
Published in Transactions on Machine Learning Research (04/2024)

Stochastic Direct Search Methods
for Blind Resource Allocation

Juliette Achddou juliette.achdou@gmail.com
Department of Computer Science
Università degli Studi di Milano

Olivier Cappé olivier.cappe@cnrs.fr
Department of Computer Science
ENS Paris

Aurélien Garivier aurelien.garivier@ens-lyon.fr
Department of Mathematics
ENS Lyon

Reviewed on OpenReview: https: // openreview. net/ forum? id= m1OXBLH0dH

Abstract

Motivated by programmatic advertising optimization, we consider the task of sequentially
allocating budget across a set of resources. At every time step, a feasible allocation is chosen
and only a corresponding random return is observed. The goal is to maximize the cumulative
expected sum of returns. This is a realistic model for budget allocation across subdivisions
of marketing campaigns, with the objective of maximizing the number of conversions. We
study direct search (also known as pattern search) methods for linearly constrained and
derivative-free optimization in the presence of noise, which apply in particular to sequential
budget allocation. These algorithms, which do not rely on hierarchical partitioning of the
resource space, are easy to implement; they respect the operational constraints of resource
allocation by avoiding evaluation outside of the feasible domain; and they are also compat-
ible with warm start by being (approximate) descent algorithms. However, they have not
yet been analyzed from the perspective of cumulative regret. We show that direct search
methods achieves finite regret in the deterministic and unconstrained case. In the presence
of evaluation noise and linear constraints, we propose a simple extension of direct search
that achieves a regret upper-bound of the order of T 2/3. We also propose an accelerated
version of the algorithm, relying on repeated sequential testing, that significantly improves
the practical behavior of the approach.

1 Introduction

1.1 Motivation: Blind Resource Allocation

In the field of programmatic marketing, advertisers are given daily budgets that they are required to entirely
distribute across a number of predefined subdivisions of a campaign. Their goal is to maximize some notion
of cumulative reward during the lifetime of the campaign, corresponding to the number of clicks or purchases
generated by the campaign. The expected reward generated by each subdivision every day is an unknown
function of the daily budget allocated to that campaign. We focus on the context in which, when choosing
a specific allocation, the advertiser only observes a noisy version of the total reward. The optimization
task faced by the advertiser can thus be formalized as a continuous resource allocation problem, under
zeroth order and noisy feedback. Indeed, a key operational constraint is the impossibility to directly access
higher-order (derivative) information. Furthermore, every noisy evaluation of the objective function has a

1

https://openreview.net/forum?id=m1OXBLH0dH

Published in Transactions on Machine Learning Research (04/2024)

cost related to the value of the function, that needs to be accounted for in the performance criterion. The
cumulative reward is thus more relevant than alternative traditional measures of performance based, for
instance, on the distance to the optimum or the norm of the gradient of the objective function reached after
some iterations. Note that the resource allocation task that we consider is different from that in which
the resource constraints are cumulative, i.e. where the budget spans the whole period instead of one day
or time-step. Cumulative and step-level constraints lead to distinct optimization problems, none of which
being a reduction of the other.

The blind resource allocation task may be seen as a specific instance of the more general model of
zeroth-order linearly constrained optimization considered in this paper. For resource allocation, we assume
that the learner has access to d + 1 ∈ N different resources. To keep up with the dominant convention
in optimization, we consider a minimization problem for which the costs may be thought of as minus the
rewards. At each round t ∈ {1, . . . T}, the learner is allowed to choose her level of consumption of each
resource, on a continuous scale from 0 to 1. We impose that the consumption levels of all the resources sum
to 1 (corresponding to the constraint of spending all the daily budget in the advertising context). The use
of resource i ∈ {1, . . . , d + 1} to a level of x

(i)
t generates an expected marginal cost wi(x(i)

t). Overall, the
expected one-step cost of the learner is given by

∑d+1
i=1 wi(x(i)

t), where the set of all possible consumption
levels (x(1)

t , . . . , x
(d+1)
t) corresponds to the d dimensional simplex. The goal of the learner is to sequentially

minimize the expected cumulative cost over T evaluations of the function, having access only to a noisy
version of the expected cost associated to the allocation tried at step t. Not only are the cost functions w1
to wd+1 unknown, but one cannot observe their individual outputs.

1.2 Model

While the main application of interest to us is resource allocation, our results are valid for more general
linearly constrained optimization problems. We consider a generic optimization domain D that is a subset
of Rd defined by linear constraints: D = {x ∈ Rd, AIx ≤ u} with m ∈ N, AI ∈ Rm×d, and u ∈ Rm. At each
round t ∈ {1, . . . T}, the learner selects xt ∈ D and incurs a cost f(xt) + ϵt, where ϵt is assumed to be a
centered σ-subgaussian noise, with σ known to the learner.

The goal of the learner is to minimize the cumulative cost over T evaluations of the function, or equivalently
to minimize the cumulative regret

RT =
T∑

t=1
f(xt)− f(x⋆) ,

denoting by x⋆ = arg minx∈D f(x) the optimal allocation. We make the following regularity assumption on f .
Assumption 1. f is continuously differentiable, β-smooth and a-strongly convex on D.

Note that under Assumption 1, f has a unique minimum and is bounded from below. Assumption 1 is com-
mon in online optimization due to the difficulty of controlling the cumulative cost without this assumption.

In programmatic advertising and economics, it is common to observe marginal returns that decrease as
the level of a resource increases (following the so-called law of diminishing returns). Assuming convexity
of f on D is therefore reasonable, since Assumption 1 implies that when f has the form f(x(1)

t , . . . x
(d)
t) =∑d

i=1 wi(x(i)
t) + wd+1

(
1−

∑d
i=1 x

(i)
t

)
, the marginal cost functions w1 to wd+1 are also convex and hence

satisfy the law of diminishing return (viewing −wi as the marginal utility associated to the i-th resource).

1.3 Related Works

The discrete counterpart of the resource allocation model in which the resources can only be used up to
discrete consumption levels, is a celebrated model of operations research with multiple applications. Its
properties have first been discussed by Koopman (1953) who proposed the first algorithmic solution for this
problem. Koopman’s works have further been extended by Gross (1956); Katoh et al. (1979) who propose
more efficient algorithms under specific assumptions on the number of resources and the total consumption

2

Published in Transactions on Machine Learning Research (04/2024)

budget. The range of applications is wide, including experimental design, load management in an industrial
context, computer scheduling and, more recently, the adwords problem introduced by Mehta et al. (2007).
Recently, Agrawal & Devanur (2015) studied online and offline resource allocation, motivated by the latter
task. With the same motivation, Fontaine et al. (2020) focus on the online and continuous version of resource
allocation in which the learner accesses the derivatives. The method studied by Fontaine et al. (2020) extends
the bisection method in dimension d > 1.

The broader problem of derivative-free optimization in noisy environments has been considered by re-
searchers coming from different horizons. A relevant stream of works originates from the bandit community,
which considered this task as an extension of the more traditional multi-armed bandit problem (see e.g
Auer et al., 2002). The class of X -armed bandits models focuses on the case where a learner can select
actions in a generic measurable space and the mean-payoff function is regular. In (Bubeck et al., 2011),
for example, the mean payoff function is supposed to be locally Lipschitz with respect to some dissimilarity
measure. Bubeck et al. (2011) and Munos (2014) adopt the approach of hierarchical optimization, in which
the optimization domain is iteratively partitioned, resulting in finer and finer partitions, that are required
to be balanced in some sense. The learner maintains an upper confidence bound of the goal function that
is constant on each cell defined by the finest partition. The algorithm proposed by Bubeck et al. (2011)
achieves a regret of the order of

√
T when the learner knows the exact order of the smoothness at the

optimum. However, partitioning the domain in a hierarchical and balanced way is relatively easy when the
domain is an hypercube, but is a computational problem in itself when the domain has a more complex
form. We also mention that knowing the smoothness is considered a challenge most of the time in black-box
optimization, so that several methods have been introduced that are adaptive to the smoothness (Locatelli
& Carpentier (2018); Valko et al. (2013); Shang et al. (2019)). We mention that concurrently to HOO
based on hierarchical partitioning, Agarwal et al. (2011) has also proposed a different strategy for X -armed
bandits, but this time convex, with ellipsoid methods, that also result in O(

√
T) regret.

The extension of more traditional first-order optimization methods has also been considered. When the
function evaluation is not perturbed by any noise, Nesterov & Spokoiny (2017) consider random gradient
descent based on finite differences to estimate the gradient. Flaxman et al. (2004) consider a version of
stochastic gradient descent with a one-point estimate of the gradient for the adversarial setting introduced
by Zinkevich (2003) in which at each time step, a new goal function is chosen by an adversary, making it
impossible to rely on a two-point estimate of the gradient. In this setting, Flaxman et al. (2004) show an
adversarial regret bound of the order of T 5/6. Later on, Hazan & Levy (2014), Hazan & Li (2016), Bubeck
et al. (2017) propose new methods for the same setting, but with adversarial convex or strongly-convex
functions, showing improved regret bounds, as low as

√
T . In a stochastic setting that is closer to ours,

Akhavan et al. (2020); Bach & Perchet (2016) consider a version of stochastic gradient descent with unbiased
estimates of the gradient, obtained by finite differences. While they provide an analysis in term of the
regret, they focus on a restricted notion of regret that is different from the one considered in this work. The
algorithms that they propose rely on a number of samples used to estimate the gradient at each iteration
of the gradient descent algorithm. But the regret only accounts for the cost incurred by the iterates of
the gradient descent algorithm and ignores the regret incurred by the samples used for the estimation of
the gradient. Moreover, the constraints also do not apply to those samples, meaning that the algorithm is
allowed to get samples outside of the feasible domain in order to estimate the gradient. The authors prove
an upper bound on their version of the regret, which is of the order of

√
T when Assumption 1 is satisfied.

In Section 2.2 below we will see how evaluations outside of the feasible domain can be avoided, using for
instance ideas of Bravo et al. (2018), at the price of an increased regret rate.

1.4 Contribution

In this paper, we focus instead on a class of simple but mathematically well grounded algorithms known
as direct or pattern search methods. Direct search (Kolda et al., 2003) makes use of the well-known fact
that if the objective function is continuously differentiable, then at least one of the directions of any positive
spanning set (a set that spans the space with non-negative coefficients, abbreviated as PSS in what follows)
is a descent direction. It explores the space by evaluating the function at new points that are located in a
number of predefined search-directions from the current iterate, at a distance from that iterate that varies

3

Published in Transactions on Machine Learning Research (04/2024)

with time. The algorithm moves to a new iterate only if this iterate yields a sufficient improvement of the
value of the function (there exist other versions of the algorithm where the sufficient decrease condition is
replaced with a constraint on the choice of the trial directions). The sample-complexity of such an algorithm
has been analyzed in (Vicente, 2013) in the deterministic and unconstrained setting. Lewis & Torczon (2000)
study direct search in linearly constrained domains. Handling the constraints in direct search is quite simple,
as it consists in testing only the directions in the set of search-directions that are feasible. Gratton et al.
(2015) analyzed direct search with random sets of search-directions instead of predefined ones and later
extended the analysis to the case of linearly-constrained domains (Gratton et al., 2019). Dzahini (2022)
extended their work by analyzing a similar algorithm in the presence of noise, but without constraints.
Dzahini (2022) relies on an assumption on the decrease of the noise. In this paper, we will study direct
search algorithms that rely on a number of samples at each point to build tight estimates of the function
at the trial points, which can be understood as a way to decrease the noise. Dzahini (2022) analyzes some
notion of sample complexity of direct search, which only takes the iterates into account rather than the
number of function evaluations needed, which is not appropriate in our setting.

