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Abstract
Reliable predictions of critical phenomena, such
as weather, wildfires and epidemics often rely
on models described by Partial Differential Equa-
tions (PDEs). However, simulations that capture
the full range of spatio-temporal scales described
by such PDEs are often prohibitively expensive.
Consequently, coarse-grained simulations are usu-
ally deployed that involve heuristics and empirical
closure terms to account for the missing informa-
tion. We propose Closure-RL, a novel and
systematic approach for identifying closures in
under-resolved PDEs using grid-based Reinforce-
ment Learning. This formulation incorporates
inductive bias and exploits locality by deploy-
ing a central policy represented efficiently by a
Fully Convolutional Network (FCN). We demon-
strate the capabilities and limitations of the frame-
work through numerical solutions of the advection
equation and the Burgers’ equation. The results
demonstrate improved accuracy for in- and out-
of-distribution test cases as well as a significant
speedup compared to fine grained simulations.

1. Introduction
Simulations of critical phenomena such as climate, ocean dy-
namics and epidemics, have become essential for decision-
making, and their veracity, reliability, and energy demands
have great impact on our society. Many of these simu-
lations are based on models described by PDEs express-
ing system dynamics that span multiple spatio-temporal
scales. Examples include turbulence (Wilcox, 1988), neuro-
science (Dura-Bernal et al., 2019), climate (Council, 2012)
and ocean dynamics (Mahadevan, 2016). Large-scale simu-
lations that predict the system’s dynamics may use trillions
of computational elements (Rossinelli et al., 2013) to re-
solve all spatio-temporal scales, but these often address only
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idealized systems and their computational cost prevents ex-
perimentation and uncertainty quantification. On the other
hand, reduced order and coarse-grained models are fast, but
limited by the linearization of complex system dynamics
while their associated closures, which model the effect of
unresolved dynamics on the quantities of interest, are in
general based on heuristics and, as a result, domain specific
(Peng et al., 2021). A closure discovery framework that is
independent of the system of interest and can be applied to
various domains and tasks is thus highly desirable (Sanderse
et al., 2024).

To address this challenge we propose Closure-RL, a frame-
work to complement coarse-grained simulations with clo-
sures that are discovered by a grid-based Reinforcement
Learning (RL) framework. Closure-RL employs a central
policy that is based on a FCN and uses locality as an in-
ductive bias. It is able to correct the error of the numeri-
cal discretization and improves the overall accuracy of the
coarse-grained simulation.

Our approach is inspired by pixelRL (Furuta et al., 2019),
a recent work in Reinforcement Learning (RL) for image
reconstruction, which minimizes local reconstruction errors.
PixelRL employs a per-pixel reward and value network
and can therefore be interpreted as a cooperative Multi-
Agent Reinforcement Learning (MARL) framework with
one agent per pixel. We extend this framework to closure
discovery by treating the latter as a reconstruction prob-
lem. The numerical scheme introduces corruptions, that the
agents are learning to reverse. In contrast to actions based
on a set of filters as in pixelRL, we employ a continuous
action space that is independent of the PDE to be solved.
Our agents learn and act locally on the grid, in a manner
that is reminiscent of the numerical discretizations of PDEs
based on Taylor series approximations. Hereby, each agent
only gets information from its spatial neighborhood.

2. Related Work
Machine Learning and Partial Differential Equations:
In recent years, there has been significant interest in learning
the solution of PDEs using Neural Networks. Techniques
such as PINNs (Raissi et al., 2019; Karniadakis et al., 2021),
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DeepONet (Lu et al., 2021), the Fourier Neural Operator
(Li et al., 2020), NOMAD (Seidman et al., 2022), Clifford
Neural Layers (Brandstetter et al., 2023) and an invertible
formulation (Kaltenbach et al., 2023) have shown promising
results for both forward and inverse problems. However,
there are concerns about their accuracy and related com-
putational cost, especially for low-dimensional problems
(Karnakov et al., 2022). These methods aim to substitute
numerical discretizations with neural nets, in contrast to our
RL framework, which aims to complement them. Moreover,
their loss function is required to be differentiable, which
is not necessary for the stochastic formulation of the RL
reward.

Reinforcement Learning: The present approach is de-
signed to solve various PDEs using a central policy and
it is related to similar work for image reconstruction (Fu-
ruta et al., 2019). Its efficient grid-based formulation is in
sharp contrast to multi-agent learning formulations that train
agents on decoupled subproblems or learn their interactions
(Yang & Wang, 2020; Freed et al., 2021; Wen et al., 2022;
Albrecht et al., 2023; Sutton et al., 2023). The single focus
on the local discretization error allows for a general method
that is not required to be fine-tuned for the actual applica-
tion by selecting appropriate global data (such as the energy
spectrum) (Novati et al., 2021) or domain-specific agent
placement (Bae & Koumoutsakos, 2022).

