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ABSTRACT

Information-theoretic measures, such as Mutual Information (MI), play a crucial
role in understanding non-linear relationships between random variables and are
widely used across scientific disciplines. Yet, their use on real-world discrete data
remains challenging. Existing methods typically rely on embedding discrete data
into a continuous space and apply neural estimators originally designed for contin-
uous distributions. This process requires careful engineering for both the embed-
ding model and estimator architecture, but suffers from issues related to high data
dimensionality. In this work, we introduce INFO-SEDD, a discrete diffusion–based
approach that bridges information-theoretic estimation and generative modeling
such that they can be used to compute Kullback-Leibler divergences. Backed by
Continuous Time Markov Chains theory principles, the design of INFO-SEDD is
lightweight and scalable and allows seamless integration with pretrained models.
We showcase the versatility of our approach through applications on motif discov-
ery in genetic promoter data, semantic-aware model selection in text summariza-
tion, and entropy estimation in Ising models. Finally, we construct consistency
tests on real-world textual and genomics data. Our experiments demonstrate that
INFO-SEDD outperforms alternatives that rely on the “embedding trick”. Our re-
sults position INFO-SEDD as a robust and scalable tool for information-theoretic
analysis of discrete data.

1 INTRODUCTION

Information theoretic measures represent a powerful tool to understand non-linear relationships
between random variables (Shannon, 1948; MacKay, 2003) and find a wide range of appli-
cations in scientific fields (Karbowski, 2024; Eckford et al., 2016). Mutual information (MI),
in particular, has become an established metric in machine learning (Bell and Sejnowski, 1995;
Stratos, 2019; Belghazi et al., 2018; Oord et al., 2018; Hjelm et al., 2019), both for training models
(Alemi et al., 2016; Chen et al., 2016; Zhao et al., 2018) and at inference time (Alemi and Fischer,
2018; Huang et al., 2020).

Estimating information theoretic quantities remains an open problem, and different paradigms
for their estimation have emerged. Classical parametric and non-parametric methods (Pizer et al.,
1987; Moon et al., 1995; Kraskov et al., 2004; Gao et al., 2015) have been recently superseded
by variational approaches (Barber and Agakov, 2004; Nguyen et al., 2007; Nowozin et al., 2016;
Poole et al., 2019; Wunder et al., 2021; Letizia et al., 2023; Federici et al., 2023) and neural es-
timators. Notably, several approaches rely on optimizing a lower bound (Papamakarios et al.,
2017; Belghazi et al., 2018; Oord et al., 2018; Song and Ermon, 2019b; Rhodes et al., 2020;
Letizia and Tonello, 2022; Brekelmans et al., 2022). However, McAllester and Stratos (2020);
Song and Ermon (2019a) challenge the applicability of this kind of estimator, especially in high
MI scenarios, as they require an amount of samples that grows exponentially with the ground truth
MI. To overcome this limitation, a new class of estimators has emerged (Franzese et al., 2023a;
Butakov et al., 2024; Kholkin et al., 2025). Unfortunately, these methods focus on continuous data
and, despite their practical importance, few estimators for high-dimensional discrete distributions
have been proposed in the literature. While classical estimators for discrete random variables exist
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(Pinchas et al., 2024), their accuracy rapidly decreases with increasing data dimensionality. Appli-
cations that would benefit from scalable estimators of MI include, among others, DNA or peptide
sequencing (Newcomb and Sayood, 2021; Xia et al.), text summarization (Darrin et al., 2024) and
neuroscience (Chai et al., 2009), to name a few examples. Consequently, the development of new
estimation techniques is of paramount importance for the broader scientific community.

A common workaround to deal with high-dimensional, discrete data is to embed it in a continu-
ous space and use neural estimators conceived for continuous distributions. One recent example is
(Lee and Rhee, 2024), where it is shown that the embeddings of pretrained language models can
provide meaningful representations to estimate information theoretic quantities in unstructured data.
However, such a process may not fully capture the discrete nature of the underlying data and might
suffer from several limitations, such as the necessity to consider application-specific embeddings.
For example, we show that MINDE (Franzese et al., 2023b), which is a strong MI estimator in con-
tinuous domains, like image data, struggles with discrete data.

In this work, we build on the growing literature of diffusion-based estimators (Kong et al., 2022;
Franzese et al., 2023a; Bounoua et al., 2024), and present INFO-SEDD, a novel method for estimat-
ing information theoretic quantities of discrete data using Continuous Time Markov Chains (CTMCs)
(Lou et al., 2024). These stochastic processes have recently seen a surge in popularity for applica-
tions such as generative language modeling (Lou et al., 2024; Sahoo et al., 2024; Nie et al., 2025).
Their fundamental working principle is the reversal of a perturbation process which starts with clean
data from a given distribution and that converges to uninformative noise. The workhorse of these
approaches is the score function, which contains information about the probability distributions as-
sociated with the CTMCs at different time instants. Our proposed method, INFO-SEDD, builds upon
such mathematical framework, extending it via Dynkin’s lemma (Hanson, 2007), and leverages score
functions to compute key information-theoretic metrics, such as MI between two random variables,
and the entropy of a given distribution. By carefully selecting perturbation processes, our approach
requires training only a single parametric model to compute MI across arbitrary subsets of variables.
Furthermore, INFO-SEDD seamlessly integrates with pretrained models, without requiring ad-hoc
procedures to work with discrete data.

To rigorously evaluate our method, we perform a large number of experiments both on synthetic
and real data, and compare INFO-SEDD to state-of-the-art methods. We design a synthetic bench-
mark with ground truth MI that presents challenges such as high data dimensionality and high MI
scenarios. Our results demonstrate that INFO-SEDD is both robust and consistently outperforms
existing estimation methods. We then focus on two application domains in which we compare INFO-
SEDD to competitors, which all require the “embedding trick” discussed above. First, we tackle
the text summarization domain, evaluate the consistency of MI estimators, and study if MI rep-
resents a meaningful signal to perform model selection, as INFO-SEDD estimates are well aligned
with human metrics for evaluating text summarization. We also present results in the domain of
genomics, whereby we evaluate the consistency of MI estimators, and show that INFO-SEDD can be
used to detect motif location in DNA sequencing data. Overall, our results indicate that INFO-SEDD
outperforms alternatives for MI estimation, and pave the way to exploit information measures as
meaningful signals for a variety of downstream tasks involving high-dimensional discrete data.

2 METHODOLOGY

We begin by defining the relation between CTMCs over discrete state spaces (Anderson, 2012) and
the computation of Kullback-Leibler (KL) divergences. First, in Section 2.1, we provide a brief in-
troduction to the fundamentals of CTMCs, emphasizing their time-reversal properties and parametric
approximations (Lou et al., 2024). Then, in Section 2.2, we demonstrate how these processes can
be adapted for divergence estimation, specifically by analyzing two processes that share the same
generator but differ in their initial conditions.

2.1 PRELIMINARIES

Consider a CTMC
→
Xt, t ∈ [0, T ], defined over a finite state space χ = {1, . . . , N} and spec-

ified by the infinitesimal generators
→
Qt : [0, T ] → R

N×N , where the diagonal entries satisfy
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→
Qt(a, a) = −

∑

a 6=b

→
Qt(a, b), with

→
Qt(a, b) ≥ 0, a 6= b. As established by Anderson (2012), the

time evolution of the probability distribution Pr(Xt = x)
def
=
→
p t(x) satisfies the following Ordinary

Differential Equation (ODE):
→
p t =

→
p 0 +

∫ t

0

→
Qs

→
p sds, where the initial conditions of the process

→
p 0 determine the distribution

→
p t at any time t. A key property of CTMCs is that their time-reversed

counterpart, recently used for generative modeling purposes (Lou et al., 2024), also follows a CTMC,
but with a different set of transition matrices. More precisely, defining the time-reversed process as
←
p t

def
=
→
p T−t, the reverse process evolves according to the following ODE (Lou et al., 2024; Sun et al.,

2023):
←
p t =

→
p T +

∫ t

0

←
Qs

←
p sds, where the reverse-time transition matrices

←
Qt relate to the forward

transition matrices as follows:

←

Qt(b, a) =

(

→
p T−t(b)
→
p T−t(a)

→

QT−t(a, b)

)

(1− δ(a, b)) +



−
∑

b 6=a

←

Qt(b, a)



 δ(a, a). (1)

Under appropriate technical conditions on
→
Qt (Lou et al., 2024), the terminal distribution

→
p T con-

verges to a known reference distribution π, which is independent of the initial distribution
→
p 0. This

property enables sampling from
→
p 0 by simulating a CTMC with appropriately chosen generators

(Sun et al., 2023; Kelly, 1981). However, other than simple and uninteresting scenarios, exact

knowledge of the quantities
→
p T−t(b)
→
p T−t(a)

is out of reach. A practical solution is to substitute in this

numerical integration a parametric function s
p
θ(a, t)b, whose parameters are optimized according to

the Diffusion Weighted Denoising Score Entropy (DWDSE) loss function (Equation 10, Section 3.2
of Lou et al. (2024)). Whenever the context is clear, we simplify the notation for the parametric

score in the remainder of the paper and denote it with s
p
θ(
→
Xt)x instead of spθ(

→
Xt, t)x.

2.2 KL DIVERGENCES VIA CTMCS

Next, we show how to extend the CTMC framework to compute the KL divergence between two

probability distributions
→
p 0 and

→
q 0 defined over the same support χ, expressed as KL

[
→
p 0 ‖

→
q 0

]

.

To achieve this, we construct two Markov chains that differ only in their initial conditions: one
initialized from

→
p 0, and the other initialized from

→
q 0. The KL divergence can be expressed as:

KL

[
→
p 0 ‖

→
q 0

]

= E

[

log
→
p 0
→
q 0

(
←
XT )

]

= E

[

log
←
p T
←
q T

(
←
XT )

]

= E

[

E

[

log
←
p T
←
q T

(
←
XT )

∣
∣
∣
∣

←
X0

]]

. (2)

The last term in Equation (2) can be rewritten using Dynkin’s formula (Hanson, 2007), which states
that for a generic function f : χ× [0, T ]→ R, we have:

E

[

f(
←
XT , T )

∣
∣
∣
∣

←
X0

]

− f(
←
X0, 0) = E

[
∫ T

0

∂f
∂t
(
←
Xt, t) + B[f ](

←
Xt, t)dt

∣
∣
∣
∣

←
X0

]

, (3)

where B is the backward operator, which we define as B[f ](a, t) =
∑

b 6=a

←
Qt(b, a)(f(b)− f(a)).

By combining the result from Equation (3) with Equation (2), the KL divergence between discrete
distributions can be conveniently approximated as:

KL

[

→
p 0 ‖

→
q 0

]

≈ E







∫ T

0

∑

x 6=
→
Xt

→

Qt(
→

Xt, x)

(

K

(

→
p t(x)
→
p t(
→
Xt)

)

+
→
q t(x)
→
q t(
→
Xt)

−
→
p t(x)
→
p t(
→
Xt)

log
→
q t(x)
→
q t(
→
Xt)

)

dt






, (4)

where K(a) = a(log(a)− 1). We omit the term E

[

log
←
p 0
←
q 0

(
←
X0)

]

, as both
←
p 0 and

←
q 0 converge to

π (Lou et al., 2024).
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The key quantities
→
p t(b)
→
p t(a)

and
→
q t(b)
→
q t(a)

in the expression above are not directly accessible. To address

this, we substitute these ratios with parametric approximations optimized via DWDSE loss, leading
to the following KL estimator:

KL

[

→
p 0 ‖

→
q 0

]

≈ E







∫ T

0

∑

x 6=
→
Xt

→

Qt(
→

Xt, x)

(

K

(

s
p
θ(
→

Xt)x

)

+ s
q
φ(
→

Xt)x − s
p
θ(
→

Xt)x log s
q
φ(
→

Xt)x

)

dt






.

