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Abstract

Two-stage recommender systems play a crucial role in efficiently identifying
relevant items and personalizing recommendations from a vast array of options.
This paper, based on an error decomposition framework, analyzes the generalization
error for two-stage recommender systems with a tree structure, which consist of an
efficient tree-based retriever and a more precise yet time-consuming ranker. We use
the Rademacher complexity to establish the generalization upper bound for various
tree-based retrievers using beam search, as well as for different ranker models under
a shifted training distribution. Both theoretical insights and practical experiments on
real-world datasets indicate that increasing the branches in tree-based retrievers and
harmonizing distributions across stages can enhance the generalization performance
of two-stage recommender systems.

1 Introduction

Recommender systems play a crucial role in many online services, such as e-commerce [29], digital
streaming [4], and social media [2], influencing consumer behavior, media consumption, and social
interaction. It needs to quickly identify a few relevant items from millions or billions of options,
and personalize to the dynamic needs of large numbers of users with low response latency. A
widely adopted solution to this problem is the two-stage recommender system. In the first stage, a
computationally efficient retriever preselects a small number of candidates from a large pool. In the
second stage, a slower but more accurate ranker narrows down and reorders these candidates before
presenting them to the user. In this way, a well-balanced trade-off between efficiency and accuracy is
achieved that meets the demands of real-world scenarios.

The retrievers are often heterogeneous, popular choices like matrix factorization [15, 19], two-tower
[23], recurrent neural networks [3], and so on. In recent years, the tree-structured retriever model
[8, 29, 28, 7], which takes advantage of the tree structure, usually combined with a greedy algorithm
to identify relevant items quickly, has demonstrated commendable performance and efficiency.
The ranker typically uses enriched features as input, combined with a complex model, to enhance
prediction accuracy. The computational costs are generally linear relative to the number of items at
deployment [4, 18].

Despite the practical success of two-stage models, particularly those based on tree structures, the-
oretical research in this area remains limited. To fill in the gap, we start from the perspective of
generalization error to investigate the upper bounds of generalization error for these models to
promote understanding of their generalization capabilities.

∗Corresponding Author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



In this paper, we decompose the generalization error of two-stage models across each stage. Using
Rademacher complexity as a methodological tool, our analysis encompasses a range of models
prevalent in two-stage methods. This includes tree-structured retriever models employing beam
search, such as linear model, multilayer perceptron, and target attention model. Besides, we give
generalization error bound for ranker models under shifted training distributions. The theoretical
results show that tree models with increased branches and rankers trained on harmonized distributions
can improve generalization performance, and we validate these findings on real-world datasets.

To summarize, the main contributions of this work are summarized as follows:

• We are the first to analyze the learnability of tree-based retriever models in recommender
systems and prove the generalization upper bound for various tree-based retrievers using
beam search. Both theoretical insights and practical experiments confirm that expanding the
number of branches in tree-based retrievers enhances their ability to generalize.

• We establish an error decomposition framework for analyzing generalization errors of two-
stage recommender systems and theoretically derive the optimized training objectives for
the ranker models within this framework.

• We prove the generalization upper bounds for different ranker models under shifted training
distribution, highlighting the significant impact of disparities between training and inference
data distributions on generalization errors. Theoretical and empirical findings indicate that
harmonizing distributions across stages enhances the overall generalization performance of
two-stage recommender systems.

The remainder of this paper is organized as follows: Section 2 provides an overview of related work,
Section 3 presents the notation and background, Section 4 presents the main results and analytical
techniques, and Section 5 provides the conclusion of the paper. Finally, the missing proofs and
experimental settings are provided in the appendix.

2 Related Work

2.1 Two-stage Recommender Systems

Two-stage recommender systems with candidate generation followed by ranking have been widely
adopted in the industry, including YouTube [4, 23, 26], Linkedin [2], Pinterest [6]. Some works focus
more on improving candidate generation, particularly under tree structures. TDM [29] efficiently
manages candidate retrieval in large-scale systems using a hierarchical tree-index strategy. JTM
[28] improves on TDM by jointly optimizing the tree index structure and the user node preference
prediction model. DeFoRec [8] extends the loss function used in TDM from a binary probability to a
multi-class softmax loss. Other works, like [18], study off-policy learning for two-stage recommender
systems, where the goal is to learn a good recommendation policy from the typically abundant
logged data. This approach is possibly most related to our work in the ranker component. The
main proposal of [18] is to modify the training objective by adding importance weights based on
the ranker’s probability of recommending each item. With adjustments facilitating gradient descent
optimization, the authors show empirical improvements compared to a system trained without
importance weighting. [13] propose a modification of naive bandit method deployment in two-stage
recommenders that improves results by sharing inferred statistics between ranker and nominators
with minimal computational overhead. [25] aims to provide an LLM-based two-stage recommender
that uses a large language model as a ranker to improve performance.

2.2 Theoretical Work

In this subsection, we discuss the theoretical work related to our study, as well as other theories
related to two-stage models. [1] propose a multi-class, hierarchical data-dependent bound on the
generalization error of classifiers deployed in large-scale taxonomies to explain several empirical
results related to the performance of hierarchical classifiers. Our analysis of tree structure models is
inspired by this work. We extend it to the search method of beam search and provide a more refined
estimate for the tree model. [17] investigates generalization error bounds for extreme multi-class
classification with minimal dependence on the class set by using multi-class Gaussian complexity
to construct bounds for multi-class problem. [12] theoretically demonstrated that nominator count
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and training objectives significantly impact two-stage recommender performance and linked two-
stage recommenders to Mixture-of-Experts models to show performance improvements by allowing
nominators to specialize. [14] quantitatively assesses the asymptotic convergence properties of the
two-tower model applied in two-stage recommenders toward an optimal recommender system.

3 Preliminaries

3.1 Notation

We use the following notational conventions: bold lowercase and uppercase letters for vectors and
matrices respectively, such as a and A, and non-bold letters for scalars or constants, such as c and B.
For vectors, ∥a∥p denotes the ℓp norm; we drop the subscript for the ℓ2 norm. For matrix,

∥A∥p = sup
∥x∥p=1

∥Ax∥p

denotes matrix norms induced by vector p-norms. We denote the set {1, 2, . . . , m} by [m]. In the
defined notation system, m represents the number of users or queries, N denotes the total number of
items, and K is the number of items retrieved in the first stage. B indicates the number of children
nodes per non-leaf node, while L specifies the number of layers in a neural network. The complete
set of items is symbolized by Y . For i ∈ [m], xi ∈ Rd is the embedding vector to represent user, if
we use sequence embeddings to represent the user, we denote this with a matrix A(i), and yi ∈ Y is
the corresponding target item. The function h(x) ∈ Y represents the prediction result for x.

Following previous traditional notations, in the case of hierarchical classification, the hierarchy
of classes (V,E) is defined in the form of a rooted tree, with a root ⊥ and a parent relationship
π : V \{⊥} → V where π(v) is the parent of node v ∈ V \{⊥}, and E denotes the set of edges with
parent to child orientation. Bk(x) identifies nodes selected at depth k during a beam search for input x.
For each node v ∈ V \{⊥}, we further define the set of its children D(v) = {v′ ∈ V \{⊥};π (v′) =
v}. The specialized nodes at the leaf level constitute the set of target items. Finally, for each item y
in Y we define the set of its ancestors P(y) defined as

P(y) ={v1, . . . , vky
: v1 = π(y), π

(
vky

)
=⊥, vl+1 = π (vl) ,∀ l ∈ {1, . . . , ky − 1}}.

3.2 Background

3.2.1 Tree Structure Retriever Model

During the retrieval stage, a tree is utilized where each leaf node represents an item. Additionally,
each node in the tree has a learnable parameter vector that has the same dimensionality as the user
vector. The architecture of the tree is generally determined by hierarchical clustering techniques, as
shown in the studies by [29, 24].