Closure Modeling: The development of machine learning
methods for discovering closures for under-resolved PDEs
has gained attention in recent years. Current approaches are
mostly tailored to specific applications such as turbulence
modeling (Ling et al., 2016; Durbin, 2018; Novati et al.,
2021; Bae & Koumoutsakos, 2022) and use data such as
energy spectra and drag coefficients of the flow in order to
train the RL policies. In (Lippe et al., 2023), a more general
framework based on diffusion models is used to improve the
solutions of Neural Operators for temporal problems using
a multi-step refinement process. Their training is based on
supervised learning in contrast to the present RL approach
which additionally complements existing numerical meth-
ods instead of neural network based surrogates (Li et al.,
2020; Gupta & Brandstetter, 2022).

Inductive Bias: The incorporation of prior knowledge re-
garding the physical processes described by the PDEs, into
machine learning algorithms is critical for their training
in the Small Data regime and for increasing the accuracy
during extrapolative predictions (Goyal & Bengio, 2022).
One way to achieve this is by shaping appropriately the
loss function (Karniadakis et al., 2021; Kaltenbach & Kout-
sourelakis, 2020; Yin et al., 2021; Wang et al., 2021; 2022),
or by incorporating parameterized mappings that are based
on known constraints (Greydanus et al., 2019; Kaltenbach
& Koutsourelakis, 2021; Cranmer et al., 2020). Our RL

framework incorporates locality and is thus consistent with
numerical discretizations that rely on local Taylor series
based approximations. The incorporation of inductive bias
in RL has also been attempted by focusing on the beginning
of the training phase (Uchendu et al., 2023; Walke et al.,
2023) in order to shorten the exploration phase.

3. Methodology
We consider a time-dependent, parametric, non-linear PDE
defined on a regular domain Ω. The solution of the PDE
depends on its initial conditions (ICs) as well as its PDE-
parameters (PDEP) C ∈ C. The PDE is discretized on a
spatiotemporal grid and the resulting discrete set of equa-
tions is solved using numerical methods.

In turn, the number of the deployed computational elements
and the structure of the PDE determine whether all of its
scales have been resolved or whether the discretization
amounts to a coarse-grained representation of the PDE. In
the first case, the (fine grid simulation (FGS)) provides the
discretized solution ψ, whereas in (coarse grid simulation
(CGS)) the resulting approximation is denoted by ψ̃.1 The
RL policy can improve the accuracy of the solution ψ̃ by in-
troducing an appropriate forcing term in the right-hand side
of the CGS. For this purpose, FGS of the PDE are used as
training episodes and serve as the ground truth to facilitate
a reward signal. The CGS and FGS employed herein are
introduced in the next section. The proposed grid-based RL
framework is introduced in Section 3.2.

3.1. Coarse and Fine Grid Simulation

We consider a FGS of a spatiotemporal PDE on a Cartesian
3D grid with temporal resolution ∆t for NT temporal steps
with spatial resolution ∆x,∆y,∆z resulting in Nx, Ny, Nz

discretization points. The CGS entails a coarser spatial dis-
cretization ∆̃x = d∆x, ∆̃y = d∆y, ∆̃z = d∆z as well
as a coarser temporal discretization ∆̃t = dt∆t. Here, d
is the spatial and dt the temporal scaling factor. Conse-
quently, at a time-step ñ, we define the discretized solu-
tion function of the CGS as ψ̃

ñ
∈ Ψ̃ := Rk×Ñx×Ñy×Ñz

with k being the number of solution variables. The cor-
responding solution function of the FGS at time-step nf
is ψnf ∈ Ψ := Rk×Nx×Ny×Nz . The discretized solution
function of the CGS can thus be described as a subsampled
version of the FGS solution function and the subsampling
operator S : Ψ → Ψ̃ connects the two.
The time stepping operator of the CGS G : Ψ̃ × C̃ → Ψ̃
leads to the update rule

ψ̃
ñ+1

= G(ψ̃
ñ
, C̃ñ). (1)

1In the following, all variables with the ˜ are referring to the
coarse-grid description.
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Similarly, we define the time stepping operator of the FGS
as F : Ψ × C → Ψ. In the case of the CGS, C̃ ∈ C̃, is an
adapted version ofC, which for instance involves evaluating
a PDE-parameter function using the coarse grid.
To simplify the notation, we set n := ñ = dtnf in the
following. Hence, we apply F dT -times in order to describe
the same time instant with the same index n in both CGS
and FGS. The update rule of the FGS are referred to as

ψn+1 = Fdt(ψn, Cn). (2)

In line with the experiments performed in Section 4, and
to further simplify the notation, we are dropping the third
spatial dimension in the following presentation.

3.2. RL Environment

Figure 1. Illustration of the training environment with the agents
embedded in the CGS. The reward measures how much the action
taken improves the CGS.