(5)

Estimating Equation (5) using Monte Carlo techniques is straightforward: we sample time instants t

uniformly in [0, T ], simulate the forward process
→
Xt, and compute the required quantities using the

parametric scores. Equation (5) enables estimating information measures, such as MI and Entropy.
However, the KL estimator in its general form is not scalable for practical purposes: our practical
method, described next, addresses this limitation.

3 OUR APPROACH: INFO-SEDD

We are now ready to introduce our MI estimator, INFO-SEDD, which is based on Equation (5). Given
two random variables, X and Y , we propose two approaches:

1. Joint Method [INFO-SEDD-J]: MI can be expressed in terms of the KL-divergence between
the joint distribution pXY and the product of the marginals mXY = pX ⊗ pY , I(X,Y ) =
KL [pXY ‖ mXY ], where ⊗ denotes the Kronecker product.

2. Conditional Method [INFO-SEDD-C]: alternatively, MI can be expressed as the KL di-
vergence between the conditional distribution and the marginal distribution, I(X,Y ) =
E[KL

[
pY |X ‖ pY

]
].

In high dimensional applications, a naive implementation of Equation (5) quickly becomes unfeasi-

ble. Indeed, the size of the number of entries of the matrix
→
Qt scales with |χ|2, which is intractable.

However, in many cases of interest, the random variables can be naturally decomposed into a struc-
tured sequence of D subcomponents, each taking values from a discrete set of size |χ| (Lou et al.,
2024; Austin et al., 2021; Campbell et al., 2022), i.e. X = [X1, . . . , XD], leading to a total state
space of size |χ|D. This structured decomposition enables the use of sparse rate matrices, which
constrain the CTMC to modify only one subcomponent at a time, significantly reducing computa-
tional complexity. This allows us to consider sequences which only differ in one component when

computing the entries of
→
Q, or, equivalently, sequences with unit Hamming distance.1 In particular,

the non-zero entries of
→
Q are determined by a shared |χ| × |χ| local rate matrix

→
Q

tok

. Specifically,
if two sequences a and b differ only at the i-th component, then their transition rate is given by
→
Qt(a, b) =

→
Q

tok

t (ai, bi).

Expressing the MI as the KL divergence between the joint distribution and the product of marginals,
KL [pXY ‖ mXY ], requires training two separate score models, each tailored to a specific distribu-
tion. A carefully chosen transition matrix can circumvent this requirement, allowing for a single

model to be trained instead. In particular, selecting
→
Q

tok

t = σ(t)
→
Q

tok

absorb, with σ(t) a fixed scalar

function, and the absorbing matrix
→
Q

tok

absorb as defined in (Lou et al., 2024; Campbell et al., 2022;
Austin et al., 2021), ensures that the subcomponents can only transition into an absorbing state ∅.
This choice is crucial because it enables the computation of marginal scores using a model trained
solely on the joint distribution:

→
p t(
→
Xt=x,

→
Y t=∅)

→
p t(
→
Xt=x′,

→
Y t=∅)

=
→
p

X

t (x)
→
p

X

t (x′)
,

→
p t(
→
Xt=∅,

→
Y t=y)

→
p t(
→
Xt=∅,

→
Y t=y′)

=
→
p

Y

t (y)
→
p

Y

t (y′)
. (6)

1This prohibits any sequence to jump to another sequence with Hamming distance larger than one, but only
in the infinitesimal time regime dt. Once we consider longer time intervals, perturbations immediately become
non-local. Empirical evidence in the field of discrete diffusion models indicates that such decomposition al-
lows dealing with complex distributions with non-local interactions, such as text/language and single-cell RNA
sequencing data (Sahoo et al., 2024; Lou et al., 2024)
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For the mathematical proof the reader is invited to check Appendix A.3. This result implies that a
single score model trained on the joint distribution is sufficient for computing the marginal scores
as well.2 By integrating these design choices, we present the pseudocode for INFO-SEDD-J and
INFO-SEDD-C in Appendix B, in Algorithm 1 and Algorithm 2 respectively.

Theoretical properties. We investigate the theoretical properties of INFO-SEDD, specifically focus-
ing on the error decomposition and consistency. We establish that under mild assumptions on the
boundedness of the score functions (constants C1, C2) and the neural network approximation errors
(ǫp, ǫq), the deviation of the INFO-SEDD estimator from the true KL divergence is bounded by:

∣
∣
∣Ex∼pE(s

p
θ, s

q
φ;x)− KL [p ‖ q]

∣
∣
∣ ≤ σ̄(T )D|χ|

(

1 + C2

C1

)

(ǫp + ǫq)
︸ ︷︷ ︸

Estimation Error

+(1−
→
p T (∅

D))(DC2 log |χ|)
︸ ︷︷ ︸

Truncation Bias

.

(7)

Where E(spθ, s
q
φ;x) corresponds to the right-hand side of Equation (5). This bound highlights a key

trade-off: the first term, representing the estimation error, scales linearly with the score error and
constants dependent on the data distribution. The second term represents a truncation bias arising
from the finite time horizon T , which vanishes exponentially as the probability of the absorbing state
→
p T (∅

D) approaches 1. Consequently, INFO-SEDD is a consistent estimator up to this exponentially
decaying bias, allowing for accurate KL estimation without the exponential variance associated with
standard importance sampling methods. We refer the reader to Appendix E for the full derivation
and proofs.

Estimating entropy. Our method can also be used for Entropy estimation, since it can be expressed
in terms of the KL divergence between a distribution

→
p 0 and the uniform distribution

→
u0, as follows:

H(
→
p 0) = logN − KL

[
→
p 0 ‖

→
u0

]

. Since the ratio
→
u t(x)
→
u t(∅)

= 1
N(eσ(t)−1)

, with σ(t) =
∫ t

0
σ(s)ds (see

appendix A.2), we can adapt the formulation in Equation (5) to derive INFO-SEDD-H, an Entropy
estimator, which is detailed in Appendix B, in Algorithm 3.

4 EXPERIMENTS

Next, we evaluate INFO-SEDD on a series of synthetic experiments, as well as on several realistic
applications. Overall, while our competitors struggle with high MI scenarios and high-dimensional
data, INFO-SEDD obtains accurate estimates. Using text and DNA data, we show that INFO-SEDD
is not only accurate, but also useful for various downstream tasks. In Appendix D, we provide
additional results, showing that INFO-SEDD can produce accurate Entropy estimates in Ising models
(Onsager, 1944), which are used to understand the state of a particle lattice using their spins.

4.1 SYNTHETIC EXPERIMENTS

We validate our method on synthetic distributions with known mutual information (full details are in
Appendix C.1). Given two vectors X = (x1, x2, . . . , xD) and Y = (y1, y2, . . . , yD) sampled from
their respective discrete distributions, we denote vector dimensionality by D, and the support |χ| as
the number of discrete values each element xi, yi can take.

Next, we benchmark INFO-SEDD and several competitors on a high dimensional synthetic bench-
mark, by increasing both MI and D as shown in Table 1. We compare the results of our proposed
methodology against some of the estimators from Letizia et al. (2024), who introduce data derange-
ments to improve bias and variances of existing variational estimators, including NWJ (Nguyen et al.,
2007), SMILE (Song and Ermon, 2019a) and MINE (Belghazi et al., 2018). Letizia et al. (2024) also
proposes the F-DIME estimators GAN-DIME, KL-DIME, HD-DIME, which are shown to work better
at high MI. We also benchmark MINDE (Franzese et al., 2023a), a generative neural estimator for
continuous data. We use the same backbone for all methods (see Appendix C.1), with only minor
tweaks to initial and final layers to accommodate the specifics of each method. For our method, we

2This configuration adds an absorbing state, increasing the dimension of the support
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report the results with the INFO-SEDD-J variant, trained using the DWDSE loss. We train all methods
using 105 samples and a batch size of 1024 for 105 steps.

Table 1: Results for the high dimensional synthetic benchmark for all estimators with given MI and
same vector length (D) for each modality. We report the mean estimate and standard deviation over
10 seeds. Best estimates are marked in bold.

Estimator INFO-SEDD GAN-DIME HD-DIME KL-DIME MINDE MINE NWJ SMILE

MI=10, D=10 9.92± 0.12 12.15± 0.89 9.73± 0.43 8.38± 0.90 14.01± 2.91 10.21± 6.33 6.16± 2.11 12.83± 0.95
MI=20, D=20 20.02± 0.21 22.09± 1.75 12.65± 1.07 7.51± 0.56 26.98± 3.16 8.82± 0.80 6.50± 0.84 23.11± 1.41
MI=30, D=30 29.83± 0.54 20.74± 1.75 11.72± 2.69 7.02± 0.43 31.08± 4.33 7.41± 1.23 6.35± 0.34 21.79± 1.08
MI=40, D=40 39.11± 0.65 19.64± 1.33 11.68± 0.94 6.52± 0.32 33.97± 3.32 6.91± 0.66 6.24± 0.59 20.13± 1.27
MI=50, D=50 47.77± 1.18 17.27± 1.46 10.47± 1.12 6.41± 0.62 32.60± 3.93 7.21± 1.14 5.95± 0.31 18.97± 1.05

Results in Table 1 demonstrate that INFO-SEDD consistently outperforms competing methods. INFO-
SEDD performs better with high dimensional data and high MI, while existing neural estimators
fail. This is not the only scenario where INFO-SEDD shines, as demonstrated extensively in Ap-
pendix C.1. In Appendix C.1.6 we perform an ablation study on |χ|, showing that INFO-SEDD is
robust to changes in support size, where, instead, the competitors cannot provide accurate estimates.
Accuracy, however, is not the only dimension where competitors struggle. In Appendix C.1.3, we
show that even when competing estimators like GAN-DIME and SMILE provide correct estimates,
they take more epochs to converge compared to INFO-SEDD, resulting in slower training. Finally, in
Appendix C.1.5 we evaluate empirically the sample complexity of INFO-SEDD observing that it is
accurate even when using only 103 samples.

Overall, our complete set of synthetic experiments confirms that INFO-SEDD is robust, efficient,
and parsimonious in terms of sample size. Next, we revert to realistic use cases to further evaluate
information-theoretic estimators in even more challenging scenarios.

4.2 APPLICATION: TEXT SUMMARIZATION

We consider the task of text summarization, which aims at generating concise document summaries,
either by directly extracting sentences from the original corpus, or by introducing new, relevant
phrases not present in the original text (Nallapati et al., 2016). We validate INFO-SEDD using the
SUMMEVAL dataset (Fabbri et al., 2021) which assembles collections of summaries generated by
23 different models, providing human judgments for outputs generated by 15 of these models. We
generate a collection of datasets of texts/summaries pairs from the SUMMEVAL dataset, such that
we can scramble part of such pairs to gauge MI between texts and summaries distributions. We
compare INFO-SEDD and alternative methods, showing how much each estimator is consistent with
a “theoretical” trend of MI. We also study the application of INFO-SEDD for summarization model
selection, by estimating the MI of each collection of model outputs with respect to the reference texts.
Studying how these estimates compare to the human evaluations of the summaries helps practitioners
to identify which human metric is best aligned to MI. For more details, refer to Appendix C.2.

