
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HYPERPG - PROTOTYPICAL GAUSSIANS ON THE HY-
PERSPHERE FOR INTERPRETABLE DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Prototype Learning methods provide an interpretable alternative to black-box deep
learning models. Approaches such as ProtoPNet learn, which part of a test image
“look like” known prototypical parts from training images, combining predictive
power with the inherent interpretability of case-based reasoning. However, exist-
ing approaches have two main drawbacks: A) They rely solely on deterministic
similarity scores without statistical confidence. B) The prototypes are learned in
a black-box manner without human input. This work introduces HyperPg, a new
prototype representation leveraging Gaussian distributions on a hypersphere in la-
tent space, with learnable mean and variance. HyperPg prototypes adapt to the
spread of clusters in the latent space and output likelihood scores. The new archi-
tecture, HyperPgNet, leverages HyperPg to learn prototypes aligned with human
concepts from pixel-level annotations. Consequently, each prototype represents
a specific concept such as color, image texture, or part of the image subject. A
concept extraction pipeline built on foundation models provides pixel-level anno-
tations, significantly reducing human labeling effort. Experiments on CUB-200-
2011 and Stanford Cars datasets demonstrate that HyperPgNet outperforms other
prototype learning architectures while using fewer parameters and training steps.
Additionally, the concept-aligned HyperPg prototypes are learned transparently,
enhancing model interpretability.

1 INTRODUCTION

Deep Learning has achieved high accuracy in many computer vision tasks. However, the decision-
making processes of these models lack transparency and interpretability, making deployment in
safety-critical areas challenging. Explainable Artificial Intelligence (XAI) seeks to develop inter-
pretability methods to open the black-box reasoning processes of these models and increase trust in
their decisions.

XAI methods can be broadly divided into two categories: First, Post-Hoc Methods like LIME
(Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017) or GradCAM Selvaraju et al. (2017) offer
explanations for predictions without requiring retraining. While applicable in many scenarios, post-
hoc methods may not actually align with the models’ decision making processes, potentially leading
to interpretations that are not entirely faithful (Rudin, 2019). Second, inherently interpretable meth-
ods provide built-in, case-based reasoning processes. For instance, small decision trees are inher-
ently interpretable because their reasoning can be easily understood as a series of if-else statements
(Molnar, 2020). However, they are constrained in their representational power.

Deep Prototype Learning Architectures such as ProtoPNet (Chen et al., 2019) and its derivatives
(e.g., Rymarczyk et al., 2020; Donnelly et al., 2021; Sacha et al., 2023) integrate inherent inter-
pretability into deep learning models through a prototype layer. Each neuron in this layer represents
a prototype, storing a latent feature vector. The model’s predictions are based on the distances be-
tween sample features and prototype parameters, for example by computing the L2-distance. How-
ever, these deterministic similarity scores do not include statistical information like confidence. To
include such contextual information, prototypes could be modeled as probability distributions, like
Gaussian distributions. Yet, recent prototype architectures favor the cosine hypersphere as feature
space for its classification advantages (Mettes et al., 2019), where defining a Gaussian distribution
analogue is challenging (Hillen et al., 2017).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The prototypes in ProtoPNet and its successors are learned in an opaque manner via backpropaga-
tion. After training, the model “pushes” the learned prototypes on the embedding of the most similar
known training sample (Chen et al., 2019). However, these prototypes are learned without human
control and do not incorporate domain knowledge. A new training regime is needed to aligned
prototypes with human-defined concepts. The main contributions of this paper are as follows:

• HyperPg: A new prototype representation with learned parameters anchor α, mean µ and
standard deviation σ. This representation models a Gaussian distribution over cosine sim-
ilarities, thereby projecting a Gaussian distribution on the surface of a hypersphere. Hy-
perPg’s similarity score is based on the Gaussian’s probability density function and adapts
its size through a learned standard deviation.