The environment of our RL framework is summarized in
Figure 1. We define the state at step n of the RL environment
as the tuple Sn := (ψn, ψ̃n). This state is only partially
observable as the policy is acting only in the CGS. The
observationOn := (ψ̃n, C̃n) ∈ O is defined as the coarse
representation of the discretized solution function and the
PDEPs. Our goal is to train a policy π that makes the
dynamics of the CGS to be close to the dynamics of the FGS.
To achieve this goal, the actionAn ∈ A := Rk×Nx×Ny at
step n of the environment is a collection of forcing terms
for each discretization point of the CGS. In case the policy
is later used to complement the CGS simulation the update
function in Equation (1) changes to

ψ̃
n+1

= G(ψ̃
n
−An, C̃n). (3)

To encourage learning a policy that represents the non-
resolved spatio-temporal scales, the reward is based on the
difference between the CGS and FGS at time step n. In
more detail, we define a local reward Rn ∈ RÑx×Ñy in-
spired by the reward proposed for image reconstruction in

(Furuta et al., 2019):

Rn
ij =

1

k

k∑
w=1

(
[ψ̃n − S(ψn)]2 − [ψ̃n −An − S(ψn)]2

)
wij

(4)
Here, the square [·]2 is computed per matrix entry. We note
that the reward function therefore returns a matrix that gives
a scalar reward for each discretization point of the CGS. If
the actionAn is bringing the discretized solution function
of the CGS ψ̃n closer to the subsampled discretized solution
function of the FGS S(ψn), the reward is positive, and vice
versa. In caseAn corresponds to the zero matrix, the reward
is the zero matrix as well.
During the training process, the objective is to find the
optimal policy π∗ that maximizes the mean expected reward
per discretization point given the discount rate γ and the
observations:

π∗ = argmax
π

Eπ

( ∞∑
n=0

γnr̄n

)
(5)

with the mean expected reward

r̄n =
1

Ñx · Ñy

Ñx,Ñy∑
i,j=1

Rn
ij . (6)

3.3. Grid-based RL Formulation

The policy π predicts a local action An
i,j ∈ Rk at each

discretization point which implies a very high dimensional
continuous action space. Hence, formulating the closures
with a single agent is very challenging. However, since the
rewards are designed to be inherently local, locality can be
used as inductive bias and the RL learning framework can
be interpreted as a multi-agent problem (Furuta et al., 2019).
One agent is placed at each discretization point of the coarse
grid with a corresponding local reward Rn

ij . We remark that
this approach augments adaptivity as one can place extra
agents at additional, suitably selected, discretization points.
Each agent develops its own optimal policy, which we later
defined to be shared, and Equation (5) is replaced by

π∗
ij = argmax

πij

Eπij

( ∞∑
n=0

γnRn
ij

)
, (7)

Here, we used O(ÑxÑy) agents, which for typically used
grid sizes of numerical simulations, becomes a large number
compared to typical MARL problem settings (Albrecht et al.,
2023).
We parametrize the local policies using neural networks.
However, since training this many individual neural nets
can become computationally expensive, we parametrize all
the agents together using one fully convolutional network
(FCN) (Long et al., 2015), which implies that the agents
share one policy.
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3.4. Parallelizing Local Policies with a FCN

All local policies are parametrized using one FCN such that
one forward pass through the FCN computes the forward
pass for all the agents at once. This approach enforces the
aforementioned locality and the receptive field of the FCN
corresponds to the spatial neighborhood that an agent at a
given discretization point can observe.
We define the collection of policies in the FCN as

ΠFCN : O → A (8)

In further discussions, we will refer to ΠFCN as the global
policy. The policy πij of the agent at point (i, j) is subse-
quently implicitly defined through the global policy as

πij(Oij) :=
[
ΠFCN (O)

]
:ij
. (9)

Here,Oij contains only a part of the input contained inO 2.
For consistency, we will refer toOij as a local observation
andO as the global observation. We note that the policies
πij(Oij) map the observation to a probability distribution
at each discretization point (see Appendix A for details
including the neural network architecure employed).

Similar to the global policy, the global value function is
parametrized using a FCN as well. It maps the global ob-
servation to an expected return H ∈ H := RÑx×Ñy at each
discretization point

VFCN : O → H. (10)

Similarly to the local policies, we define the local value
function related to the agent at point (i, j) as vij(Oij) :=
[VFCN (O)]ij .

3.5. Policy Optimization

In order to solve the optimization problem in Equation (7),
we employ a modified version of the PPO algorithm (Schul-
man et al., 2017).
Policy updates are performed by taking gradient steps on

ES,A∼ΠFCN

 1

Ñx · Ñy

Ñx,Ñy∑
i,j=1

Lπij
(Oij ,Aij)

 (11)

with the local version of the PPO objective Lπij
(Oij ,Aij).

This corresponds to the local objective of the policy of the
agent at point (i, j) (Schulman et al., 2017).