Consistency test. We perform a consistency test for MI estimation between model-generated sum-
maries and reference texts: we select the summaries generated by BART (Lewis et al., 2020) and pair
them with the original text with a probability ρ and with a random text in the dataset with probability
1−ρ. While we cannot establish an exact ground truth for these experiments, we can determine that
MI should grow linearly as a function of ρ, under the assumption of MI being significantly larger
than log 2. This assumption is backed by studies (Takahira et al., 2016; Cover and King, 1978) that
estimate the entropy rate of textual data to be larger than 1 bit per character (bpc), and by works that
estimate MI in a similar context (Darrin et al., 2024). To support our claims and provide an order-
of-magnitude estimate, we multiply the entropy rates of Takahira et al. (2016) and Cover and King
(1978) with the average length of dataset summaries, to obtain entropy estimates for English texts
with the same length, obtaining values of 256 nats and 303 nats, respectively. For a more detailed
discussion, refer to Appendix C.2. We use the MDLM-SMALL model (Sahoo et al., 2024) as the back-
bone, with minimal changes to the architecture to accommodate our competitors. We also slightly
modify the training strategy of Sahoo et al. (2024) to allow a more efficient learning of marginal and
conditional scores for INFO-SEDD (check Appendix C.2 for details). This allows us to keep the same
context length, architecture, and a similar number of parameters for all methods. Note that for all
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competitors, we project text tokens into an embedding space of fixed dimension, by jointly learning
an embedding look-up table for each method. For more experimental details, check Appendix C.2.
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Figure 1: Consistency results for selected
estimators.
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Figure 2: Consistency human metric compared
to MI as estimated by INFO-SEDD-C.

250 275 300 325 350 375 400 425
Mutual Information

3

4

5

6

Co
ns

ist
en

cy M22M23M17 M5M12
M13

M1M2 M15M14
M8M9

M10

M20 M11

GP mean
95% CI
Linear trend (r = 0.550)

Figure 3: Consistency human metric compared
to MI as estimated by INFO-SEDD-J.

As shown in Figure 1, where we report MI estimates for ρ = 0.0, 0.1, ..., 1.0, the consistency
of both INFO-SEDD variants is the highest among all competitors, closely matching the empirical
derivation outlined above. Note that INFO-SEDD-C obtains MI estimates closer to zero than the joint
variant, when ρ = 0.0. Instead, variational approaches cannot reliably estimate MI with values
larger than the logarithm of the batch size used for estimating it (McAllester and Stratos, 2020;
Song and Ermon, 2019a). This results in MI being underestimated, a problem that could only be
addressed by impractical batch sizes. Despite KL-DIME and SMILE exhibit an approximately linear
correlation, they obtain low MI values, incompatible with the empirical derivation. HD-DIME can
achieve higher values of MI, but fails for ρ < 0.5. MINDE does not provide meaningful MI estimates:
this is likely due to the high embedding dimensionality which, together with the sequence length, is
a challenging scenario for continuous score models.

Model selection. We now evaluate if MI is a meaningful signal to perform model selection, by
measuring if MI estimates are compatible with human-preference metrics, as done by Darrin et al.
(2024). This is done by estimating the MI of the text-model summary datasets in SUMMEVAL
(Fabbri et al., 2021), for every model with available human metrics. The human metrics we consider
are: coherence, which measures how well-structured and coherent the summary is; consistency,
which quantifies how much the statements in the summary are entailed by the source; fluency,
which evaluates the grammatical correctness and the formatting of the summary; and relevance,
which measures if the summary captures only the most important information of the source text.
Table 2, which shows Pearson correlation and Kendall’s Tau test results, indicates that MI correlates
the most with consistency. This is expected, as consistency effectively quantifies how much infor-
mation the text and summary share. Note, however, that raters were asked to penalize hallucinated
facts present in the summaries, which is not captured by MI. The second metric which correlates the
most with MI is fluency. The definition of fluency does not take into account a comparison between
summary and source text, but it also strongly correlates with consistency. Thirdly, MI correlates
well with relevance. Relevance considers a comparison between summary and source text in terms
of what is considered important information by human annotators. However, important information
is highly subjective, and human intentions are likely not captured by MI. Lastly, coherence does
not quantify a relationship between source text and summaries, which explains the low correlation
with MI. In Figures 2 and 3 we show the relation between the MI estimates of INFO-SEDD-C and
INFO-SEDD-J and consistency by running a Gaussian Process (GP) regression with a Matérn Kernel
with smoothing parameter ν = 1.5 and noise level 0.01. We report the GP mean, its 95% confi-
dence interval and the Pearson correlation. Figures 2 and 3 show that consistency saturates around
the maximum score, whereas MI does not have the same ceiling effect. The reader is referred to
Appendix C.2 for a similar discussion about the other metrics. Overall, our results are in line with

7



Published as a conference paper at ICLR 2026

the findings by Darrin et al. (2024), where INFO-SEDD-C achieves a comparable correlation with the
most important metric, consistency, albeit without requiring elaborate embedding models, that rely
on a large set of parameters to be learned.

Table 2: Pearson (left) and Kendall’s Tau (right) correlation of human metrics and MI for
INFO-SEDDand selected competitors. The labels are shorthand notations for the human metrics:
COH=coherence, CON=consistency, FLU=fluency, REL=relevance, OVR=overall. The reader is
invited to check Appendix C.3 for correlations with other metrics offered by the SUMMEVAL frame-
work.

COH CON FLU REL OVR

INFO-SEDD-C 0.209 0.740 0.679 0.411 0.568
INFO-SEDD-J -0.091 0.550 0.455 0.288 0.322
KL-DIME 0.170 0.214 0.194 0.076 0.193
HD-DIME -0.243 0.331 0.281 -0.145 0.063
SMILE -0.367 -0.074 -0.162 -0.149 -0.221

COH CON FLU REL OVR

INFO-SEDD-C 0.105 0.505 0.134 0.200 0.219
INFO-SEDD-J 0.048 0.486 0.153 0.219 0.238
KL-DIME 0.105 0.429 0.096 0.048 0.067
HD-DIME -0.162 -0.029 0.057 -0.067 -0.048
SMILE -0.238 -0.105 0.019 -0.067 -0.086

4.3 APPLICATION: GENOMICS

The genomics field heavily relies on computational methods to improve our understanding of hid-
den patterns in large and complex genomic data sets from basic and clinical research projects
(Libbrecht and Noble, 2015; Whalen et al., 2022; Teschendorff and Horvath, 2025). We consider
two fundamental problems in genetics (genome classification and motif identification in genetic pro-
moters) that rely on DNA sequencing data: DNA is a nucleotide made of four types of nitrogen
bases, Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). The order, or sequence, of these
bases determines the biological instructions that are contained in a strand of DNA. We follow the
recent practice of considering DNA sequencing data as text (Dotan et al., 2024; Qiao et al., 2024;
Malusare et al., 2024; Eapen, 2025), albeit we adopt the simple tokenization technique of consid-
ering each DNA base in a sequence as a token. This results in DNA sequences being modeled as
high-dimensional vectors with a support of four elements per sequence element (|χ| = 4). Addi-
tional details are in Appendix C.4.

Consistency test. We assess the reliability of INFO-SEDD in a low MI regime, and consider the
“HUMAN VS. WORM” dataset, which is part of the Genomics Benchmarks by Grešová et al. (2023),
a recently proposed suite with eight regulatory element classification tasks. The dataset consists
of 105 DNA sequences, paired with 2 class labels (human or worm), with a median length of 200
bases. We perform a consistency test as follows: for each sample in the dataset, we randomize
the label with probability ρ and compute the MI between the DNA sequences and the new set of
labels. To construct a reference, we can approximate order-of-magnitude and slope of ground-truth
MI values with the assumption that, given a classifier trained to predict the label given the genome,
the classification error is approximately the same across each sample. To do so, we express MI as
I(X,Y ) = H(Y )−H(Y |X), where Y is the label and X is the genome, and approximate H(Y |X)
as Hb(Acc.), where Hb is the binary entropy and Acc. is the accuracy of the classifier. We estimate
H(Y ) directly from data using a bin estimate given that we have a binary label and enough samples.
In our experiments, we use a pretrained CADUCEUS model (Schiff et al., 2024) for the backbone of
all methods, with minimal architectural changes when needed, ensuring a fair comparison. For more
details check Appendix C.4.

Results in Figure 4 show that INFO-SEDD-C outperforms the competitors, as it closely matches the
classifier-based reference MI. HD-DIME performs relatively well for ρ < 1.0 while other competi-
tors struggle to keep increasingly high MI estimates for growing values of ρ. The difference in
performance between the two INFO-SEDD variants is due to the difference in dimensionality be-
tween the label, mono-dimensional, and the DNA sequence. This makes the optimization process
of INFO-SEDD-C significantly easier, since it only requires parametrizing the scores of the marginal
distribution of the label and of the conditional distribution of the label given the associated DNA
sequence. INFO-SEDD-J, instead, must parametrize the score of the joint distribution of the DNA
sequence and label, a considerably more difficult task since it needs to do discrete diffusion training
on the DNA sequence while INFO-SEDD-C only treats the DNA sequence as a conditioning signal.
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Figure 4: Consistency test for the HUMAN
VS. WORM dataset against the best perform-
ing competitors. For the complete numerical
results check Appendix C.4.
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Figure 5: Arabidopsis thaliana promoter
TATA-BOX identification on DNA sequences
using INFO-SEDD.

Finding motifs in promoters. A central issue in molecular biology is understanding the regulatory
mechanisms that control gene expression. In particular, gene expression requires a stretch of regula-
tory DNA called a promoter which contains certain motifs, i.e., patterns that show a statistically sig-
nificant dependency with expression levels. Computational methods based on MI (Elemento et al.,
2007; Rao et al., 2007) use whole genome sequences to search for the key elements in transcription
regulation. The key idea is to directly quantify the dependency between the presence or absence of
a given motif in a regulatory region and the expression of the corresponding gene.