• HyperPgNet: A new prototype learning architecture built on HyperPg prototypes. Hyper-
PgNet learns prototypes aligned with human-defined concepts using pixel level annotations.
These concepts describe features such as color and patterns of birds or car parts.

• Concept Extraction Pipeline: Based on Grounding DINO (Liu et al., 2023) and SAM2
(Ravi et al., 2024), this pipeline provides pixel-level concept annotations at scale.

• Classification Experiments: HyperPgNet is compared with other prototype learning archi-
tectures like ProtoPNet on the CUB-200-2011 (Wah et al., 2011) and Stanford Cars (Krause
et al., 2013) datasets. HyperPgNet outperforms the other models with fewer learned proto-
types, while infusing each prototype with more meaning.

2 RELATED WORK

Prototype Learning. In image classification, prototype learning approaches using autoencoders
provide high interpretability by reconstructing learned prototypes from latent space back to the im-
age space (Li et al., 2018). However, these approaches are limited in their performance because each
prototype must represent the entire image. ProtoPNet (Chen et al., 2019) introduced the idea of pro-
totypical parts. In this setting, each prototype is a latent patch of the input image, commonly a 1× 1
latent patch. The prototypes are each associated with a single class and learned via backpropagation
without additional information.

HyperPgNet builds on the idea of prototypical parts, but learns the prototypes in a transparent,
concept-aligned manner. The prototypes are not class exclusive, but class shared. Each prototype
corresponds to a human defined concept. To provide the required concept annotations, we propose
a labeling pipeline based on foundation models such as DINOv2 (Oquab et al., 2024) and SAM2
(Ravi et al., 2024). HyperPgNet learns the concept-aligned prototypes by only adapting the loss
functions and providing additional annotations, without requiring changes to the feature encoder
like PIPNet (Nauta & Seifert, 2023) or Lucid-PPN (Pach et al., 2024), which uses a hybrid input
head to disentangle prototype color and shape.

Multiple successors build on the idea of ProtoPNet. ProtoPShare (Rymarczyk et al., 2020) and
ProtoPool (Rymarczyk et al., 2022) use additional optimizations to learn class-shared prototypical
parts. Deformable ProtoPNet (Donnelly et al., 2021) learns a mixture of prototypical parts with
dynamic spatial arrangement. Other work replace the linear output layer of ProtoPNet with other in-
terpretable models: ProtoKNN (Ukai et al., 2023) uses a k-nearest neighbor classifier and ProtoTree
(Nauta et al., 2021) employs a decision tree.

All these models change how the prototype activations are further processed. However, they all
rely on the point-based prototype formulation introduced by ProtoPNet based on the L2 or cosine
similarity. HyperPgNet proposes a novel prototype formulation based on Gaussian distributions on
the hypersphere, without changing the downstream processing. This probabilistic view with learned
mean and variance allows HyperPgNet to learn prototypes with different degrees of specialization.
Furthermore, the statistical confidence derived from the learned variance could be integrate in further
downstream processing.

The view of prototype learning as clustering in latent space was introduced for image segmentation
(Zhou et al., 2022). The image patches are points in latent space with the prototypes as cluster
centers. ProtoGMM (Moradinasab et al., 2024) and MGProto (Wang et al., 2023) build on this idea
to model the prototypes as Gaussian mixture models for image segmentation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Illustration on how the different prototype formulations compute the similarity between a
prototype p and latent vector z. L2 prototypes compute the Euclidean distance between two points
in latent space. Hyperspherical prototypes use the cosine similarity of normalized vectors, which
corresponds to the angle between two points on a hypersphere. Gaussian prototypes model a Gaus-
sian distribution in Euclidean space and compute the probability density function (PDF). HyperPg
prototypes learn a Gaussian distribution of cosine similarities, thereby projecting a Gaussian distri-
bution onto the surface of a hypersphere.

