
DiP-GNN: Discriminative Pre-Training of Graph
Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph neural network (GNN) pre-training methods have been proposed to enhance1

the power of GNNs. Specifically, a GNN is first pre-trained on a large-scale unla-2

beled graph and then fine-tuned on a separate small labeled graph for downstream3

applications, such as node classification. One popular pre-training method is to4

mask out a proportion of the edges, and a GNN is trained to recover them. How-5

ever, such a generative method suffers from graph mismatch. That is, the masked6

graph input to the GNN deviates from the original graph. To alleviate this issue,7

we propose DiP-GNN (Discriminative Pre-training of Graph Neural Networks).8

Specifically, we train a generator to recover identities of the masked edges, and9

simultaneously, we train a discriminator to distinguish the generated edges from10

the original graph’s edges. The discriminator is subsequently used for downstream11

fine-tuning. In our pre-training framework, the graph seen by the discriminator12

better matches the original graph because the generator can recover a proportion13

of the masked edges. Extensive experiments on large-scale homogeneous and14

heterogeneous graphs demonstrate the effectiveness of DiP-GNN. Our code will15

be publicly available.16

1 Introduction17

Graph neural networks (GNNs) have achieved superior performance in various applications, such18

as node classification (Kipf and Welling, 2017), knowledge graph modeling (Schlichtkrull et al.,19

2018) and recommendation systems (Ying et al., 2018). To enhance the power of GNNs, generative20

pre-training methods are developed (Hu et al., 2020b). During the pre-training stage, a GNN21

incorporates topological information by training on a large-scale unlabeled graph in a self-supervised22

manner. Then, the pre-trained model is fine-tuned on a separate small labeled graph for downstream23

applications. Generative GNN pre-training is akin to masked language modeling in language model24

pre-training (Devlin et al., 2019). That is, for an input graph, we first randomly mask out a proportion25

of the edges, and then a GNN is trained to recover the original identity of the masked edges.26

One major drawback with the abovementioned approach is graph mismatch. That is, the input graph27

to the GNN deviates from the original one since a considerable amount of edges are dropped. This28

causes changes in topological information, e.g., node connectivity. Consequently, the learned node29

embeddings may not be desirable.30

To mitigate the above issues, we propose DiP-GNN (Discriminative Pre-training of Graph Neural31

Networks). In DiP-GNN, we simultaneously train a generator and a discriminator. The generator32

is trained similar to existing generative pre-training approaches, where the model seeks to recover33

the masked edges and outputs a reconstructed graph. Subsequently, the reconstructed graph is fed to34

the discriminator, which predicts whether each edge resides in the original graph (i.e., a true edge)35

or is wrongly constructed by the generator (i.e., a fake edge). After pre-training, we fine-tune the36

discriminator on downstream tasks. Figure 1 illustrates our training framework. Note that our work37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Figure 1: Illustration of DiP-GNN. From left to right: Original graph; Graph with two masked edges
(dashed lines); Reconstructed graph created by the generator (generated edges are the dashed red
lines); Discriminator labels each edge as [G] (generated) or [O] (original), where there are two wrong
labels (shown in red).

is related to Generative Adversarial Nets (GAN, Goodfellow et al. 2014), and detailed discussions38

are presented in Section 3.4. We remark that similar approaches have been used in natural language39

processing (Clark et al., 2020). However, we identify the graph mismatch problem (see Section 4.5),40

which is specific to graph-related applications and is not observed in natural language processing.41

The proposed framework is more advantageous than generative pre-training. This is because the42

reconstructed graph fed to the discriminator better matches the original graph compared with the43

masked graph fed to the generator. Consequently, the discriminator can learn better node embeddings.44

Such a better alignment is because the generator recovers the masked edges during pre-training, i.e.,45

we observe that nearly 40% of the missing edges can be recovered. We remark that in our framework,46

the graph fed to the generator has missing edges, while the graph fed to the discriminator contains47

wrong edges since the generator may make erroneous predictions. However, empirically we find that48

missing edges hurt more than wrong ones, making discriminative pre-training more desirable (see49

Section 4.5 in the experiments).50

We demonstrate effectiveness of DiP-GNN on large-scale homogeneous and heterogeneous graphs.51

Results show that the proposed method significantly outperforms existing generative pre-training and52

self-supervised learning approaches. For example, on the homogeneous Reddit dataset (Hamilton53

et al., 2017) that contains 230k nodes, we obtain an improvement of 1.1 in terms of F1 score; and54

on the heterogeneous OAG-CS graph (Tang et al., 2008) that contains 1.1M nodes, we obtain an55

improvement of 2.8 in terms of MRR score in the paper field prediction task.56

2 Background57

⋄ Graph Neural Networks. Graph neural networks compute a node’s representation by aggregating58

information from the node’s neighbors. Concretely, for a multi-layer GNN, the feature vector h(k)
v of59

node v at the k-th layer is60

h(k)
v = Combine

(
a(k)v , h(k−1)

v

)
, a(k)v = Aggregate

({
h(k−1)
u ∀u ∈ Neighbor(v)

})
,

where Neighbor(v) denotes all the neighbor nodes of v. Various implementations of Aggregate(·)61

and Combine(·) are proposed for both homogeneous (Defferrard et al., 2016; Kipf and Welling,62

2017; Velickovic et al., 2018; Xu et al., 2019) and heterogeneous graphs (Schlichtkrull et al., 2018;63

Wang et al., 2019; Zhang et al., 2019; Hu et al., 2020c).64

⋄ Graph Neural Network Pre-Training. Previous unsupervised learning methods leverage the65

graph’s proximity (Tang et al., 2015) or information gathered by random walks (Perozzi et al., 2014;66

Grover and Leskovec, 2016; Dong et al., 2017; Qiu et al., 2018). However, the learned embeddings67

cannot be transferred to unseen nodes, limiting the methods’ applicability. Other unsupervised68

learning algorithms adopt contrastive learning (Hassani and Ahmadi, 2020; Qiu et al., 2020; Zhu69

et al., 2020, 2021; You et al., 2020, 2021). That is, we generate two views of the same graph, and70

then maximize agreement of node presentations in the two views. However, our experiments reveal71

that these methods do not scale well to extremely large graphs with millions of nodes.72