Umarov and Solovyev (2017) propose a convolutional classifier for building eukaryotic promoter
recognition models, which they evaluate on numerous promoter sequences extracted from the well-
known EPD database (Dreos et al., 2013). In this work, we focus on Arabidopsis thaliana TATA-
promoter/non-promoter sequences, consisting of 1497 samples and 2879 samples respectively, each
of fixed length of 251 DNA bases. A minimal eukaryotic promoter region contains a transcription
start site (TSS) and a so-called TATA-BOX motif at a position ≈ 30 base pair upstream from the
transcription start site, which is a key feature used for classification. The Arabidopsis thaliana is
no stranger to this rule, as the preferred position for the TATA-BOX motif is between -39 and -26
with respect to TSS (Bernard et al., 2010). Umarov and Solovyev (2017) propose a randomized
technique, which we extend to our method, to find the TATA-BOX motif: to discover such sites
we train INFO-SEDD such that it can estimate the MI between the sequence distribution and the
promoter labels. Then, we use a sliding window of length L and mask the DNA sequence outside
this window. Using sliding windows moving from the beginning of a functional site sequence,
we can build a MI profile that reflects the effect of a random sequence. Whenever the window
covers a segment that is irrelevant for determining whether a sequence is a promoter or not, MI
remains low. Instead, unmasking the TATA-BOX motif implies a substantial increase in MI values.
Differently from the method in (Umarov and Solovyev, 2017), our approach is robust to correlated
motifs: masking only one correlated motif results in high classification accuracy due to the other
motif still being unmasked; our method, instead, only unmasks the current motif, which allows
assessing its importance without interference from correlated motifs. For MI estimation we fine-
tune a pretrained CADUCEUS model, used as the backbone for INFO-SEDD-J. We use the joint
variant since its training procedure enables label prediction with DNA sequence masking, while
the other variant only models the conditional distribution given unmasked data (more details in
Appendix C.4).

Figure 5 shows the MI profile between the window and the promoter label: red dots imply a high
overlap between the window and the TATA-BOX location, as determined by Bernard et al. (2010).
While known from the genomics literature, INFO-SEDD can effectively locate the TATA-BOX using
MI, which makes it an invaluable tool for motif discovery. Note also that other MI estimators would
need different training runs for each window, whereas INFO-SEDD natively supports MI estimation
between subsets of DNA sequences. This property unlocks applications of MI which were previ-
ously hindered by inaccurate estimators and poorly scalable methods.
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5 CONCLUSION

The ability to measure the non-linear relation among arbitrary data distributions stands as a corner-
stone for scientific discovery, but scalable, and efficient methods to accurately estimate information
theoretic metrics, without the need for pre-processing workarounds, has only recently attracted the
attention of the community. In this work, we contributed a novel method tailored to estimate such
metrics for a particularly challenging case, that of high-dimensional discrete data distributions. To
the best of our knowledge, our method is unique, as it is scalable, consistent, and accurate, as demon-
strated by our experimental validation; moreover, our approach is efficient, as it can leverage existing
pretrained models and does not require ad-hoc procedures to work with discrete data.

Armed with INFO-SEDD, we demonstrated that the ability to estimate MI between discrete random
variables is key for a number of applications. In the context of text summarization, MI is a mean-
ingful proxy to judge performance, and it can be used for model selection. In the genetics domain,
we showed that access to accurate MI estimates has the potential of enabling new discoveries using
sequencing data, which is discrete by nature. Moreover, the solid mathematical foundations of INFO-
SEDD enable exciting extensions to mixed continuous/discrete data using the Generator Matching
framework (Holderrieth et al., 2024), with many potential applications in diverse scientific fields.
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REPRODUCIBILITY STATEMENT

We provide the code at the anonymized GitHub repo at the following link
https://github.com/AlbertoForesti/mutinfo-diffusion, where we also
provide instructions and utility scripts to build datasets and run experiments. In Appendix C.2.2
we report the model setup for text experiments and in Appendix C.4.2. Likewise, details and
assumptions made in building the datasets are provided in Appendix C.1.1 for synthetic dataset,
Appendix C.2.1 for text and Appendix C.4.1 for DNA. We do a performance analysis of the
benchmarked methods using the same codebase and the same machine, with the only differences
being the methodology in MI estimation and loss functions.
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A MATHEMATICAL PROOFS OF THE MAIN METHOD

A.1 PROOF OF EQUATION 4

We first break E

[

log
←
p T
←
q T

∣
∣
∣
∣

←
X0

]

in E

[

log
←
p T

∣
∣
∣
∣

←
X0

]

−E

[

log
←
q T

∣
∣
∣
∣

←
X0

]

and apply the Dynkin’s formula

separately. We start with E

[

log
←
p T

∣
∣
∣
∣

←
X0

]

:

E

[

log
←
p T

∣

∣

∣

∣

←
X0

]

= log
←
p 0(
←
X0) + E

[∫

T

0

∂ log
←
p t

∂t
(
←
Xt, t) + B[log

←
p t](

←
Xt, t)dt

∣

∣

∣

∣

←
X0

]

= log
←
p 0(
←
X0) + E







∫

T

0

∂ log
←
p t

∂t
(
←
Xt, t) +

∑

x 6=
←
Xt

←
Qt(x,

←
Xt)(log

←
p t(x)− log

←
p t(
←
Xt))dt

∣

∣

∣

∣

←
X0







= log
←
p 0(
←
X0) + E







∫

T

0

∂ log
←
p t

∂t
(
←
Xt, t) +

∑

x 6=
←
Xt

←
Qt(x,

←
Xt) log

←
p t(x)

←
p t(
←
Xt)

dt

∣

∣

∣

∣

←
X0







We now focus on the term ∂ log
←
p t

∂t
, which we can rewrite using ∂

←
p t =

←
Qt

←
p t:

∂ log
←
p t

∂t
= ∂

←
p t

∂t

/
←
p t =

←
Qt

←
p t
←
p t

Where the division between numerator and denominator in the last two terms denotes element-wise
division. We focus now on simplifying the numerator, using the definition in equation 1. Recalling
that

←
Qt(b, a) =

(
→
p T−t(b)
→
p T−t(a)

→
QT−t(a, b)

)

(1− δ(a, b)) +



−
∑

b 6=a

←
Qt(b, a)



 δ(a, a)

=

(
←
p t(b)
←
p t(b)

→
QT−t(a, b)

)

(1− δ(a, b)) +



−
∑

b 6=a

←
Qt(b, a)



 δ(a, a)

we compute the a-th element of
←
Qt

←
p t:

[
←
Qt

←
p t](a) =

∑

b

←
Qt(a, b)

←
p t(b)

=
∑

b 6=a

←
Qt(a, b)

←
p t(b) +

←
Qt(a, a)

←
p t(a)

=
∑

b 6=a

→
QT−t(b, a)

←
p t(a)
←
p t(b)

←
p t(b)−

∑

b 6=a

←
Qt(b, a)

←
p t(a)

=
∑

b 6=a

→
QT−t(b, a)

←
p t(a)−

∑

b 6=a

→
QT−t(a, b)

←
p t(b)
←
p t(a)

←
p t(a)

=
∑

b 6=a

→
QT−t(b, a)

←
p t(a)−

∑

b 6=a

→
QT−t(a, b)

←
p t(b)

=
∑

b 6=a

→
QT−t(b, a)

←
p t(a)−

→
QT−t(a, b)

←
p t(b)
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Finally, if we divide by the denominator we obtain:

[
←
Qt

←
p t
←
p t

]

(a) =
∑

b 6=a

→
QT−t(b,a)

←
p t(a)−

→
QT−t(a,b)

←
p t(b)

←
p t(a)

=
∑

b 6=a

→
QT−t(b, a)−

→
QT−t(a, b)

←
p t(b)
←
p t(a)

Moreover, if we notice that
←
Qt(x,

←
Xt) log

←
p t(x)
←
p t(
←
Xt)

=
→
QT−t(

←
Xt, x)

←
p t(x)
←
p t(
←
Xt)

log
←
p t(x)
←
p t(
←
Xt)

, we can write

the Dynkin’s formula as:

E

[

log
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p T |

←
X0

]
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∣
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∣
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←
X0




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(8)

Then, if we define K(α) = α(logα− 1) and group some terms we obtain:

E
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log
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We now repeat similar calculations for E

[

log
←
q T

∣
∣
∣
∣

←
X0

]

. Firstly, the term ∂ log
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q t
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Whereas the backward operator term B[log
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Xt) log
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(9)
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Finally, we can estimate E

[

log
←
p T
←
q T

∣
∣
∣
∣

←
X0

]

by subtracting equation 9 from equation 8:

E

[

log
←
p T
←
q T
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∣

∣

∣
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X0

]

≈ E
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



∫

T

0
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→
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←
Xt)

)
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←
q t(x)
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q t(
←
Xt)
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p t(x)
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p t(
←
Xt)

log
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←
q t(
←
Xt)

)

dt

∣

∣
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X0







By using the fact that E

[

E

[

log
←
p T
←
q T

∣
∣
∣
∣

←
X0

]]

= E

[

log
←
p T
←
q T

]

,
←
p t =

→
p T−t,

←
q t =

→
q T−t,

←
Xt =

→
XT−t

and by setting τ = T − t, we get:

E






∫ T

0

∑

x 6=
→
Xτ

→
Qτ (

→
Xτ , x)

(

K

(
→
p τ (x)
→
p τ (
→
Xτ )

)

+
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q τ (x)
→
q τ (
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−
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p τ (x)
→
p τ (
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log
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q τ (x)
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)

dτ






recovering Equation (4).

A.2 ENTROPY ESTIMATION DETAILS

We provide hereafter for completeness the steps necessary to show that
→
u t(x)
→
u t(∅)

= 1
N(eσ(t)−1)

for

x 6= ∅:

→
u t(x)
→
u t(∅)

=
∑

x0∈χ
→
u t(x|x0)

→
u 0(x0)

∑

x0∈χ
→
u t(∅|x0)

→
u 0(x0)

=
∑

x0∈χ
δ(x,x0)e

−σ(t) 1
N

∑

x0∈χ
(1−e−σ(t))

1
N

= e−σ(t)

N(1−e−σ(t))
=

1

N(eσ(t) − 1)

A.3 PROOF OF EQUATION (6)

Consider
→
p t(
→
Xt = x̄,

→
Y t = ∅):

→
p t(
→
Xt = x̄,

→
Y t = ∅) =

∑

x,y

Pr(
→
Xt = x̄,

→
Y t = ∅,

→
X0 = x,

→
Y 0 = y) (10)

=
∑

x,y

Pr(
→
Y s = ∅ |

→
Xt = x̄,

→
X0 = x,

→
Y 0 = y)

︸ ︷︷ ︸

Pr(
→
Y s jumps to ∅ in [0,t])

Pr(
→
Xt = x̄ |

→
X0 = x,

→
Y 0 = y)Pr(

→
X0 = x,

→
Y 0 = y)

=
∑

x,y

Pr(
→
Y s jumps to ∅ in [0, t])Pr(

→
Xt = x̄ |

→
X0 = x)Pr(

→
X0 = x,

→
Y 0 = y)

= Pr(
→
Y s jumps to ∅ in [0, t])

∑

x

Pr(
→
Xt = x̄ |

→
X0 = x)

∑

y

Pr(
→
X0 = x,

→
Y 0 = y)

︸ ︷︷ ︸

Pr(
→
X0=x)

= Pr(
→
Y s jumps to ∅ in [0, t])Pr(

→
Xt = x̄)

Equation (10) implies that
→
p t(
→
Xt=x,

→
Y t=∅)

→
p t(
→
Xt=x̄,

→
Y t=∅)

= Pr(
→
Xt=x)

Pr(
→
Xt=x̄)

. This important property enables the estima-

tion of mutual information without modifying the score network.