HyperPg adapts the idea of Gaussian prototypes used in image segmentation to hyperspherical latent
spaces based on the cosine similarity. The cosine similarity has been shown to perform well in
classification tasks (Mettes et al., 2019) and also been applied in recent prototype learning works
(Zhou et al., 2022; Ukai et al., 2023). This makes HyperPgNet the first model to employ probabilistic
prototypes with learnable mean and variance in a hyperspherical space.

Concept-Based Methods. Testing with Concept Activation Vectors (TCAV) (Kim et al., 2018) is
a post-hoc method that aligns model activations with human-understandable concepts. In image
classification, TCAV measures model activations on images representing a specific concept like
“striped” and compares them to activations on a random image set. Concept Activation Regions
(CAR) (Crabbé & van der Schaar, 2022) relax TCAV’s assumption of linear separability in latent
space by using support vector machines and the kernel trick. Another post-hoc approach, CRAFT
(Fel et al., 2023), generates concept attribution maps by identifying relevant concepts from the
training set via Non-Negative Matrix Factorization (NMF) and backpropagating with GradCAM
(Selvaraju et al., 2017).

Instead of analyzing the learned concepts post-hoc, some approaches integrate concept learning
into the classifier. MCPNet (Wang et al., 2024) extracts concepts from multiple layers by splitting
feature maps along the channel dimension, learning concepts during training and at multiple scales.
Concept Bottleneck Models (CBMs) (Koh et al., 2020) augment black-box models to predict pre-
defined concept labels in an intermediate step. In this manner, CBMs behave like two sequential
black box models and their internal reasoning remains opaque.

HyperPgNet combines the concept-aligned learning approach of CBM with interpretable prototype
learning. HyperPgNet learns multiple HyperPg prototypes per concept, instead of a fully connected
concept prediction layer. A novel concept extraction pipeline, built on foundation models, provides
pixel level annotations at scale. By using those annotations to learn concept prototypes, HyperPgNet
avoids the ambiguity of aligning post-hoc explanations with the model’s internal reasoning.

3 PROTOTYPICAL GAUSSIANS ON THE HYPERSPHERE

Prototype Learning is an inherently interpretable machine learning method. The reasoning process is
based on the similarity scores of the inputs to the prototypes, retained representations of the training
data. For example, a K-Nearest Neighbor (KNN) model is a prototype learning approach with the
identity function for representation and an unlimited number of prototypes. In contrast, a Gaussian
Mixture Model (GMM) uses a mean representation but restricts the number of prototypes to the
number of mixture components.

Prototype learning for deep neural networks involves finding structures in latent space representa-
tions. This section provides an overview of existing methods, which are also illustrated in Fig. 1.
Prior work uses point-based prototypes, computing similarity scores relative to a single point in la-
tent space. Aligning prototypes with human-labeled concepts requires a more powerful prototype
representation, leading to the introduction of HyperPg - Prototypical Gaussians on the Hypersphere.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

HyperPg prototypes are able to adapt their shape in the latent space by modeling Gaussian distribu-
tions with mean and standard deviation, adapting to the variance in encoded concept features.

3.1 POINT BASED PROTOTYPES

The general formulation of prototypes, as defined in previous work (e.g., Chen et al., 2019), is
discussed first. Let D = [X,Y] = {(xi, yi)}Ni=1 denote the training set, e.g., a set of labeled
images, with classes C. Each class c ∈ C is represented by Q many prototypes Pc = {pc,j}Qj=1.

Some feature encoder Enc projects the inputs into a D-dimensional latent space Z , with
zi = Enc(xi) being a feature map of shape ζw × ζh ×D with spatial size ζ = ζwζh. Commonly,
the prototypes p are also part of Z with shape ρw × ρh ×D, i.e., spatial size ρ = ρwρh.