Our purpose is to study these methods that are suitable for the blind resource allocation model, i.e. in
particular, compatible with zeroth-order feedback, computationally tractable and that do not require to
sample points outside of the feasible domain. Besides satisfying the above requirements, these algorithms
have the advantage of being approximate descent algorithms with high probability, a guarantee that is
useful in practice, allowing, for instance, warm start from previously tested allocations. The adaptation
of direct search to the noisy case is achieved by performing enough sampling to ensure that the algorithm
moves to a new iterate only if it results in a sufficient improvement, with high probability. We propose two
ways of doing so: the first method (termed FDS-Plan) simply computes the number of necessary evaluations
ahead of time, whereas the second one, FDS-Seq, uses a sequential testing strategy to interrupt sampling as
early as possible. The algorithms are specified in Section 2. An illustration of the behavior of the proposed
algorithms can be found in this same section, alongside an illustration of other baseline strategies, which
allows for understanding the specifics of direct search. We analyze the cumulative regret of these algorithms
in Section 3, providing an upper bound of their regret of the order of T 2/3 (up to logarithmic factors), when
the optimum is in the interior of the feasible domain. A significant technical challenge for the analysis in
terms of regret is that, while in traditional analyses of direct-search, the number of rounds is fixed and the
analysis proceeds by looking at the distance to the optimum at each round, here, the number of rounds
is random (the indexing of the regret is the actual number of function evaluations instead of the number
of rounds). We start Section 3 by the simpler case in which there is neither noise nor constraints, showing
that in this basic setup the regret of direct search is bounded by a constant.

2 Algorithms

2.1 Description of the Algorithms

In Algorithm 1 below, we start by describing the most common version of the direct search method used
for deterministic and unconstrained optimization. It requires the setting of an initial point x0 and an initial
parameter α0. The learner also specifies a PSS D, that is, a set of directions that spans Rd with non-negative
coefficients. At each iteration, the algorithm sequentially tests points at a distance αk from the current
iterate and in the directions defined by D. If none of the test points results in a sufficient decrease of the
function’s value, the iteration is declared unsuccessful and the trial radius αk shrinks by a factor θ < 1,
otherwise, the iteration is declared successful and the iterate xk is moved to the first trial point that results
in a sufficient improvement. A decrease is considered to be sufficient if it is larger than some predefined
forcing function of αk, that we take here to be quadratic, with a coefficient that can be set by the learner.

The analysis can also be adapted to the presence of a growth factor ϕ ≥ 1 by which the trial radius αk expands
at successful iterations. For simplicity, we choose to focus on the case where ϕ = 1, as this parameter does
not modify the regret rates obtained in Section 3. Also note that Algorithm 1 is a descent algorithm with
respect to the iterates xk, i.e., the sequence (f(xk))k is decreasing.

4

Published in Transactions on Machine Learning Research (04/2024)

Choose x0 ∈ Rd, α0 > 0, θ < 1, c > 0, ρ(u) = cu2 and a PSS D
for k = 0 . . . K do

Set UnsuccessfulSearch ← True
for v ∈ D do

Evaluate f(xk + αkv)
if f(xk)− f(xk + αkv) ≥ ρ(αk) then

Set xk+1 ← xk + αkv and αk+1 ← αk

Set UnsuccessfulSearch ← False
Break

end
end
if UnsuccessfulSearch then

Set xk+1 ← xk and αk+1 ← θαk

end
end

Algorithm 1: Direct Search with sufficient decrease

Obviously, different choices of PSS result in different trajectories of the algorithm. Setting D as the set of
2d vectors of the positive and negative coordinate directions results in the algorithm known as coordinate
or compass search. Other frequently considered choices include random directions, as in (Gratton et al.,
2015; 2019; Dzahini, 2022).

Choose x0 ∈ Rd, α0 > 0, θ < 1, c > 0, ρ(u) = cu2

for k = 0 . . . K do
Set UnsuccessfulSearch ← True
Select a set of directions Dk

Set Nk = 32σ2 log(2/δ)
ρ(αk)2 .

Estimate f(xk) by making Nk samples at xk

and setting f̂(xk) = 1
Nk

∑Nk

j=1 f(xk) + ϵj

for v ∈ Dk such that xk + αkv ∈ D do
Estimate f(xk + αkv) by making Nk

samples at xk + αkv and setting
f̂(xk + αkv) = 1

Nk

∑Nk

j=1 f(xk + αkv) + ϵ′
j

if f̂(xk)− f̂(xk + αkv) ≥ ρ(αk) then
Set xk+1 ← xk + αkv and αk+1 ← αk

Set UnsuccessfulSearch ← False
Break

end
end
if UnsuccessfulSearch then

Set xk+1 ← xk and αk+1 ← θαk

end
end

Algorithm 2: FDS-Plan

Choose x0 ∈ Rd, α0 > 0, δ > 0, θ < 1, c > 0,
ρ(u) = cu2

Set UnsuccessfulSearch ← True
for k = 0 . . . K do

Select a set of directions Dk

for v in Dk such that xk + αkv ∈ D do
while Condition 1 is not satisfied do

if nv,k ≤ n0,k then
Sample at xk + αkv and update
nv,k and the empirical mean
f̂nv,k

(xk + αkv).
end
else

Sample at xk and update n0,k and
the empirical mean f̂n0,k

(xk)
end

end
if f̂n0,k

(xk)− f̂nv,k
(xk + αkv) ≥ ρ(αk)

then
Set xk+1 ← xk + αkv, and αk+1 ← αk.
UnsuccessfulSearch ← False
Break.

end
end
if UnsuccessfulSearch then

Set xk+1 ← xk and αk+1 ← θαk

end
end

Algorithm 3: FDS-Seq

We apply three sorts of modifications to Algorithm 1 in order to adapt it to the more general model introduced
in Section 1.2. The first one consists in sampling a trial point only if it is feasible. The second consists in

5

Published in Transactions on Machine Learning Research (04/2024)

allowing changes in the set of directions Dk considered. This is to account for the fact that the change in
search-radius at every round impacts the set of admissible directions, denoted Ak. We thus only need to
sample directions that span Ak positively, and not the whole optimization domain D. The third modification
consists in introducing estimation stages that allow building reliable estimates of f at the trial points. We
propose two ways of doing so, that result in two different algorithms. The first algorithm that we study is
a plug-in version of Algorithm 1 in which we replace f(xk) and f(xk + αkv) with their empirical estimates,
consisting of means computed from Nk = 32σ2 log(2/δ)

ρ(αk)2 samples. This number of samples guarantees that
with high probability, the estimation gap is smaller than ρ(αk)/4, which in turn ensures that an iteration is
declared successful only when it leads to a decrease of f(xk) by at least ρ(αk)/2 and that an unsuccessful
iteration cannot occur if there exists a direction v in Dk such that the decrease achieved by moving to xk+αkv
is larger than 3ρ(αk)/2. The resulting algorithm is termed Feasible Direct Search with a planned number
of samples (FDS-Plan) and described in Algorithm 2. We also propose a faster algorithm, Feasible Direct
Search with Sequential Tests (FDS-Seq) described in Algorithm 3. For any v ∈ Dk, instead of planning the
number of samples at xk + αkv ahead of time, it samples at xk + αkv and xk until either

∣∣∣f̂n0,k
(xk)− f̂nv,k

(xk + αkv)− ρ(αk)
∣∣∣ ≤√2σ2 log(1/δ)

(
1

n0,k
+ 1

nv,k

)
,

or (n0,k ≥ Nk and nv,k ≥ Nk) ,

(1)

n0,k and nv,k denoting the number of samples at xk and xk + αkv and f̂n0,k
(xk) and f̂nv,k

(xk + αkv) the
resulting empirical means. Successful and unsuccessful iterations are defined as in FDS-Plan and trigger
the same actions.

The sequential stopping rule is designed to achieve early detection of sufficient decrease, but also to detect
as early as possible the cases in which the trial point cannot lead to a sufficient decrease. The first test in
Condition 1 is a consequence of the fact that the estimation gap at xk (respectively xk + αkv) is σ2/n0,k

subgaussian (respectively σ2/nv,k subgaussian). The second test of Condition 1 corresponds to a safeguard
preventing from waiting too long when the decrease induced by the trial point is very close to the sufficiency
threshold. At worst, the number of evaluations needed is the same as in Algorithm 2. Essentially, the
sequential stopping rule reduces the number of evaluations needed for each iteration but maintains the
desirable property that with high probability, an iteration is declared successful only if it leads to a decrease
of at least ρ(αk)/2 and that an iteration cannot be declared unsuccessful if there exists a direction v in Dk

such that the decrease achieved by moving to xk + αkv is larger than 3ρ(αk)/2.

2.2 Illustration

In order to illustrate graphically the behavior of the proposed methods, we show on Figure 1(a) and 1(d) their
trajectories in the case where there are 3 resources (d = 2) and the loss functions associated to each resource
i ∈ {1, . . . , d + 1} are of the form wi(x) = −τi

log(1+γx)
log(1+γ) with γ = 2, τ1 = 1, τ2 = 0.45, and τ3 = 0.95. We set

the horizon to T = 100, 000 and use a Gaussian noise with standard deviation σ = 0.1, a realistic value for
budget allocation problems. In the symmetric representation of Figure 1, the three vertices correspond to the
points where one of the resource is fully saturated (equal to 1) and the edges correspond to linear paths along
which one of the resources is set to 0. The contour lines of the target function are materialized by orange
lines and the location of the minimum is marked by a black cross. The size of each point is a logarithmically
growing function of the number of samples made at this point, and its color is a function of the index of
the first round at which it has been sampled. Finally, points at which a successful iteration of FDS-Plan
(and FDS-Seq) occurred are circled in blue. The parameters of both versions of feasible direct search are
α0 = 0.2, c = 5 and θ = 0.7, and the initial point corresponds to the allocation x(0) = (1/3, 1/3, 1/3) (center
of the simplex). To make the figure more interpretable, we choose to set a fixed D. The set of directions
chosen for these algorithms are the 6 directions that support the edges of the simplex (in both directions).

In a first phase, the algorithm proceeds rapidly by testing directions until a sufficient descent direction is
found. Afterwards, when the iterates get closer to the minimizer, the search area iteratively shrinks as
finding descent directions becomes harder. In the first phase, the trajectory is similar to a descent path
that would result from a gradient descent algorithm while the second phase is closer to the behavior of

6

Published in Transactions on Machine Learning Research (04/2024)

-0.955

-0.866

-0.777

-0.689

100 102 104

(a) FDS-Plan

-0.955

-0.866

-0.777

-0.689

100 102 104

(b) HOO (c) Gradient Descent with
two-points estimate

-0.955

-0.866

-0.777

-0.689

100 102 104

(d) FDS-Seq

-0.955

-0.866

-0.777
-0.689

100 102 104

(e) UCB (f) Gradient Descent with
one-point estimate

Figure 1: Single trajectories

bandit algorithms based on hierarchical partitions, like HOO (Bubeck et al., 2011). In order to illustrate the
differences with such algorithms, we also plot the trajectories of baseline methods, either related to gradient
descent or bandits with hierarchical partitioning. Before turning to these other algorithms, it is important
to note the difference between FDS-Plan and FDS-Seq. Figure 1(d) shows that FDS-Seq is faster than FDS-
Plan, as it spends less time on the first iterations, in which it is easy to determine whether the trial points
lead to a sufficient decrease. The FDS-Seq algorithm can thus perform more iterations than FDS-Plan. A
common point of these two algorithms that is illustrated on the figure is that they are approximate-descent
algorithms with high probability, an interesting quality for practitioners interested in interpretability.

Let us now comment on Figure 1(b), that represents the trajectory of a version of HOO. It is not straight-
forward to apply algorithms for X−armed bandits like HOO on the simplex, because it implies constructing
balanced hierarchical partitions of the simplex. We thus explain our implementation of HOO in Appendix
E. On Figure 1(b), we observe that this algorithm explores the partition tree in a way that favors the cells
close to the optimum while persistently visiting cells that are clearly far from the minimizer. The behavior
of algorithms based on direct search can thus be preferred because it makes warm-start possible, in the
sense that prior belief on the location of the minimizer can be used for setting the initial point, which is not
possible for HOO. The fact that suboptimal points will keep being sampled until the end of the experiment
can also be difficult to accept for practitioners such as advertisers for example.