Many GNN pre-training methods focus on generative objectives. For example, GAE (Graph Auto-73

Encoder, Kipf and Welling 2016) proposes to reconstruct the graph structure; GraphSAGE (Hamilton74

et al., 2017) optimizes an unsupervised loss derived from a random-walk-based metric; and DGI75

(Deep Graph Infomax, Velickovic et al. 2019) maximizes the mutual information between node76

representations and a graph summary representation.77

2

There are also pre-training methods that extract graph-level representations, i.e., models are trained on78

a large amount of small graphs instead of a single large graph. For example, Hu et al. 2020a propose79

pre-training methods that operate on both graph and node level; and InfoGraph (Sun et al., 2020)80

proposes to maximize the mutual information between graph representations and representations81

of the graphs’ sub-structures. In this work, we focus on pre-training GNNs on a single large graph82

instead of multiple small graphs.83

3 Method84

We formally introduce the proposed discriminative GNN pre-training framework DiP-GNN. The85

algorithm contains two ingredients that operate on edges and features.86

3.1 Edge Generation and Discrimination87

Suppose we have a graph G = (N , E), where N denotes all the nodes and E denotes all the edges.88

We randomly mask out a proportion of the edges, such that E = Eu ∪ Em, where Eu is the unmasked89

set of edges and Em is the set of edges that are masked out.90

For a masked edge e = (n1, n2) ∈ Em, where n1 and n2 are the two nodes connected by e, the91

generator’s goal is to predict n1 given n2 and the unmasked edges Eu. For each node n, we compute92

its representation hg(n) = fe
g (n, θ

e
g) using the generator fe

g (·, θeg), which is parameterized by θeg . We93

remark that the computation of hg(·) only relies on the unmasked edges Eu. We assume that the94

generation process of each edge is independent. Then, we have the prediction probability95

p(n1|n2, Eu) =
exp (d(hg(n1), hg(n2)))∑

n′∈C exp (d(hg(n′), hg(n2)))
, where C = {n1} ∪ (N \Neighbor(n2)). (1)

Here, C is the candidate set for n1, which contains all the nodes that are not connected to n2 except96

n1 itself. Moreover, the distance function d(·, ·) is chosen as a trainable cosine similarity, i.e.,97

d(u, v) =
(W cosu)⊤v

||W cosu|| · ||v||
, (2)

where W cos is a trainable weight. The training loss for the generator is defined as98

Le
g(θ

e
g) =

∑
(n1,n2)∈Em

− log p(n1|n2, Eu), (3)

which is equivalent to maximizing the likelihood of correct predictions.99

The goal of the generator is to recover the masked edges in Em. Therefore, after we train the100

generator, we use the trained model to generate Eg = {(n̂1, n2)}(n1,n2)∈Em
, where each n̂1 is the101

model’s prediction as n̂1 = argmaxn′∈C p(n′|n2, Eu). Because the generator cannot correctly predict102

every edge, some edges in Eg are wrongly generated (i.e., not in Em). We refer to such edges as fake103

edges, and the rest as true edges. Concretely, we denote the true edges E true = Eu ∪ (Em ∩ Eg), i.e.,104

the unmasked edges and the edges correctly generated by the generator. Correspondingly, we denote105

the fake edges E fake = E \ E true.106

The discriminator is trained to distinguish edges that are from the original graph (i.e., the true edges)107

and edges that are not (i.e., fake edges). Specifically, given the true edges E true and the fake ones108

E fake, we first compute hd(n) = fe
d (n, θ

e
d) for every node n ∈ N , where fe

d (·, θed) is the discriminator109

model parameterized by θed. We highlight that different from computing hg(·), the computation of110

hd(·) relies on all the edges, such that the discriminator can separate a fake edge from a true one.111

Then, for each edge e = (n1, n2) ∈ E true ∪ E fake, the discriminator outputs112

pfake = p(e ∈ E fake|E true, E fake) = sigmoid (d(hd(n1), hd(n2))) , (4)
where d(·, ·) is the distance function in Eq. 2. The training loss for the discriminator is the binary113

cross-entropy loss of predicting whether an edge is fake or not, defined as114

Le
d(θ

e
d) =

∑
e∈E true∪Efake

−1{e ∈ E fake} log(pfake)− 1{e ∈ E true} log(1− pfake), (5)

where 1{·} is the indicator function.115

The edge loss is the weighted sum of the generator’s and the discriminator’s loss116

Le(θeg, θ
e
d) = Le

g(θ
e
g) + λLe

d(θ
e
d), (6)

where λ is a hyper-parameter. Note that structures of the generator fe
g and the discriminator fe

d are117

flexible, e.g., they can be graph convolutional networks (GCN) or graph attention networks (GAT).118

3

3.2 Feature Generation and Discrimination119

In real-world applications, nodes are often associated with features. For example, in the Reddit dataset120

(Hamilton et al., 2017), a node’s feature is a vectorized representation of the post corresponding to121

the node. As another example, in citation networks (Tang et al., 2008), a paper’s title can be treated122

as a node’s feature. Previous work (Hu et al., 2020b) has demonstrated that generating features and123

edges simultaneously can improve the GNN’s representation power.124

Node features can be either texts (e.g., in citation networks) or vectors (e.g., in recommendation125

systems). In this section, we develop feature generation and discrimination procedures for texts.126

Vector features are akin to encoded text features, and we can use linear layers to generate and127

discriminate them. Details about vector features are deferred to Appendix B.128

For text features, we parameterize both the feature generator and discriminator using bi-directional129

Transformer models (Vaswani et al., 2017), similar to BERT (Devlin et al., 2019). Denote ff
g (·, θfg) =130

trmg ◦ embg(·) the generator parameterized by θfg , where embg is the word embedding function and131

trmg denotes subsequent Transformer layers. For an input text feature x = [x1, · · · , xL] where L is132

the sequence length, we randomly select indices to mask out, i.e., we randomly select an index set133

M⊂ {1, · · · , L}. For a masked position i ∈M, the prediction probability is given by134

p(xi|x) =
exp

(
embg(xi)

⊤vg(xi)
)∑

x′∈vocab exp (embg(x′)⊤vg(x′))
, vg(xi) = trmg

(
W proj

g [hg(nx), embg(xi)]
)
.