Autoencoder approaches use ρ = ζ, meaning the prototype represents the entire image and can
be reconstructed from latent space (Li et al., 2018). Part-based approaches like ProtoPNet and
segmentation models like ProtoSeg use ρ = 1 (Chen et al., 2019; Zhou et al., 2022), meaning each
prototype represents some part of the image. Notable exceptions include Deformable ProtoPNet
(Donnelly et al., 2021), where each prototype has spatial size ρ = 3× 3 and MCPNet (Wang et al.,
2024), where prototypes are obtained by dividing the channels of the latent space into chunks.

The prediction is computed by comparing each prototype p to the latent feature map z. For simplic-
ity’s sake lets assume the spatial dimensions ρ = ζ = 1. The following equations can be adapted
for higher spatial dimensions by summing over

∑
ρw

∑
ρh

for each chunk of the latent map.

ProtoPNet’s prototypes leverage the L2 similarity. The L2 similarity measure is defined as

sL2
(z|p) = log

(
∥z − p∥22 + 1

∥z − p∥22 + ϵ

)
(1)

and is based on the inverted L2 distance between a latent vector z and a prototype vector p. This
similarity is a point-based measure, as only the two vectors are compared, without any additional
context like the expected variance of the cluster represented by the prototype.

Hyperspherical prototypes using the cosine similarity have been shown to perform well in classifica-
tion tasks (Mettes et al., 2019) and have been widely used since (e.g., Zhou et al., 2022; Ukai et al.,
2023). The cosine similarity is defined as

scos(z|p) =
z⊤p

∥z∥2∥p∥2
, (2)

which is based on the angle between two normalized vectors of unit length. By normalizing D di-
mensional vectors to unit length, they are projected onto the surface of a D dimensional hypershere.
The cosine similarity is defined on the interval [−1, 1] and measures: 1 for two vectors pointing in
the same direction, 0 for orthogonal vectors, and −1 for vectors pointing in opposite directions. Like
the L2 similarity, the cosine similarity is a point-based measure comparing only two vectors.

Both the L2 and cosine similarity can be used for classification. The similarity scores are processed
by a fully connected layer (e.g., Chen et al., 2019; Donnelly et al., 2021), or a winner-takes-all
approach assigns the class of the most similar prototype (e.g., Sacha et al., 2023). Prototypes can be
learned by optimizing a task-specific loss, such as cross-entropy, via backpropagation. Alternatively,
Zhou et al. (2022) propose “non-learnable” prototypes, whose parameters are obtained via clustering
in the latent space rather than backpropagation.

3.2 GAUSSIAN PROTOTYPES

Gaussian prototypes model prototypes as a Gaussian distribution with mean and covariance. They
adapt to the spread of the associated latent cluster by adjusting their covariance matrix. Thus, a
Gaussian prototype with a wide covariance can still have a relatively high response even for larger
distances from the mean vector.

Let the formal definition of a Gaussian prototype be pG = (µ,Σ). The parameters of pG
c,j now track

both the mean and covariance of latent vector distribution Zc,j . Each Gaussian prototype pG thus
defines a multivariate Gaussian Distribution N (µ,Σ). Gaussian prototypes can be trained using

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

−1

0

1 −1

0

1

−1

0

1

μ=1

−1

0

1 −1

0

1

−1

0

1

μ=0.8

−1

0

1 −1

0

1

−1

0

1

μ=0.0

−1

0

1 −1

0

1

−1

0

1

μ= −1

Figure 2: HyperPg learns a Gaussian distribution with mean µ and std σ of cosine similarities
with the anchor α. The plots visualize HyperPg’s activations on the 3D hypersphere with anchor
α = (0, 0, 1), std σ = 0.1 and and various mean cosine similarities µ ∈ [−1, 1] for 10k random
samples. The anchor α is shown as a red arrow, and std σ governs the width of the distribution.
For µ = 1, the distribution is aligned with the vector; for µ = −1 it is on the opposite side of
the hypersphere. Due to the cosine similarity, setting 1 > µ > −1 interpolates the area of highest
probability density between both poles, leading to a ring shape on the hypersphere’s surface.