B ALGORITHM PSEUDO-CODE

In this Section we show the pseudocodes for the different INFO-SEDD variants.
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Algorithm 1 INFO-SEDD-J: Estimate I(x,y)

Require: Initial sample [
→

X0,
→

Y 0] ∼
→
p 0, score network sθ

1: t ∼ u(0, T ) {Sample time uniformly}

2: [
→

Xt,
→

Y t] ∼
→
p t(·|[

→

X0,
→

Y 0]) {Perturb data}
3: Î = 0

4: for i :
→

X
i

t = ∅ do
5: for n ∈ [1 : N ] do

6: X̃ = [
→
X

1

t , . . . ,
→
X

i−1

t , n,
→
X

i+1

t , . . . ,
→
X

M

t ]

7: Î+ = Tσ(t)

(

K

(

sθ([
→
Xt,

→
Y t])

[X̃,
→
Y t]

)

+ sθ([
→
Xt, ∅])[X̃,∅] − sθ([

→
Xt,

→
Y t])

[X̃,
→
Y t]

log

(

sθ([
→
Xt, ∅])[X̃,∅]

))

8: end for
9: end for

10: for i :
→

Y
i

t = ∅ do
11: for n ∈ [1 : N ] do

12: Ỹ = [
→
Y

1

t , . . . ,
→
Y

i−1

t , n,
→
Y

i+1

t , . . . ,
→
Y

M

t ]

13: Î+ = Tσ(t)

(

K

(

sθ([
→
Xt,

→
Y t])

[
→
Xt,Ỹ ]

)

+ sθ([∅,
→
Y t])[∅,Ỹ ] − sθ([

→
Xt,

→
Y t])

[
→
Xt,Ỹ ]

log

(

sθ([∅,
→
Y t])[∅,Ỹ ]

))

14: end for
15: end for

16: return Î

Algorithm 2 INFO-SEDD-C: Estimate I(x,y)

Require: Initial sample [
→

X0,
→

Y 0] ∼
→
p 0, score network sθ

1: t ∼ u(0, T ) {Sample time uniformly}

2:
→

Y t ∼
→
p t(·|

→

Y 0) {Perturb data}
3: Î = 0

4: for i :
→

Y
i

t = ∅ do
5: for n ∈ [1 : N ] do

6: X̃ = [
→
Y

1

t , . . . ,
→
Y

i−1

t , n,
→
Y

i+1

t , . . . ,
→
Y

M

t ]

7: Î+ = Tσ(t)

(

K

(

sθ([
→
X0,

→
Y t])

[
→
X0,Ỹ ]

)

+ sθ([∅,
→
Y t])[∅,Ỹ ] − sθ([

→
Xt,

→
Y 0])

[X̃,
→
Y 0]

log

(

sθ([∅,
→
Y t])[∅,Ỹ ]

))

8: end for
9: end for

10: return Î

Algorithm 3 INFO-SEDD-H: Estimate H(x)

Require: Initial sample
→

X0 ∼
→
p 0, score network sθ

1: t ∼ u(0, T ) {Sample time uniformly}

2:
→

Xt ∼
→
p t(·|

→

X0) {Perturb data}
3: Ĥ = 0

4: for i :
→

X
i

t = ∅ do
5: for n ∈ [1 : N ] do

6: X̃ = [
→

X
1

t , . . . ,
→

X
i−1

t , n,
→

X
i+1

t , . . . ,
→

X
M

t ]

7: Ĥ+ = Tσ(t)

(

K

(

sθ(
→

Xt)X̃

)

+ 1

N(eσ(t)−1)
− sθ(

→

Xt)X̃ log
(

1

N(eσ(t)−1)

)

)

8: end for
9: end for

10: return Ĥ
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C EXPERIMENTAL DETAILS

C.1 SYNTHETIC EXPERIMENTS

C.1.1 DATASET CONSTRUCTION

In this section, we show how we construct the datasets for our synthetic experiments. We gen-
erate joint distributions for random variables X,Y with user-defined mutual information and sup-
port sizes χX , χY . Using an evolutionary strategy, we encode the joint distribution in a vector
ga ∈ R

|χX ||χY | and transform it into a valid probability distribution via normalization and reshaping:
ga−min(ga)1+ǫ1

1(ga−min(ga)1+ǫ1) where ǫ ensures full support. The mutual information, computable in closed form,
serves as the selection criterion in the evolutionary process. For large |χX | and |χY |, the evolution-
ary strategy struggles. Instead, we generate high mutual information distributions by concatenating
independent distributions, leveraging the additive property of mutual information. Additionally, iso-
morphisms like Cantor’s pairing function, π(x, y) = 1

2 (x + y)(x + y + 1) + y, enables support
expansion without altering mutual information, aiding consistency across experiments.
More formally, we exploit the additivity of mutual information with independent random variables
to generate complex datasets. By appending discrete noise random variables Zx, Zy to the original
random variables x, y, we have I(x,y) = I([x, Zx], [y, Zy]). Pairing functions are isomorphisms
that map N× N to N. They allow preserving mutual information through the Markov Chain:

[x, Zx]→ x̂→ ŷ→ [y, Zy]→ ŷ→ x→ [x, Zx]

Where, by the data processing inequality, we have I([x, Zx], [y, Zy]) ≥ I(x̂, ŷ) ≥
I([x, Zx], [y, Zy]) =⇒ I([x, Zx], [y, Zy]) = I(x̂, ŷ) =⇒ I(x̂, ŷ) = I(x,y).

In our experiments, we keep the same support dimension for both random variables, increasing it
using the following procedure:

1. We sample two binomial random variables Zx, Zy with parameters (n, p), We vary n for
increasing the complexity of the experiment and we keep p fixed to 0.5.

2. We concatenate Zx and Zy respectively to x and y, to form higher support versions x̂, ŷ.

3. We map the noisy x̂, ŷ versions to univariate random variables by applying Cantor’s map-
ping.

C.1.2 MODEL AND TRAINING SETUP

In this section, we provide additional experimental details. For all the methods present in the bench-
mark, we use a Multi Layer Perceptron (MLP) with skip connections and around 130k parameters,
based on the architecture used in Franzese et al. (2023a), reworking the initial layer to include abso-
lute positional embeddings. For training our discrete score model, we match the methodology used
by Lou et al. (2024), using the absorb configuration. At inference time, we always take the last valid
validation step estimate of each method to avoid not-a-number values in our tables.

C.1.3 STUDY ON TRAINING CONVERGENCE

Since all models were trained in the same conditions, we study the convergence to the correct MI for
the benchmarked methods. As we can see from Figure 6, INFO-SEDD is the method which converges
faster. Other methods, even when estimating the right MI, take more epochs to settle on the correct
value. We also benchmark runtime and maximum memory consumption for the tasks presented in
Table 1. We run our experiments on a NVIDIA A100-SXM4-80GB GPU and we observed that INFO-
SEDD outperforms all competitors on memory consumption (Table 3) and all variational competitors
on runtime (Table 4).

C.1.4 LOW DIMENSIONAL BENCHMARK

We also benchmark all methods on an easier low-dimensional benchmark. We use the same training
setup, except that we train only for 104 steps using 104 samples and use the same backbone but
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Estimator INFO-SEDD GAN-DIME HD-DIME KL-DIME MINDE MINE NWJ SMILE

MI=10, D=10 346.37 645.81 645.81 645.81 440.51 645.81 645.81 645.81
MI=20, D=20 687.22 1301.98 1301.98 1301.98 876.44 1301.98 1301.98 1301.98
MI=30, D=30 1005.66 1913.15 1913.15 1913.15 1286.35 1913.15 1913.15 1913.15
MI=40, D=40 1345.94 2564.33 2564.33 2564.33 1726.25 2564.32 2564.32 2564.32
MI=50, D=50 1666.30 3180.50 3180.50 3180.50 2138.41 3180.49 3180.49 3180.49

Table 3: Average maximum memory usage over one epoch for different estimators over different
MI estimation tasks. Results are in MB. Lowest memory usages are written in bold.

Estimator INFO-SEDD GAN-DIME HD-DIME KL-DIME MINDE MINE NWJ SMILE

MI=10, D=10 2.40 2.89 2.90 2.86 2.16 2.89 2.96 2.94
MI=20, D=20 3.34 3.99 4.02 3.98 2.62 4.03 4.03 4.00
MI=30, D=30 4.51 5.56 5.54 5.57 3.37 5.57 5.57 5.61
MI=40, D=40 5.96 7.34 7.33 7.36 4.00 7.39 7.42 7.37
MI=50, D=50 7.06 8.71 8.69 8.71 4.68 8.76 8.73 8.72

Table 4: Average runtime for one epoch for different estimators over different MI estimation tasks.
Results are in seconds. Best runtimes are written in bold.

with 8k parameters. As we can see from Table 5, no clear winner emerges, as all estimators besides
MINDE perform a good job in predicting the right MI.

Estimator INFO-SEDD GAN-DIME HD-DIME KL-DIME MINDE MINE NWJ SMILE

MI=0, D=10 0.116 0.026 0.019 0.045 2.899 0.018 0.022 0.031
MI=1, D=10 0.918 1.088 0.868 0.975 2.495 0.999 1.015 1.019
MI=2, D=10 1.764 2.073 1.801 1.948 2.389 2.009 1.995 2.361
MI=3, D=10 2.657 2.820 3.098 3.057 3.047 2.960 2.935 3.555
MI=4, D=10 4.121 4.013 3.517 4.094 3.600 4.049 3.908 4.697
MI=5, D=10 4.953 4.905 4.770 4.652 4.432 4.801 4.692 2.593

Table 5: Results for the low dimensional synthetic benchmark for all estimators. Best estimator in
bold.

C.1.5 SAMPLE COMPLEXITY BENCHMARK

The sample complexity of INFO-SEDD strictly depends on the sample complexity of the score net-
work. Theoretical guarantees on score networks and discrete diffusion models require a careful and
involved analysis, which we defer to future work. Nevertheless, we run an ablation study on sample
complexity, from an empirical standpoint.

We consider a pair of random vectors X,Y , both of length 20. Each component of X,Y , in turn, has
a support of 4. We set the ground truth MI to 10, 20, 30, 40 and 50 and use an MLP score network
with skip connections and 160k parameters, and train it for 100k steps. We iterate over the number
of available training samples N as reported in the following table.

Table 6: Empirical evaluation of sample complexity for INFO-SEDD.

N 102 103 104 105

MI=10, D=10 7.472 11.139 10.100 10.115
MI=20, D=20 7.772 22.533 20.728 19.922
MI=30, D=30 26.126 29.458 36.093 29.809
MI=40, D=40 28.517 38.512 35.450 38.758
MI=50, D=50 27.782 50.300 43.750 48.822

INFO-SEDD is sufficiently accurate also for a rather low number of samples. However, as most neural
estimators, it relies on deep architectures that require a sufficient number of samples for training.
Practitioners are required to find the sweet spot between score network architecture complexity
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Figure 6: Empirical convergence of the benchmarked MI estimators.
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(which caters better MI estimates for complex data) and the need for a large number of training
samples.

C.1.6 ABLATION STUDY ON SUPPORT DIMENSION

In the main paper we performed synthetic experiments by fixing D to 10, MI to 0.5 and increasing
|χ|. In this section, we perform the contrary and we increase χ by using Cantor’s mapping and
uncorrelated binomial random variables as noise in the data. We increase χ| as in Table 7, reporting
the new support size χ after the injectio of the noisy binomial random variables. Table 7 shows how
INFO-SEDD is the only estimator robust to increasingly high support size.

Table 7: Results of the ablation study on |χ|, with D fixed to 10 and MI=0.5. Best estimates in bold.