Here W proj
g is a trainable weight and hg(nx) is the representation of the node corresponding to x135

computed by the edge generation GNN. Note that we concatenate the text embedding embg(xi) and136

the feature node’s embedding hg(nx), such that the feature generator can aggregate information from137

the graph structure. We train the generator by maximizing the probability of predicting the correct138

token, i.e., by minimizing the loss139

Lf
g (θ

e
g, θ

f
g) =

∑
x

∑
i∈M− log p(xi|x). (7)

After we train the generator, we use the trained model to predict all the masked tokens, after which140

we obtain a new text feature xcorr. Here, we set xcorr
i = xi for i /∈ M and xcorr

i = x̂i for i ∈ M,141

where x̂i = argmaxx′∈vocab p(xi|x) is the generator’s prediction.142

The discriminator is trained to distinguish the fake tokens (i.e., wrongly generated tokens) from the143

true ones (i.e., the unmasked and correctly generated tokens) in xcorr. Similar to the generator, we144

denote ff
d (·, θ

f
d) = trmd ◦ embd(·) as the discriminator parameterized by θfd . For each position i,145

the discriminator’s prediction probability is defined as146

p(xcorr
i = xi) = sigmoid

(
w⊤vd(x

corr
i)

)
, vd(x

corr
i) = trmd

(
W proj

d [hd(nx), embd(x
corr
i)]

)
.

Here w and W proj
d are trainable weights and hd(nx) is the representation of the node corresponding147

to x computed by the edge discriminator GNN. The training loss for the discriminator is148

Lf
d(θ

e
d, θ

f
d) =

∑
x

∑L
i=1−1{xcorr

i = xi} log(ptrue)− 1{xcorr
i ̸= xi} log(1− ptrue), (8)

where ptrue = p(xcorr
i = xi).149

The text feature loss is defined as150

Lf (θeg, θ
f
g , θ

e
d, θ

f
d) = L

f
g (θ

e
g, θ

f
g) + λLf

d(θ
e
d, θ

f
d), (9)

where λ is a hyper-parameter.151

3.3 Model Training152

We jointly minimize the edge loss and the feature loss, where the loss function is153

L(θeg, θfg , θed, θ
f
d) = L

e(θeg, θ
e
d) + Lf (θeg, θ

f
g , θ

e
d, θ

f
d)

=
(
Le
g(θ

e
g) + Lf

g (θ
e
g, θ

f
g)
)
+ λ

(
Le
d(θ

e
d) + L

f
d(θ

e
d, θ

f
d)
)
. (10)

Here, λ is the weight of the discriminator’s loss. We remark that our framework is flexible because154

the generator’s loss (Le
g and Lf

g) is decoupled from the discriminator’s (Le
d and Lf

d). As such,155

4

existing generative pre-training methods can be applied to train the generator. In DiP-GNN, the156

discriminator has a better quality than the generator because of the graph mismatch issue (see157

Section 4.5). Therefore, after pre-training, we discard the generator and fine-tune the discriminator158

on downstream tasks. A detailed training pipeline is presented in Appendix A.159

3.4 Comparison with GAN160

We remark that our framework is different from Generative Adversarial Nets (GAN, Goodfellow et al.161

2014). In GAN, the generator-discriminator training framework is formulated as a min-max game,162

where the generator is trained adversarially to fool the discriminator. The two models are updated163

using alternating gradient descent/ascent.164

However, the min-max game formulation of GAN is not applicable to our framework. This is because165

in GNN pre-trianing, the generator generates discrete edges, unlike continuous pixel values in the166

image domain. Such a property prohibits back-propagation from the discriminator to the generator.167

Existing works (Wang et al., 2018) use reinforcement learning (specifically policy gradient) to168

circumvent the non-differentiability issue. However, reinforcement learning introduces extensive169

hyper-parameter tuning and suffers from scalability issues. For example, the largest graph used in170

Wang et al. 2018 only contains 18k nodes, whereas the smallest graph used in our experiments has171

about 233k nodes.172

Additionally, the goal of GAN is to train good-quality generators, which is different from our focus.173

In our discriminative pre-training framework, we focus on the discriminator because of better graph174

alignments. In practice, we find that accuracy of the generator is already high even without the175

discriminator, e.g., the accuracy is higher than 40% with 255 negative samples. And we observe that176

further improving the generator does not benefit downstream tasks.177

4 Experiments178

We implement all the algorithms using PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey179

and Lenssen, 2019). Experiments are conducted on NVIDIA A100 GPUs. By default, we use180

Heterogeneous Graph Transformer (HGT, Hu et al. 2020c) as the backbone GNN. We also discuss181

other choices in the experiments. Training and implementation details are deferred to Appendix C.182

4.1 Settings and Datasets183

⋄ Settings. We consider a node transfer setting in the experiments. In practice we often work with184

a single large-scale graph, on which labels are sparse. In this case, we can use the large amount185

of unlabeled data as the pre-training dataset, and the rest are treated as labeled fine-tuning nodes.186

Correspondingly, edges between pre-training nodes are added to the pre-training data, and edges187

between fine-tuning nodes are added to the fine-tuning data. In this way, the model cannot see the188

fine-tuning data during pre-training, and vice versa.189

We remark that our setting is different from conventional self-supervised learning, namely we pre-190

train and fine-tune on two separate graphs. This meets the practical need of transfer learning, e.g., a191

trained GNN needs to transfer across locales and time spans in recommendation systems.192

⋄ Homogeneous Graph. We use the Reddit dataset (Hamilton et al., 2017), which is a publicly193

available large-scale graph. In this graph, each node corresponds to a post, and is labeled with a194