EM for clustering in the latent space (Zhou et al., 2022; Wang et al., 2023; Moradinasab et al., 2024)
or by directly optimizing the parameters via Backpropagation. The similarity measure of Gaus-
sian prototypes is defined as the probability density function (PDF) for D-dimensional multivariate
Gaussians, namely

sGauss(z|pG) = N (z;µ,σ) (3)

This formulation as a PDF has several advantages: A) The similarity can be interpreted as the
likelihood of being sampled from the Gaussian prototypes, which is more meaningful than a distance
metric in a high-dimensional latent space. B) Prototypes can adapt their shape using a full covariance
matrix, allowing different variances along various feature dimensions, offering more flexibility in
shaping the latent space. However, this increases computational requirements, especially with EM
clustering. Gaussians prototypes lose the advantages of hyperspherical prototypes for classification
and regression Mettes et al. (2019).

3.3 GAUSSIAN PROTOTYPES ON THE HYPERSPHERE - HYPERPG

Prototypical Gaussians on the Hypersphere (HyperPg) combine the advantages of Gaussian and
hyperspherical prototypes. HyperPg prototypes are defined as pH = (α, µ, σ) with a directional an-
chor vector α, scalar mean similarity µ and scalar standard deviation (std) σ. HyperPg prototypes
learn a 1D Gaussian distribution over the cosine similarities to the anchor vector α. Because the
cosine similarity is bounded to [−1, 1], HyperPg’s similarity measure is defined as the PDF of the
truncated Gaussian distribution within these bounds. Let G(x, µ, σ) be the cumulative Gaussian dis-
tribution function. Then, HyperPg’s similarity measure based on the truncated Gaussian distribution
is defined as

sHyperPg(z|pH) = TG(scos(z|α);µ, σ,−1, 1) (4)

=
N (scos(z|α);µ, σ)

G(1, µ, σ)− G(−1, µ, σ).
(5)

Fig. 2 illustrates the activations of HyperPg’s similarity function on the surface of a 3D hypersphere
with anchor α = (0, 0, 1), fixed std σ = 0.1 and various mean values µ ∈ [−1, 1]. The anchor α
defines a prototypical direction vector in latent space Z , similar to other hyperspherical prototypes,
and is visualized as a red arrow. The learned Gaussian distribution of cosine similarities is projected
onto the hypersphere’s surface with std σ governing the spread of the distribution, and mean µ the
expected distance to the anchor α. For µ = 1, the distribution centers around the anchor, as the
cosine similarity is 1 if two vectors point in the same direction. For µ = −1, the distribution is the
on opposite side of the hypersphere, as the cosine similarity is −1 for vectors pointing in opposite
directions.

For values of 1 > µ > −1, the distribution forms a hollow ring around the anchor vector α. This
occurs because the cosine similarity for these µ values expects the activating vectors to point in a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

different direction than the anchor, without specifying the direction. Imagining the interpolation be-
tween µ = 1 and µ = −1, the probability mass moves from one pole of the hypersphere to the other,
stretching like a rubber band over the surface. For µ = 0, the expected cosine similarity indicates
that vectors with the highest activation are orthogonal to the anchor α. Since no specific direction is
indicated, the entire hyperplanar segment orthogonal to the anchor has the highest activation. This
activation pattern for the cosine similarity would typically require an infinite mixture of prototype
vectors pointing in all directions in this hyperplane. HyperPg achieves the same effect by learning
only one prototype vector (the anchor) and just two additional scalar parameters. This significantly
increases HyperPg’s representational power compared to standard hyperspherical and Gaussian pro-
totypes and is a major difference to the von Mises-Fisher distribution (see also Appendix A).