When constructing the tree, we first need to obtain the initial item representations, which can be
accomplished through various methods. The item representations can be represented by the instance-
item matrix Y ∈ {0, 1}m×N . A strategy to construct item representations is by leveraging indices of
positive instances. For any given item i within the item set Y , its corresponding representation vector
zi is defined through normalization as: zi = yi/∥yi∥, where the vector yi ∈ {0, 1}m signifies the
i-th column of the instance-to-item matrix Y , encapsulating the relationship between instances and the
item i. It is possible to refine the item representation by incorporating additional feature information,
an enhanced formulation of yi is employed, expressed as yi =

∑m
j=1 Y jif j , where f j denotes the

feature vector associated with the j-th instance. Besides, some works, like [29], have employed a
technique of starting with a randomly initialized tree structure aligned with item categories. The
learned parameters of the leaf nodes are subsequently utilized as new initial representations for the
items.

After acquiring item representations, we repeatedly apply clustering algorithms, such as k-means, to
form the complete tree structure. In the initial phase, all items are aggregated at the root. These items
are then clustered into B categories, creating the root’s child nodes. This procedure is recursively
performed in each child node until each category is reduced to a single item, establishing the leaf
nodes. A balanced distribution of items among the categories can lead to a more even tree structure, a
practice widely utilized in applications.
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During inference, the user representation x starts from the root node, and the path is continually
extended until a leaf node is reached, using a beam search based on the model score between the
user representation and the node parameter vector. Specifically, assuming a beam size of K, we
maintain at most K paths during the inference process. Initially, the user representation selects the
top K nodes with the highest model scores from the children of the root node, denoted as B1(x). If
the number of available nodes for selection is less than K, all available nodes are selected. Bi+1(x)
denotes the selected nodes at depth (i+ 1) for an input x,

Bi+1(x) = T K
c∈D(Bi(x))

f(x, c),

where we denote T K as the Top-K operator, which selects the top K nodes from the children of
nodes in Bi(x), denoted as D(Bi(x)) based on the highest score f(x, c). To avoid the problem of
leaf nodes lacking children during the inference process, we extend the definition of D(v),

D(v) = {v}, if v is a leaf node.
In this extended definition, the children of a leaf node are considered to be the leaf node itself. The
set of K leaf nodes ultimately selected by this process is denoted by B(x).

3.2.2 Ranker Model

The retriever models and the ranker models are often trained independently using logged feedback
data (e.g., user clicks or dwell time) generated by previous versions of the recommender system.
Compared to retriever models, ranker models may utilize more contextual information to better
represent the user, leading to more accurate predictions. For simplicity, in this work, we assume that
both the retriever and ranker models have the same input (e.g., user interaction history sequence).
The key difference is that the retriever uses a tree-structured greedy model to retrieve a subset from a
large item pool, while the ranker predicts scores for each item within this subset B(x). Finally, the
item with the highest score from B(x), as determined by the ranker, is returned as the prediction
result, which we denote as h(x).

3.2.3 Generalization Error

In the training of machine learning algorithms, we are constrained to a finite dataset for learning.
Nevertheless, the resulting function must generalize effectively beyond the training sample. Thus,
ensuring high probability guarantees for the difference between the loss on the training sample and
the loss on the test population is of paramount importance. Generalization bounds aim to constrain
this loss difference.

Mathematically, if we have a hypothesis class H, sample space X , item space Y , loss function ℓ, and
distribution over the sample and item space D, then our generalization gap for a set of samples and
items S = {(xi, yi)}mi=1 ,xi ∈ X , yi ∈ Y , on the hypothesis h ∈ H is defined to be∣∣∣∣∣E[ℓ(h(x), y)]− 1

m

m∑
i=1

ℓ (h (xi) , yi)

∣∣∣∣∣ . (1)

Notice how if we can have this value go to 0 with high probability over all sets of samples and
for all h ∈ H, then we can be confident that minimizing the empirical loss will not impact our
generalization.

One tool that can be used to upper bound the generalization gap is the Rademacher complexity. The
Rademacher complexity of a hypothesis class H is defined to be

R̂m(H) =
1

m
Eϵ

[
sup
h∈H

m∑
i=1

ϵih (xi)

]
,

where each ϵi are i.i.d. and take the value 1 or −1 each with half probability and ϵ = (ϵ1, . . . , ϵm). It
is well known that [21], if the magnitude of our loss function is bounded above by c, with probability
greater than 1− δ for all h ∈ H, we have∣∣∣∣∣E(x,y)∼D[ℓ(h(x), y)]−

1

m

m∑
i=1

ℓ (h (xi) , yi)

∣∣∣∣∣ ≤ 2R̂m(ℓ ◦ H) + c

√
2 log(2/δ)

m
. (2)

Therefore, if we have an upper bound on the Rademacher complexity, we can have an upper bound
on the generalization gap.
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4 Theory Results

We begin by considering the two-stage error decomposition. Let P err
two-stage denote the two-stage

classification error, i.e., P (h(x) ̸= y) . P err
retrieve and P̃ err

rank represent the classification errors caused by
the retriever and ranker, respectively. We have the following proposition:

Proposition 4.1. The probability of a classification error of the two-stage method can be decomposed
as follows:

P err
two-stage = P err

retrieve + P̃ err
rank (K) (1− P err

retrieve ), (3)

where P err
retrieve = P (y /∈ B(x)) and P̃ err

rank (K) = P (h(x) ̸= y | y ∈ B(x)) with |B(x)| = K.

In Proposition 4.1, the total generalization error of two stages is decomposed into two critical
components, P err

retrieve and P̃ err
rank . P err

retrieve captures the error when the target item isn’t included in the
retriever model’s results, reflecting the probability that the item y doesn’t appear in the set B(x).
P̃ err

rank refers to the error that occurs when the target item y, although present in the retriever’s results
B(x), is not correctly ranked by the ranker model.

Compared to a single ranker model for classification tasks, we use P err
rank(N) to denote the classification

error, where N emphasizes that the ranker model is used for an N -class task, we have the following
corollary:

Corollary 4.2. The error P err
two-stage ≤ P err

rank(N) if and only if the retrieval error P err
retrieve satisfies the

following inequality:

P err
retrieve ≤ P err

rank(N)− P̃ err
rank (K)

1− P̃ err
rank (K)

. (4)

Regarding inequality (4), we have two approaches to enhance its validity. One is to reduce P err
retrieve

without increasing the number of retriever results. The other is to improve the ranker model while
keeping the retriever unchanged, to reduce P̃ err

rank and thus increasing the threshold on the right
side of the inequality. Furthermore, by Property 4.1, both approaches will lead to lower two-stage
classification error. In the following subsections, we will analyze these two errors separately from
a generalization bound perspective, revealing their relationship with the actual observed empirical
errors.

4.1 Retriever

For the model described in Sec.3.2.1, we represent the user using the vector xi ∈ Rd, which can
be a vector representation of a text segment, or an embedding derived from a pre-trained model
that includes relevant features (If we use sequence embeddings to represent the user, we denote this
with a matrix A(i)). We consider different user and target items to be independently and identically
distributed, denoted as (x1, y1), . . . , (xm, ym) ∼ D.

Following previous work [1], we consider the following analogous function space induced by the
function space F :

GF = {gf : (x, y) ∈ X × Y 7→ min
v∈P(y)

(
f(x,v)−

maxK{f (x,v′) |v′ ∈ B(v,x)}
)
| f ∈ F},

(5)

where P(y) is the ancestors of node y, B(v,x) denotes the set of candidates during beam search at
the same level as node v, in particular, if d(v) represents the depth of node v within the tree structure,
then B(v,x) = D(Bd(v)−1(x)), maxK denotes the K-th largest element in a set, f(x,v) represents
the score function between node v and input x. The specific formulation of the score function will be
discussed in Section 4.1.1.