The global value function is trained on the MSE loss

LV(O
n,Gn) = ||VFCN (On)−Gn||22

whereGn ∈ RÑx×Ñy represents the actual global return ob-
served by interaction with the environment and is computed

2The exact content of Oij is depending on the receptive field
of the FCN

asGn =
∑N

i=n γ
i−nRi. Here, N represents the length of

the respective trajectory.
We have provided an overview of the modified PPO algo-
rithm in Appendix B together with further details regarding
the local version of the PPO objective Lπij

(Oij ,Aij). Our
implementation of the adapted PPO algorithm is based on
the single agent PPO algorithm of the Tianshou framework
(Weng et al., 2022).

3.6. Computational Complexity

We note that the computational complexity of the CGS w.r.t.
the number of discretization points scales with O(ÑxÑy).
As one forward pass through the FCN also scales with
O(ÑxÑy) the same is true for Closure-RL. The FGS em-
ploys a finer grid, which leads to a computational cost that
scales with O(dtd

2ÑxÑy). This indicates a scaling advan-
tage for Closure-RL compared to a FGS. Based on these
considerations and as shown in the experiments, Closure-RL
is able to compress some of the computations that are per-
formed on the fine grid as it is able to significantly improve
the CGS while keeping the execution time below that of the
FGS.

4. Experiments
4.1. Advection Equation

First we apply Closure-RL to the 2D advection equation:

∂ψ

∂t
+ u(x, y)

∂ψ

∂x
+ v(x, y)

∂ψ

∂y
= 0, (12)

where ψ represents a physical concentration that is trans-
ported by the velocity field C = (u, v). We employ pe-
riodic boundary conditions (PBCs) on the domain Ω =
[0, 1]× [0, 1].

For the FGS, this domain is discretized using Nx = Ny =
256 discretization points in each dimension. To guaran-
tee stability, we employ a time step that ensures that the
Courant–Friedrichs–Lewy (CFL) (Courant et al., 1928) con-
dition is fulfilled. The spatial derivatives are calculated us-
ing central differences and the time stepping uses the fourth-
order Runge-Kutta scheme (Quarteroni & Valli, 2008). The
FGS is fourth order accurate in time and second order accu-
rate in space.

We construct the CGS by employing the subsampling factors
d = 4 and dt = 4. Spatial derivatives in the CGS use an
upwind scheme and time stepping is performed with the
forward Euler method, resulting in first order accuracy in
both space and time. All settings of numerical values used
for the CGS and FGS are summarized in Table 2.

4



Closure-RL

4.1.1. INITIAL CONDITIONS

In order to prevent overfitting and promote generalization,
we design the initializations of ψ, u and v to be different
for each episode while still fulfilling the PBCs and guar-
anteeing the incompressibility of the velocity field. The
velocity fields are sampled from a distribution DV ortex

Train by
taking a linear combination of Taylor-Greene vortices and
an additional random translational field. Further details are
provided in Appendix C.2.1. For visualization purposes,
the concentration of a new episode is set to a random sam-
ple from the MNIST dataset (Deng, 2012) that is scaled to
values in the range [0, 1]. In order to increase the diversity
of the initializations, we augment the data by performing
random rotations of ±90◦ in the image loading pipeline.

4.1.2. TRAINING

We train the framework for a total of 2000 epochs and col-
lect 1000 transitions in each epoch. More details regarding
the training process as well as the training time are provided
in Appendix C.
We note that the amount and length of episodes varies dur-
ing the training process: The episodes are truncated based
on the relative Mean Absolute Error (MAE) defined as
MAE(ψn, ψ̃n) = 1

Ñx·Ñy

∑
i,j |ψn

ij − ψ̃n
ij |/ψmax between

the CGS and FGS concentrations. Here, ψmax is the maxi-
mum observable value of the concentration ψ. If this error
exceeds the threshold of 1.5%, the episode is truncated. This
ensures that during training, the CGS and FGS stay close to
each other so that the reward signal is meaningful. As the
agents become better during the training process, the mean
episode length increases as the two simulations stay closer
to each other for longer. We designed this adaptive training
procedure in order to obtain stable simulations.

4.1.3. ACCURATE COARSE GRID SIMULATION

We also introduce the ’accurate coarse grid simulation’
(ACGS) in order to further compare the effecst of numer-
ics and grid size in CGS and FGS. ACGS operates on the
coarse grid, just like the CGS, with a higher order numeri-
cal scheme, than the CGS, so that it has the same order of
accuracy as the FGS.