We also illustrate the behavior of UCB on a discretization of the space, which is an interesting strategy,
especially in dimension 2. The discretization used for UCB consists of points arranged in a regular grid of
[0, 1]2, from which the points lying outside of the feasible domain have been removed. The step parameter
of the grid is taken as T −1/4 as suggested by Combes & Proutiere (2014). Although simpler than HOO,
this algorithm results in similar sampling patterns, as shown on Figure 1(e), and hence shares some of its
drawbacks. The performance of UCB is good in dimension 2, as the regret can be proved to be of the order
of
√

T with this choice of step-size (see Combes & Proutiere (2014)) but it will worsen in higher dimension
due to the difficulty of simultaneously controlling the distance between grid points and the overall number of

7

Published in Transactions on Machine Learning Research (04/2024)

points in the grid. In fact, the optimal step in this case is of the order of T −1/(d+2) and the resulting regret
is of the order of T d/d+2, which only works in favor of UCB for small values of d. Note that while Combes
& Proutiere (2014) also provide weaker regret guarantees under more general assumptions, the assumptions
required to obtain this order of regret are similar to Assumption 1. They are only less constraining than
Assumption 1 in that they require a quadratic upper and lower bound on the function locally near the
optimum, whereas Assumption 1 should hold uniformly on the domain.

Lastly, we illustrate the behavior of two methods related to stochastic gradient descent. The first method
is related to that proposed by Akhavan et al. (2020). Without constraints, this method would estimate the
gradient of the function at xt, by evaluating the function at y+

t = xt + htZt and y−
t = xt − htZt, where Zt

is a random vector of the sphere of radius 1, and use f(y+
t)−f(y−

t)
ht

Zt as an estimation of the gradient. The
method in itself does not take constraints into account, but a slight modification results in an algorithm that
is feasible in the presence of constraints. This modification consists in performing a homothetic perturbation
(Bravo et al., 2018) on the evaluation points y+

t and y−
t : instead of using these points, the algorithm evaluates

the function at ỹt = yt + ht/r(c−xt), where c is a point in the interior of the simplex such that B(c, r) ⊂ D.
We use ỹ+

t = y+
t + ht/r(c− xt) and ỹ−

t = y−
t − ht/r(c− xt), where c is a point in the interior of the simplex

such that B(c, r) ⊂ D. This ensures that the evaluation point belongs to the constrained domain, provided
that xt ∈ D, but adds a bias which is proportional to ht, under suitable regularity assumptions on f . To
ensure that xt ∈ D, we also project the result of the gradient descent step on D. We use an estimation step
ht equal to (t/2)−1/3 and a learning rate decreasing as 1/(2.5t). This choice is justified by the following
reasoning: with this choice of value for the learning rate and ht set to t−1/4,

∑T
t=1 f(xt) − f(x∗) would be

bounded by O(T 1/2), thanks to the analysis of Akhavan et al. (2020); but we have to add a term related to
the sum of evaluation steps

∑T/2
t=1(f(y+

t) + f(y−
t)− 2f(x∗)) to bound the actual regret, which under suitable

assumptions is of order
∑T

t=1 ht; so that setting ht to (t/2)−1/3 allows to bound both terms by O(T 2/3). On
Figure 1(c), we see one trajectory of this method when the starting iterate is on the center of the simplex. The
convergence speed is rather fast at the beginning but the speed is limited by the homothetic perturbation.

The second method is inspired by Flaxman et al. (2004). This paper proposes to use gradient descent with a
one-point gradient estimation. In order to evaluate the gradient of the function at xt, the algorithm evaluates
the function at yt = xt + htZt, where Zt is a random vector of the sphere of radius 1, and uses f(yt)/htzt

as an estimation of the gradient. As for the previous method, we apply an homothetic perturbation to yt.
We use an estimation step ht equal to t−1/3 and a learning rate decreasing as 1/(2.5t). The trajectory that
we see on Figure 1(f) is not very indicative of the average performance of the algorithm, since this method
comes with a very high variance. We see that the algorithm generates a trajectory that roughly gets closer
to the minimizer, but that is far from being a descent path because of the poor estimation of the gradient.
This method, which has been designed for adversarially evolving objective functions, is clearly not advisable
for static objectives with stochastic perturbations.

3 Regret Analysis

As discussed in the introduction, the regret criterion takes into account the number T of function evaluations
instead of focusing on the number K of iterations, as in the more traditional analysis. In the noiseless case
of Algorithm 1, T and K differ by a factor of at most |D|+1 and this is not an issue. However, in the case
of Algorithms 2 and 3, the situation is very different as the number of function evaluations per iteration is
stochastic and typically increases as the algorithm converges. In this case, it is not possible to predict in
advance the evolution of T as a function of K because it depends on the function and starting point. A
significant part of the analysis is indeed devoted to quantifying this phenomenon. In practice, it means that
in order to comply with a number T of function evaluations set in advance, the algorithms are run without
a fixed number of rounds K, instead they are run until the number of function evaluations reaches T .

In the following, we analyze the proposed algorithms and show that in the constrained and noisy set-up of
interest, FDS-Plan and FDS-Seq have a regret of the order of (log T)2/3T 2/3 under some further assumptions
on f and on the chosen direction set Dk, provided that the optimal point lies in the interior of the feasible do-

8

Published in Transactions on Machine Learning Research (04/2024)

main. To provide some intuition on the proofs, we start with the analysis of Algorithm 1 in the unconstrained
and deterministic setting, thereby providing the first regret bound of any direct search algorithm.

3.1 Warm-up: the Unconstrained and Deterministic Setting

The choice of D is decisive for the performance of both FDS-Plan and FDS-Seq. In the sequel, we make the
following assumption on D.
Assumption 2. The vectors of D have unit norm and the cosine measure of D is lower-bounded, i.e, there
exists κ > 0 such that

cm(D) := min
u∈Rd,u ̸=0

max
v∈D

uT v

∥u∥∥v∥
> κ .

Assumption 2, common in direct search’s literature, guarantees that at each iteration k, the cosine similarity
between at least one direction in D and −∇f(xk) is larger than κ. If D is a PSS there exists a κ satisfying it.
Theorem 1. Under Assumptions 1 and 2, the cumulative regret of Algorithm 1 satisfies

RT ≤
|D|+1

c

[(
1

1− θ2 (f(x0)− f(x⋆) + ρ(α0))
)((

1 + η

a

)
η + β

)
+ (f(x0)− f(x⋆))

(
β

aα0
∥∇f(x0)∥+β

)]
,

where η := β
a

1
κθ (c + β

2).

This result shows that under Assumption 1, the asymptotic behavior of the regret of direct search can be
compared to that of the more traditional gradient descent algorithm, whose regret is also bounded under
this assumption (see Theorem 3.6 of Bubeck et al., 2008).

3.1.1 Elements of Proof

The proof of Theorem 1 combines two well-known properties of direct search and the following lemma holding
for any descent algorithm.

Lemma 1. If f satisfies Assumption 1, then ∀k′ > k, ∥∇f(xk′)∥≤ β

a
∥∇f(xk)∥.

In the proof of Theorem 1, Lemma 1 is used in conjunction with the following well-known property (see e.g
Vicente, 2013) of direct search.
Lemma 2. If f satisfies Assumptions 1 and 2 and iteration k corresponds to an unsuccessful iteration, then

∥∇f(xk)∥≤ 1
κ

(
β

2
αk + ρ(αk)

αk

)
= 1

κ

(
β

2
+ c

)
αk.

The above lemma follows from the definition of the cosine measure of D, that results in a bound of
vT

k (−∇f(xk)), where vk is the direction in D maximizing the gap f(xk)−f(xk +αkv), and from the smooth-
ness assumption on f . Thanks to Lemma 1, this lemma also means that when iteration k is unsuccessful,
we can bound all subsequent gradients by β

κa (β
2 + c)αk. We can deduce that for any k′ following the first

unsuccessful iteration, ∥∇f(xk′)∥≤ ηαk′ , where η := β
a

1
κθ (c+ β

2). Indeed, if k′ is the index of an unsuccessful
iteration, Lemma 1 suffices to prove ∥∇f(xk′)∥≤ ηθαk′ . In contrast, when k′ is the index of a successful
iteration, one should consider the last unsuccessful iteration k. Since αk′ ≥ θαk, there has been at most one
reduction of the step-size since iteration k and

∥∇f(xk′)∥≤ β

κaθ

(
β

2
+ c

)
αk′ = ηαk′ . (2)

The following general argument on direct search is the final key element of the proof of Theorem 1, that
links the sum of the squared search-radius to the initial sub-optimality gap f(x0)− f(x⋆).

9

Published in Transactions on Machine Learning Research (04/2024)

Lemma 3. If f satisfies Assumptions 1 and 2,
∞∑

k=0

ρ(αk) =
∞∑

k=0

cα2
k ≤

1
1− θ2 (f(x0)− f(x⋆) + ρ(α0)) .

Lemma 3 can be explained by the fact that ρ(αk) decreases geometrically by a ratio θ2 between two successive
successful iterations, so that the contribution to the sum of these iterations boils down to multiplying the
remainder of the sum by a factor of 1

1−θ2 . The sum on successful iterations cannot be too large, because by
definition of successful iterations, f(xk)− f(x⋆) is lower bounded by this sum plus the initial sub-optimality
gap f(x0)−f(x⋆). Bringing Lemma 3 and the bound of Equation 2 together results in a bound on the squared
norm of the gradients ∥∇f(xk)∥2 after the first unsuccessful iteration. Using the regularity conditions of
Assumption 1 suffices to relate the regret to the squared norm of the gradients, which in turn yields Theorem
1. The complete proof can be found in Appendix B.

3.2 The Constrained and Noisy Setting

We now turn to the noisy and constrained case described in Section 1.2. We further impose the following
assumptions on the domain.
Assumption 3. D is contained in a ball of radius b.

This assumption, together with assumption 1, implies that f(x) − f(x⋆) is bounded. It also follows from
these two assumptions that ∇f is bounded in norm by a constant, denoted by B, on the feasible set D.

While in the unconstrained case, the chosen PSS D only needed to satisfy Assumption 2, a stronger as-
sumption is required in the presence of linear constraints. Indeed, Assumption 2 was a way to ensure that
there was at least one trial direction v in D satisfying −∇f(xk)T v

∥v∥∥∇f(xk)∥ ≥ κ. This property is not sufficient in
the constrained case, because in this case, the directions of interest at iteration k in Dk are those that are
feasible. A problem that might arise for example, is that a sufficient descent direction is not detected even in
a situation where xk − αk∇f(xk) is feasible, because the set of feasible directions in Dk does not positively
span the feasible region. To avoid such cases, we impose a constraint on Dk that involves the notion of
approximate tangent cones. Approximate tangent cones at a point x are the polar cones of the cones that
are generated by the α-binding constraints at x as defined by Kolda et al. (2007) (see in particular Figure
2.1 of Kolda et al. (2007) for an illustration of the notion of approximate tangent cones).

Let aT
i be the i-th row of the constraint matrix AI and let Ci = {y, s.t aT

i y = ui} denote the sets where
the i-th constraint are binding. If there exists a point of Ci at a distance smaller than α from x, then the
i-th constraint is said to be α-binding. The indices of α-binding constraints at x are denoted I(x, α) =
{i, dist(x, Ci) ≤ α}, where dist is induced by the Euclidian distance. We define the approximate normal
cone N(x, α) to be the cone generated by the set {ai, s.t. i ∈ I(x, α)} ∪ {0}. The approximate tangent
cone T (x, α) is the polar of N(x, α) , which means that T (x, α) = {v : yT v ≤ 0, ∀y ∈ N(x, α)}. Informally
T (x, α) is the cone inside of the boundaries generated by the α-binding constraints at x. We highlight that
since the number of constraints m is finite, there can only be a finite number, smaller than 2m, of tangent
cones. Consequently, Assumption 4 is rather mild.
Assumption 4. For k ∈ {1 . . . K}, Dk contains a set Gk of positively generating directions of T (x, α)
included in T (x, α), for any x ∈ D and α ∈ R+.