Compared with previous work, we extend the function space to the top-k form, as described in
equation (5), we can observe the following proposition:

Proposition 4.3. For any leaf node y ∈ Y and user representation x, we have

gf (x, y) ≥ 0 ⇔ y ∈ B(x).
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This implies that the probability of classification error is equal to the probability of occurrence of the
event gf (x, y) < 0:

P(y /∈ B(x)) = P (gf (x, y) < 0) . (6)

For this event, we can formulate the following theorem about the Rademacher complexity of the
function space GF :
Theorem 4.4. Consider a loss function A(x) that is monotonically decreasing, satisfies I(x ≤ 0) ≤
A(x), and is a Lipschitz function with Lipschitz constant cA and an upper bound BA. The following
inequality holds with a probability of at least 1− δ:

P err
retrieve ≤ 1

m

m∑
i=1

A (gf (xi, yi)) + 4cAR̂m(GF ) +BA

√
2 log (2/δ)

m
.

Theorem 4.4 presents a general result, considering an abstracted loss function under specific conditions
and the Rademacher complexity of the function space. In Section 4.1.1, we will present the upper
bounds of Rademacher complexity for various specific function spaces. Regarding A(gf ), it can be
related to common loss functions, such as margin-based loss and cross-entropy. We will discuss the
relationship between A(gf ) and these commonly used loss functions in the Appendix A.

4.1.1 Effect of Model Architectures

In this part, we discuss several common score models and provide upper bounds on their Rademacher
complexity.

Linear Model. One such model is the linear model, which is widely used in text retrieval tasks
[24, 10]. It calculates scores by taking the dot product of user vectors and node vectors, which can be
expressed as follows:

flin(x,v) = ⟨x,wv⟩ ,
where wv is a learnable parameter for node v in the tree model. The function space Flin is expressed
as follows:

Flin = {f : (x,v) 7→ ⟨x,wv⟩ | ∥wv∥2 ≤ B0,∀ v ∈ V } . (7)
We have the following results:
Theorem 4.5. Suppose ∀i ∈ [m], ∥xi∥2 ≤ Bx, then the Rademacher complexity of GFlin can be
bounded by

R̂m(GFlin) ≤
4B0Bx√

m
T ,

where T = BN/
√
B2 − 1.

MLP. We consider the concatenation of the user vector and the node vector as inputs to a multilayer
perceptron (MLP). This architecture is widely used in the network structures of recommender systems
[8], which can be expressed as follows:

fmlp(x,v) = WL · σL−1 ◦ σL−2 ◦ . . . ◦ σ1 (x;wv) ,

where WL ∈ R1×dL−1 , (x;wv) ∈ R2d represents the concatenation of the column vectors x and
wv , the function σk(x) is defined:

σk(x) = σ (Wkx) ∈ Rdk×1, ∀k ∈ [L− 1].

The function σ is a Lipschitz continuous activation function with a Lipschitz constant cσ, has the
property σ(0) = 0 and Wk ∈ Rdk×dk−1 represents the weight matrix. For the function space:

Fmlp =
{
f : (x,v) 7→ fmlp(x,v) | ∥wv∥2 ≤ B0,∀ v ∈ V ; ∥Wk∥1 ≤ B1,∀k ∈ [L]

}
, (8)

we have the following results:
Theorem 4.6. Suppose ∀i ∈ [m], ∥xi∥2 ≤ Bx, then the Rademacher complexity of GFmlp can be
bounded by

R̂m(GFmlp) ≤
8cL−1

σ BL
1 · (B0 +Bx)√

m
T .
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Target Attention. As a deep neural network architecture, target attention has achieved competitive
performance in recommender systems and is widely used as a score function in tree-structured
recommendations[8, 29]. In contrast to the previous two models, which represent a user as a single
embedding vector, the model characterizes the user representation by a history sequence of items
they have interacted with. In this context, we denote the matrix of item embedding vectors that the
i-th user has interacted with as A(i),

A(i) = [a
(i)
1 ,a

(i)
2 , ...,a

(i)
T ] ∈ Rd×T ,

where we consider the last T recorded item interaction histories. The model uses a two-layer fully
connected network to compute weights for node vectors and user-history item vectors, which can be
expressed as:

w
(i)
k = σ

(
W (2)

w σ
(
W (1)

w

[
a
(i)
k ;a

(i)
k ⊙wv;wv

]))
∈ R,

where W (1)
w ∈ Rh×3d,W (2)

w ∈ R1×h, and σ is activation function. The score function can be
expressed as:

fta(xi,v) = fmlp

(
z
(i)
1 ; z

(i)
2 ; ...; z

(i)
N ′ ;wv

)
,

where ∀j ∈ [N ′],
z
(i)
j =

∑
k∈Cj

w
(i)
k a

(i)
k ,

Cj , corresponding to different time windows, each Cj being mutually exclusive, satisfies the following
conditions:

N ′⋃
j=1

Cj = {1, 2, . . . , T}.

For the function space:

Fta =
{
f : (x,v) 7→ fta(x,v) | ∥wv∥2 ≤ B0,∀ v ∈ V ;

∥Wk∥1 ≤ B1,∀k ∈ [L]; ∥W (j)
w ∥1 ≤ B2,∀j ∈ {1, 2}

}
,

(9)

we have the following results:

Theorem 4.7. Suppose ∀i ∈ [m],∀k ∈ [T ], ∥a(i)
k ∥2 ≤ Ba, then the Rademacher complexity of GFta

can be bounded by

R̂m(GFta) ≤
4cL−1

σ BL
1 (BwT +B0)√

m
T ,

where Bw = c2σB
2
2

(
B2

a +B2
aB0 +B0Ba

)
.

4.1.2 Insights from Generalization Bound

The theorems 4.5, 4.6, and 4.7, show the effect of three different score models on their generalization.
More complex models tend to have higher function space complexity. From a generalization error
perspective, this represents a tradeoff between function space complexity and empirical error, as they
often result in lower empirical errors. We can see that, similar to most generalization conclusions
derived from Rademacher complexity, the order of the number of sample points m is O(m−1/2).
This implies that as the number of samples increases, the error rate can be effectively controlled by
the empirical error, resulting in a performance on the test set that is as satisfactory as on the training
set.

Besides, the theoretical results reveal a relationship between model generalization capabilities with
tree structure retrievers. Specifically, the generalization bound includes a term O(B/

√
B2 − 1),

where B represents the number of branches, suggesting that a tree with a larger number of child
nodes (branches) tends to exhibit enhanced generalization performance. Intuitively, a tree with more
branches will have a flatter structure. In an extreme case, when the number of branches equals the
number of items, the tree structure becomes ineffective because it requires traversing all items during
inference. This leads to the highest computational complexity, as the retriever model degenerates into
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Figure 1: Effect of branch number on Recall@20 for Mind (left) and Movie (right)

a ranker model that processes the entire item pool. Thus, the number of branches of a tree structure
represents, to some extent, a tradeoff between efficiency and performance.

We conduct experiments on real-world datasets to study the effects of increasing the number of tree
branches. In our experiments, we use the same datasets as work [8], specifically Mind and Movie. We
adopt an improved TDM model [8] as the retriever model architecture and use recall as the evaluation
metric, since in the retrieval stage, the focus is on whether the target item is successfully retrieved.
A more detailed description of the experimental setup can be found in Appendix D. The results are
presented in Figure 1. As we can see, the recall rate increases with the number of branches. Similar
phenomena can be observed in other studies related to tree models [7].

4.2 Ranker

In the context of training data sets S = {(x1, y1), . . . , (xm, ym)} independently and identically
distributed according to distribution D, where each xi ∈ Rd and yi ∈ {1, . . . , N}, we examine a
subset of this data, referred to as filtered training data, given by S′ = {(x′

1, y
′
1), . . . , (x

′
m′ , y′m′)} ⊂ S.