4.1.4. IN- AND OUT-OF-DISTRIBUTION MAE

We develop metrics for Closure-RL by running 100 sim-
ulations of 50 time steps each with different ICs. For the
in-distribution case, the concentrations are sampled from
the MNIST test set and the velocity fields are sampled
from DV ortex

Train . To quantify the performance on out-of-
distribution ICs, we also run evaluations on simulations
using the Fashion-MNIST dataset (F-MNIST) (Xiao et al.,
2017) and a new distribution, DV ortex

Test , for the velocity

fields. The latter is defined in Appendix C.2.2. The result-
ing error metrics of CGS, ACGS and Closure-RL w.r.t. the
FGS are collected in Table 1. A qualitative example of the
CGS, FGS and the Closure-RL method after training is pre-
sented in Figure 3. The example shows that Closure-RL is
able to compensate for the dissipation that is introduced by
the first order scheme and coarse grid in the CGS.

Table 1. Relative MAE at time step 50 averaged over 100 simula-
tions with different ICs to both the velocity and concentration. All
relative MAE values are averaged over the complete domain and
reported in percent.

Velocity DV ortex
Train DV ortex

Test
Concentr. MNIST F-MNIST MNIST F-MNIST
CGS 3.13 ± 0.80 3.23 ± 0.92 3.82 ± 0.78 3.12 ± 0.73
ACGS 1.90 ± 0.51 2.27 ± 0.64 2.28 ± 0.47 2.23 ± 0.50
Closure-RL 1.46 ± 0.33 2.12 ± 0.57 1.58 ± 0.37 2.04 ± 0.56

Relative Improvements w.r.t. CGS
ACGS -39% -30% -40% -31%
Closure-RL -53% -34% -58% -36%

Closure-RL reduces the relative MAE of the CGS after 50
steps by 30% or more in both in- and out-of-distribution
cases. This shows that the agents have learned a mean-
ingful correction for the truncation errors of the numerical
schemes in the coarser grid. Closure-RL also outperforms
the ACGS w.r.t. the MAE metric which indicates that the
learned corrections emulate a higher-order scheme. This
indicates that the proposed methodology is able to emu-
late the unresolved dynamics and is a suitable option for
complementing existing numerical schemes.

We note the strong performance of our framework w.r.t. the
out-of-distribution examples. For both unseen and out-of-
distribution ICs as well as PDEPs, the framework was able
to outperform CGS and ACGS. In our opinion, this indicates
that we have discovered an actual model of the forcing terms
that goes beyond the training scenarios.

4.1.5. EVOLUTION OF NUMERICAL ERROR

The results in the previous sections are mostly focused on
the difference between the methods after a rollout of 50 time
steps. To analyze how the methods compare over the course
of a longer rollout, we analyze the relative MAE at each
successive step of a simulation with MNIST and DV ortex

Train as
distributions for the ICs. The results are shown in Figure 2.

The plots of the evolution of the relative error show that
Closure-RL is able to improve the CGS for the entire range
of a 400-step rollout, although it has only been trained for
100 steps. This implies that the agents are seeing distribu-
tions of the concentration that have never been encountered
during training and are able to generalize to these scenarios.
When measuring the duration of simulations for which the
relative error stays below 1%, we observe that the Closure-
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Figure 2. Results of Closure-RL applied to the advection equation. The relative MAEs are computed over 100 simulations with respect to
(w.r.t.) the FGS. The shaded regions correspond to the respective standard deviations. The violin plot on the right shows the number of
simulation steps until the relative MAE w.r.t. the FGS reaches the threshold of 1%.

Figure 3. Example run comparing CGS, Closure-RL and FGS with
the same ICs. The concentration is sampled from the test set and
the velocity components are randomly sampled from DV ortex

Train .
Note that the agents of the Closure-RL method have only been
trained up to n = 100. However, they qualitatively improve the
CGS simulation past that point.

RL method outperforms both ACGS and CGS, indicating
that the method is able to produce simulations with higher
long term stability than CGS and ACGS. We attribute this to
our adaptive scheme for episode truncation during training
as introduced in Section 4.1.2 and note that the increased
stability can be observed well beyond the training regime.

4.2. Burgers’ Equation

As a second example, we apply our framework to the 2D
viscous Burgers’ equation:

∂ψ

∂t
+ (ψ · ∇)ψ − ν∇2ψ = 0. (13)

Here, ψ := (u, v) consists of both velocity components and
the PDE has the single input PDEP C = ν. As for the ad-
vection equation, we assume periodic boundary conditions
on the domain Ω = [0, 1] × [0, 1]. In comparison to the
advection example, we are now dealing with two solution
variables and thus k = 2.

For the FGS, the aforementioned domain is discretized using

Nx = Ny = 150 discretization points in each dimension.
Moreover, we again choose ∆t to fulfill the CFL condition
for stability (see Table 3). The spatial derivatives are cal-
culated using the upwind scheme and the forward Euler
method is used for the time stepping (Quarteroni & Valli,
2008).