“subreddit”. Each node has a 603-dimensional feature vector constructed from the corresponding195

post. Two nodes (posts) are connected if the same user commented on both. The dataset contains196

posts from 50 subreddits sampled from posts initiated in September 2014. In total, there are 232,965197

posts with an average node degree of 492. We use 70% of the data as the pre-training data, and the198

rest as the fine-tuning data, which are further split into training, validation, and test sets equally. We199

consider node classification as the downstream fine-tuning task.200

⋄ Product Recommendation Graph. We collect in-house product recommendation data from an201

e-commerce website. We build a bi-partite graph with two node types: search queries and product202

ids. The dataset contains about 633k query nodes, 2.71M product nodes, and 228M edges. We203

sample 70% of the nodes (and corresponding edges) for pre-training, and the rest are evenly split204

for fine-tuning training, validation and testing. We consider link prediction as the downstream task,205

where for each validation and test query node, we randomly mask out 20% of its edges to recover.206

5

For each masked edge that corresponds to a query node and a positive product node, we randomly207

sample 255 negative products. The task is to find the positive product out of the total 256 products.208

⋄ Heterogeneous Graph. We use the OAG-CS dataset (Tang et al., 2008; Sinha et al., 2015), which209

is a publicly available heterogeneous graph containing computer science papers. The dataset contains210

over 1.1M nodes and 28.4M edges. In this graph, there are five node types (institute, author, venue,211

paper and field) and ten edge types. The “field” nodes are further categorized into six levels from L0212

to L5, which are organized using a hierarchical tree. Details are shown in Figure 2.213

Figure 2: Details of OAG-CS. There are 5 node
types (in black) and 10 edge types (in red).

We use papers published before 2014 as the214

pre-training dataset (63%), papers published be-215

tween 2014 (inclusive) and 2016 (inclusive) as216

the fine-tuning training set (20%), papers pub-217

lished in 2017 as the fine-tuning validation set218

(7%), and papers published after 2017 as the219

fine-tuning test set (10%). During fine-tuning,220

by default we only use 10% of the fine-tuning221

training data (i.e., 2% of the overall data) be-222

cause in practice labeled data are often scarce.223

We consider three tasks for fine-tuning: author224

name disambiguation (AD), paper field classifi-225

cation (PF) and paper venue classification (PV). For paper field classification, we only consider L2226

fields. In the experiments, we use the pre-processed graph from Hu et al. 2020b.227

4.2 Implementation Details228

⋄ Graph subsampling. In practice, graphs are often too large to fit in the hardware, e.g., the Reddit229

dataset (Hamilton et al., 2017) contains over 230k nodes. Therefore, we sample a dense subgraph230

from the large-scale graph in each training iteration. For homogeneous graphs, we apply the LADIES231

algorithm (Zou et al., 2019), which theoretically guarantees that the sampled nodes are highly inter-232

connected with each other and can maximally preserve the graph structure. For heterogeneous graphs,233

we use the HGSampling algorithm (Hu et al., 2020b), which is a heterogeneous version of LADIES.234

⋄ Node sampling for the edge generator. In the edge generator, for a masked edge (s, t), we fix the235

node t and seek to identify the other node s. One approach is to identify s from all the graph nodes,236

i.e., by setting C = N in Eq. 1. However, this task is computationally intractable when the number237

of nodes is large, i.e., the model needs to find s out of hundreds of thousands of nodes. Therefore,238

we sample some negative nodes {sgi }
nneg
i=1 such that (sgi , t) /∈ E . Then, the candidate set to generate239

the source node becomes {s, sg1, · · · , sgnneg
} instead of all the graph nodes N . We remark that such a240

sampling approach is standard for GNN pre-training and link prediction (Hamilton et al., 2017; Sun241

et al., 2020; Hu et al., 2020b).242

⋄ Edge sampling for the edge discriminator. In computing the loss for the discriminator, the number243

of edges in Eu is significantly larger than those in Eg, i.e., we only mask a small proportion of the244

edges. To avoid the discriminator from outputting trivial predictions (i.e., all the edges belong to Eu),245

we balance the two loss terms in Le
d. Specifically, we sample Edu ⊂ Eu such that |Edu| = α|Eg|, where246

α is a hyper-parameter. Then, we compute Le
d on Eg and Edu . Note that the node representations hd247

are still computed using all the generated and unmasked edges Eg and Eu.248

4.3 Baselines249

We compare our method with several baselines in the experiments. For fair comparison, all the250

methods are trained for the same number of GPU hours.251

⋄ GAE (Graph Auto-Encoder, Kipf and Welling 2016) adopts an auto-encoder for unsupervised252

learning on graphs. In GAE, node embeddings are learnt using a GNN, and we minimize the253

discrepancy between the original and the reconstructed adjacency matrix.254

⋄ GraphSAGE (Hamilton et al., 2017) encourages embeddings of neighboring nodes to be similar.255

For each node, the method learns a function that generates embeddings by sampling and aggregating256

features from the node’s neighbors.257

6

Table 1: Experimental results on homogeneous
graphs. We report F1 averaged over 10 runs for
the Reddit data and MRR over 10 runs for the
product recommendation data. The best results
are shown in bold.

Reddit Recomm.
w/o pre-train 87.3 46.3

GAE 88.5 56.7
GraphSAGE 88.0 53.0
DGI 87.7 53.3
GPT-GNN 89.6 58.6
GRACE 89.0 51.5
GraphCL 88.6 —
JOAOv2 89.1 —

DiP-GNN 90.7 60.1

Table 2: Experimental results on OAG-CS
(heterogeneous). Left to right: paper-field,
paper-venue, author-name-disambiguation.
We report MRR over 10 runs. The best re-
sults are shown in bold.

PF PV AD
w/o pre-train 32.7 19.6 60.0

GAE 40.3 24.5 62.5
GraphSAGE 37.8 22.1 62.9
DGI 38.1 22.5 63.0
GPT-GNN 41.6 25.6 63.1
GRACE 38.0 21.5 62.0
GraphCL 38.0 22.0 61.5
JOAOv2 38.6 23.5 62.8

DiP-GNN 44.1 27.7 65.6

(a) Author name disambiguation. (b) Paper field classification. (c) Paper venue classification.

Figure 3: Model performance vs. amount of labeled data on OAG-CS.