We suppose this subset is independently and identically distributed, following the distribution D′,
where each y′i ∈ B(x′

i). The generalization error of ranker P̃ err
rank, is defined as the expected probability

of the ranking error under the distribution D′. Specifically, we have

P̃ err
rank = E(x,y)∼D′

[
I
(
f(x, y)− max

j∈B(x)
f(x, j) < 0

)]
,

where we use f(x, j) to denote the model score of user x with respect to item j in this subsection.

To establish a relationship between the expected generalization error on distribution D′ and the
empirical error measured on training data distribution D, we have the following theorem:
Theorem 4.8. Consider a loss function Φ(x) that is monotonically decreasing, satisfies I(x ≤ 0) ≤
Φ(x), and is a Lipschitz function with Lipschitz constant cΦ and an upper bound BΦ. The following
inequality holds with a probability of at least 1− δ:

P̃ err
rank ≤ E(x,y)∼D

∣∣∣∣1− P ′(x, y)

P (x, y)

∣∣∣∣+ l̃rank + 4cΦN (K + 1) R̂m(Π1(F)) +BΦ

√
2 log (2/δ)

m
,

where Π1(F) = {x 7→ f(x, y) : y ∈ Y, f ∈ F} P and P ′ denote the probability density functions
of D and D′, respectively, and l̃rank = 1

m

∑m
i=1 Φ(f(xi, yi)−maxj∈B(x) f(xi, j)).

Similar to Theorem 4.4, Theorem 4.8 presents a general result. As for the abstracted loss function
l̃rank , we can see that l̃rank ≤ l̂rank = 1

m

∑m
i=1 Φ(f(xi, yi) − maxj∈Y f(xi, j)), where the latter,

margin-based loss, is commonly used in training. This can also be extended to other common loss
functions, as discussed similarly in the Appendix A. As for the Rademacher complexity of the
function space, to maintain consistency with the previous subsection, we introduce the notation FY

to denote the restriction of the function space F w.r.t. Y , specifically:

FY = {f(x, v) ∈ F : v ∈ Y} ⊂ F .

For the score function described in the subsection 4.1.1, we have the following theorem:
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Theorem 4.9. Suppose the conditions in Theorems 4.5, 4.6, and 4.7 hold, the Rademacher complexity
of Π1(FY) can be bounded as follows:

R̂m(Π1(FY
model)) ≤

Bmodel√
m

,

where Blin = B0Bx, Bmlp = 2cL−1
σ BL

1 · (B0 +Bx), Bta = cL−1
σ BL

1 (BwT +B0).

Besides, compared to traditional generalization bounds, Theorem 4.8 includes an additional error
term induced by distributional disparities. It shows that the generalization performance of the two-
stage ranker model degrades due to discrepancies between the inference distribution and training
distributions. When the training distribution is aligned with the inference distribution, i.e., using the
subset of the training data successfully retrieved by the retriever, the distributional disparities are
minimized. This suggests that in practice, aligning the training distribution and inference distribution
can enhance the model’s performance.

We conduct experiments on real-world datasets to verify this. In our experiments, we use the improved
TDM [8] as the retriever, and the DIN model [27], which uses the target attention structure, as the
ranker. We investigate the effect of the training data distribution on the ranker performance in a fixed
retriever two-stage setup. The ranker model is trained in two ways: using the original training data
and using a subset of training data successfully retrieved by the retriever model. A more detailed
description of the experimental setup can be found in the Appendix D. We evaluate the overall
classification accuracy of the two-stage model. The results are presented in Table 1. We compared
the top-1 classification accuracy (i.e., Precsion@1) of rankings produced by the ranker with different
numbers of retrieval items for two methods. We can see that the Harmonized Two Stage Model
(H-TS) improves performance over the original Two Stage Model (TS) on these datasets.

Table 1: Comparison of classification accuracy of the two-stage model.

Dataset Method K=40 K=80 K=120

Mind TS 0.6500 0.5970 0.5609
H-TS 0.6565 0.6026 0.5644

Movie TS 0.3516 0.3457 0.3453
H-TS 0.3555 0.3500 0.3488

It is worth noting that while aligning the training distribution to the inference distribution eliminates
the bias introduced by the distribution differences, it reduces the number of training samples available
m′ relative to the original number of samples m. This reduction means that the upper bound of
the generalization guarantee is also somewhat weakened. Consequently, the effectiveness of this
adjustment method depends on the presence of a high recall retriever model. In our experiments,
we found that a recall rate of more than 10% is typically required to see an improvement effect. It
must ensure that there are enough training samples to maintain the generalization performance of the
model.

5 Conclusion

In summary, our study provides a theoretical and empirical investigation into the generalization error
bounds of two-stage recommender systems, particularly emphasizing tree-based retriever models. Our
study uses Rademacher complexity to analyze the generalization capabilities of several commonly
used models in two-stage recommender systems, highlighting how tree models with increased
branches and ranker models trained on shifted distributions can affect generalization performance.
The theoretical results show that as the number of branches in the tree increases, the model tends
to exhibit improved generalization capabilities, effectively balancing efficiency and accuracy. In
the presence of a high recall retriever model, using a harmonized distributions to train the ranker
will improve performance. Furthermore, our experimental validation on real-world datasets with
advanced models for both retriever and ranker stages corroborates the theoretical insights. This study
deepens the understanding of generalization in tree-based two-stage models and provides a theoretical
foundation for designing more effective models in two-stage recommender systems.
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A Effect of Loss Functions

In the discussion that follows, we examine in detail a variety of widely used loss functions, including
margin-based, top-k, and soft-max losses. The critical focus of this discussion is to establish that these
loss functions act either as upper bounds or as consistent multiples of the upper bounds of A(gf ).
This perspective is to confirm the easy applicability of our theoretical results to these commonly used
loss functions.

In the Theorem 4.4, for a single data point (x, y), the loss function we consider is:

A(gf ) = A

(
min

v∈P(y)
(f(x,v)− maxK

v′∈B(v,x)
f (x,v′))

)
.

We show the following functions are upper bounds for A(gf ):
Example 1 (Classical multi-class margin-based loss [5]). The loss function is defined as

ℓmargin = ℓ

(
f(x,v)− max

v′ ̸=v∈B(v,x)
f (x,v′)

)
, (10)

where ℓ represents a function that is cl-Lipschitz and monotonically decreasing. By defining A as ℓ,
the margin loss ℓmargin acts as an upper bound for A(gf ):

A(gf ) ≤ max
v∈P(y)

ℓmargin.

Example 2 (Top-K loss [16]). The top-K hinge loss is defined by

ℓtopk = max

0,
1

K

K∑
j=1

(
1 + f[j] − fv

) , (11)

where for the sake of simplicity, we abbreviate the notation

f[j] := maxj
v′∈B(v,x)

f (x,v′) , fv := f(x,v). (12)

By setting A(x) = max(0, 1− x), it can be observed that

A(gf ) = max
v∈P(y)

(max(0, 1 + f[K] − fv)) ≤ max
v∈P(y)

ℓtopk.

Example 3 (Cross entropy [8]). This loss is employed in tree-structured recommender systems and is
defined as

ℓsoftmax =
∑

v∈P(y)

− log
exp(f(x,v))∑

v′∈B(v,x) exp (f(x,v
′))

. (13)

Adopting the notation from equation (12), and by setting A = − log2 σ(·), it can be observed that

A(gf ) = max
v∈P(y)

{
− log2

(
1

1 + exp(f[K] − fv)

)}
≤

∑
v∈P(y)

{
− log2

(
exp(fv)

exp(fv) + exp(f[K])

)}
≤ log2(e) · ℓsoftmax.