We construct the CGS by employing the subsampling factors
d = 5 and dt = 10. For the Burgers experiment, we apply
a mean filter K with kernel size d × d before the actual
subsampling operation. The mean filter is used to eliminate
higher frequencies in the fine grid state variables, which
would lead to accumulating high errors. The CGS employs
the same numerical schemes as the FGS here. This leads to
first order accuracy in both space and time. All numerical
settings used for the CGS and FGS are collected in Table 3.
In this example, where FGS and CGS are using the same
numerical scheme, the Closure-RL framework has to focus
solely on negating the effects of the coarser discretization.

For training and evaluation, we generate random, incom-
pressible velocity fields as ICs (see Appendix C.2.1 for
details) and set the viscosity ν to 0.003. Again, we train the
model for 2000 epochs with 1000 transitions each. The max-
imum episode length during training is set to 200 steps and,
again, we truncate the episodes adaptively, when the relative
error exceeds 20%. Further details on training Closure-RL
for the Burgers’ equation can be found in Appendix C. The
resulting relative errors w.r.t. the FGS are shown in Fig-
ure 4. The Closure-RL method again improves the CGS
significantly, also past the point of the 200 steps seen during
training. Specifically, in the range of step 0 to step 100 in
which the velocity field changes fastest, we see a significant
error reductions up to −80%. When analyzing the duration
for which the episodes stay under the relative error of 10%,
we observe that the mean number of steps is improved by
two order of magnitude, indicating that the method is able
to improve the long term accuracy of the CGS.
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Figure 4. Results of Closure-RL applied to the Burgers’ equation. The relative MAEs are computed over 100 simulations with respect to
the FGS. The shaded regions correspond to the respective standard deviations. The violin plot on the right shows the number of simulation
steps until the relative MAE w.r.t. the FGS reaches the threshold of 10%.

5. Conclusion
We propose Closure-RL, a novel framework for the auto-
mated discovery of closure models of coarse grained dis-
cretizations of time-dependent PDEs. It utilizes a grid-based
RL formulation with a FCN for both the policy and the value
network. This enables the incorporation of local rewards
without necessitating individual neural networks for each
agent and allows to efficiently train a large number of agents.
Moreover, the framework trains on rollouts without needing
to backpropagate through the numerical solver itself. We
show that Closure-RL develops a policy that compensates
for numerical errors in a CGS of both the 2D advection
and Burgers’ equation. More importantly we find that, after
training, the learned closure model can be used for predic-
tions in extrapolative test cases.
Further work may focus on extending the formulation to ir-
regular grids by using a Graph Convolutional Network (Kipf
& Welling, 2016) instead of the FCN. Moreover, for very
large systems of interest the numerical schemes used are
often multi-grid and the grid-based RL framework should
reflect this. For such cases, we suggest defining separate re-
wards for each of the grids employed by the numerical solver.
Additionally, Closure-RL may serve as a stepping-stone to-
wards incorporating further inductive bias or constraints as
its action space can readily be adapted. For instance, the
actions for some agents could be explicitly parameterized
or coupled with their neighboring agents. In this regard,
Closure-RL could also be used to further improve other,
domain-specific closure models.
We believe that the introduced framework holds significant
promise for advancing the discovery of closure models in
a wide range of systems governed by Partial Differential
Equations as well as other computational methods such as
coarse grained molecular dynamics.

Broader Impact Statement
In this paper, we have presented a RL framework for system-
atic identification of closure models in coarse-grained PDEs.
The anticipated impact pertains primarily to the scientific
community, whereas the use in real-life applications would
require additional adjustments and expert input.
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A. Neural Network Architecture

Figure 5. The IRCNN backbone takes the current global observation and maps it to a feature tensor. This feature tensor is passed into two
different convolutional layers that predict the per-discretization point action-distribution-parameters and state-values. In the case of a PDE
with three spatial dimensions, the architecture would need to be based on three-dimensional convolutional layers instead.

The optimal policy is expected to compensate for errors introduced by the numerical method and its implementation on a
coarse grid. We use the Image Restoration CNN (IRCNN) architecture proposed in (Zhang et al., 2017) as our backbone for
the policy- and value-network. In Figure 5 we present an illustration of the architecture and show that the policy- and value
network share the same backbone. The policy- and value network only differ by their last convolutional layer, which takes
the features extracted by the backbone and maps them either to the action-distribution-parameters µA ∈ A and σA ∈ A
or the predicted return value for each agent. The local policies are assumed to be independent, such that we can write the
distribution at a specific discretization point as

πij(Aij |Oij) = N (µA,ij ,σA,ij). (14)

During training, the actions are sampled to allow for exploration, and during inference only the mean is taken as the action
of the agent.
We note that the padding method used for the FCN can incorporate boundary conditions into the architecture. For instance,
in the case of periodic boundary conditions, we propose to use circular padding that involves wrapping around values from
one end of the input tensor to the other.
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Algorithm 1 Adapted PPO Algorithm
Input: Initial policy weights θ1, initial value function weights ϕ1,
clip ratio ϵ, discount factor γ, entropy regularization weight β
for k = 1, 2, . . . do