In the following, we denote by Gk such a set. Assumption 4 was already necessary in (Kolda et al., 2003)
and Lewis & Torczon (2000), while in (Gratton et al., 2019), the descent set at iteration k is assumed to be
contained in T (x, α) and to generate it. We explain the purpose of this assumption in the following. While
the purpose of Assumption 2 was to ensure that the maximal cosine similarity of a vector in Dk with −∇f(xk)
was bounded away from 0, we focus on a different kind of measure of similarity to −∇f(xk) defined as{

maxv∈Gk

−∇f(xk)T v
∥PT (x,α)(−∇f(xk))∥∥v∥ if PT (x,α)(−∇f(xk)) ̸= 0 ,

1 otherwise.

10

Published in Transactions on Machine Learning Research (04/2024)

If PT (x,α)(−∇f(xk)) gets close to 0, this measure of similarity to −∇f(xk) does not necessarily become
small, although −∇f(xk)T v is small for any v in Gk. In order to bound this measure of similarity between
a vector of Gk and −∇f(xk) away from 0, we define the following approximate cosine measure:

cmT (xk,αk)(Gk) := inf
u∈Rd,PT (xk,αk)(u)̸=0

max
v∈Gk

uT v

∥PT (xk,αk)(u)∥∥v∥
.

As proved by Lewis & Torczon (2000) and recalled by Gratton et al. (2019), if C is a set of cones cj that
are respectively positively generated from a set of vectors G(cj), then

λ(C) := min
cj∈C

{
inf

u∈Rd,Pcj
(u) ̸=0

max
v∈G(cj)

uT v

∥Pcj
(u)∥∥v∥

}
> 0 ,

which guarantees that cmT (xk,αk)(Gk) is bounded by some constant κmin > 0, under Assumption 4. Under
the above assumptions, we can bound the regret of FDS-Plan when the optimum lies in the interior of the
feasible set. Note that assuming optimal allocation in the interior of the feasible set is crucial for analysis,
but we believe the opposite would not be harmful in practice, as supported by simulations (see Appendix F).
Theorem 2. Under Assumptions 1, 3, and 4, if x⋆ ∈ int(D) and if |Dk| is bounded by a constant SD, the
cumulative regret RT of FDS-Plan (respectively FDS-Seq) after the first T evaluations of f satisfies

E[RT] = O(log(T)2/3T 2/3)

for the choice δ = T −4/3 (respectively δ = T −10/3 for FDS-Seq).

In the absence of a lower bound, the optimality of such a regret rate is unsure. It is difficult to compare it
to other known bounds, as the performance of related algorithms is often not evaluated in the same way. In
particular, the performance of the version of stochastic gradient descent proposed by Akhavan et al. (2020)
is analyzed with respect to a different notion of regret, R̃T , that does not take into account the samples
needed for the estimation of each gradient. Their analysis yields R̃T = O(

√
T). It is important to note that

the algorithm by Akhavan et al. (2020) takes advantage of the fact that in the setting of the latter paper,
sampling points outside of the feasible domain is possible. When using homothetic perturbation as we did for
the illustration in Figure 1(c), the regret of such a method is of the order of T 2/3, as explained in Section 2.2.

Black-box algorithms such as HOO or StoOO (Bubeck et al., 2011; Munos, 2014) are other possible baselines.
When given a balanced hierarchical partition of X , and the smoothness of the function around its optimum,
these algorithms would incur a regret of the order of

√
T . The regret rate of FDS-Plan appears to be larger

than that of HOO instantiated with the right parameters. However, HOO relies on a partition of the feasible
domain that is computationally difficult to achieve with arbitrary linearly constrained domains.

The assumption that |Dk| be bounded by a constant SD is actually not constraining at all, since one way of
satisfying Assumption 4 is to set Dk to the constant set of vectors corresponding to edges of optimization
domains, which amounts to 2m(m− 1) directions, where m is the number of constraints. Depending on the
optimization domains, there may be smarter ways of choosing |Dk| that lead to smaller constants SD. The
motivational case of resource allocation, where the feasible domain is the simplex, is an example of that.

In that case, the above method for choosing Dk yields SD = 2d(d + 1) whereas recomputing the direction
set at every round can spare us a factor d. An intuitive way to understand this is to consider the simplex
of dimension d = 2. When the iterate is in the interior of the simplex, and the step-size αk is such that
the admissible directions in T (xk, αk) form R2, we only need d + 1 = 3 vectors (an angle of 2π/3 apart).
When T (xk, αk) is smaller, then minimal sets Gk are formed by even fewer vectors. An efficient method for
recomputing the set of directions at every round is described in Griffin et al. (2008). It is possible to verify
that for the simplex, this method provides less than 2d directions at each round.

This is particularly important, because the regret bound is proportional to the number of directions contained
in Dk (see the proof of Theorem 2, in Appendix D.2), so that the dependence of the regret with respect to
d is linear. For the sake of comparison, the regret of the algorithm by Akhavan et al. (2020) is quadratic in
d, whereas, when HOO is perfectly parameterized, the dependence on d of the regret of HOO disappears.
Recall however, that on arbitrary linearly constrained domain, or even on the simplex in high dimension,
HOO might be computationally intractable.

11

Published in Transactions on Machine Learning Research (04/2024)

3.2.1 Elements of Proof

After some finite number of iterations that depends on ∆ := mini∈{1...m} dist(x⋆, Ci), the distance from xk to
the boundaries of D is smaller than ∆/4 with high probability, thanks to the analysis of Gratton et al. (2019).
Waiting for another number of iterations, αk gets small enough for the approximate tangent cone T (xk, αk)
to describe the whole space Rd. Then, the trajectory of the algorithm is the same as in the unconstrained
setting. In the unconstrained setting, the following elements provide an intuition of why the regret is of the
order of T 2/3. With similar arguments to those of the proof of Theorem 1, i.e Lemmas 1, 2 and 3, it is easy
to see that the instantaneous regret incurred at iteration k of the algorithm is proportional to the sum of α−2

k

(up to logarithmic factors), whereas it was proportional to α2
k in the deterministic case: indeed, iteration

k now involves Nk times more evaluations than in the noiseless case and Nk is proportional to α−4
k (up to

logarithmic factors). Thanks to Lemma 3, we know that α2
k is summable. Then, thanks to Hölder’s inequality

applied to the sum of α−2
k written as (αk)2/3 (αk)−2/3−2, the regret is proportional to the total number of

evaluations to the power of 2/3, up to logarithmic factors. The complete proof can be found in Appendix D.

4 Experiments

In our experiments, we focus on the case in which there are seven resources (d = 6), and the loss functions
are of the same form as in Section 2.2, and wi(x) = −τi

log(1+γx)
log(1+γ) with γ = 2, τ1 = 1, τ2 = τ3 = τ4 = 0.75,

τ5 = 0.89, and τ6 = τ7 = 0.95. On Figure 2, we compare FDS-Seq and FDS-Plan to UCB on a discretization
of the space, and gradient descent with an homothetic perturbation. Both methods are explained in Section
2.2. The comparison with HOO is made impossible by the numerical complexity of HOO. We set the horizon
to T = 500, 000 and use a Gaussian noise with standard deviation σ = 0.1. The set of directions used in
FDS-Seq and FDS-Plan are chosen with the method of Griffin et al. (2008). The step parameter of the grid
of UCB is set as T −1/(d+2) = T −1/8.

0 100000 200000 300000 400000 500000
Time

0

20000

40000

60000

80000

100000

120000

140000

R
eg

re
t

UCB

FDS-Seq

2-points GD

FDS-Plan

Figure 2: Regret plots of various strategies for resource allocation

The regrets of the algorithms strongly depend on the chosen function. In the case of UCB, the position of
the maximizer with respect to the grid that it relies on is important. To alleviate this issue, we plot the mean
regret of all the algorithms, when randomly shifting the loss function by a random vector whose coordinates
are in [0.05, 0.05]. We use 1200 Monte Carlo repetitions. The shaded area represents the region between the
first and third quartile.

Clearly, FDS-Seq, by reducing the number of samples needed at the beginning of the run (when moves cor-
responds to significant drops of the target function), dominates FDS-Plan. The unsatisfying performance of

12

Published in Transactions on Machine Learning Research (04/2024)

the gradient descent algorithm can be explained both by the homothetic perturbation that harms the conver-
gence to the optimizer, and by the bad dependence of this algorithm on the dimension. FDS-Seq also clearly
outperforms UCB. Note that the performance of UCB will worsen in higher dimension due to the difficulty
of simultaneously controlling the distance between grid points and the overall number of points in the grid.

5 Conclusion

We have studied extensions of direct search algorithms designed for linearly constrained zeroth-order opti-
mization in the stochastic setting. We have shown that these algorithms, though being fairly simple, suffer
a regret of the order of T 2/3, which is quite satisfactory when compared to other options with comparable
implementation cost, like those inspired by finitely-armed bandit algorithms or by gradient descent schemes.
There is still a performance gap, in terms of regret rate, when compared to some continuously-armed bandit
approaches that are however computationally much more heavy, even in low-dimensional instances of the
resource allocation model, such as the one considered in Section 4. We do not believe that the analysis of the
algorithms proposed in this paper can be refined so as to obtain the

√
T regret rate. However, an interesting

open question for future work is to know whether this bound could be achieved by other sampling allocation
schemes.

13

Published in Transactions on Machine Learning Research (04/2024)

References
Alekh Agarwal, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Alexander Rakhlin. Stochastic convex

optimization with bandit feedback. Advances in Neural Information Processing Systems, 24, 2011.

Shipra Agrawal and Nikhil R. Devanur. Fast algorithms for online stochastic convex programming. In
Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, 2015.

Arya Akhavan, Massimiliano Pontil, and Alexandre Tsybakov. Exploiting higher order smoothness in
derivative-free optimization and continuous bandits. Advances in Neural Information Processing Systems,
33:9017–9027, 2020.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2-3):235–256, 2002.

Francis Bach and Vianney Perchet. Highly-smooth zero-th order online optimization. In Conference on
Learning Theory, pp. 257–283. PMLR, 2016.

Mario Bravo, David Leslie, and Panayotis Mertikopoulos. Bandit learning in concave n-person games.
Advances in Neural Information Processing Systems, 31, 2018.

Sébastien Bubeck, Gilles Stoltz, Csaba Szepesvári, and Rémi Munos. Online optimization in x-armed bandits.
Advances in Neural Information Processing Systems, 21, 2008.

Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan. Kernel-based methods for bandit convex optimization.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 72–85, 2017.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. Journal of Machine
Learning Research, 12(5v), 2011.

Richard Combes and Alexandre Proutiere. Unimodal bandits: Regret lower bounds and optimal algorithms.
In International Conference on Machine Learning, pp. 521–529. PMLR, 2014.

Kwassi Joseph Dzahini. Expected complexity analysis of stochastic direct-search. Computational Optimiza-
tion and Applications, 81(1):179–200, 2022.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization in the
bandit setting: gradient descent without a gradient. arXiv preprint cs/0408007, 2004.

Xavier Fontaine, Shie Mannor, and Vianney Perchet. An adaptive stochastic optimization algorithm for
resource allocation. In Algorithmic Learning Theory, pp. 319–363. PMLR, 2020.

Serge Gratton, Clément W Royer, Luís Nunes Vicente, and Zaikun Zhang. Direct search based on proba-
bilistic descent. SIAM Journal on Optimization, 25(3):1515–1541, 2015.

Serge Gratton, Clément W Royer, Luís Nunes Vicente, and Zaikun Zhang. Direct search based on prob-
abilistic feasible descent for bound and linearly constrained problems. Computational Optimization and
Applications, 72(3):525–559, 2019.

Joshua D Griffin, Tamara G Kolda, and Robert Michael Lewis. Asynchronous parallel generating set search
for linearly constrained optimization. SIAM Journal on Scientific Computing, 30(4):1892–1924, 2008.

O Gross. A class of discrete-type minimization problems. Technical report, 1956.