Combining the strengths of hyperspherical and Gaussian prototypes, HyperPg can learn more com-
plex structures in the latent space, such as human-defined concepts, and provide a more meaningful
similarity measure. HyperPg can be easily adapted to other probability distributions with additional
desirable properties. Possible candidate distributions are elaborated on in Appendix A. Similarly, it
is possible to exchange the cosine similarity to other similarity measures or functions, and learn an
untruncated PDF over their output, making the HyperPg idea transferable to applications outside of
prototype learning.

4 TRAINING

The original ProtoPNet implementation uses three loss functions: a task specific loss like crossen-
tropy for classification, a cluster loss to increase compactness within a class’s cluster, and a sepa-
ration loss to increase distances between different prototype clusters. However, the prototypes of
ProtoPNet and its successors are learned in a black-box manner.

HyperPgNet is a new inherently interpretable deep learning approach built on HyperPg prototypes.
It introduces a “Right for the Right Concept” loss, inspired by “Right for the Right Reasons” (Ross
et al., 2017), to restrict the learned prototypes to human-defined concepts. This focus enhances the
interpretability and minimizes the influence of confounding factors. This section first provides an
overview of the used prototype learning losses, then introduces the Right for the Right Concept loss,
and finally discusses the overall network architecture and final multi-objective loss.

4.1 PROTOTYPE LOSSES

ProtoPNet defines a cluster loss function to shape the latent space such that all latent vectors zc ∈ Zc

with class label c are clustered tightly around the semantically similar prototypes pc ∈ Pc. The
cluster loss function is defined as

LClst = − 1

N

N∑
i=1

1

|C|
∑
c∈C

max
pc∈Pc

max
zc,i∈Zc,i

s(pc, zc,i), (6)

where s(·, ·) is some similarity measure. The LClst-Loss function increases compactness by in-
creasing the similarity between prototypes pc of class c latent embeddings zc of class c over all
samples.

An additional separation loss increases the margin between different prototypes. The separation loss
function is defined as

LSep =
1

N

N∑
i=1

1

|C|
∑
c∈C

max
p¬c /∈Pc

max
zc,i∈Zc,i

s(p¬c, zc,i), (7)

The LSep function punishes high similarity values between a latent vector zc of class c and proto-
types p¬c not belonging to c, thereby separating the clusters in latent space. Please note, ProtoPNet
(Chen et al., 2019) use a slightly different notation by working with the L2 distance, instead of a
similarity measure.

In HyperPgNet the learned prototypes are not class exclusive, but shared among different classes.
Instead, each prototype is assigned to one human-defined concept k ∈ K. The Concept Activation

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Images

Backbone Neck
Similarity
Scores

0.842

0.193

FCL

HyperPg Module

O
ut

pu
t

 α

C
os

S
im

D
en

si
ty

E
st

im
at

or

μ, σ

Figure 3: HyperPgNet Architecture. The HyperPg module can be easily exchanged to other pro-
totype formulations such as ProtoPNet. HyperPgNet uses the truncated Gaussian distribution as
density estimator, but other PDFs are possible.

Regions (CAR, Crabbé & van der Schaar, 2022) model proposes a concept density loss defined as

LDensity = − 1

|K|
∑
k∈K

1

|Pk|
∑

pk∈Pk

ϕ(pk,Zk)− ϕ(pk,Z¬k) (8)

ϕ(p,Z) =
1

|Z|
∑
z∈Z

s(p, z). (9)

The density loss uses the similarity aggregation ϕ(p,Z) which computes the mean response of a
prototype p with a set of latent features Z. The density loss therefore computes the mean response
of correctly assigned prototypes minus the mean response of incorrectly assigned prototypes. The
loss functions proposed by ProtoPNet compute the maximum response of correctly and incorrectly
assigned prototypes instead.