Collect set of trajectories Dk with the global policy ΠFCN
θk

# Update global policy
Update θ by performing a SGD step on
θk+1 = argmaxθ

1
∥Dk∥

∑
On,An∈Dk

LΠ(O
n,An, θk, θ, β)

# Update global value network
Compute returns for each transition usingGn =

∑N
i=n γ

i−tRi where N is the length of the respective trajectory
Update ϕ by performing a SGD step on ϕk+1 = argminϕ

1
∥Dk∥

∑
On,Gn∈Dk

LV(O
n,Gn, ϕ)

end for

B. Adapted PPO Algorithm
As defined in Section 3.5 the loss function for the global value function is

LV(O
n,Gn, ϕ) = ||VFCN

ϕ (On)−Gn||22.

We note that this notation contains the weights ϕ, which parameterize the underlying neural network.

The objective for the global policy is defined as

LΠ(O
n,An, θk, θ, β) :=

1

Ñx · Ñy

Ñx,Ñy∑
i,j=1

Lπij
(On

ij ,A
n
ij , θk, θ)− βH(πij,θ),

where H(πij,θ) is the entropy of the local policy and Lπij
is the standard single-agent PPO-Clip objective

Lπij
(o, a, θk, θ) = min

(
πij,θ(a|o)
πij,θk(a|o)

Advπij,θk (o, a), clip
(
πij,θ(a|o)
πij,θk(a|o)

, 1− ϵ, 1 + ϵ

)
Advπij,θk (o, a)

)
.

The advantage estimates Advπij,θk are computed with generalized advantage estimation (GAE) (Schulman et al., 2018)
using the output of the global value network VFCN

ϕ .

The resulting adapted PPO algorithm is presented in Algorithm 1. Major differences compared to the original PPO algorithm
are vectorized versions of the value network loss and PPO-Clip objective, as well as a summation over all the discretization
points of the domain before performing an update step.
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C. Technical Details on Hyperparamters and Training Runs
During training, we use entropy regularization in the PPO objective with a factor of 0.1 and 0.05 for the advection and
Burgers’ equation respectively to encourage exploration. The discount factor is set to 0.95 and the learning rate to 1 · 10−5.
Training is done over 2000 epochs. In each epoch, 1000 transitions are collected. One policy network update is performed
after having collected one new episode. We use a batch size of 10 for training. The total number of trainable weights
amounts to 188, 163 and the entire training procedure took about 8 hours for the advection equation on an Nvidia A100
GPU. For the Burgers’ equation, training took about 30 hours on the same hardware. We save the policy every 50 epochs
and log the corresponding MAE between CGS and FGS after 50 time steps. For evaluation on the advection equation, we
chose the policy from epoch 1500 because it had the lowest logged MAE value. Figure 6 and Figure 7 show the reward
curves and evolutions of episode lengths. As expected, the episode length increases as the agents become better at keeping
the CGS and FGS close to each other.

Figure 6. Visualizations of the evolution of the reward metric averaged over the agents and episode length during training on the advection
equation.

Figure 7. Visualizations of the evolution of the reward metric averaged over the agents and episode length during training on the Burgers’
equation.
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Table 2. Numerical values used for the advection CGS and FGS. Note that ∆̃t is chosen to guarantee that the CFL condition in the CGS is
fulfilled.

Ω [0, 1]× [0, 1]

Ñx, Ñy 64
d, dt 4

Resulting other values:

Nx, Ny d · Ñx, d · Ñy = 256
∆x,∆y 1/Nx, 1/Ny ≈ 0, 0039

∆̃x, ∆̃y 1/Ñx, 1/Ñy ≈ 0, 0156

∆̃t 0.9 ·min(∆̃x, ∆̃y) ≈ 0, 0141

∆t ∆̃t/dt ≈ 0, 0035

Discretization schemes:

FGS, Space Central difference
FGS, Time Fourth-order Runge-Kutta
CGS, Space Upwind
CGS, Time Forward Euler

Table 3. Numerical values used for the Burgers’ CGS and FGS. Again, ∆̃t is chosen to guarantee that the CFL condition in the CGS is
fulfilled.

Ω [0, 1]× [0, 1]

Ñx, Ñy 30
d, dt 5, 10

Resulting other values:

Nx, Ny d · Ñx, d · Ñy = 150
∆x,∆y 1/Nx, 1/Ny ≈ 0, 0067

∆̃x, ∆̃y 1/Ñx, 1/Ñy ≈ 0, 0333

∆̃t 0.9 ·min(∆̃x, ∆̃y) = 0, 03

∆t ∆̃t/dt = 0, 003

Discretization schemes:

FGS, Space Upwind
FGS, Time Forward Euler
CGS, Space Upwind
CGS, Time Forward Euler

C.1. Receptive Field of FCN

In our Closure-RL problem setting, the receptive field of the FCN corresponds to the observation Oij the agent at point
(i, j) is observing. In order to gain insight into this, we analyze the receptive field of our chosen architecture.