Elad Hazan and Kfir Levy. Bandit convex optimization: Towards tight bounds. Advances in Neural Infor-
mation Processing Systems, 27, 2014.

Elad Hazan and Yuanzhi Li. An optimal algorithm for bandit convex optimization. arXiv preprint
arXiv:1603.04350, 2016.

14

Published in Transactions on Machine Learning Research (04/2024)

Naoki Katoh, Toshihide Ibaraki, and Hisashi Mine. A polynomial time algorithm for the resource allocation
problem with a convex objective function. Journal of the Operational Research Society, 30(5):449–455,
1979.

Tamara G Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct search: New per-
spectives on some classical and modern methods. SIAM review, 45(3):385–482, 2003.

Tamara G Kolda, Robert Michael Lewis, and Virginia Torczon. Stationarity results for generating set search
for linearly constrained optimization. SIAM Journal on Optimization, 17(4):943–968, 2007.

Bernard O Koopman. The optimum distribution of effort. Journal of the Operations Research Society of
America, 1(2):52–63, 1953.

Robert Michael Lewis and Virginia Torczon. Pattern search methods for linearly constrained minimization.
SIAM Journal on Optimization, 10(3):917–941, 2000.

Andrea Locatelli and Alexandra Carpentier. Adaptivity to smoothness in x-armed bandits. In Conference
on Learning Theory, pp. 1463–1492. PMLR, 2018.

Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized online match-
ing. Journal of the ACM (JACM), 54(5):22, 2007.

Rémi Munos. From bandits to monte-carlo tree search: The optimistic principle applied to optimization and
planning. 2014.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Foundations
of Computational Mathematics, 17(2):527–566, 2017.

Xuedong Shang, Emilie Kaufmann, and Michal Valko. General parallel optimization a without metric. In
Algorithmic Learning Theory, pp. 762–788. PMLR, 2019.

Michal Valko, Alexandra Carpentier, and Rémi Munos. Stochastic simultaneous optimistic optimization. In
International Conference on Machine Learning, pp. 19–27. PMLR, 2013.

Luís Nunes Vicente. Worst case complexity of direct search. EURO Journal on Computational Optimization,
1(1):143–153, 2013.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of the 20th international conference on machine learning (icml-03), pp. 928–936, 2003.

15

Published in Transactions on Machine Learning Research (04/2024)

Supplementary Material

Outline. Appendix A, contains general considerations about the potential repercutions of this (method-
ological) work. We prove in Appendix B all the results pertaining to the noiseless, unconstrained case. In
Appendix C, we provide an additional result for the noisy but unconstrained case. The analysis of direct
search in the latter case paves the way for the proof of Theorem 2 whose proof is deferred to Appendix
D. Appendix E contains further explanations about simulations in Section 2.2 and Appendix F contains
additional experiments.

A Broader Impact Statement

This paper is mostly a methodological paper that is unlikely to have a direct societal impact.

However, it explores the idea that direct search algorithms, akin to approximate descent algorithms, can
provide explicability in the context of budget allocation for advertising. Advertising practitioners who use
these algorithms can explain their actions to their clients by guaranteeing that with high probability, the
latter result in an increase of the desired performance indicator. This work is thus part of a collective effort
to reach explicability in machine learning, which is crucial as it allows for more transparency.

From an even broader perspective, setting budgets for advertising campaigns is still a manual task in many
companies, which could be replaced by algorithms such as those we propose here. Note that this would still
leave the task of setting the scope of the campaign (which users to target, on which inventories, etc.) to
marketing professionals. It is not clear which impact on employment the automation of budget allocation
could have. However, for now, digital marketing is a flourishing sector where employment seems to have
increased steadily in the last few years.

B Deterministic and unconstrained set-up

B.1 Preliminary Results

Lemma 1. If f satisfies Assumption 1,

∀k′ > k, ∥∇f(xk′)∥≤ β

a
∥∇f(xk)∥

Proof. First observe that because of strong convexity,

(∇f(xk)−∇f(x⋆))⊤(xk − x⋆) ≥ a∥xk − x⋆∥2,

and
a∥xk − x∗∥2≤ ∥∇f(xk)∥∥xk − x∗∥,

which implies that
a∥xk − x∗∥≤ ∥∇f(xk)∥ . (3)

Hence,

∥∇f(xk′)∥ ≤ β∥xk′ − x⋆∥

≤ β√
a

√
f(xk′)− f(x⋆) ≤ β√

a

√
f(xk)− f(x⋆)

≤ β√
a

√
∇f(xk)⊤(xk − x∗) ≤ β√

a

√
∥∇f(xk)∥∥(xk − x∗)∥

≤ β

a
∇∥f(xk)∥ ,

16

Published in Transactions on Machine Learning Research (04/2024)

where the first inequality comes from the smoothness (in fact ∥∇f(xk)∥= ∥∇f(xk)∥−∥∇f(x∗)∥≤ β∥xk−x⋆∥),
the second inequality is a result of the strong convexity, the third one ensues from the fact that the algorithm
is a descent algorithm, the fourth one arises as a resut of convexity and the fifth one comes from the strong
convexity property of Equation 3.

Lemma 2. If f satisfies Assumption 1 and iteration k corresponds to an unsuccessful iteration then

∥∇f(xk)∥≤ 1
κ

(
β

2
αk + ρ(αk)

αk

)
= 1

κ

(
β

2
+ c

)
αk .

This lemma is already well-known (see e.g. Vicente, 2013), we only prove it here for completeness.

Proof. Since cm(Dk) := minu∈Rd,u̸=0 maxv∈Dk

uT v
∥u∥∥v∥ > κ, there exists v ∈ Dk such that

−∇f(xk)⊤v ≥ κ∥∇f(xk)∥ .

Since the iteration is an unsuccessful iteration, we have f(xk)− f(xk + αkv) ≤ ρ(αk) = cα2
k. Then

καk∥∇f(xk)∥−ρ(αk) ≤ −∇f(xk)⊤v + f(xk + αkv)− f(xk)

≤
∫ αk

0
∇f(xk + uv)⊤v −∇f(xk)⊤vdu

≤
∫ αk

0
∥∇f(xk + uv)−∇f(xk)∥∥v∥du

≤ β

∫ αk

0
udu ≤ β

2
α2

k ,

which yields ∥∇f(xk)∥≤ 1
κ

(
β
2 αk + ρ(αk)

αk

)
= 1

κ

(
β
2 αk + cαk

)
.

Lemma 3.
∞∑

k=0

ρ(αk) ≤ 1
1− θ2 (f(x1)− f(x⋆) + ρ(α0)) .

This lemma is also a common element of the analysis of direct search algorithms (see e.g. Gratton et al.,
2019), we only prove it here for completeness.

We assume that there are infinitely many successful iterations as it is trivial to adapt the argument otherwise.
Let ki be the index of the ith successful iteration (i ≥ 1). Define k0 = −1 and α−1 = α0 for convenience.
Let us rewrite

∑∞
k=0 ρ(αk) as

∑∞
i=0
∑ki+1

k=ki+1 ρ(αk) and study first
∑ki+1

k=ki+1 ρ(αk). Thanks to the definition
of the update on a successful iteration and on unsuccessful iterations,

ki+1∑
k=ki+1

ρ(αk) =
ki+1∑

k=ki+1

ρ(θiαki) =
ki+1∑

k=ki+1

cθ2iρ(αki) ≤
1

1− θ2 ρ(αki) .

Since on successes ρ(αki) ≤ f(xki)− f(xki + αki) = f(xki)− f(xki+1),

∞∑
i=1

ρ(αki
) ≤ f(x1)− f(x⋆) .

Hence
∞∑

k=0

ρ(αk) ≤ 1
1− θ2 (f(x1)− f(x⋆) + ρ(α0)) .

17

Published in Transactions on Machine Learning Research (04/2024)

Lemma 4. The index kf of the first unsuccessful iteration satisfies:

kf ≤
f(x0)− f(x∗)

ρ(α0)
.

Another version of this lemma is due to Gratton et al. (2015).

Proof. Before the first unsuccessful iteration, αk = α0. So by definition of a successful iteration,
∀k, such that 0 < k ≤ kf

f(xk−1)− f(xk) ≥ ρ(α0) .

By summing,
f(xk0)− f(xkf

) ≥ kf ρ(α0).
The left hand-side of this inequality is upper-bounded by f(x0) − f(x∗), which suffices to conclude the
proof.

B.2 Regret Bound

In this section, we prove in Theorem 3 below a result involving the regret at iteration K of the algorithm
instead of the regret after T function evaluations. As T ≤ K(SD + 1), Theorem 3 directly implies Theorem
1.

Consider

R̃K =
K∑

k=0

(
f(xk)− f(x⋆) +

∑
v∈Dk

f(xk + αkv)− f(x⋆)

)
which is an upper bound of the cumulative regret suffered by the algorithm at iteration K, since it accounts
for all directions in Dk at each round k, while not necessarily all of them will be tested. R̃K can be bounded
as follows.
Theorem 3. Under Assumptions 1 and 2,

R̃K ≤ (SD + 1)
[(1

c

(
1

1− θ2 (f(x0)− f(x⋆) + ρ(α0)
))((

1 + η

a

)
η + β

)
+ f(x0)− f(x⋆)

ρ(α0)

(
β

a
∥∇f(x0)∥α0 + βα2

0

)]
,

where η := β
a

1
κθ (c + β

2).

Proof. We decompose the regret as

R̃K =
K∑

k=0

(
f(xk)− f(x⋆) +

∑
v∈D

f(xk + αkv)− f(x⋆)

)

≤
K∑

k=0

(
f(xk)− f(x⋆) +

∑
v∈D

f(xk + αkv)− f(xk) + f(xk)− f(x⋆)

)

≤
K∑

k=0

((D|+1)(f(xk)− f(x⋆))) +
K∑

k=0

(∑
v∈D

f(xk + αkv)− f(xk)

)

≤
kf∑

k=0

((D|+1)(f(xk)− f(x⋆))) +
kf∑

k=0

(∑
v∈D

f(xk + αkv)− f(xk)

)

+
K∑

k=kf

((D|+1)(f(xk)− f(x⋆))) +
K∑

k=kf

(∑
v∈D

f(xk + αkv)− f(xk)

)
, (4)

18

Published in Transactions on Machine Learning Research (04/2024)

where kf is the iteration of the first unsuccessful iteration. The third inequality provides a decomposition of
the regret in a first term that involves the suboptimality of the iterate, and a second term that involves the
difference between values of f at the iterate and at the trial points. As is usual for direct search algorithm, the
behavior of the algorithm before the first unsuccessful iteration has to be studied separately, which explains
the use of the decomposition of the fourth inequality. We bound the regret due to the rounds preceding kf

by:

Lemma 5. The regret due to the rounds preceding kf is bounded by

kf∑
k=0

((D|+1)(f(xk)− f(x⋆))) +
kf∑

k=0

(∑
v∈D

f(xk + αkv)− f(xk)

)
≤ C1,

where we denote by kf is the index of the first unsuccessful iteration and by
C1 = f(x0)−f(x⋆)

cα2
0

(
(f(x0)− f(x⋆) + β

a∥∇f(x0)∥α0 + βα2
0

)
.

Proof. As until kf , f(xk) ≤ f(x0) and αk = α0, it holds that

kf∑
k=0

((D|+1)(f(xk)− f(x⋆))) +
kf∑

k=0

(∑
v∈D

f(xk + αkv)− f(xk)

)

≤
kf∑

k=0

((D|+1)(f(x0)− f(x⋆))) +
kf∑

k=0

(∑
v∈D

∥∇f(xk)∥αk + βα2
k

)

≤ kf ((D|+1)(f(x0)− f(x⋆))) + (D|+1)kf

(
β

a
∥∇f(x0)∥α0 + βα2

0

)
≤ f(x0)− f(x⋆)

cα2
0

(
(D|+1)(f(x0)− f(x⋆) + β

a
∥∇f(x0)∥α0 + βα2

0)
)

= C1 ,

where Lemma 1 is used for the second inequality and the third inequality comes from Lemma 4. The first
inequality results from the following property of convex and β-smooth functions: f(y)− f(x) ≤ ∇f(y)T (x−
y) ≤ ∥∇f(x)T (x− y)∥+β∥x− y∥2, applied to xk + αkv and xk.