⋄ DGI (Deep Graph Infomax, Velickovic et al. 2019) maximizes information between node represen-258

tations and corresponding high-level summaries of graphs. Thus, a node’s embedding summarizes a259

sub-graph centered around it.260

⋄ GPT-GNN (Hu et al., 2020b) adopts a generative pre-training objective. The method generates261

edges by minimizing a link prediction objective, and incorporates node features in the framework.262

⋄ GRACE (Graph Contrastive Representation, Zhu et al. 2020) leverages a contrastive objective.263

The algorithm generates two views of the same graph through node and feature corruption, and then264

maximize agreement of node representations in the two views.265

⋄ GraphCL (You et al., 2020) is another graph contrastive learning approach that adopts node and266

edge augmentation techniques, such as node dropping and edge perturbation.267

⋄ JOAO (Joint Augmentation Optimization, You et al. 2021) improves GraphCL by deigning a268

bi-level optimization objective to automatically and dynamically selects augmentation methods.269

4.4 Main Results270

In Table 1 and Table 2, w/o pre-train means direct training on the fine-tuning dataset without pre-271

training. Results on the Reddit dataset are F1 scores averaged over 10 runs, and results on the product272

recommendation graph are MRR scores averaged over 10 runs. All the performance gain have passed273

a hypothesis test with p-value < 0.05.274

Table 1 summarizes experimental results on the homogeneous graphs: Reddit and Recommendation.275

We see that pre-training indeed benefits downstream tasks. For example, performance of GNN276

improves by at ≥ 0.4 F1 on Reddit (DGI) and ≥ 5.2 MRR on Recommendation (GRACE). Also,277

notice that among the baselines, generative approaches (GAE and GPT-GNN) yield promising278

performance. On the other hand, the contrastive method (GRACE, GraphCL and JOAO) does not279

scale well to large graphs, e.g., the OAG-CS graph which contains 1.1M nodes and 28.4M edges. By280

7

(a) Neg. nodes for generation. (b) Pos. edges for discrimination. (c) Weight of discriminator’s loss.

Figure 4: Ablation experiments on Reddit. By default, we set the number of negative nodes to 256,
the factor of positive edges to 1.0, and weight of the discriminator’s loss to 20.

Table 3: Test F1 score of
model variants on Reddit.

Model F1

Edges+Features 90.7

Edges 90.4
Features 90.2
RandomEdges 89.8

Table 4: Test F1 score of mod-
els with different backbone
GNNs on Reddit.

Model HGT GAT

w/o pretrain 87.3 86.4

GPT-GNN 89.6 87.5
DiP-GNN 90.7 88.5

Figure 5: F1 vs. proportion of
manipulated edges on Reddit.

using the proposed discriminative pre-training framework, our method significantly outperforms all281

the baseline approaches. For example, DiP-GNN outperforms GPT-GNN by 1.1 on Reddit and 1.5282

on Recommendation.283

Experimental results on the heterogeneous OAG-CS dataset are summarized in Table 2. Similar to284

the homogeneous graphs, notice that pre-training improves model performance by large margins.285

For example, pre-training improves MRR by at least 5.1, 2.5 and 2.5 on the PF, PV and AD tasks,286

respectively. Moreover, by using the proposed training framework, models can learn better node287

embeddings and yield consistently better performance compared with all the baselines.288

Recall that during fine-tuning on OAG-CS, we only use 10% of the labeled fine-tuning data (about289

2% of the overall data). In Figure 3, we examine the effect of the amount of labeled data. We see290

that model performance improves when we increase the amount of labeled data. Also, notice that291

DiP-GNN consistently outperforms GPT-GNN in all the three tasks under all the settings.292

4.5 Analysis293

Figure 7: Comparison with semi-
supervised learning methods. We
report test F1 score on Reddit.

⋄ Comparison with semi-supervised learning. We compare294

DiP-GNN with a semi-supervised learning method: C&S (Cor-295

rect&Smooth, Huang et al. 2020). Figure 7 summarizes the re-296

sults. We see that C&S yields a 0.5 improvement compared with297

the supervised learning method (i.e., w/o pre-train). However,298

performance of C&S is significantly lower than both DiP-GNN299

and other pre-training methods such as GPT-GNN.300

⋄ Hyper-parameters. There are several hyper-parameters that301

we introduce in DiP-GNN: the number of negative nodes that302

are sampled for generating edges (Section 4.2); the number303

of positive edges that are sampled for the discriminator’s task304

(Section 4.2); and the weight of the discriminator’s loss (Eq. 10).305

Figure 4 illustrate ablation experimental results on the Reddit306

dataset. From the results, we see that DiP-GNN is robust to307

these hyper-parameters. We remark that under all the settings,308

ours model behaves better than the best-performing baseline (89.6 for GPT-GNN).309

⋄ Model variants. We also examine variants of DiP-GNN. Recall that the generator and the310

discriminator operate on both edges and node features. We first check the contribution of these two311

8

Figure 6: Performance vs. pro-
portion of masked edges on
product recommendation.

Table 5: Generator and discriminator performance vs. pro-
portion of masked edges during pre-training. Coverage is the
proportion of true edges input to the models.

Masked% Acc Coverage
Gen. Dis. Gen. Dis. Ratio

20 0.50 0.87 0.80 0.90 ×1.13
80 0.33 0.84 0.20 0.46 ×2.30
95 0.20 0.80 0.05 0.24 ×4.80

factors. We also investigate the scenario where edges are randomly generated, and the discriminator312

still seeks to find the generated edges. Table 3 summarizes results on the Reddit dataset.313

We see that by only using edges, model performance drops by 0.3; and by only using node features,314

performance drops by 0.5. This indicates that the graph structure plays a more important role315

in the proposed framework than the features. Also notice that performance of RandomEdges is316

unsatisfactory. This is because implausible edges are generated when using a random generator,317

making the discriminator’s task significantly easier. We remark that performance of all the model318

variants is better than the best-performing baseline, which is 89.6 for GPT-GNN.319

Table 4 examines performance of our method and GPT-GNN using different backbone GNNs. Recall320

that by default, we use HGT (Hu et al., 2020c) as the backbone. We see that when GAT (Velickovic321

et al., 2018) is used, performance of DiP-GNN is still significantly better than GPT-GNN.322

