyr-3B 37.7±0.6 38.0±0.3 39.9±0.4
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Figure 7: CoLM reaches the optimal performance faster than normal fine-tuning baselines.

E MEMORY CONSUMPTION

CoLM effectively reduces the Activation Memory. The memory required for training an LLM
can be decomposed into three parts: activation memory + weight memory + optimizer state memory.
Memory efficient methods often reduce the weight or optimizer-state memory. For example, LoRA
reduces the optimizer state memory but slightly increases the weight and activation memory by
adding low-rank matrices. Orthogonal to such methods, CoLM effectively reduces the activation
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Table 9: Comparing memory, wall-clock time, and average accuracy of different methods. All
models are trained with LoRA on 4 GPUs with a gradient accumulation step of 8.

Method Memory per GPU (GB) Time (h) Avg acc

FT (bs=64) 28.1 0.9 50.1±0.2

FT (bs=128) 35.9 1.8 52.6±0.6

FT (bs=256) 51.6 3.6 55.3±0.5

CoLM (bs=64) 28.3 1.3 56.5±0.9
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Figure 8: Memory usage comparison betweenCoLM and fine-tuning at different batch sizes.

memory by reducing the batch size. Hence, stacked with memory-efficient methods such as LoRA,
it can further reduce the memory, particularly when batch size is large. Notably, while memory
efficient methods harm the performance, CoLM effectively improves the performance over training
with larger batches.

Stack CoLM with LoRA and Gradient accumulation. In all our experiments, we used LoRA and
a gradient accumulation step of 8, as our A40 GPUs did not have enough memory to hold bs=128.

Memory overhead for CoLM. The memory overhead of CoLM stems from three main sources the
last layer zeroth-order gradient ĝvpi,t in Eq 6, the historical terms of Adam in Eq 8, and the pairwise
dissimilarity matrix when solving Eq 8. Because with LoRA, the last layer dimension is 327K and
2560 before and after sparsification and the batch size is 128, the memory overhead is less than
200MB. Table 9 summarizes the memory, wall-clock time, and average accuracy, when fine-tuning
Phi-2 on MathInstruct with 4xA40 GPUs each with 45G memory (except for bs=256). Using
LoRA, each GPU can have a maximum device batch-size of 5, so we trained all models with a
gradient accumulation step of 8, with LoRA on 4 GPUs. The total batch size = num GPUs x device
batch size x gradient accumulation step. We see that CoLM (bs=64) outperforms fine-tuning (FT)
with bs=256, while requiring 1.8x less memory and being 2.7x faster. Compared to FT bs=128,
CoLM requires 20% less memory, while being 30% faster, and obtains 4% higher accuracy.

Larger batch sizes. Notably, when the batch size is larger, the activation memory dominates the
optimizer state and weight memory. Figure 8 shows the memory usage of normal fine-tuning and
CoLM with half the batch size. Notably, for total bs=2048, CoLM(bs=1024) is expected to required
almost 2x less memory than fine-tuning with bs=2048. A larger batch size is useful in particular for
pre-training. Our new experiments for pre-training on Appendix F, confirm the benefits of CoLM to
pre-training.
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Table 10: Statistics of pre-training mixture. Weight means the percentage of 1024-token chunks of
each dataset in the mixture.

Dataset Weight (%) Small or Large source?

EuroParl 2.8 Small
Github 28.2 Large

HackerNews 5.0 Small
NIH Exporters 3.4 Small
Wikipedia (en) 60.6 Large
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Figure 9: Validation perplexity when pre-training Llama-60M on a mixture of the Pile dataset.

Table 11: Downstream accuracy of pre-trained Llama-60M.

Method Squad WiC COPA Avg

PT (bs=128) 25.4 50.2 49.0 41.5
PT (bs=256) 24.8 50.7 52.0 42.5

CoLM (bs=128) 25.9 51.6 54.0 43.9

F PRE-TRAINING EXPERIMENTS

Settings. We used Llama-60M, which is also used in Zhao et al. (2024b), on a mixture of datasets
from the Pile dataset Gao et al. (2020). We selected 5 different datasets without copyright in-
fringement including EuroParl, Github, HackerNews, NIH Exporter, and Wikipedia (en). For pre-
processing the dataset, we divide each dataset into 1024-token chunks and the statistics are given
in Table 10. Following Zhao et al. (2024b), we pretrained the model for 10K iterations with a max
sequence length of 1024 on 4 GPUs. We also used a gradient accumulation step of 8 similar to
fine-tuning experiments. For evaluation, we calculated the perplexity on a held-out validation set. In
addition, we calculated the down-stream accuracy on 3 datasets Squad Rajpurkar (2016), WiC Pile-
hvar and Camacho-Collados (2018), and COPA Roemmele et al. (2011).

Validation perplexity. Figure 9 illustrates the validation perplexity of pre-trained models at differ-
ent checkpoints during training. CoLM achieves almost the same perplexity as pre-training with 2x
batch size.
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Table 12: Comparison between different strategies to obtain low-dim zeroth-order gradients.

Approx In-domain Out-domain Avg

Low-rank grad 51.0±0.2 58.1±0.8 54.6±0.4

Sparsified grad 51.9±0.3 61.4±1.6 56.6±0.9

Down-stream performance. Table 11 demonstrates that CoLM improves the downstream accuracy
on all 3 evaluation datasets, yielding an improvement of at least 1.4% on average.

G LOW-RANK ZEROTH-ORDER GRADIENT

We conducted new experiments to apply SVD to lower the dimensionality of our zeroth-order last-
layer gradients (Eq 6). Following the fine-tuning setting of GaLore Zhao et al. (2024b), we used rank
r = 8 and subspace change frequency T = 200. Because the dimension of last LoRA layer is 128
x 2560, after projection, the gradient dimensionality becomes r * n = 8 * 2560 = 20480. Table 12
demonstrates that our sparsified gradient estimates outperform the low-dimensional gradients found
via SVD.
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