Lemma 6. After kf ,
K∑

k=kf

f(xk + αkv)− f(xk) ≤ C2

where kf is the index of the first unsuccessful iteration and
C2 = 1

c (η + β)
(

1
1−θ2 (f(x0)− f(x⋆) + ρ(α0)

)
.

Proof. We take k > kf . Using the property of convex and β-smooth functions that f(y)−f(x) ≤ ∥∇f(x)T (x−
y)∥+β∥x− y∥2, applied to xk + αkv and xk, as in Lemma 5, we get

f(xk + αkv)− f(xk) ≤ αk∥∇f(xk)∥+βα2
k .

We note that if k is the index of an unsuccessful iteration,

∥∇f(xk)∥≤ 1
κ

(
c + β

2

)
αk = 1

L′
1

αk ,

by Lemma 2, if αk ≤ 1. If k is the index of a successful iteration, we can come back to the last unsuccessful
iteration k′, since

∥∇f(xk)∥ ≤ β

a
∥∇f(xk′)∥≤ β

a

1
κ

(
c + β

2

)
αk′ ≤ β

a

1
κ

(
c + β

2

)
αk

θ
.

19

Published in Transactions on Machine Learning Research (04/2024)

where the first inequality comes from Lemma 1, and the third from the fact that αk ≥ θαk′ . Hence for any
k > kf ,

∥∇f(xk)∥≤ ηαk ,

and

f(xk + αkv)− f(xk) ≤ (η + β)αk .

Hence
K∑

k=0

f(xk + αkv)− f(xk) ≤
K∑

k=0

(η + β) α2
k .

Consequently,

K∑
k=0

f(xk + αkv)− f(xk) ≤ (η + β) 1
c

(∞∑
k=0

ρ(αk)

)

≤ 1
c

(η + β)
(

1
1− θ2 (f(x0)− f(x⋆) + ρ(α0))

)
.

Lemma 7.
K∑

k=kf

(f(xk)− f(x⋆)) ≤ 1
ac

η2
(

1
1− θ2 (f(x1)− f(x⋆) + ρ(α0))

)
:= C3

Proof. Take k > kf . Thanks to the convexity of f ,

f(xk)− f(x⋆) ≤ ∇f(xk)⊤(xk − x⋆)

≤ 1
a
∥∇f(xk)∥2 ,

where the second inequality stems from Equation 3, which itself come from strong convexity.

As in the proof of Lemma 6 we have for any k > kf ,

∥∇f(xk)∥≤ ηαk ,

so that for any k > kf ,

f(xk)− f(x⋆) ≤ 1
a

(η)2
(αk

θ

)2
.

Thanks to Lemma 3, we have
∑∞

k=0 α2
k ≤

(
1
c

1
1−θ2 (f(x1)− f(x⋆) + ρ(α0)

)
.

Eventually,

f(xk)− f(x⋆) ≤ 1
a

η2
(

1
c

1
1− θ2 (f(x1)− f(x⋆) + ρ(α0))

)
= C3 .

Using the regret decomposition of Equation 4 together with Lemmas 4, 6, and 7 completes the proof of
Theorem 3.

20

Published in Transactions on Machine Learning Research (04/2024)

C Noisy and unconstrained set-up

Before considering the constrained setting, we analyze the algorithms described in Section 2 (Algorithms 2
and 3) when there are no constraints, that is, D = Rd.

C.1 Presentation of the main Result

Theorem 4. Assume that f is lower bounded and upper bounded on Rd, so that there exits U , f(x)−f(x⋆) ≤
U, ∀x ∈ Rd. Also assume that the region X = {x ∈ Rd : f(x) < f(x0)} is convex and that f is a-strongly
convex and β-smooth on X . Let RT be the cumulative regret on the T first evaluations of f made by FDS-
Plan. Set δ = T −4/3. Then

E[RT] = O(log(T)2/3T 2/3)

This regret bound is also valid for FDS-Seq under the same Assumptions, with δ = T −10/7/2. In the
following, we give a proof of the regret bound for FDS-Plan. Note that Sections C.3 and C.2 refer to FDS-
Plan, and Section C.4 deals with FDS-Seq.
The regularity assumption in Theorem 4 requires that f is bounded and satisfies a local version of Assumption
1. The initial point x0 should not be chosen too far from x∗, nor should α0 be too large. This assumption is
not unreasonable, since for every x0 and α0, it is naturally satisfied by bounded and strictly convex functions
in C 2 for some choice of a and β. We stress that under the alternative assumption 1, the same kind of regret
bound could still be proved, but with a smaller choice of δ, resulting in higher confidence bonuses and the
multiplication of the regret by some constant factor. Indeed, in this case, estimating f incorrectly at each
round can lead to a trajectory that always deviates from x∗, which is highly detrimental to the regret rate;
meanwhile, under the assumption required by Theorem 4, f is bounded by U , so that deviating from x∗

contributes to the regret by at most UT .

In the following, we will use the following additional notation.

Notation. We define vk to be

vk :=

{
arg maxv∈Dk

f(xk)− f(xk − αkv) if iteration k is unsuccessful
the chosen direction otherwise.

C.2 Intermediate results

Lemma 8. We call Ek the event

Ek = {|f(xk + αkv)− f̂(xk + αkv)|≤ c/4(αk)2}, ∀v ∈ Dk ∪ {0}} .

The probability of Ek is lower bounded by

P (Ek|Fk−1) ≥ 1− δ(SD + 1)

where Fk−1 is the σ-field representing the history.

Proof. Let v ∈ D ∪ {0} f(xk + αkv) − f̂(xk+αkv) =
∑Nk

i=1 ϵj with ϵj independent Gaussian variables with
variance σ2 and we have∣∣∣∣∣∣

Nj∑
i=1

ϵj

∣∣∣∣∣∣ ≤
√

2σ2 log(2/δ)
Nj

≤

√
2σ2 log(2/δ)

32σ2 log(2/δ)/ρ(αk)2 ≤
ρ(αk)

4

with probability 1− δ, when knowing Nk. By a union bound, P (Ek|Fk−1) ≥ 1− δ(|D|+1) where Fk−1 is the
σ-field representing the history.

The following lemma characterizes unsuccessful iterations and successes when Ek occurs.

21

Published in Transactions on Machine Learning Research (04/2024)

Lemma 9. On Ek, if k is an unsuccessful iteration then f(xk) − f(xk + αkvk) ≤ 3c/2(αk)2 and if k is a
successful iteration then f(xk)− f(xk + αkvk) ≥ c/2(αk)2.

Lemma 9 implies that if Ek occurs for all k, then each iteration of the algorithm results in a descent.
Lemma 10. On ∩k≤KEk, the algorithm is a descent algorithm. In particular, xk ∈ X , ∀k ∈ {1 . . . K}.
Lemma 11. If f satisfies the assumptions of Theorem 4 and on ∩k≤KEk then,

∀k′ > k, ∥∇f(xk′)∥≤ β

a
∥∇f(xk)∥ .

Proof. The proof of Lemma 1 applies verbatim thanks to Lemma 10.

Lemma 12. If f satisfies the assumptions of Theorem 4 and the iteration k corresponds to an unsuccessful
iteration then on Ek,

∥∇f(xk)∥≤ 1
κ

(
β

2
αk + 3ρ(αk)

2αk

)
= 1

2κ

(
βαk + 3cα2

k

)
.

Proof. We reproduce the proof of Lemma 2 by using Lemma 9.

Since cm(D) := minv∈Rd maxv∈D
vT v

∥v∥∥v∥ > κ, there exists v ∈ D such that

−f(xk)⊤v ≥ κ∥∇f(xk)∥.

Since the iteration is an unsuccessful iteration, we have f(xk) − f(xk + αkv) ≤ 3
2 ρ(αk) = 3

2 cα2
k, thanks to

Lemma 9. Then

καk∥∇f(xk)∥−ρ(αk) ≤ β

2
α2

k ,

exactly as in the proof of Lemma 2, which yields ∥∇f(xk)∥≤ 1
κ

(
β
2 αk + 3

2
ρ(αk)

αk

)
= 1

κ

(
β
2 αk + 3

2 cαk

)
.

Lemma 13. If f satisfies the assumptions of Theorem 4 and on ∩k≤KEk,

K∑
k=0

ρ(αk) ≤ 2
1− θ2 (f(x1)− f(x⋆) + ρ(α0)) .

Assume that ∩k≤KEk holds. Let ki be the index of the i-th successful iteration (i ≥ 1). Define k0 = −1 and
α−1 = α0, and αk = 0, ∀k > K for convenience. Define KI the number of successes until K. We rewrite∑KI

k=0 ρ(αk) as
∑KI

i=0
∑ki+1

k=ki+1 ρ(αk) and study first
∑ki+1

k=ki+1 ρ(αk).

Thanks to the definition of the update on a successful iteration and on unsuccessful iterations,

ki+1∑
k=ki+1

ρ(αk) ≤ 1
1− θ2 ρ(αki) .

exactly as in the proof of Lemma 3. Since on successes,

1
2

ρ(αki
) ≤ f(xki

)− f(xki
+ αki

) = f(xki
)− f(xki+1) ,

we have
1
2

KI∑
i=1

ρ(αki
) ≤ f(x1)− f(x⋆).

Hence
KI∑
k=0

ρ(αk) ≤ 2
1− θ2 (f(x1)− f(x⋆) + ρ(α0)) .

22

Published in Transactions on Machine Learning Research (04/2024)

Lemma 14. On ∩k≤KEk, the first iteration that results in an unsuccessful iteration occurs at round kf ,
satisfying:

kf ≤ 2f(x0)− f(x∗)
ρ(α0)

.

Before the first unsuccessful iteration, αk = α0. So by Lemma 9, ∀0 < k ≤ kf

f(xk−1)− f(xk) ≥ 1
2

ρ(α0) .

By summing,

f(xk0)− f(xkf
) ≥ 1

2
kf ρ(α0) .

The left hand-side of this inequality is upper-bounded by f(x0)−f(x∗), which suffices to conclude the proof.
Lemma 15. If f satisfies the assumptions of Theorem 4 and on ∩k≤KEk, for any k after the first unsuccessful
iteration,

∥∇f(xk)∥≤ η2αk,

where we denote by η2 = β
2aκθ (3c + β).

Proof. For unsuccessful iterations,

∥∇f(xk)∥≤ 1
2κ

(3c + β)αk ,

thanks to Lemma 12. If k is the index of a successful iteration, we can come back to the last unsuccessful
iteration k′, since

∥∇f(xk)∥ ≤ β

a
∥∇f(xk′)∥≤ β

a

1
2κ

(3c + β)αk′ ≤ β

a

1
2κ

(3c + β)
(αk

θ

)
,

where the first inequality comes from Lemma 11, the second from Lemma 12 and the third from the fact
that αk ≥ θαk′ .

C.3 Regret Analysis of FDS-Plan

Lemma 16. If f satisfies the assumptions of Theorem 4 and on ∩k≤KEk,

R̃K ≤ C4log(2/δ) + C5 log(2/δ)

(
K∑

k=1

Nk

)2/3

,

where

C4 = 32
c2 C1α−4

0 (SD + 1)

C5 = 32
c2 (SD + 1)

(
c

32
1

(1−θ2) (f(x1)− f(x⋆) + ρ(α0))
)1/3 (1

a η2
2 + η2 + β

)
.

Proof. In the following we study the case where ∩k≤KEk holds true.

As in the deterministic case, we decompose the regret as

R̃K =
kf∑

k=0

Nk

(
f(xk)− f(x⋆) +

∑
v∈D

f(xk + αkv)− f(x⋆)

)

+
K∑

k=kf

Nk

(
f(xk)− f(x⋆) +

∑
v∈D

f(xk + αkv)− f(x⋆)

)
.