Estimator INFO-SEDD GAN-DIME HD-DIME KL-DIME MINDE MINE NWJ SMILE

χ

12 0.478 1.457 1.211 1.527 0.254 1.096 1.181 1.597
36 0.486 1.610 1.323 1.507 0.008 1.093 1.128 1.600
132 0.498 1.490 1.188 1.511 0.005 1.170 1.245 1.818

C.1.7 EXTREME DIMENSIONALITY EXPERIMENTS

In the main text, we evaluated INFO-SEDD on synthetic benchmarks with increasing dimension-
ality D and mutual information (MI). Here, we provide additional results focusing on very high-
dimensional regimes, in order to further assess the scalability of our method.

Case D = 256 and MI=0.5 We trained INFO-SEDD using the same architecture as in section 4.1
with an extended budget of 106 optimization steps. Under this setting, the method achieves an
estimated MI of 0.43 compared to the ground-truth value of 0.5.

Case D = 1024 and MI=0.5 We adopted a DiMamba backbone with 2M parameters, trained for
106 steps with early stopping on a dataset of 106 samples. In this regime, INFO-SEDD achieves an
MI estimate of 0.53, close to the ground-truth value of 0.5.

Discussion These results indicate that INFO-SEDD can be effectively scaled to very high-
dimensional discrete distributions when trained with sufficient data and capacity. Together with
the experiments in the main paper, they highlight both the robustness of our approach and its ability
to leverage larger training budgets when available.

26



Published as a conference paper at ICLR 2026

C.2 TEXT SUMMARIZATION EXPERIMENTS

C.2.1 DATASET AND GROUND TRUTH CONSTRUCTION

We consider random variable X , which correspond to source texts as in Fabbri et al. (2021), and
summaries Y obtained with the BART model (M22 of the SummEval paper) when fed with the
corresponding source text. Then, for a given 0 < ρ < 1, we construct Y ρ which is equal to the
original Y with probability ρ and equal to an independent sample from the same distribution of
Y with probability 1 − ρ. Although we cannot establish the ground truth MI I(X,Y ρ) exactly,
we can bound its value. Consider the latent variable Z, Bernoulli distributed with parameter ρ,
which determines whether Y ρ is equal to the original Y or and independent sample from the same
distribution. Then

I(X,Y ρ) = I(X;Y ρ|Z)− I(X;Z|Y ρ) + I(X,Z)

= I(X;Y ρ|Z)− I(X;Z|Y ρ)

≥ I(X;Y ρ|Z)−H(Z|Y ρ)

≥ I(X;Y ρ|Z)−H(Z)

= ρI(X;Y ρ|Z = 1) + (1− ρ)I(X;Y ρ|Z = 0)−H(Z)

= ρI(X;Y ρ|Z = 1)−H(Z)

= ρI(X;Y )−H(Z)

Furthermore, since I(X,Y ρ) = I(X;Y ρ|Z) − I(X;Z|Y ρ) ≤ I(X;Y ρ|Z) = ρI(X;Y ),
we can claim that Iρ(X,Y ) ∈ [ρI(X,Y ) − H(Z), ρI(X,Y )]. Since H(Z) =
− (ρ log ρ+ (1− ρ) log(1− ρ)), whenever I(X;Y ) is much greater than H(Z), I(X;Y ρ) satis-
fies approximately the linear relationship I(X;Y ρ|Z) = ρI(X,Y ). This assumption is supported
by the literature (Takahira et al., 2016).

C.2.2 MODEL SETUP

For all our methods, we use the MDLM-small model (Sahoo et al., 2024) trained on OpenWebText.
While this family of models does not directly parametrize the score, Sahoo et al. (2024) show that it
can be easily recovered from the output of the model. For the experiments with MINDE, we use the
variance preserving Stochastic Differential Equation (SDE) and the same model. We perform the
diffusion step on the token embeddings. We trained all models using the configuration in Table 8.

Table 8: Training settings for one run for the model selection experiments and the consistency tests
(one value of ρ)

Parameter Value

Backbone MDLM small (Sahoo et al., 2024)
Optimizer AdamW
AdamW - β1 0.9
AdamW - β2 0.999
Weight decay 0
Learning rate 3e-4
Batch size 64
Number of steps 3600
Dropout rate 0.0
Hardware 1×NVIDIA A 100 80 GB

C.2.3 NUMERICAL RESULTS

In Table 9, we report the numerical results for MI estimations in the consistency tests, including
MINDE. We report all values in nats.
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Table 9: Numerical results for Text summarization consistency tests
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C.2.4 DETAILED RESULTS FOR HUMAN METRICS CORRELATION EXPERIMENTS

We report the MI estimates of each model and compare them with human evaluation metrics. For
each metric, we run a GP regression with a Matérn kernel with smoothing parameter ν = 1.5
(Rasmussen and Williams, 2006) and noise level 0.01 using the MI estimates from both INFO-SEDD-
C and INFO-SEDD-J. We use the scikit-learn Python package to run this analysis (Pedregosa et al.,
2011). In Figures 7 and 8, we plot the GP mean, its 95% confidence interval, and the Pearson
correlation. As the figures show, several human metrics saturate around 5.0 (the maximum score
possible), while MI is not subject to this ceiling effect.

In particular, for the consistency and fluency metrics, the GP mean follows an increasing trend until
the human scores saturate, suggesting that the linear relationship between MI and the human metric
only holds up to a threshold, beyond which most models achieve the maximum score.
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Unlike human metrics, however, INFO-SEDD does not rely on annotations: it only requires a dataset
of summaries paired with source texts, making it a cost-effective and scalable alternative for model
selection in text summarization.
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Figure 7: Comparison of human metrics against mutual information estimated by INFO-SEDD-C
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Figure 8: Comparison of human metrics against mutual information estimated by INFO-SEDD-J

C.3 COMPARISON OF MI ESTIMATES WITH INFO-SEDD AND OTHER TEXT SUMMARIZATION
METRICS

We measured several other metrics using the SummEval library (Fabbri et al., 2021) and one refer-
ence summary for each sample provided in the SummEval collection. In particular, we benchmark
the BERT SCORE metric (Zhang et al., 2019), the BLEU metric (Papineni et al., 2002) and the CIDER
metric (Vedantam et al., 2015). As we can see from Figure 10 and Figure 9, we find that INFO-
SEDD-J in general correlates better with other summarization metrics with respect to INFO-SEDD-C.
Interestingly, INFO-SEDD-C correlates better with human metrics, proving to be a useful proxy for
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human metrics without the need of human annotations. Notably, INFO-SEDD-C is also the best at
correlating with consistency among all other text summarization metrics.

BERT-F1 BERT-P BERT-R BLE CID COH CON FLU REL OVR ISEDD-J ISEDD-C

BERT-F1

BERT-P

BERT-R

BLE

CID

COH

CON

FLU

REL

OVR

ISEDD-J

ISEDD-C

1.00 0.53 0.48 0.43 0.35 -0.01 0.09 0.38 0.28 0.26 0.02 -0.28

0.53 1.00 0.02 0.80 0.82 0.01 -0.12 0.13 0.10 0.09 -0.22 -0.38

0.48 0.02 1.00 0.02 -0.07 0.26 0.47 0.63 0.50 0.52 0.23 0.10

0.43 0.80 0.02 1.00 0.92 0.18 0.01 0.31 0.24 0.26 -0.05 -0.22

0.35 0.82 -0.07 0.92 1.00 0.14 -0.07 0.27 0.20 0.22 -0.13 -0.27

-0.01 0.01 0.26 0.18 0.14 1.00 0.26 0.52 0.68 0.70 0.05 0.10

0.09 -0.12 0.47 0.01 -0.07 0.26 1.00 0.56 0.50 0.52 0.49 0.50

0.38 0.13 0.63 0.31 0.27 0.52 0.56 1.00 0.77 0.78 0.15 0.13

0.28 0.10 0.50 0.24 0.20 0.68 0.50 0.77 1.00 0.98 0.22 0.20

0.26 0.09 0.52 0.26 0.22 0.70 0.52 0.78 0.98 1.00 0.24 0.22

0.02 -0.22 0.23 -0.05 -0.13 0.05 0.49 0.15 0.22 0.24 1.00 0.47

-0.28 -0.38 0.10 -0.22 -0.27 0.10 0.50 0.13 0.20 0.22 0.47 1.00
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 9: Kendall Tau correlation heatmap of MI estimates INFO-SEDD, other text summarization
metrics and human metrics. CID=Cider, BLE=bleu.
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Figure 10: Pearson correlation heatmap of MI estimates INFO-SEDD, other text summarization
metrics and human metrics. CID=Cider, BLE=bleu.
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C.4 GENOMICS EXPERIMENTS

C.4.1 DATASET AND GROUND TRUTH CONSTRUCTION

To construct our dataset for the consistency test, we consider the shuffling hyperparameter ρ. We
consider X to be the random variable representing the DNA sequences and, for a given 0 < ρ < 1,
we construct Y ρ which is equal to the original Y , the random variable representing the human or
worm label, with probability 1−ρ and equal to an independent sample from the same distribution of
Y with probability ρ. We can estimate I(X,Y ρ) by considering the entropy terms which correspond
to the decomposition H(Y ρ) − H(Y ρ|X). On the one hand, estimation of H(Y ρ) = H(Y ) from
the dataset is relatively simple and stable given the low dimensionality of the label. Concerning
H(Y ρ|X), we first write the conditional distribution pY ρ|X(yρ|x) as:

pY ρ|X(yρ|x) =
∑

y

pY ρ,Y |X(yρ, y|x)

=
∑

y

pY ρ|Y,X(yρ|y, x)pY |X(y|x)

=
∑

y

(1− ρ)δ(y, yρ)pY |X(y|x) + ρpY (y
ρ)pY |X(y|x)

= (1− ρ)pY |X(yρ|x) + ρpY (y
ρ)

In the considered dataset, classes are balanced and consequentlypY (yρ) = 0.5. To approximate
pY |X(yρ|x), we first define l(x) = argmaxy pY |X(y|x), then we assume the following:

pY |X(y|x) =

{
1− ǫ for y = l(x)

ǫ otherwise

with ǫ≪ 1, which roughly speaking corresponds to assuming that for all values of x the conditional
probability is highly skewed either towards zero or one. This assumption proves to be reasonable in
scenarios where the classification accuracy is close to one, as the case considered here (Schiff et al.,
2024). Then

pY ρ|X(yρ|x) =

{
(1− ρ)(1− ǫ) + ρpY (y

ρ) for y = l(x)

(1− ρ)ǫ+ ρpY (y
ρ) otherwise

Going back to H(Y ρ|X), we can finally write:

H(Y ρ|X) = −
∑

x

pX(x)
∑

y

pY ρ|X(yρ|x) log pY ρ|X(yρ|x)

= −
∑

x

pX(x)(pY ρ|X(l(x)|x) log pY ρ|X(l(x)|x) + pY ρ|X(1− l(x)|x) log pY ρ|X(1− l(x)|x))

=
∑

x

pX(x)((1− ρ)(1− ǫ) + ρpY (y
ρ)) log((1− ρ)(1− ǫ) + ρpY (y

ρ))

+
∑

x

pX(x)((1− ρ)ǫ+ ρpY (y
ρ)) log((1− ρ)ǫ+ ρpY (y

ρ))

=
∑

x

pX(x)Hb((1− ρ)(1− ǫ) + ρ0.5) = Hb((1− ρ)(1− ǫ) + ρ0.5)

To select ǫ, we choose the accuracy of the best classifier from (Schiff et al., 2024) trained for the
HUMAN VS WORM classification task.