⋄ Missing edges hurt more than wrong edges. In our pre-training framework, the generator is323

trained to reconstruct the masked graph, after which the reconstructed graph is fed to the discriminator.324

During this procedure, the graph input to the generator has missing edges, and the graph input to325

the discriminator has wrong edges. From Figure 5, we see that wrong edges hurt less than missing326

ones. For example, model performance drops by 0.7% when 50% of wrong edges are added to the327

original graph, and performance decreases by 1.8% when 50% of original edges are missing. This328

indicates that performance relies on the amount of original edges seen by the models. Intuitively,329

wrong edges add noise to the graph, but they do not affect information flow. On the contrary, missing330

edges cut information flow. Moreover, in practice we work with graph attention models, and the331

attention mechanism can alleviate the wrong edges by assigning low attention scores to them.332

⋄Why is discriminative pre-training better? Figure 6 illustrates effect of the proportion of masked333

edges during pre-training. We see that when we increase the proportion from 0.2 to 0.8, performance334

of GPT-GNN drops by 6.1, whereas performance of DiP-GNN only drops by 3.3. This indicates that335

the generative pre-training method is more sensitive to the masking proportion.336

Table 5 summarizes pre-training quality. First, the generative task (i.e., the generator) is more difficult337

than the discriminative task (i.e., the discriminator). For example, when we increase the proportion338

of masked edges from 20% to 80%, accuracy of the generator drops by 17% while accuracy of the339

discriminator only decreases by 3%. Second, the graph input to the discriminator better aligns with340

the original graph. For example, when 80% of the edges are masked, the discriminator sees 2.3 times341

more original edges than the generator. Therefore, the discriminative task is more advantageous342

because model quality relies on the number of observed original edges (Figure 5).343

5 Conclusion and Discussions344

We propose Discriminative Pre-Training of Graph Neural Networks (DiP-GNN), where we simulta-345

neously train a generator and a discriminator. During pre-training, we mask out some edges in the346

graph, and a generator is trained to recover the masked edges. Subsequently, a discriminator seeks to347

distinguish the generated edges from the original ones. We conduct extensive experiments to validate348

the effectiveness of DiP-GNN.349

In this work, we focus on node-level tasks, such as node classification. The proposed framework is350

generic and can be extended to graph-level applications, e.g., graph classification. The authors do not351

find any immediate negative societal impact.352

9

References353

CLARK, K., LUONG, M., LE, Q. V. and MANNING, C. D. (2020). ELECTRA: pre-training text354

encoders as discriminators rather than generators. In 8th International Conference on Learning355

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.356

DEFFERRARD, M., BRESSON, X. and VANDERGHEYNST, P. (2016). Convolutional neural networks357

on graphs with fast localized spectral filtering. In Advances in Neural Information Processing358

Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10,359

2016, Barcelona, Spain (D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon and R. Garnett, eds.).360

DEVLIN, J., CHANG, M.-W., LEE, K. and TOUTANOVA, K. (2019). BERT: Pre-training of deep361

bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of362

the North American Chapter of the Association for Computational Linguistics: Human Language363

Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics,364

Minneapolis, Minnesota.365

DONG, Y., CHAWLA, N. V. and SWAMI, A. (2017). metapath2vec: Scalable representation learning366

for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International Conference367

on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM.368

FEY, M. and LENSSEN, J. E. (2019). Fast graph representation learning with PyTorch Geometric. In369

ICLR Workshop on Representation Learning on Graphs and Manifolds.370

GOODFELLOW, I. J., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D., OZAIR,371

S., COURVILLE, A. C. and BENGIO, Y. (2014). Generative adversarial nets. In Advances in372

Neural Information Processing Systems 27: Annual Conference on Neural Information Processing373

Systems 2014, December 8-13 2014, Montreal, Quebec, Canada (Z. Ghahramani, M. Welling,374

C. Cortes, N. D. Lawrence and K. Q. Weinberger, eds.).375

GROVER, A. and LESKOVEC, J. (2016). node2vec: Scalable feature learning for networks. In376

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and377

Data Mining, San Francisco, CA, USA, August 13-17, 2016 (B. Krishnapuram, M. Shah, A. J.378

Smola, C. C. Aggarwal, D. Shen and R. Rastogi, eds.). ACM.379

HAMILTON, W. L., YING, Z. and LESKOVEC, J. (2017). Inductive representation learning on large380

graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural381

Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA (I. Guyon,382

U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan and R. Garnett, eds.).383

HASSANI, K. and AHMADI, A. H. K. (2020). Contrastive multi-view representation learning on384

graphs. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,385

13-18 July 2020, Virtual Event, vol. 119 of Proceedings of Machine Learning Research. PMLR.386

HU, W., LIU, B., GOMES, J., ZITNIK, M., LIANG, P., PANDE, V. S. and LESKOVEC, J. (2020a).387

Strategies for pre-training graph neural networks. In 8th International Conference on Learning388

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.389

HU, Z., DONG, Y., WANG, K., CHANG, K. and SUN, Y. (2020b). GPT-GNN: generative pre-390

training of graph neural networks. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge391

Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020 (R. Gupta, Y. Liu, J. Tang392

and B. A. Prakash, eds.). ACM.393

HU, Z., DONG, Y., WANG, K. and SUN, Y. (2020c). Heterogeneous graph transformer. In WWW394

’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020 (Y. Huang, I. King, T. Liu and395

M. van Steen, eds.). ACM / IW3C2.396

HUANG, Q., HE, H., SINGH, A., LIM, S.-N. and BENSON, A. R. (2020). Combining label propa-397

gation and simple models out-performs graph neural networks. arXiv preprint arXiv:2010.13993.398

KIPF, T. N. and WELLING, M. (2016). Variational graph auto-encoders. arXiv preprint399

arXiv:1611.07308.400

10

KIPF, T. N. and WELLING, M. (2017). Semi-supervised classification with graph convolutional401

networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,402

France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.403

LOSHCHILOV, I. and HUTTER, F. (2019). Decoupled weight decay regularization. In 7th Interna-404

tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,405

2019. OpenReview.net.406

PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY, J., CHANAN, G., KILLEEN, T.,407