23

Published in Transactions on Machine Learning Research (04/2024)

We start by dealing with the cumulative regret before kf . We write
kf∑

k=0

Nk

(
f(xk)− f(x⋆) +

∑
v∈D

f(xk + αkv)− f(x⋆)

)

≤ N0

kf∑
k=0

(
f(xk)− f(x⋆) +

∑
v∈D

f(xk + αkv)− f(x⋆)

)

≤ 32
c2 α−4

0 log(2/δ)
kf∑

k=0

(
f(xk)− f(x⋆) +

∑
v∈D

f(xk + αkv)− f(x⋆)

)

≤ 32
c2 α−4

0 log(2/δ)× 2C1

= C4 log(2/δ),

where the last inequality is obtained exactly as in the proof of Lemma 5 with the help of Lemma 14 instead
of Lemma 4. By using the above inequality and the decomposition of the regret, we get

R̃K − C4 log(2/δ)

≤
K∑

k=kf

Nk

(
f(xk)− f(x⋆) +

∑
v∈D

f(xk + αkv)− f(x⋆)

)

≤
K∑

k=kf

Nk

(
f(xk)− f(x⋆) +

∑
v∈D

f(Xk + αkv)− f(xk) + f(xk)− f(x⋆)

)

≤
K∑

k=kf

Nk

(
(SD + 1)(f(xk)− f(x⋆)) +

∑
v∈D

f(xk + αkv)− f(xk)

)

≤ (SD + 1)
K∑

k=kf

Nk

(
1
a
∥∇f(xk)∥2+∥∇f(xk)∥αk + βα2

k

)
,

where C4 = 32
c2 C1α−4

0 (SD + 1). The fourth inequality comes from the regularity assumptions required for
Theorem 2 together with Lemma 10. We use Lemma 15 to get that for any k > kf ,

∥∇f(xk)∥≤ η2αk.

Then
1
a
∥∇f(xk)∥2+∥∇f(xk)∥αk + βα2

k ≤
1
a

η2
2α2

k + η2α2
k + βα2

k .

We get
K∑

k=kf

Nk

(
1
a
∥∇f(xk)∥2+∥∇f(xk)∥αk

)
≤ C6 log(2/δ)

K∑
k=kf

(αk)−2

≤ C6 log(2/δ)
K∑

k=0

(αk)−2
.

where C6 =
(1

a η2
2 + η2 + β

) 32
c2 . Consequently

R̃K ≤ C4 log(2/δ) + C6 log(2/δ)
K∑

k=0

(αk)−2
.

The number of function evaluations is defined as
K∑

k=0

Nk = 32 log(2/δ)
c

K∑
k=0

α−4
k .

24

Published in Transactions on Machine Learning Research (04/2024)

Thanks to Lemma 13,
K∑

k=0

(αk)2 ≤ 2
c(1− θ2)

(f(x1)− f(x⋆) + ρ(α0)) .

By Hölder’s inequality, we get

K∑
k=0

(αk)−2 =
K∑

k=0

(αk)2/3 (αk)−2/3−2

≤
(

K∑
k=0

(αk)2/3×3

)1/3(K∑
k=0

(αk)−8/3×3/2

)2/3

≤

(
K∑

k=0

(αk)2

)1/3(K∑
k=0

(αk)−4

)2/3

.

And thus

R̃K − C4 log(2/δ)

≤ C6 log(2/δ)
(

2
c(1− θ2)

(f(x1)− f(x⋆) + ρ(α0)
)1/3

(
c

8 log(2/δ)

K∑
k=1

Nk

)2/3

≤ C5 log(2/δ)

(
1

log(2/δ)

K∑
k=1

Nk

)2/3

≤ C5 log(2/δ)1/3

(
K∑

k=1

Nk

)2/3

,

where C5 = (SD + 1)C6

(
c

32
1

(1−θ2) (f(x1)− f(x⋆) + ρ(α0))
)1/3

.

Proof. of Theorem 4 We note KT the last round reached by the algorithm with T evaluations. Lemma 16
proves that on ∩k≤KT

Ek,

R̃KT
≤ C4 log(2/δ) + C5

(
1

(SD + 1)

)2/3

log(2/δ)2/3(T)2/3 .

Thanks to Lemma 8,

P
(
∪KT

k=1E
C
k

)
≤

T∑
k=1

P
(
EC

k

)
≤ (SD + 1)

T∑
t=1

T −4/3/2 ≤ (SD + 1)T −1/3 , (5)

when taking δ = T −4/3, since KT ≤ T . Hence,

E[RT] ≤ 4
3

C4 log(2T) + 4
3

(
1

(SD + 1)

)2/3

C5 log(2T)2/3T 2/3 + (SD + 1)UT 2/3

= O((log T)2/3T 2/3) .

25

Published in Transactions on Machine Learning Research (04/2024)

C.4 Regret Analysis of FDS-Seq

Instead of considering Ek as in the previous section, we need to consider E ′
k = {(f(xk) − f(xk + αkvk) ≤

3c/2(αk)2 and k is an unsuccessful iteration) or (k is a successful iteration and f(xk) − f(xk + αkvk) ≥
c/2(αk)2)}. Instead of Lemma 8 we prove the following result.
Lemma 17. The probability of E ′

k is lower bounded by

P (E ′
k|Fk−1) ≥ 1− δ ×N2

k × (|D|+1) ,

where Fk−1 is the σ-field representing the history.

Proof. Fix v ∈ D. First assume that f(xk) > f(xk + αkv) + 3/2ρ(αk). In particular, f(xk) > f(xk + αkv) +
ρ(αk). We denote nτ

0,k and nτ
v,k the values of n0,k and nv,k at the end of the while loop of FDS-Seq. Observe

that

P
(
E ′

k|Fk−1, nτ
0,k = nτ

v,k = Nk

)
≥ 1− δ × (|D|+1) .

Hence we only need to focus on the case when the first part of Condition 1 is first satisfied. In this case,
knowing nτ

0,k, nτ
v,k, the probability that f̂nτ

0,k
(xk) < f̂nτ

v,k
(xk + αkv) + ρ(αk) when the first row of Condition

1 is first satisfied is bounded as follows. We have

P

(
f(xk)− f̂nτ

0,k
(xk)− (f(xk + αkv)− f̂nτ

v,k
(xk + αkv)) ≥

√
2σ2 log(1/δ)

√
1

nτ
0,k

+ 1
nτ

v,k

∣∣∣∣∣Fk, nτ
0,k, nτ

v,k

)
≤ δ.

Since f(xk) > f(xk + αkv) + ρ(αk),

f(xk)− f̂nτ
0,k

(xk)− (f(xk + αkv)− f̂nτ
v,k

(xk + αkv))

≥ −ρ(αk)− f̂nτ
0,k

(xk) + f̂nτ
v,k

(xk + αkv) .

So that the above deviation bound results in:

P

(
f̂nτ

0,k
(xk)− f̂nτ

v,k
(xk + αkv)− ρ(αk) ≤

−
√

2σ2 log(1/δ)
√

1
nτ

0,k

+ 1
nτ

v,k

∣∣∣∣∣Fk, nτ
0,k, nτ

v,k

)

Finally, we apply a union bound. Since nτ
0,k and nτ

v,k both belong to [0, Nk] and cannot be simultaneously
equal to Nk:

P

(
f̂nτ

0,k
(xk)− f̂nτ

v,k
(xk + αkv)− ρ(αk) ≤

−
√

2σ2 log(1/δ)
√

1
nτ

0,k

+ 1
nτ

v,k

∣∣∣∣∣Fk, not(nτ
0,k = nτ

v,k = Nk)

)
≤ (N2

k − 1)δ .

This amounts to a bound of the probability of k being an unsuccessful iteration and thus of E ′C
k , when

the first part of condition 1 is satisfied. Summing with the probability of E ′
k

C in the other case, we obtain
P (E ′(k)) ≥ N2

k δ.

26

Published in Transactions on Machine Learning Research (04/2024)

The case f(xk) > f(xk + αkv) + 3/2ρ(αk) can be treated in the exact same way.

To adapt the proof of Theorem 4 to FDS-Seq (with a different choice of δ = T −10/3), it suffices to replace
Equation 5 by

P
(
∪KT

k=1E
′C
k

)
≤ (SD + 1)

T∑
k=1

P
(
E ′C

k

)
≤ (SD + 1)

KT∑
k=1

N2
k T −10/3

≤ (SD + 1)
T∑

k=1

T 2T −10/3/2 ≤ (SD + 1)T −1/3 .

The regret is hence

E[RT] ≤ 10
3

C4 log(2T) + 10
3

(
1

(SD + 1)

)2/3

C5 log(2T)2/3T 2/3 + (SD + 1)UT 2/3

= O((log T)2/3T 2/3) .

D Noisy and Constrained Set-Up

In this section we analyze the behavior of the algorithms in the presence of linear constraints. The complexity
of feasible direct search with linear constraints in the noiseless case has been studied by Gratton et al.
(2019). In this paper, instead of studying the speed at which the gradient converges to 0 as is usual
in the unconstrained case, the authors study the convergence of a lower bound of the gradient χ(x) :=
maxx+v∈D, ∥v∥≤1−∇f(x)T v to 0. Indeed, the convergence of the gradient to 0 might be unachievable when
the optimum lies on the boundaries, but χ(x) is equal to 0 if and only if x is optimal. The paper proves that
the first iteration Kϵ at which χ(xk) is smaller than ϵ is of the order of ϵ−2, like in the unconstrained case.

In the following, we denote by U the global upper bound of f(x)− f(x⋆) on the domain.

D.1 Intermediate Results

We recall that Ek denotes the event

Ek = {|f(xk + αkv)− f̂(xk + αkv)|≤ c/4(αk)2}, ∀v ∈ D ∪ {0}}.

Lemmas 8, 9, 10 are left unchanged by the transition to constrained domains. A version of Lemma 3.4. of
(Gratton et al., 2019) reads :
Lemma 18. On ∩k≤KEk, and if f satisfies Assumption 1, then the following holds: if the k-th iteration is
unsuccessful, then

χ(xk) ≤
(

β

2κ
+ Bg

ηmin

)
αk + 3ρ(αk)

2καk
:= L2αk,

where ηmin := λ(N) where N is the set of all possible approximate normal cones N(x, α), ∀ ∈ D, α ∈ Rd.

Proof. It is straightforward to prove

∥PT (xk,αk)(−∇f(xk))∥≤ 1
κ

(
β

2
αk + 3ρ(αk)

2αk

)
= 1

2κ

(
βαk + 3cα2

k

)
,

with the same elements as in the proof Lemma 11, by noticing that Dk contains Gk, that generates T (xk, αk).
To prove the bound on χ(xk), we use the Moreau decomposition,stating that any vector v ∈ Rd can be

27

Published in Transactions on Machine Learning Research (04/2024)

decomposed as v = PTk
[v] + PNk

[v] with Nk = N(xk, αk) and PTk
[v] > PNk

[v] = 0, and write

χ(xk) = max
x+v∈D, ∥v∥≤1

(PTk
[−∇f(xk)] + (PTk

[v]vT + PNk
[v])T PNk

[−∇f(xk)])

≤ max
x+v∈D, ∥v∥≤1

(vT PTk
[−∇f(xk)] + PNk

[v]T PNk
[−∇f(xk)])

≤ max
x+v∈D, ∥v∥≤1

∥PTk
[−∇f(xk)]∥+∥PNk

[v]∥∥PNk
[−∇f(xk)]∥. (6)

The first term of the right hand side of Equation 6 is bounded in the following way

∥PT (xk,αk)(−∇f(xk))∥≤ 1
2κ

(
βαk + 3cα2

k

)
consequently.

Lemma 19 (Proposition B.1 of (Lewis & Torczon, 2000)). Let x ∈ D and α > 0. Then, for any vector v
such that x + v ∈ D, one has

∥PN(x,α)[v]∥≤ α

ηmin
.

This in turn provides a bound of the second term of the right hand side of Equation 6:

∥PNk
[v]∥∥PNk

[−∇f(xk)]∥≤ α

ηmin
Bg,

which suffices to conclude the proof.