C.4.2 MODEL SETUP

We employed a pretrained Caduceus model (Schiff et al., 2024) as a backbone for all estimators. We
modified the head of the model when needed. For MINE-like estimators we added an attention head
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and added a fully connected layer for aggregating the output. For MINDE, we added a transformer
block with time conditioning. For INFO-SEDD, we did not make architectural variations and we
employ the optimized training strategy highlighted in Appendix C.1. We trained all models using
the configuration in Table 10. For the motif selection experiments, we employ INFO-SEDD-J because
our method requires masking elements of the DNA sequence, which is something that INFO-SEDD-C
does not do during training.

Table 10: Training settings for one run for the promoter experiments or the consistency tests (one
value of ρ)

Parameter Value

Backbone Caduceus-1K (Schiff et al., 2024)
Optimizer AdamW
AdamW - β1 0.9
AdamW - β2 0.999
Weight decay 0.1
Learning rate 0.001
Batch size 128
Number of steps 20000
Dropout rate 0.1
Hardware 1×NVIDIA A 100 80 GB

C.4.3 NUMERICAL RESULTS FOR THE CONSISTENCY TESTS

In Table 11, we report the numerical results for MI estimations in the consistency tests, including
MINDE. We report all values in nats.

Table 11: Numerical results for DNA consistency tests

Gan-Dime Hd-Dime Infosedd-C Infosedd-J Kl-Dime Mine Nwj Smile
ρ

0.0 0.01 0.00 0.00 0.05 0.00 0.00 -0.02 0.00
0.1 0.00 0.01 0.00 0.07 0.00 0.00 -0.01 0.00
0.2 0.02 -0.01 0.00 0.06 0.00 0.00 -0.02 0.02
0.3 0.04 0.01 0.03 0.08 0.00 0.00 -0.01 0.02
0.4 0.00 0.07 0.07 0.06 -0.01 0.00 0.00 0.07
0.5 0.04 0.14 0.12 0.09 0.12 0.13 0.13 0.12
0.6 0.18 0.16 0.18 0.09 0.17 0.19 -0.02 0.19
0.7 0.27 0.23 0.24 0.14 0.30 0.29 0.00 0.11
0.8 0.34 0.33 0.32 0.18 0.00 0.38 -0.01 0.29
0.9 0.15 0.43 0.45 0.24 0.51 0.54 -0.02 0.40
1.0 0.69 -0.01 0.61 0.37 0.66 0.71 0.70 0.50
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D ADDITIONAL RESULTS

D.1 ISING MODEL ENTROPY ESTIMATION

The Ising model is a system consisting of particles arranged in a lattice. In our experiments, we
consider a L×L square. A particle i of the lattice is associated with a discrete value σi ∈ {−1,+1}
called spin and each pair of particles ij is characterized by an interaction strength Jij . With no
external fields, these quantities determine the energy E(σ) of the configuration σ:

E(σ) =
∑

i,j

Jijσiσj

In turns, the energy of a configuration determines its likelihood. In particular, the configurations
of the Ising model follow a probability distribution

→
p 0 parametrised by the temperature T , the

Boltzmann constant kb and the interaction strengths:

→
p 0(σ) =

e−βE(σ)

Z(T )

Where Z(T ) =
∑

i e
−βE(σi) and β = (kbT )

−1. In order to generate our dataset from
→
p 0, we follow

the Metropolis algorithm (Bhanot, 1988):

Algorithm 4 Metropolis Algorithm for 2D Ising Spin Glass

1: Input: Lattice size N , interaction strengths Jij , temperature T , number of iterations iter_max
2: Initialize: Spin lattice σ with σi,j ∈ {−1,+1} randomly assigned
3: for iteration = 1 to iter_max do
4: Randomly select a lattice site i
5: Compute the change in energy ∆E if σi,j is flipped:

∆E = 2σi

∑

j

Ji,j σj

6: Generate a random number r uniformly distributed in [0, 1]
7: if r < exp (−β∆E) then
8: Flip the spin: σi ← −σi

9: end if
10: end for
11: Output: Final spin configuration σ

We compute the entropy of
→
p 0 analytically, starting from the free energy F per site of the lattice:

F (T ) = −kbT log λT

Where λT is the partition function, which depends on the interaction horizontal and vertical interac-
tion strength. For simplicity, we consider the same interaction strength J = 1 for all neighboring
particles, while we set it to zero for non neighboring particles. Under these assumptions, we can
calculate log λ with a double integral(Onsager, 1944):

log λT = log 2+ 1
2π2

∫ π

0

∫ π

0

log(cosh(2βJ) cosh(2βJ)−sinh(2βJ) cos(θ1)−sinh(2βJ) cos(θ2))dθ1dθ2

For simplicity, we also set kb = 1. From F , we can calculate the entropy H using the thermody-
namic relation H = −∂F

∂T
. We compute the integral numerically using the SciPy Python package

(Virtanen et al., 2020) and we approximate H as H ≈ F (T+∆T )−F (T−∆T )
2∆T

, with ∆T = 10−4.

For what concerns the INFO-SEDD architecture, we keep a single model configuration for all temper-
atures, both for the model, which contains around 90k parameters, and for the diffusion. To get the
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Figure 11: Ising model entropy estimates

entropy per site, we divide the estimates of the model by the number of particles in the configurations
(400).

In this section, we numerically validate the performance of INFO-SEDD by estimating entropy ac-
cording to Algorithm 3.

Spin glasses experiments. Entropy computation in Ising models enables insights on the thermo-
dynamics properties of the system (Cincio et al., 2007), which can be used for scientific discov-
ery in the domain where the Ising model is applied (Macy et al., 2024; Schneidman et al., 2006;
Sherrington and Kirkpatrick, 1975).

Experimental setup We consider a simplified Ising model applied to spin glasses
(Sherrington and Kirkpatrick, 1975). We do not include an external field, we set a unitary inter-
action strength for all the sites interactions, unitary Boltzmann’s constant and a 20 × 20 square
lattice. The entropy per site of this configuration can be computed in closed form Onsager (1944).
We test our model by estimating the entropy per particle at linearly spaced temperatures from 1.0K
to 4.0K. We generate our dataset using the Metropolis-Hastings algorithm, with 10000 samples for
each temperature (see Appendix D.1). We post-process the output of INFO-SEDD by dividing the
entropy estimate by 400 to report the entropy per site.

Results and Analysis Variational estimators cannot estimate large KL divergences reliably with
limited samples sizes (McAllester and Stratos, 2020; Song and Ermon, 2019a). In this scenario,
instead, INFO-SEDD accurately estimates large KL divergences (Figure 11), performing particularly
well at low temperatures where we need to estimate large KL divergences.
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E THEORETICAL PROPERTIES OF INFO-SEDD

We highlight the main assumptions and setting in Appendix E.1, then in Appendix E.2 we proceed
to construct an error bound on the KL estimate of INFO-SEDD under the established setting.

E.1 ASSUMPTIONS AND SETTING

We highlight the assumptions on the probability distributions and score networks. We first define
the class of functions F which restricts the class of score functions and score networks. In this
work, we consider CTMC with only sparse transition rate matrices

→
Q, which constrain the CTMC to

modify only one subcomponent at a time. This means that, when considering the KL estimate as in

Equation (4), only ratios of probability distributions
→
p t(a)
→
p t(b)

with a and b within Hamming distance 1

are considered. The assumptions that we are going to make in this section reflect this characteristic.
We define the set of pairs of samples at Hamming distance 1 as follows:

S := {(x′, x′′) ∈ χD × χD | dhamming(x
′, x′′) = 1}.

Where χD is the support of D-dimensional random vectors We impose two finite constants

0 < C1 < C2 < +∞,

and define
F := {f : S × [0, T ]→ R | C1 ≤ ||f ||∞ ≤ C2},

where ||f ||∞ denotes the supremum norm over S × [0, T ].

Throughout this appendix, we use a family of neural networks TΘ ⊂ F that are standard multilayer
feedforward networks with bounded, nonconstant activation functions (Hornik et al., 1989). We also
fix a perturbation kernel

→
p t|0 and denote the score function for arbitrary probability distribution p as

sp(xt)x̂ =

→
p t(x̂)
→
p t(xt)

,

where
→
p t(xt) =

∑

x0

→
p t|0(xt|x0)p(x0).

We now state the assumptions on score networks and on score functions:

• A.1: For all spθ ∈ TΘ, C1 ≤ ||s
p
θ||∞ ≤ C2.

• A.2: For all p, the score function satisfies C1 ≤ ||s
p||∞ ≤ C2.

The lower bound C1 > 0 avoids degeneracies, and ensures well-defined log terms in the loss. We
define the class of distribution P for which A.2 is true as

P := {p |C1 ≤ ||s
p||∞ ≤ C2}

A.1 and A.2 are similar to Assumption 4.4 of Ren et al. (2024), who assume that both the score
function and the score networks are bounded. Similarly, Chen and Ying (2024) set bound for the
score network (Assumption 2) and for the true score function (Assumption 3).

E.2 ERROR ANALYSIS OF INFO-SEDD

Let p, q ∈ P be two probability distributions satisfying the assumptions highlighted in Appendix E.1.
Let θ, φ ∈ Θ be two arbitrary sets of parameters for the score networks spθ , sqφ.

ǫp = ||spθ − sp
∣
∣|∞, ǫq = ||sqφ − sq||∞.

Then, let us define the functional E , parameterised with arbitrary functions f, g ∈ F and perturbation
kernel

→
p t|0 as
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E(f, g;x0) =

∫ T

0

E
xt∼

→
p t|0(·|x0)

∑

x̂ 6=x

→
Q(xt, x̂)(K(f(xt)x̂) + f(xt)x̂ − g(xt)x̂ log g(xt)x̂)dt

Then, the INFO-SEDD estimator for the KL is

Ex∼pE(s
p
θ, s

q
φ;x)

The true KL divergence, instead is exactly

KL [p ‖ q] = KL

[
→
p T ‖

→
q T

]

+ Ex∼pE (s
p, sq;x)

Then, we chracterise the error of INFO-SEDD as

∣

∣

∣
Ex∼pE(s

p
θ , s

q
φ; x)− KL

[

→
p T ‖

→
q T

]

− Ex∼pE
(

s
p
, s

q
; x

)

∣

∣

∣
≤

∣

∣

∣
Ex∼pE(s

p
θ , s

q
φ; x)− Ex∼pE

(

s
p
, s

q
; x

)

∣

∣

∣
+ KL

[

→
p T ‖

→
q T

]

(11)

We denote ∅D the element in χD such that ∅Di = ∅ ∀ i and we now focus first on the second term of
the right hand side of Equation (11)

KL

[
→
p T ‖

→
q T

]

=
∑

x

→
p T (x) log

→
p T (x)
→
q T (x)

Firstly, note that for any t ∈ (0, T ],
→
p t(∅

D) =
→
q t(∅

D), and as a consequence log
→
p t(∅

D)
→
q t(∅

D)
=

log(1) = 0. This means that we can write

KL

[
→
p T ‖

→
q T

]

=
∑

x

→
p T (x) log

→
p T (x)
→
q T (x)

=
∑

x 6=∅D

→
p T (x) log

→
p T (x)
→
q T (x)

≤
∑

x 6=∅D

→
p T (x) log

1
→
q T (x)

=
∑

x 6=∅D

→
p T (x) log

∑

x̂

→
q T (x̂)
→
q T (x)

.