LIN, Z., GIMELSHEIN, N., ANTIGA, L., DESMAISON, A., KÖPF, A., YANG, E., DEVITO, Z.,408

RAISON, M., TEJANI, A., CHILAMKURTHY, S., STEINER, B., FANG, L., BAI, J. and CHINTALA,409

S. (2019). Pytorch: An imperative style, high-performance deep learning library. In Advances in410

Neural Information Processing Systems 32: Annual Conference on Neural Information Processing411

Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada (H. M. Wallach,412

H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox and R. Garnett, eds.).413

PEROZZI, B., AL-RFOU, R. and SKIENA, S. (2014). Deepwalk: online learning of social repre-414

sentations. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and415

Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014 (S. A. Macskassy, C. Perlich,416

J. Leskovec, W. Wang and R. Ghani, eds.). ACM.417

QIU, J., CHEN, Q., DONG, Y., ZHANG, J., YANG, H., DING, M., WANG, K. and TANG, J. (2020).418

GCC: graph contrastive coding for graph neural network pre-training. In KDD ’20: The 26th ACM419

SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August420

23-27, 2020 (R. Gupta, Y. Liu, J. Tang and B. A. Prakash, eds.). ACM.421

QIU, J., DONG, Y., MA, H., LI, J., WANG, K. and TANG, J. (2018). Network embedding as matrix422

factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the Eleventh ACM423

International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA,424

USA, February 5-9, 2018 (Y. Chang, C. Zhai, Y. Liu and Y. Maarek, eds.). ACM.425

SCHLICHTKRULL, M., KIPF, T. N., BLOEM, P., BERG, R. V. D., TITOV, I. and WELLING, M.426

(2018). Modeling relational data with graph convolutional networks. In European semantic web427

conference. Springer.428

SINHA, A., SHEN, Z., SONG, Y., MA, H., EIDE, D., HSU, B.-J. and WANG, K. (2015). An429

overview of microsoft academic service (mas) and applications. In Proceedings of the 24th430

international conference on world wide web.431

SUN, F., HOFFMANN, J., VERMA, V. and TANG, J. (2020). Infograph: Unsupervised and semi-432

supervised graph-level representation learning via mutual information maximization. In 8th433

International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April434

26-30, 2020. OpenReview.net.435

TANG, J., QU, M., WANG, M., ZHANG, M., YAN, J. and MEI, Q. (2015). LINE: large-scale infor-436

mation network embedding. In Proceedings of the 24th International Conference on World Wide437

Web, WWW 2015, Florence, Italy, May 18-22, 2015 (A. Gangemi, S. Leonardi and A. Panconesi,438

eds.). ACM.439

TANG, J., ZHANG, J., YAO, L., LI, J., ZHANG, L. and SU, Z. (2008). Arnetminer: extraction and440

mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international441

conference on Knowledge discovery and data mining.442

VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N., KAISER,443

L. and POLOSUKHIN, I. (2017). Attention is all you need. In Advances in Neural Information444

Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,445

December 4-9, 2017, Long Beach, CA, USA (I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,446

R. Fergus, S. V. N. Vishwanathan and R. Garnett, eds.).447

VELICKOVIC, P., CUCURULL, G., CASANOVA, A., ROMERO, A., LIÒ, P. and BENGIO, Y. (2018).448

Graph attention networks. In 6th International Conference on Learning Representations, ICLR449

2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenRe-450

view.net.451

11

VELICKOVIC, P., FEDUS, W., HAMILTON, W. L., LIÒ, P., BENGIO, Y. and HJELM, R. D. (2019).452

Deep graph infomax. In 7th International Conference on Learning Representations, ICLR 2019,453

New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.454

WANG, H., WANG, J., WANG, J., ZHAO, M., ZHANG, W., ZHANG, F., XIE, X. and GUO, M.455

(2018). Graphgan: Graph representation learning with generative adversarial nets. In Proceedings456

of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative457

Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational458

Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018459

(S. A. McIlraith and K. Q. Weinberger, eds.). AAAI Press.460

WANG, X., JI, H., SHI, C., WANG, B., YE, Y., CUI, P. and YU, P. S. (2019). Heterogeneous graph461

attention network. In The World Wide Web Conference, WWW 2019, San Francisco, CA, USA,462

May 13-17, 2019 (L. Liu, R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley, R. Baeza-Yates463

and L. Zia, eds.). ACM.464

XU, K., HU, W., LESKOVEC, J. and JEGELKA, S. (2019). How powerful are graph neural networks?465

In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,466

May 6-9, 2019. OpenReview.net.467

YING, R., HE, R., CHEN, K., EKSOMBATCHAI, P., HAMILTON, W. L. and LESKOVEC, J. (2018).468

Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the469

24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD470

2018, London, UK, August 19-23, 2018 (Y. Guo and F. Farooq, eds.). ACM.471

YOU, Y., CHEN, T., SHEN, Y. and WANG, Z. (2021). Graph contrastive learning automated. In472

International Conference on Machine Learning. PMLR.473

YOU, Y., CHEN, T., SUI, Y., CHEN, T., WANG, Z. and SHEN, Y. (2020). Graph contrastive learning474

with augmentations. Advances in Neural Information Processing Systems, 33 5812–5823.475

ZHANG, C., SONG, D., HUANG, C., SWAMI, A. and CHAWLA, N. V. (2019). Heterogeneous graph476

neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge477

Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019 (A. Teredesai,478

V. Kumar, Y. Li, R. Rosales, E. Terzi and G. Karypis, eds.). ACM.479

ZHU, Y., XU, Y., YU, F., LIU, Q., WU, S. and WANG, L. (2020). Deep graph contrastive480

representation learning. arXiv preprint arXiv:2006.04131.481

ZHU, Y., XU, Y., YU, F., LIU, Q., WU, S. and WANG, L. (2021). Graph contrastive learning with482

adaptive augmentation. In Proceedings of the Web Conference 2021.483

ZOU, D., HU, Z., WANG, Y., JIANG, S., SUN, Y. and GU, Q. (2019). Layer-dependent importance484

sampling for training deep and large graph convolutional networks. In Advances in Neural485