Lemma 20. Assume that ∩k≤KEk holds, and f satisfies Assumption 1. Set ϵ > 0. Let h denote the mapping
from ϵ to

h(ϵ) =
(

2L2
2U

cθ1

)
ϵ−2 +

log(α0L2
θ)

log(1/θ)
+ 2U

α2
0

= E1ϵ−2 + E2,

where E1 =
(

2L2
2U

cθ1

)
and E2 = log(α0L2

θ)
log(1/θ) + 2U

α2
0

. Denote by k(ϵ) the first iteration of the algorithm where
χ(xk) ≤ ϵ. If h(ϵ) ≤ K, then

k(ϵ) ≤ h(ϵ).

The proof is a mere adaptation of the proof of Theorem 1 of (Gratton et al., 2015), with different constants
(we use Lemma 18 and 13).
Lemma 21. If f satisfies Assumption 1,

a∥xk − x⋆∥≤ χ(xk).

Proof.

a∥xk − x⋆∥≤
f(x)− f(x⋆)
∥xk − x⋆∥

≤ −∇f(x)(x⋆ − xk)
∥xk − x⋆∥

≤ χ(xk),

by definition of χ(xk).

Lemma 22. If f satisfies Assumption 1 and if x⋆ is in the interior of D and the algorithm achieves descent
at each iteration, then

∀k′ > k, ∥χ(xk′)∥≤
(

β

a

)3/2

∥χ(xk)∥.

Proof. Like in the proof of Lemma 1, we get

a∥xk − x∗∥≤ ∥∇f(xk)∥.

28

Published in Transactions on Machine Learning Research (04/2024)

Hence,

β∥xk′ − x⋆∥ ≤
β√
a

√
f(xk′)− f(x⋆) ≤ β√

a

√
f(xk)− f(x⋆)

≤ β√
a

√
β(xk − x⋆)2 ≤ β3/2

√
a

√
χ(xk)2

a

≤
(

β

a

)3/2

χ(xk),

where the first inequality comes from the strong convexity, and the second one comes from the fact that the
algorithm is a descent, the third one comes from Lemma 21.

Now let v = arg maxx+v∈D, ∥v∥≤1−vT∇f(xk′).

−v⊤∇f(xk′) = −v⊤∇f(xk′) + v⊤∇f(x∗) ≤ ∥∇f(xk′)−∇f(x∗)∥≤ β∥xk − x⋆∥,

because ∇f(x∗) = 0. This concludes the proof.

D.2 Regret Analysis when the Optimum is in the interior of D

Let us assume that x⋆ is in the interior of D. Let us denote by ∆ the distance from x⋆ to the closest
boundary, and by r = ∆/4.
Lemma 23. If χ(x) ≤ ar then ∥x− x⋆∥≤ r.

If ∥x− x⋆∥≥ r then r ≤ 1
a χ(x) thanks to Lemma 21.

Lemma 24. For any k ≥ k
(

(a/β)3/2
ar
)

, ∥xk − x⋆∥≤ r.

Thanks to Lemma 1, after k
(

(a/β)3/2
ar
)

iterations, χ(xk) ≤ ar. And thanks to the previous lemma, we
thus have ∥xk − x⋆∥≤ r.
Lemma 25. Set ks the index of the first successful iteration following
k
(

(a/β)3/2
ar
)

where αk ≤ ∆/2. After iteration ks, T (xk, αk) spans all directions in Rd, so that the
instantaneous regret is the same as that of the algorithm in the unconstrained case with initial point xks

and initial step-size αks
. The iteration of this first successful iteration comes before ki := k

(
(a/β)3/2

ar
)

+
log(α0/∆)

log 1/θ .

Proof. If k is a successful iteration αk ≤ 2r = ∆/(2), since ∥xk−x⋆∥≤ r and ∥xk+1−x⋆∥≤ r. And if k is an
unsuccessful iteration, it comes after one of those successes and a sequence of unsuccessful iterations, which
yields αk ≤ ∆/(2).

Lemma 26. On ∩k≤KEk,

R̃K ≤ C7 log(2/δ)(1/θ)−4Cf + C5 log(2/δ)1/3

(
K∑

k=1

Nk

)2/3

,

where C7 = (SD + 1)U 32
c2α4

0

1
(1/θ)−1

and

Cf = E1

((
a

β

)3/2

ar

)−2

+ E2 + log(α0/∆)
log 1/θ

+ β∆2

α0
.

29

Published in Transactions on Machine Learning Research (04/2024)

Proof. In the proof of Lemma 16, we isolated the steps preceding the first unsuccessful iteration. Similarly
here, we treat the iterations before the first unsuccessful iteration after ki, denoted by k′

f , separately from
other iterations.

R̃K ≤
k′

f∑
k=0

Nk(f(xk)− f(x⋆)) +
k′

f∑
k=0

(
Nk

∑
v∈Dk

f(xk + αkv)− f(x⋆)

)

+
K∑

k=k′
f

(Nk(|Dk|+1)(f(xk)− f(x⋆))) +
K∑

k=k′
f

Nk

(∑
v∈Dk

f(xk + αkv)− f(xk)

)
.

Because f(x)− f(x⋆) is bounded by U ,

k′
f∑

k=0

Nk(f(xk)− f(x⋆)) +
k′

f∑
k=0

(
Nk

∑
v∈Dk

f(xk + αkv)− f(x⋆)

)

≤
k′

f∑
k=0

(|Dk|+1)NkU.

By rewriting Nk,

k′
f∑

k=0

(|Dk|+1)NkU ≤
k′

f∑
k=0

(|Dk|+1)U 32 log(1/δ)
c2α4

k

≤
k′

f∑
k=0

(|Dk|+1)U 32 log(1/δ)
c2α4

0θ4k

≤ (SD + 1)U 32 log(1/δ)
c2α4

0

(1/θ)−4k′
f

(1/θ)− 1
.

Also on ∩k≤KEk,

k′
f ≤ ki + f(xki)− f(x⋆)

α0
≤ ki + β∆2

α0
≤ k

((
a

β

)3/2

ar

)
+ log(α0/∆)

log 1/θ
+ β∆2

αk
,

where the first inequality comes from the same argument used to prove Lemma 4, the second inequality
comes from the smoothness of f and the third one comes from the definition of ki.

On ∩k≤KEk,

k

((
a

β

)3/2

ar

)
≤ E1

((
a

β

)3/2

ar

)−2

+ E2,

with E1, E2 defined in (Gratton et al., 2019). Finally, we focus on the part of the regret accumulated before
k′

f . On ∩k≤KEk

K∑
k=k′

f

(Nk(|Dk|+1)(f(xk)− f(x⋆))) +
K∑

k=k′
f

Nk

(∑
v∈Dk

f(xk + αkv)− f(xk)

)

≤ C5 log(2/δ)1/3

(
K∑

k=1

Nk

)2/3

,

by following exactly the same steps as those needed to bound the regret in the unconstrained case.

30

Published in Transactions on Machine Learning Research (04/2024)

Theorem 2. Under Assumptions 1, 3 and 4, and if x⋆ ∈ int(D), the cumulative regret RT of FDS-Plan
(respectively FDS-Seq) after the first T evaluations of f , satisfies

E[RT] = O(log(T)2/3T 2/3)

for the choice δ = T −4/3 (respectively δ = T −10/3 for FDS-Seq).

Proof. for FDS-Plan. We denote by KT the last round reached by the algorithm with T evaluations..
Lemma 26 proves that on the event ∩k≤KT

Ek,

R̃K ≤ C7 log(2/δ)(1/θ)−4Cf + C5 log(2/δ)1/3

(
K∑

k=1

Nk

)2/3

.

Thanks to Lemma 8,

P
(
∪KT

k=1E
C
k

)
≤ (SD + 1)P

(
∪T

k=1EC
k

)
≤ (|Dk|+1)

T∑
t=1

T −4/3/2 ≤ (SD + 1)T −1/3

since KT ≤ T . Hence,

E[RT] ≤ 4
3

C7(1/θ)−4Cf log(2T) + 4
3

(
1

(|Dk|+1)

)2/3

C5 log(2T)2/3T 2/3

+ ((SD + 1))UT 2/3

= O((log T)2/3T 2/3).

Adaptation of the proof for FDS-Seq The way of adapting the proof of FDS-Plan to the case of
FDS-Seq of Section C.4 applies verbatim.

E Details on the implementation of HOO in Section 2.2

To implement HOO in the simulations of Section 2.2, the tree of partitions that we used is built in the
following way. We set the parameter ρ of HOO as suggested by Bubeck et al. (2011) to 2−2/d. A binary tree
of depth H = log(1/T)

2 log(ρ) of partitions of [0, 1]d is obtained by recursively halving the cells at each depth h of
the tree along dimension h (mod 2). At depth h, this approach yields a partition formed by rectangular cells
represented by their lower left corner [ai, bi]. Then, in order to remove unwanted cells, we traverse the tree,
starting from the leaves, and remove every cell having an empty intersection with the domain. Due to the
geometry of the simplex, knowing if a cell intersects the domain boils down to checking if its representation
[ai, bi] belongs to it. When the algorithm selects cell (h, i) at time t, the representation of that cell is chosen
as a sampling point. In the simulation, the smoothness parameter ν1 of HOO is set to 16.

F Additional Experiments

Here, as in Section 2.2, we focus on the case in which there are three resources (d = 2). The loss functions
for resources 1 and 3 are of the same form as in Section 2.2 and wi(x) = −τi

log(1+γx)
log(1+γ) with γ = 2, τ1 = 1,

τ3 = 0.3, but now the second resource is associated to w2(x) = 0.1 x. This choice of reward functions results
in an optimal choice whose second component is zero. We set the horizon to T = 100, 000 and use a Gaussian
noise with standard deviation σ = 0.1.

We show the trajectories of FDS-Plan and FDS-Seq in Figure 3. Notice that the trajectories do not change
drastically compared to those of Section 2.2, which seems to indicate that the location of the optimal

31

Published in Transactions on Machine Learning Research (04/2024)

allocation on the border of the feasible set is not a problem in practice. We complement these plots with
regret plots (Figure 4) of all the algorithms detailed in Section 2.2 run first on the environment described in
this same section and second on the environment described above with the optimum on the border of the
simplex. Once again, this seems to show that the optimum lying in the border is not an issue in practice.
Incidentally, this last plot also shows that, as expected, UCB should be the preferred algorithm in dimension
d = 2, as it is simpler and gives excellent results.

−0.9542

−
0.8656

−
0.7771

−
0.6885

100 102 104

(a) FDS-Plan

−0.9542

−
0.8656

−
0.7771

−
0.6885

100 102 104

(b) FDS-Seq

Figure 3: Single trajectories with the optimum on the border

0 20000 40000 60000 80000 100000

Time

0

2500

5000

7500

10000

12500

15000

17500

20000

R
eg

re
t

FDS-Plan

FDS-Seq

HOO

UCB

GD

2-points GD

(a) Optimum in the interior

0 20000 40000 60000 80000 100000

Time

0

5000

10000

15000

20000

25000

R
eg

re
t

FDS-Plan

FDS-Seq

HOO

UCB

GD

2-points GD

(b) Optimum on the border

Figure 4: Regret plots in dimension d = 2

32

	Introduction
	Motivation: Blind Resource Allocation
	Model
	Related Works
	Contribution

	Algorithms
	Description of the Algorithms
	Illustration

	Regret Analysis
	Warm-up: the Unconstrained and Deterministic Setting
	Elements of Proof

	The Constrained and Noisy Setting
	Elements of Proof

	Experiments
	Conclusion
	Broader Impact Statement
	Deterministic and unconstrained set-up
	Preliminary Results
	Regret Bound

	Noisy and unconstrained set-up
	Presentation of the main Result
	Intermediate results
	Regret Analysis of FDS-Plan
	Regret Analysis of FDS-Seq

	Noisy and Constrained Set-Up
	Intermediate Results
	Regret Analysis when the Optimum is in the interior of D

	Details on the implementation of HOO in Section 2.2
	Additional Experiments