B Proof of Results

B.1 Proof of Proposition 4.1

Proof of Proposition 4.1. Using the law of total probability, we have

P (h(x) ̸= y) = P (h(x) ̸= y | y /∈ B(x))P (y /∈ B(x))
+ P (h(x) ̸= y | y ∈ B(x))P (y ∈ B(x))

= P (y /∈ B(x)) + P (h(x) ̸= y | y ∈ B(x)) (1− P (y /∈ B(x))) ,
where P (h(x) ̸= y | y /∈ B(x)) is always 1.
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B.2 Proof of Theorem 4.4

Proof of Theorem 4.4. Exploiting the fact that A dominates the 0/1 loss and using the Rademacher
data-dependent generalization bound presented in lemma C.3, we have with at least 1− δ:

E(x,y)∼D
[
Igf (x,y)≤0 − 1

]
≤ E(x,y)∼D [A ◦ gf (x, y)− 1]

≤ 1

m

m∑
i=1

(A (gf (xi, yi))− 1) + 2R̂m ((A− 1) ◦ GF ) +BA

√
2 log(2/δ)

m
,

where R̂m denotes the empirical Rademacher complexity of (A− 1) ◦ GF on S . As x 7→ A(x) is a
Lipschitz function with constant cA and (A− 1)(0) = 0. By lemma C.2 we further have:

R̂m ((A− 1) ◦ GF ) ≤ 2cAR̂m (GF ) .

Plugging this bound into the first inequality yields the desired result:

P (gf (x, y) < 0) ≤ 1

m

m∑
i=1

A (gf (xi, yi)) + 4cAR̂m (GF , S) +BA

√
2 log (2/δ)

m
.

B.3 Proof of Theorem 4.5

The proof provided below is motivated by [1], requiring the modification for the maxK operator. In
addition, we have made more detailed estimates of the results and generalize of proof technology.

Lemma B.1. Define the mapping c from F × X × Y into V × V as:

c(f,x, y) = (v,v′) ⇒

(
f (x,v′) = maxK

v′′∈B(v,x)
f (x,v′′)

)

∧

(
f(x,v)− f (x,v′) = min

u∈P(y)

(
f(x, u)− maxK

u′∈B(u,x)
f(x, u′)

))
,

which is similar to the one given by [9] for flat multi-class classification. Then,

R̂m (GF ) ≤
2

m

∑
(v,v′)∈V 2

(
Eϵ

sup
f∈F

∑
i:c(f,xi,yi)=(v,v′)

ϵi (f (xi,v))

+

Eϵ

sup
f∈F

∑
i:c(f,xi,yi)=(v,v′)

ϵif (xi,v
′)

).
(14)

Proof of Lemma B.1.

R̂m (GF ) = Eϵ

[
sup

gf∈GF

1

m

m∑
i=1

ϵigf (xi, yi)

]

= Eϵ

[
sup
f∈F

1

m

m∑
i=1

ϵi min
v∈P(yi)

(
f (xi,v)− maxK

v′∈B(v,x)
f (xi,v

′)

)]
,
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where ϵi s are independent uniform random variables which take value in {−1,+1} and are known
as Rademacher variables. By construction of c :

R̂m (GF ) ≤
1

m

∑
(v,v′)∈V 2

Eϵ

sup
f∈F

∑
i:c(f,xi,yi)=(v,v′)

ϵi (f (xi,v)− f (xi,v
′))


≤ 1

m

∑
(v,v′)∈V 2

Eϵ

[
sup

s∈{−1,1},f∈F

∑
i:c(f,xi,yi)=(v,v′)

sϵif (xi,v)

+ sup
s∈{−1,1},f∈F

∑
i:c(f,xi,yi)=(v,v′)

sϵif (xi,v
′)

]

=
2

m

∑
(v,v′)∈V 2

(
Eϵ

sup
f∈F

∑
i:c(f,xi,yi)=(v,v′)

ϵi (f (xi,v))


+ Eϵ

sup
f∈F

∑
i:c(f,xi,yi)=(v,v′)

ϵif (xi,v
′)

),

where the last equation holds because the fact R̂m(F ∪ −F) ≤ 2R̂m(F).

Proof of Theorem 4.5. By definition, f (xi,v)−f (xi,v
′) = ⟨wv −wv′ ,xi⟩, lemma B.1 and using

Cauchy-Schwartz inequality:

R̂m (GF ) ≤
2

m
Eϵ

 sup
∥W ∥2≤B

∑
(v,v′)∈V 2

∣∣∣∣∣∣
〈
wv −wv′ ,

∑
i:c(f,xi,yi)=(v,v′)

ϵixi

〉∣∣∣∣∣∣


≤ 2

m
Eϵ

 sup
∥W ∥2≤B

∑
(v,v′)∈V 2

∥wv −wv′∥2

∥∥∥∥∥∥
∑

i:c(f,xi,yi)=(v,v′)

ϵixi

∥∥∥∥∥∥
2


≤ 4B0

m

∑
(v,v′)∈V 2

Eϵ

∥∥∥∥∥∥
∑

i:c(f,xi,yi)=(v,v′)

ϵixi

∥∥∥∥∥∥
2

 .

Using Jensen’s inequality, and as, ∀i, j ∈ {l | c (f,xi, yi) = (v,v′)}2 , i ̸= j,Eϵ [ϵiϵj ] = 0, we get:

R̂m (GFlin) ≤
4B0

m

∑
(v,v′)∈V 2

Eϵ


∥∥∥∥∥∥

∑
i:c(f,xi,yi)=(v,v′)

ϵixi

∥∥∥∥∥∥
2

2




1/2

=
4B0

m

∑
(v,v′)∈V 2

 ∑
i:c(f,xi,yi)=(v,v′)

∥xi∥22

1/2

≤ 4B0

m

∑
(v,v′)∈V 2

(
n(v,v′)B

2
x

)1/2
.

(15)
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We have:

∑
(v,v′)∈V 2

(
n(v,v′)

)1/2 ≤
(a)

√√√√√
 ∑

(v,v′)∈V 2

n(v,v′)

 · |{(v,v′) ∈ V 2 : ∃i, s.t. v′ ∈ B(v,xi)}|

≤
(b)

√
m

√ ∑
v∈V \⊥

(
min

(
Bd(v)−1, N

)
− 1
)

≤
(c)

√
mBN√
B2 − 1

,

(16)

where n(v,v′) = |{i : c (f,xi, yi) = (v,v′)}| is the number of set {i : c (f,xi, yi) = (v,v′)}, which
satisfies

∑
(v,v′) n(v,v′) = m, (a) use the Cauchy-Schwartz inequality, (b) holds because for a given

node v, the alternative nodes v′ are in the same layer of v; note that this is based on a B-ary tree
structure, (c) holds because

∑
v∈V \⊥

(
min

(
Bd(v)−1, N

)
− 1
)
=

h−2∑
d=1

Bd−1(Bd−1 − 1) +N(N − 1) ≤ N2B2

B2 − 1
,

where h is the depth of tree, satisfy Bh−2 < N ≤ Bh−1.

Combining equations (15) and (16), we obtain the following result:

R̂m (GFlin) ≤
4B0Bx√

m

BN√
B2 − 1

.