In the case of the given IRCNN architecture, the size of the receptive field (RF) of layer i can be recursively calculated given
the RF of layer afterward with

RFi+1 = RFi + (Kernel Sizei+1 − 1) · Dilationi+1 (15)
= RFi + 2 · Dilationi+1. (16)

(17)

The RF field of the first layer RF1 is equal to its kernel size. By then using the recursive rule, we can calculate the RF at
each layer and arrive at a value of RF7 = 33 for the entire network. From this, we now arrive at the result that agent (i, j)
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sees a 33× 33 patch of the domain centered around its own location.

Table 4. Hyperparameters of each of the convolutional layers of the neural network architecture used for the advection equation experiment
and the resulting receptive field (RF) at each layer. For the Burgers’ equation experiment the architecture is simply adapted by setting the
number of in channels of Conv2D 1 to 2 and the number of out channels of Conv2D π to 4.

Layer In Channels Out Channels Kernel Padding Dilation RF
Conv2D 1 3 64 3 1 1 3
Conv2D 2 64 64 3 2 2 7
Conv2D 3 64 64 3 3 3 13
Conv2D 4 64 64 3 4 4 21
Conv2D 5 64 64 3 3 3 27
Conv2D 6 64 64 3 2 2 31
Conv2D π 64 2 3 1 1 33
Conv2D V 64 1 3 1 1 33

C.2. Diverse Velocity Field Generation

C.2.1. DISTRIBUTION FOR TRAINING

For the advection equation experiment, the velocity field is randomly generated by taking a linear combination of Taylor-
Greene vortices and an additional random translational field. Let uTG,k

ij ,vTG,k
ij be the velocity components of the Taylor

Greene Vortex with wave number k that are defined as

uTG,k
ij := cos(kxi) · sin(kyj) (18)

vTG,k
ij := − sin(kxi) · cos(kyh). (19)

Furthermore, define the velocity components of a translational velocity field as uTL, vTL ∈ R. To generate a random
incompressible velocity field, we sample 1 to 4 k’s from the set {1, ..., 6}. For each k, we also sample a signk uniformly
from the set {−1, 1} in order to randomize the vortex directions. For an additional translation term, we sample uTL, vTL

independently from uniform(−1, 1). We then initialize the velocity field to

uij := uTL +
∑
k

signk · uTG,k
ij (20)

vij := vTL +
∑
k

signk · vTG,k
ij . (21)

We will refer to this distribution of vortices as DV ortex
Train .

For the Burgers’ equation experiment, we make some minor modifications to the sampling procedure. The sampling of
translational velocity components is omitted and 2 to 4 k’s are sampled from {2, 4, 6, 8}. The latter ensures that the periodic
boundary conditions are fulfilled during initialization which is important for the stability of the simulations.

C.2.2. DISTRIBUTION FOR TESTING

First, a random sign sign is sampled from the set {−1, 1}. Subsequently, a scalar a is randomly sampled from a uniform
distribution bounded between 0.5 and 1. The randomization modulates both the magnitude of the velocity components and
the direction of the vortex, effectively making the field random yet structured. The functional forms of uC

ij and vCij are then
expressed as

uV
ij := sign · a · sin2(πxi) sin(2πyj) (22)

vVij := −sign · a · sin2(πyj) sin(2πxi). (23)

In the further discussion, we will refer to this distribution of vortices as DV ortex
Test .
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Table 5. Runtime of one simulation step in ms of the different simulations averaged over 500 steps.

CGS ACGS CLOSURE-RL FGS

ADVECTION 0.31 ± 0.00 0.96 ± 0.00 2.66 ± 0.96 89.52 ± 0.47
BURGERS’ 0.25 ± 0.00 - 1.82 ± 0.01 10.16 ± 0.03

C.3. Computational Complexity

To quantitatively compare the execution times of the different simulations, we measure the runtime of performing one update
step of the environment and report them in Table 5. As expected, Closure-RL increases the runtime of the CGS. However, it
stays below the FGS times by at least a factor of 5. The difference is especially pronounced in the example of the advection
equation, where the FGS uses a high order scheme on a fine grid, which leads to an execution time difference between
Closure-RL and FGS of more than an order of magnitude.

We additionally profiled our code for the advection experiment and found that 71.3% of the runtime is spent on obtaining
trajectories from the FGS simulation. Only 1.3 % of the time is spent on the CGS (excluding the forward pass through the
FCN), highlighting the significant computational overhead of the finer grid. The forward passes through the neural network
account for 5.0% of the time, while updating the policy takes another 5.5%. This is in agreement with the theoretical
considerations above that show that the FGS is computationally more expensive than the CGS. We note that there is room
for optimization of the numerical solution, as currently the generation of the FGS simulation is not parallelized.
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