Information Processing Systems 32: Annual Conference on Neural Information Processing Systems486

2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada (H. M. Wallach, H. Larochelle,487

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox and R. Garnett, eds.).488

12

A Detailed Algorithm489

Algorithm 1 is a detailed training pipeline of DiP-GNN. For graphs with vector features instead of490

text features, we can substitute the feature generation and discrimination modules with equations in491

Appendix B.492

Algorithm 1: DiP-GNN: Discriminative Pre-training of Graph Neural Networks.
Input: Graph Gfull; edge masking ratio; feature masking ratio; number of negative samples for

edge generator; proportion of positive samples for edge discriminator α; weight of the
discriminator’s loss λ; number of training steps T .

for t = 0, · · · , T − 1 do
// Graph subsampling.
Sample a subgraph G = (N , E) from Gfull;
// Edge generation.
Initialize the generated edge set Eg = {} and the edge generation loss Le

g = 0;
Construct the unmasked set of edges Eu and the masked set Em such that E = Eu ∪ Em;
Compute node embeddings using Eu;
for e = (n1, n2) ∈ Em do

Construct candidate set C for n1 (n2 is given during generation) via negative sampling;
Generate ê = (n̂1, n2) where n̂1 ∈ C;
Update the generated edge set Eg ← Eg ∪ {ê};
Update the edge generation loss Le

g;

// Text Feature generation.
Initialize the feature generation loss Lf

g = 0;
for n ∈ N do

For the node’s text feature xn, mask out some of its tokens;
Construct the generated text feature xcorr

n using the embedding of node n (computed
during edge generation) and the feature generation Transformer model;

Update the feature generation loss Lf
g ;

// Edge discrimination.
Initialize the edge discrimination loss Le

d = 0;
Compute node embeddings using Eg ∪ Eu;
Sample Edu ⊂ Eu such that |Edu| = α|Eg|;
for e = (n1, n2) ∈ Eg ∪ Edu do

Determine if e is generated using the embedding of n1 and n2;
Update the edge discrimination loss Le

d;
// Text feature discrimination.
Initialize the feature discrimination loss Lf

d = 0;
for n ∈ N do

For the node’s generated text feature xcorr
n , determine whether each token is generated

using the embedding of node n (computed during edge discrimination) and the feature
discrimination Transformer model;

Update the feature discrimination loss Lf
d ;

// Model updates.
Compute L = (Le

g + Lf
g) + λ(Le

d + L
f
d) and update the model;

Output: Trained model ready for fine-tuning.

B Generation and Discrimination of Vector Features493

Node features can be vectors instead of texts, e.g., the feature vector can contain topological infor-494

mation such as connectivity information. In this case both the generator and the discriminator are495

parameterized by a linear layer.496

13

Table 6: Hyper-parameters for fine-tuning tasks.
Dataset Task Steps Dropout Learning rate Gradient clipping
Reddit — 2400 0.3 0.0015 0.5

Recomm. — 1600 0.1 0.0010 0.5

OAG-CS
PF 1600 0.2 0.0010 0.5
PV 1600 0.2 0.0005 0.5
AD 1600 0.2 0.0005 0.5

To generate feature vectors, we first randomly select some nodesNg ⊂ N . For a node n ∈ N , denote497

its feature vector vn, then the feature generation loss is498

Lf
g (Wg) =

∑
n∈Ng

||v̂n − vn||22 , where v̂n = W f
g hg(n).

Here hg(n) is the representation of node n and W f
g is a trainable weight. For a node n ∈ N , we499

construct its corred feature vcorr
n = v̂n if n ∈ Ng and vcorr

n = vn if n ∈ N \ Ng .500

The discriminator’s goal is to differentiate the generated features from the original ones. Specifically,501

the prediction probability is502

p(n ∈ Ng) = sigmoid
(
W d

d hd(n)
)
,

where W f
d is a trainable weight. We remark that the node representation hd(n) is computed based on503

the corred feature vcorr
n . Correspondingly, the discriminator’s loss is504

Lf
d(Wd) =

∑
n∈N
−1{n ∈ Ng} log p(n ∈ Ng)− 1{n ∈ N \ Ng} log(1− p(n ∈ Ng)).

The vector feature loss Lf (θeg,W
f
g , θ

e
d,W

f
d) = Lf

g (θ
e
g,W

f
g) + L

f
d(θ

e
d,W

f
d) is computed similar to505

the text feature loss.506

C Implementation and Training Details507

By default, we use Heterogeneous Graph Transformer (HGT, Hu et al. 2020c) as the backbone GNN.508

In the experiments, the edge generator and discriminator have the same architecture, where we set509

the hidden dimension to 400, the number of layers to 3, and the number of attention heads to 8. For510

the OAG dataset which contains text features, the feature generator and discriminator employs the511

same architecture: a 4 layer bi-directional Transformer model, similar to BERT (Devlin et al., 2019),512

where we set the embedding dimension to 128 and the hidden dimension of the feed-forward neural513

network to 512.514

For pre-training, we mask out 20% of the edges and 20% of the features (for text features we mask515

out 20% of the tokens). We use AdamW (Loshchilov and Hutter, 2019) as the optimizer, where we516

set β = (0.9, 0.999), ϵ = 10−8, the learning rate to 0.001 and the weight decay to 0.01. We adopt a517

dropout ratio of 0.2 and gradient norm clipping of 0.5. For graph subsampling, we set the depth to 6518

and width to 128, the same setting as Hu et al. 2020b.519

For fine-tuning, we use AdamW (Loshchilov and Hutter, 2019) as the optimizer, where we set520

β = (0.9, 0.999), ϵ = 10−6, and we do not use weight decay. We use the same graph subsampling521

setting as pre-training. The other hyper-parameters are detailed in Table 6.522

14

	Introduction
	Background
	Method
	Edge Generation and Discrimination
	Feature Generation and Discrimination
	Model Training
	Comparison with GAN

	Experiments
	Settings and Datasets
	Implementation Details
	Baselines
	Main Results
	Analysis

	Conclusion and Discussions
	Detailed Algorithm
	Generation and Discrimination of Vector Features
	Implementation and Training Details