B.4 Proof of Theorem 4.6

Before we start the analysis, for any vectors v,ui ∈ Rd, ∥v∥1 ≤ Bv , notice the following inequality:

sup
v

∑
i

v⊤ui ≤ Bv max
j∈[d]

∣∣∣∣∣∑
i

ejui

∣∣∣∣∣ ≤∑
i

Bv max
j∈[d],s∈{−1,1}

sejui. (17)

Proof of Theorem 4.6. By lemma B.1, we have

R̂m

(
GFmlp

)
≤ 2

m

∑
(v,v′)∈V 2

(
Eϵ

 sup
f∈Fmlp

∑
i:c(f,xi,yi)=(v,v′)

ϵi (f (xi,v))


+ Eϵ

 sup
f∈Fmlp

∑
i:c(f,xi,yi)=(v,v′)

ϵif (xi,v
′)

).
(18)
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Using the equation (17), we can get:

Eϵ

 sup
f∈Fmlp

∑
i:c(f,xi,yi)=(v,v′)

ϵi (f (xi,v))


= Eϵ

 sup
wv,{Wk}L

k=1

∑
i:c(f,xi,yi)=(v,v′)

ϵi ⟨WL, σL−1 ◦ σL−2 ◦ . . . ◦ σ1 (xi;wv)⟩


≤ ∥WL∥1Eϵ

 sup
s,j∈[d],wv,{Wk}L−1

k=1

∑
i:c(f,xi,yi)=(v,v′)

sϵi ⟨ej , σL−1 ◦ σL−2 ◦ . . . ◦ σ1 (xi;wv)⟩


≤
(a)

cσ∥WL∥1Eϵ

 sup
s,j∈[d],wv,{Wk}L−1

k=1

∑
i:c(f,xi,yi)=(v,v′)

sϵi ⟨ej ,WL−1 · σL−2 ◦ . . . ◦ σ1 (xi;wv)⟩


≤
(b)

cσ∥WL∥1∥WL−1∥1Eϵ

 sup
s,j∈[d],wv,{Wk}L−2

k=1

∑
i:c(f,xi,yi)=(v,v′)

sϵi ⟨ej , σL−2 ◦ . . . ◦ σ1 (xi;wv)⟩


≤cL−1

σ ΠL
k=1∥Wk∥1Eϵ

 sup
s,j∈[d],wv

∑
i:c(f,xi,yi)=(v,v′)

sϵi ⟨ej , (xi;wv)⟩


≤
(c)

2cL−1
σ ΠL

k=1∥Wk∥1

(
Eϵ

 sup
j∈[2d]

∑
i:c(f,xi,yi)=(v,v′)

ϵi ⟨ej , (xi; 0)⟩


︸ ︷︷ ︸

I1

+ Eϵ

 sup
wv,j∈[2d]

∑
i:c(f,xi,yi)=(v,v′)

ϵi ⟨ej , (0;wv)⟩


︸ ︷︷ ︸

I2

)
,

(19)
where (a) holds since σ is applied element wise, we can bring e⊤j inside the function and the use
of contraction inequality [11], (b) use equation (17) again as e⊤j WL−1 is a vector, (c) holds as
R̂m(F ∪ −F) ≤ 2R̂m(F).

As term of I1, using Cauchy-Schwartz inequality and Jensen inequality:

I1 ≤

Eϵ

∥∥∥∥∥∥
∑

i:c(f,xi,yi)=(v,v′)

ϵixi

∥∥∥∥∥∥
2

 ≤

Eϵ


∥∥∥∥∥∥

∑
i:c(f,xi,yi)=(v,v′)

ϵixi

∥∥∥∥∥∥
2

2




1/2

=

 ∑
i:c(f,xi,yi)=(v,v′)

∥xi∥22

1/2

≤
(
n(v,v′)B

2
x

)1/2
.

(20)
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As term of I2, we have:

I2 =
(a)

Eϵ

 sup
wv,j∈[2d]

⟨ej , (0;wv)⟩ ·

∣∣∣∣∣∣
∑

i:c(f,xi,yi)=(v,v′)

ϵi

∣∣∣∣∣∣


≤Eϵ

B0 ·

∣∣∣∣∣∣
∑

i:c(f,xi,yi)=(v,v′)

ϵi

∣∣∣∣∣∣


≤
(b)

B0

Eϵ


∣∣∣∣∣∣

∑
i:c(f,xi,yi)=(v,v′)

ϵi

∣∣∣∣∣∣
2



1/2

= B0
√
n(v,v′),

(21)

where (a) holds since for any given (ϵ1, ϵ2, ..., ϵm), the value of ⟨ej , (0;wv)⟩ is fixed independent of
i, (b) use Jensen inequality.

Note that Eϵ[supf∈Fmlp

∑
i:c(f,xi,yi)=(v,v′) ϵif (xi,v

′)] and Eϵ[supf∈Fmlp

∑
i:c(f,xi,yi)=(v,v′) ϵif (xi,v)]

share the same upper bound, combined above equations (18), (19), (20), (21), and (16), we get the
desired result.

B.5 Proof of Theorem 4.7

Proof of Theorem 4.7. Using the same analytical procedure as in equation (19), we can get

Eϵ

 sup
f∈Fta

∑
i:c(f,xi,yi)=(v,v′)

ϵi (f (xi,v))


= Eϵ

 sup
wv,{Wk}L

k=1

∑
i:c(f,xi,yi)=(v,v′)

ϵi ⟨WL, σL−1 ◦ σL−2 ◦ . . . ◦ σ1 (xi;wv)⟩


≤cL−1

σ ΠL
k=1∥Wk∥1Eϵ

 sup
s,j∈[(N ′+1)d],wv,z

∑
i:c(f,xi,yi)=(v,v′)

sϵi ⟨ej , (z1; z2; ...; zN ;wv)⟩


≤cL−1

σ ΠL
k=1∥Wk∥1Eϵ

[
N ′∑
n=1

 sup
s,j∈[d],zn

∑
i:c(f,xi,yi)=(v,v′)

sϵi ⟨ej , zn⟩


+ sup

s,j∈[d],wv

∑
i:c(f,xi,yi)=(v,v′)

sϵi ⟨ej ,wv⟩

]
.

(22)

Based on equation (21), we can obtain

Eϵ

 sup
s,j∈[d],wv

∑
i:c(f,xi,yi)=(v,v′)

sϵi ⟨ej ,wv⟩

 ≤ B0
√
n(v,v′). (23)

17



For other terms, we have

Eϵ

 sup
s,j∈[d],zn

∑
i:c(f,Ai,yi)=(v,v′)

sϵi ⟨ej , zn⟩


= Eϵ

 sup
s,j∈[d],w

∑
i:c(f,Ai,yi)=(v,v′)

sϵi

〈
ej ,

∑
k∈Cn

w
(i)
k a

(i)
k

〉
≤
∑
k∈Cn

Eϵ

 sup
s,j∈[d],w

∑
i:c(f,Ai,yi)=(v,v′)

sϵi

〈
ej , w

(i)
k a

(i)
k

〉
=
∑
k∈Cn

Eϵ

 sup
s,j∈[d],w

∑
i:c(f,Ai,yi)=(v,v′)

sϵiσ
(
W (2)

w σ
(
W (1)

w

[
a
(i)
k ;a

(i)
k ⊙wv;wv

]))〈
ej ,a

(i)
k

〉
≤ c2σ

∥∥∥W (1)
w

∥∥∥
1

∥∥∥W (2)
w

∥∥∥
1

∑
k∈Cn

Eϵ

[
sup

s,j∈[d],j′∈[3d],w∑
i:c(f,Ai,yi)=(v,v′)

sϵi

〈
ej′ ,

[
a
(i)
k ;a

(i)
k ⊙wv;wv

]〉〈
ej ,a

(i)
k

〉]
.

(24)

Furthermore, we can get

Eϵ

 sup
s,j∈[d],j′∈[3d],w

∑
i:c(f,Ai,yi)=(v,v′)

sϵi

〈
ej′ ,

[
a
(i)
k ;a

(i)
k ⊙wv;wv

]〉〈
ej ,a

(i)
k

〉
≤ Eϵ

 sup
s,j∈[d],j′∈[d]

∑
i:c(f,Ai,yi)=(v,v′)

sϵi

〈
ej′ ,a

(i)
k

〉〈
ej ,a

(i)
k

〉
+ Eϵ

 sup
s,j∈[d],j′∈[d],w

∑
i:c(f,Ai,yi)=(v,v′)

sϵi

〈
ej′ ,a

(i)
k ⊙wv

〉〈
ej ,a

(i)
k

〉
+ Eϵ

 sup
s,j∈[d],j′∈[d]

∑
i:c(f,Ai,yi)=(v,v′)

sϵi ⟨ej′ ,wv⟩
〈
ej ,a

(i)
k

〉
= I1 + I2 + I3.