Note that we cannot bound
→
q T (x̂)
→
q T (x)

by simply applying A.2, since the sum involves terms such that

dhamming(x, x̂) > 1. We can however construct an ordered sequence of points S(x, x̂) where x is
the first element, x̂ is the last element and ∀ i, j such that 0 ≤ i < j < dhamming(x, x̂) it holds
dhamming(S(x, x̂)j , S(x, x̂)i) = j − i. This allows us to write

→
q T (x̂)
→
q T (x)

=

dhamming(x,x̂)−2∏

i=0

→
q T (S(x,x̂)i+1)
→
q T (S(x,x̂)i)

=

dhamming(x,x̂)−2∏

i=0

sq(S(x, x̂)i)S(x,x̂)i+1

≤

dhamming(x,x̂)−2∏

i=0

C2

≤ CD
2
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We can now go back to KL

[
→
p T ‖

→
q T

]

,

KL

[
→
p T ‖

→
q T

]

≤
∑

x 6=∅D

→
p T (x) log

∑

x̂

→
q T (x̂)
→
q T (x)

≤
∑

x 6=∅D

→
p T (x) log

∑

x̂

CD
2

=
∑

x 6=∅D

→
p T (x) log |χ|

DCD
2

= (1−
→
p T (∅

D))(D log |χ|C2).

We can now focus on the first term of the right hand side of Equation (11)

∣
∣
∣Ex∼pE(s

p
θ, s

q
φ;x)− Ex∼pE (s

p, sq;x)
∣
∣
∣

First, we decompose each term and use triangle inequality

∣
∣
∣Ex∼pE(s

p
θ, s

q
φ;x)− Ex∼pE(s

p, sq;x)
∣
∣
∣

=

∣
∣
∣
∣
∣
Ex∼p

(

E(spθ, s
q
φ;x)− E(s

p, sq;x)

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
Ex∼p

∫ T

0

E
xt∼

→
p t|0(·|x0)

∑

x̂ 6=x

→
Q(xt, x̂)

(

K
(
s
p
θ(xt)x̂

)
−K(sp(xt)x̂)

+ s
q
φ(xt)x̂ − sq(xt)x̂ − s

p
θ(xt)x̂ log

(
s
q
φ(xt)x̂

)

+ sp(xt)x̂ log(s
q(xt)x̂)

)

dt

∣
∣
∣
∣
∣

≤ Ex∼p

∫ T

0

E
xt∼

→
p t|0(·|x0)

∑

x̂ 6=x

→
Q(xt, x̂)

(∣
∣
∣
∣
∣
K
(
s
p
θ(xt)x̂

)
−K(sp(xt)x̂)

∣
∣
∣
∣
∣

(12)

+

∣
∣
∣
∣
∣
s
q
φ(xt)x̂ − sq(xt)x̂

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
s
p
θ(xt)x̂ log

(
s
q
φ(xt)x̂

)
− sp(xt)x̂ log(s

q(xt)x̂)

∣
∣
∣
∣
∣

)

dt
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We use the inequality log(a) ≤ a− 1 to proceed with the first term of Equation (12),
∣
∣K
(
s
p
θ(xt)x̂

)
−K(sp(xt)x̂)

∣
∣ = |spθ(xt)x̂(log(s

p
θ(xt)x̂)− 1)− (sp(xt)x̂) (log (s

p(xt)x̂)− 1)|

≤ |spθ(xt)x̂ log(s
p
θ(xt)x̂)− (sp(xt)x̂) log (s

p(xt)x̂)|+ ǫp

≤ max(sp(xt)x̂, s
p
θ(xt)x̂) |log(s

p
θ(xt)x̂)− log (sp(xt)x̂)|+ ǫp

≤ C2

∣
∣
∣log

(
s
p
θ
(xt)x̂

sp(xt)x̂

)∣
∣
∣+ ǫp

≤ C2

∣
∣
∣

(
max(sp

θ
(xt)x̂,s

p(xt)x̂)

min(sp
θ
(xt)x̂,sp(xt)x̂)

− 1
)∣
∣
∣+ ǫp

≤ C2

∣
∣
∣

(
max(sp

θ
(xt)x̂,s

p(xt)x̂)−min(sp
θ
(xt)x̂,s

p(xt)x̂)

min(sp
θ
(xt)x̂,sp(xt)x̂)

)∣
∣
∣+ ǫp

≤ C2

min(sp
θ
(xt)x̂,sp(xt)x̂)

|(spθ(xt)x̂ − sp(xt)x̂)|+ ǫp

≤ C2

C1
|(spθ(xt)x̂ − sp(xt)x̂)|+ ǫp

≤ C2

C1
ǫp + ǫp

= ǫp(1 +
C2

C1
)

Then, we continue with the second term of Equation (12), which is simply
∣
∣
∣s

q
φ(xt)x̂ − sq(xt)x̂

∣
∣
∣ ≤ ǫq

Finally, we write the term of Equation (12)
∣
∣
∣s

p
θ(xt)x̂ log

(
s
q
φ(xt)x̂

)
− sp(xt)x̂ log

(

sq(xt)x̂

)∣
∣
∣

≤ max
(

s
p
θ(xt)x̂, s

p(xt)x̂

)∣
∣
∣log sq(xt)x̂ − log

(
s
q
φ(xt)x̂

)
∣
∣
∣

≤ C2

∣
∣
∣log sq(xt)x̂ − log

(
s
q
φ(xt)x̂

)
∣
∣
∣

≤ C2

C1

∣
∣
∣sq(xt)x̂ − s

q
φ(xt)x̂

∣
∣
∣

≤ C2

C1
ǫq

Combining the results we obtain
∣
∣
∣Ex∼pE(s

p
θ, s

q
φ;x)− Ex∼pE (s

p, sq;x)
∣
∣
∣

≤

∣
∣
∣
∣
∣

∫ T

0

E
xt∼

→
p t|0(·|x0)

∑

x̂ 6=xt

→
Q(xt, x̂)

(

(ǫp + ǫq)
(

1 + C2

C1

))

dt

≤ σ̄(T )D|χ|
(

(ǫp + ǫq)
(

1 + C2

C1

))

where the factor D|χ| is the number of non-zero entries in
→
Q using the absorb configuration. We

can finally put together everything to get the error bound for Equation (11)

∣
∣
∣Ex∼pE(s

p
θ, s

q
φ;x)− KL

[
→
p T ‖

→
q T

]

− Ex∼pE (s
p, sq;x)

∣
∣
∣

≤
∣
∣
∣Ex∼pE(s

p
θ, s

q
φ;x)− Ex∼pE (s

p, sq;x)
∣
∣
∣+ KL

[
→
p T ‖

→
q T

]

≤ σ̄(T )D|χ|
(

(ǫp + ǫq)
(

1 + C2

C1

))

+ (1−
→
p T (∅

D))(D log |χ|C2)

Note that
→
p T (∅

D) approaches 1 exponentially in T (Equation 14 of Lou et al. (2024)). The other
term, instead, shows that the error on the KL increases linearly with the error of the score network
for fixed T and does not depend on terms exponential on the KL divergence.
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E.3 DISCUSSION ON CONSISTENCY

As presented in Appendix E, the error of INFO-SEDD decomposes in two terms: one proportional to
the error of the score networks, and one proportional to

→
p T (∅

D).
∣
∣
∣Ex∼pE(s

p
θ, s

q
φ;x)− KL

[
→
p T ‖

→
q T

]

− Ex∼pE (s
p, sq;x)

∣
∣
∣

≤
∣
∣
∣Ex∼pE(s

p
θ, s

q
φ;x)− Ex∼pE (s

p, sq;x)
∣
∣
∣+ KL

[
→
p T ‖

→
q T

]

≤ σ̄(T )D|χ|
(

(ǫp + ǫq)
(

1 + C2

C1

))

+ (1−
→
p T (∅

D))(D log |χ|C2) (13)

The second term of Equation (13) cannot be reduced with better score networks, as it only depends
on the CTMC and the data distribution. However, it decreases exponentially in σ̄(T ) (Equation 14
of Lou et al. (2024)), establishing a trade-off with the first term, which only increases linearly with
σ̄(T ). For this reason, we focus on the first term. Note that our final KL estimator Equation (4)
is a continuous functional of the score networks s

p
θ, s

q
φ. By theorem 3.4 of Lou et al. (2024), the

DWDSE loss is an equivalent objective compared to the score entropy loss. This allows us to apply
proposition 3.2 of Lou et al. (2024), for which, given enough samples and model capacity, the score
network s

p
θ and s

q
φ converge to their true values sp and sq . Our final KL estimator Equation (4) is a

continuous functional of these score networks. By the Continuous Mapping Theorem (theorem 1.9.5
of Vaart and Wellner (1997)), assuming as in Lou et al. (2024) that spθ and s

q
φ converge in probability

to their true values sp and sq, the output of the functional (our KL estimate) must also converge in
probability to the true KL divergence minus the truncation bias.

E.4 DISCUSSION ON BIAS

Consider the INFO-SEDD estimator

α = E






∫ T

0

∑

x 6=
→
Xt

→
Qt(
→
Xt, x)

(

K

(

sp(
→
Xt)x

)

+ sq(
→
Xt)x − sp(

→
Xt)x log s

q(
→
Xt)x

)

dt






and its empirical version over a collection of samples xi
0 ∼ pdata

α̂ =
1

N

N∑

i=1





∫ T

0

∑

x 6=xi
t

→
Qt(x

i
t, x)

(
K
(
sp(xi

t)x
)
+ sq(xi

t)x − sp(xi
t)x log s

q(xi
t)x
)
dt



 .

Let us denote φ(xt) =
∑

x 6=xi
t

→
Qt(x

i
t, x)

(
K
(
sp(xi

t)x
)
+ sq(xi

t)x − sp(xi
t)x log s

q(xi
t)x
)
, then we

can write its expectation as

E[α̂] = E

[

1

N

N∑

i=1

∫ T

0

φ(xi
t)dt

]

=
1

N

N∑

i=1

E

[
∫ T

0

φ(xi
t)dt

]

Note that E
[∫ T

0
φ(xi

t)dt
]

is the true α. As a consequence E[α̂] = α, which means that INFO-SEDD

is an unbiased estimator for α. Note, however, that we still have the truncation bias which is bounded
by

|KL [pdata ‖ qdata]− α| ≤ (1−
→
p T (∅

D))(D log |χ|C2).

This source of bias is object of tradeoff with the other term

σ̄(T )D|χ|
(

(ǫp + ǫq)
(

1 + C2

C1

))
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since increasing T would reduce the former but expand the latter. However, the term (1−
→
p T (∅

D))
decreases exponentially in σ̄(T ) (Equation 14 of Lou et al. (2024)). This means that the trunca-
tion bias can be drastically reduced without affecting the other error term which only has a linear
dependence on σ̄(T ).
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