(25)

As terms of I1, we have

∑
i:c(f,Ai,yi)=(v,v′)

sϵi

〈
ej′ ,a

(i)
k

〉〈
ej ,a

(i)
k

〉
=

∑
i:c(f,Ai,yi)=(v,v′)

sϵie
⊤
j′P

(i)
a ej

=
∑

i:c(f,Ai,yi)=(v,v′)

sϵi Tr(eje
⊤
j′P

(i)
a )

= Tr

eje
⊤
j′

 ∑
i:c(f,Ai,yi)=(v,v′)

sϵiP
(i)
a


=

〈
eje

⊤
j′ ,

∑
i:c(f,Ai,yi)=(v,v′)

sϵiP
(i)
a

〉
F

,
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where P (i)
a = a

(i)
k a

(i)⊤
k . Then, we can get

I1 = Eϵ

 sup
s,j∈[d],j′∈[d]

∑
i:c(f,Ai,yi)=(v,v′)

sϵi

〈
ej′ ,a

(i)
k

〉〈
ej ,a

(i)
k

〉
= Eϵ

 sup
s,j∈[d],j′∈[d]

〈
eje

⊤
j′ ,

∑
i:c(f,Ai,yi)=(v,v′)

sϵiP
(i)
a

〉
F


≤ Eϵ

∥∥∥∥∥∥
∑

i:c(f,Ai,yi)=(v,v′)

ϵiP
(i)
a

∥∥∥∥∥∥
F


=

√√√√ ∑
i:c(f,Ai,yi)=(v,v′)

∥∥∥P (i)
a

∥∥∥2
F
≤
√
n(v,v′)B

4
a.

As terms of I2, use the same analysis technique as for I1, we can get

I2 = Eϵ

 sup
s,j∈[d],j′∈[d],w

∑
i:c(f,Ai,yi)=(v,v′)

sϵi

〈
ej′ ,a

(i)
k ⊙wv

〉〈
ej ,a

(i)
k

〉
= Eϵ

 sup
s,j∈[d],j′∈[d],w

∑
i:c(f,Ai,yi)=(v,v′)

sϵi

〈
ej′ ⊙wv,a

(i)
k

〉〈
ej ,a

(i)
k

〉
= Eϵ

 sup
s,j∈[d],j′∈[d],w

〈
eje

⊤
j′ ⊙w⊤

v ,
∑

i:c(f,Ai,yi)=(v,v′)

sϵiP
(i)
a

〉
F


≤
√
n(v,v′)B

4
aB

2
0 .

As terms of I3, we have

I3 = Eϵ

 sup
s,j∈[d],j′∈[d],w

∑
i:c(f,Ai,yi)=(v,v′)

sϵi ⟨ej′ ,wv⟩
〈
ej ,a

(i)
k

〉
= Eϵ

 sup
s,j∈[d],j′∈[d],w

⟨ej′ ,wv⟩

〈
ej ,

∑
i:c(f,Ai,yi)=(v,v′)

sϵia
(i)
k

〉
≤ B0Eϵ

∥∥∥∥∥∥
∑

i:c(f,Ai,yi)=(v,v′)

ϵia
(i)
k

∥∥∥∥∥∥
2

 ≤ B0

√
n(v,v′)B

2
a.

Combined equations (22), (23), (24), (25), and use
∑N ′

n=1 |Cn| = T we have

Eϵ

 sup
f∈Fta

∑
i:c(f,xi,yi)=(v,v′)

ϵi (f (xi,v))


≤ cL−1

σ ΠL
k=1∥Wk∥1

(
c2σ

∥∥∥W (1)
w

∥∥∥
1

∥∥∥W (2)
w

∥∥∥
1

(
B2

a +B2
aB0 +B0Ba

)
T +B0

)√
n(v,v′).

(26)

Note that

Eϵ

 sup
f∈Fta

∑
i:c(f,xi,yi)=(v,v′)

ϵif (xi,v
′)
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and

Eϵ

 sup
f∈Fta

∑
i:c(f,xi,yi)=(v,v′)

ϵif (xi,v)


share the same upper bound, combined lemma B.1, equations (26), and (16), we get the desired result.

B.6 Proof of Theorem 4.8

P̃ err
rank(K) = E(x,y)∼D′

[
I
[
f(xi, yi)− max

j∈B(x)
f(x, j) < 0

]]
= E(x,y)∼D

[
I
[
f(xi, yi)− max

j∈B(x)
f(x, j) < 0

]
· P

′(x, y)

P (x, y)

]
≤ E(x,y)∼D

∣∣∣∣1− P ′(x, y)

P (x, y)

∣∣∣∣+ E(x,y)∼D
[
1ρf (x,y)<0

]
,

(27)

where we define
ρf (x, y) = min

y′∈B(x)
(f(x, y)− f (x, y′)) .

Let F̃ = {(x, y) 7→ ρf (x, y) : f ∈ F}, By lemma C.3, with probability at least 1− δ, for all f ∈ F :

E [Φ (ρf (x, y))] ≤
1

m

m∑
i=1

Φ (ρf (xi, yi)) + 2R̂m(Φ ◦ F̃) +BΦ

√
2 log (2/δ)

m
.

Since I(u < 0) ≤ Φ(u) for all u ∈ R, and given the Lipschitz continuity of Φ, we can write:

E
[
1ρf (x,y)<0

]
≤ E [Φ (ρf (x, y))] ≤

1

m

m∑
i=1

Φ (ρf (xi, yi)) + 4cΦR̂m(F̃) +BΦ

√
2 log (2/δ)

m
.

(28)
R̂m(F̃) can be upper-bounded as follows:

R̂m(F̃) =
1

m
E
ϵ

[
sup
f∈F

m∑
i=1

ϵi

(
f (xi, yi)− max

y∈B(xi)
f (xi, y)

)]

≤ 1

m
E
ϵ

[
sup
f∈F

m∑
i=1

ϵif (xi, yi)

]
+

1

m
E
ϵ

[
sup
f∈F

m∑
i=1

ϵi max
y∈B(xi)

(f (xi, y))

]
.

Now we bound the first term above. Observe that

1

m
E
ϵ

[
sup
f∈F

m∑
i=1

ϵif (xi, yi)

]
=

1

m
E
ϵ

sup
f∈F

m∑
i=1

∑
y∈Y

ϵif (xi, y) 1yi=y


≤ 1

m

∑
y∈Y

E
ϵ

[
sup
f∈F

m∑
i=1

ϵif (xi, y) 1yi=y

]

=
∑
y∈Y

1

m
E
ϵ

[
sup
f∈F

m∑
i=1

ϵif (xi, y)

(
si
2
+

1

2

)]
,

(29)

where si = 2 · 1yi=y − 1. Since ϵi ∈ {−1,+1}, we have that ϵi and ϵisi admit the same distribution
and, for any y ∈ Y , each of the terms of the right-hand side can be bounded as follows:

1

m
E
ϵ

[
sup
f∈F

m∑
i=1

ϵif (xi, y)

(
si
2
+

1

2

)]

≤ 1

2m
E
ϵ

[
sup
f∈F

m∑
i=1

ϵisif (xi, y)

]
+

1

2m
E
ϵ

[
sup
f∈F

m∑
i=1

ϵif (xi, y)

]
≤ R̂m (Π1(F)) .

(30)
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Thus, we can write 1
mEϵ

[
supf∈F

∑m
i=1 ϵif (xi, yi)

]
≤ NR̂m (Π1(F)). To bound the second term,

we first apply lemma C.5 which yields that

1

m
E
ϵ

[
supf∈F

m∑
i=1

ϵi max
y∈B(xi)

f (xi, y)

]
≤

K∑
j=1

R̂m (Fj) ,

where we use Bj(xi) denote the j-th elements in B(xi) and

R̂m (Fj) =
1

m
E
ϵ

[
supf∈F

m∑
i=1

ϵif (xi,Bj(xi))

]

≤ 1

m

∑
y∈Y

E
ϵ

[
sup
f∈F

m∑
i=1

ϵif (xi, y) I(Bj(xi) = y)

]
≤ NR̂m (Π1(F)) ,

where the last inequality holds due to equations (29) and (30).

Combined equations (27), (28) and above equations, we get the desired results.

B.7 Proof of Theorem 4.9

Using the same analysis applied to equation 15, we can derive the following results:

Eϵ

[
sup

f∈Flin,v∈Y

m∑
i=1

ϵi (f (xi,v))

]
≤ B0Bx

√
m.

Using the same analysis applied to equation 19, we can derive the following results:

Eϵ

[
sup

f∈Fmlp,v∈Y

m∑
i=1

ϵi (f (xi,v))

]
≤ 2cL−1

σ BL
1 · (B0 +Bx)

√
m.

Using the same analysis applied to equation 26, we can derive the following results:

Eϵ

[
sup

f∈Fta,v∈Y

m∑
i=1

ϵi (f (xi,v))

]
≤ cL−1

σ ΠL
k=1∥Wk∥1

(
c2σ

∥∥∥W (1)
w

∥∥∥
1

∥∥∥W (2)
w

∥∥∥
1

(
B2

a +B2
aB0 +B0Ba

)
T +B0

)√
m.

C Auxiliary Lemmas

Lemma C.1. For matrix A and B, vector v, we have

∥ABv∥∞ ≤ ∥A∥∞∥B∥∞∥v∥∞,

where we denoted ∥A∥∞ as ∥A∥∞,∞ = max(|ai,j |).

Proof of lemma C.1. We have

∥ABv∥∞ =

∥∥∥∥A Bv

∥Bv∥∞

∥∥∥∥
∞

∥Bv∥∞ ≤ ∥A∥∞∥Bv∥∞ ≤ ∥A∥∞∥B∥∞∥v∥∞.

Lemma C.2 (Theorem 4.15 (iv) in [22]). Let F be classes of real functions. If A : R → R is
Lipschitz with constant L and satisfies A(0) = 0, then

R̂ℓ(A ◦ F) ≤ 2LR̂ℓ(F).
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Lemma C.3 (Theorem 26.5 in [21]). If the magnitude of our loss function is bounded above by c,
with probability greater than 1− δ for all h ∈ H, we have∣∣∣∣∣E(x,y)∼D[ℓ(h(x), y)]−

1

n

n∑
i=1

ℓ (h (xi) , yi)

∣∣∣∣∣ ≤ 2R̂n(ℓ ◦ H, S) + c

√
2 log(2/δ)

n
,

where ℓ ◦ H = {ℓ(h(x), y) | (x, y) ∈ X × Y, h ∈ H}.
Lemma C.4 (Contraction lemma, lemma 26.9 in [21]). For each i ∈ [m], let ϕi : R → R be a ρ
Lipschitz function, namely for all α, β ∈ R we have |ϕi(α)− ϕi(β)| ≤ ρ|α − β|. For a ∈ Rm let
ϕ(a) denote the vector (ϕ1 (a1) , . . . , ϕm (ym)). Let ϕ ◦A = {ϕ(a) : a ∈ A}. Then,

R̂m(ϕ ◦A) ≤ ρR̂m(A).

Lemma C.5 ( Lemma 9.1 in [20]). Let F1, . . . ,Fl be l hypothesis sets, l ≥ 1, and let G =
{max {h1, . . . , hl} : hi ∈ Fi, i ∈ [l]}. Then, for any sample S of size m, the empirical Rademacher
complexity of G can be upper bounded as follows:

R̂m(G) ≤
l∑

j=1

R̂m (Fj) .

D Experiments

We conduct experiments on real-world datasets to validate the effectiveness of the proposed method
and theoretical insights. All experiments were conducted on a Linux server equipped with a 3.00
GHz Intel CPU, 300 GB of main memory, and NVIDIA 20/30 series GPUs.

Table 2: Statistics of Datasets

Dataset #User #Item #Interaction Density
Mind 36,281 7,129 5, 610, 960 2.16%
Movie 69,878 10,677 10, 000, 054 1.34%

D.1 Datasets

We evaluate the two-stage models with two real-world recommendation datasets, which can be
downloaded from the url2. The datasets are MovieLens 10M (abbreviated as Movie), Microsoft News
Dataset (abbreviated as Mind). Following previous work [8, 7], since some datasets only include
rating-based explicit feedback, they should be converted into implicit feedback for inputs. These
datasets are pre-processed by filtering the users who interact with no more than 15 items. The overall
information of datasets is summarized in Table 2.

D.2 Settings

In each dataset, we randomly choose 10% users as validation users, 10% users as test users, and
all the left users as training users. Following [29, 28], we use a slide window to split user-item
interaction histories into slices of length 70 at most. For training users’ data, the first 69 interactions
are used for input context and the 70-th item is regarded as the ground truth of prediction. Each of
the 10 time windows contains [1, 1, 1, 2, 2, 2, 10, 10, 20, 20] (sum up to 69; if the length of behavior
history is less than 69, pad the absence by zero) interactions. For data of both validation users and
test users, we regard the first half as context and others as ground truth.

In the experiment on the effect of branch number, reported in Figure 1, we used a structure similar to
the TDM model [29], except that we increased the number of tree branches and replaced the loss
used in training with sampled softmax like [8]. We randomly initialize the correspondence between
leaf nodes and labels and use a single well-trained tree model as the retriever model. The dimensions
of item and node embeddings are both set to 24 across different branch numbers. We use Adam as
the optimizer, with a learning rate of 1.0e-3 with exponential decay. For different branch numbers,

2https://drive.google.com/drive/folders/1ahiLmzU7cGRPXf5qGMqtAChte2eYp9gI
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we conduct a grid search on the hyperparameters, including weight decay and the number of negative
samples. Specifically, we explore weight decay values within the range [1e-2, 1e-3, 1e-4, 1e-5], and
the number of negative samples ranges from 50 to 200 in increments of 10. For each branch number,
we perform a beam search with a beam size of 100 and report the highest recall@20 value achieved
during the grid search of hyperparameters.

In the experiment on harmonized distribution reported in Table 1, we analyze the effect of the training
data distribution on the performance of the ranker model within the two-stage model. Following
the same setup as the previous experiment, we use the same retriever model and the DIN model
[27] as the ranker model. In DIN, we replace the original loss function with a sampled softmax loss,
sampling 60 negative examples for each loss computation. The embedding dimension of each item is
set to 96, the hidden dimensions of the attention units are set to [64, 16], and the hidden dimensions
of the fully connected layers are set to [200, 80, 1]. The retriever model remains fixed throughout the
experiment, while the ranker model is trained on different datasets: the original training data and a
subset containing only items successfully retrieved by the retriever. We use precision as a metric to
save the ranker model that performs best on the validation set during the training process and then
evaluate the overall classification accuracy on the test set of the two-stage model.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately summarize the key
contributions and findings of the paper, and they align with the theoretical and experimental
results presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have stated the applicability of the proposed method in the theoretical
result discussion part, noting that it relies on a retriever model with a high recall rate.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions required for our theoretical results are described in the main
paper, and proofs are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental settings in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided links to the publicly available data and submitted a ZIP file
containing the experimental code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental settings in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We reported the best results within the adjustable parameter range for each
method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided a description of the platform and hardware used for the experi-
ments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

27

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research involves only publicly available datasets and standard models,
posing no significant misuse risks, thus no specific safeguards were necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the relevant papers and provided links to download the data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets, thus documentation for such is
not applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects,
thus the inclusion of participant instructions, screenshots, and compensation details is not
applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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