4.2 RIGHT CONCEPT LOSS

To ensure prototypes actually correspond to the input pixels containing the concept, and do not re-
spond to other factors in the background, HyperPgNet introduces the “Right for the Right Concept”
(RRC) -Loss inspired by “Right for the Right Reasons” (RRR, Ross et al., 2017). The RRC loss is
defined as

LRRC =
1

N

N∑
i=1

∑
k∈K

Axi,k
∂

∂xi

∑
pk∈Pk

s (pk,Enc (xi))

2

, (10)

with binary annotation matrix Axi,k ∈ {0, 1}N××W×H for each input sample xi and concept
k. This annotation matrix defines for each input image, which pixels contain which concept. In
the original RRR paper, the annotation matrix specified relevant regions for the classification task,
steering the model’s activations away from confounding factors in the background. In HyperPgNet
the RRC-Loss further strengthens the prototype-concept association.

4.3 MULTI-OBJECTIVE LOSS FUNCTION

To train a prototype learning network like HyperPgNet for downstream tasks like image classifi-
cation, a multi-objective loss function is employed. This multi-objective loss function is defined
as

L = LCE + λClstLClst + λSepLSep + λRRCLRRC,

where LCE is the cross-entropy loss over network predictions and ground truth image labels. Pro-
toPNet uses λClst = 0.8 and λSep = 0.08 (Chen et al., 2019). For HyperPgNet, the different loss
terms are weighted equally, meaning all λ = 1.

4.4 NETWORK ARCHITECTURE

Fig. 3 illustrates HyperPgNet’s Architecture for interpretable image classification. HyperPgNet uses
a pretrained feature encoder such as ConvNext-tiny (Liu et al., 2022) or MiT-B4 (Xie et al., 2021)
as a backbone model. A neck consisting of two 1 × 1 convolution layers with ReLU activation in
between projects the high dimensional feature map of the backbone into a lower dimensional feature
space.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Concept Segmentation Masks for CUB-
200-2011 based on provided positive and
negative part annotations.

(b) Concept Segmentation Mask for Stan-
ford Cars generated from a list of human-
defined car parts.

Figure 4: Examples for Automated Concept Extraction.

The HyperPg prototype module is implemented with two layers: First, a prototype learning layer
computes the cosine similarity of the learnable HyperPg anchors α to the latent vectors produced by
the neck. Second, a Density Estimation layer with learnable parameters mean µ and std σ computes
the Gaussian PDF over the activations of the previous layer. Future extensions can adapt both
components independently, for example by implementing a hyperbolic similarity measure or a multi-
modal probability distribution.

Finally, the output of the HyperPg Module is passed through a single fully connected layer (FCL) to
produce the output logits or class scores.

5 CONCEPT EXTRACTION AT SCALE

To learn prototypes based on human-defined concepts with RRC-Loss for image classification, pixel
level annotations are required. Foundation models are leveraged to generate these annotations, re-
ducing the need for human labeling.

The CUB-200-2011 (Wah et al., 2011) annotates each image with up to 15 part locations (e.g.,
head, tail, wing). Each part is labeled with some attribute describing the coloring, pattern or shape.
A Segment Anything 2 (SAM2) model (Ravi et al., 2024) creates pixel-level segmentation masks
based on the part locations.

The Stanford Cars dataset (Krause et al., 2013) does not provide part level annotations. We defined
a list of 10 car parts (e.g., wheel, headlight, radiator) and use a Grounding DINO model (Liu et al.,
2023) to generate bounding boxes for each part. Finally, SAM2 creates pixel-level segmentation
masks based on the bounding boxes. This automated pipeline labeled the 16k images of Stanford
Cars within 2h on a NVIDIA 4060Ti with 16GB VRAM, and can be easily adapted to other datasets.
Fig. 4 presents some examples for CUB-200-2011 and Stanford Cars.

6 EXPERIMENTS

The experiments were performed on two datasets: CUB-200-2011 (CUB) with 200 bird species Wah
et al. (2011) and Stanford Cars (CARS) with 196 car models Krause et al. (2013). Implementation
details such as data preprocessing or model implementation are provided in Appendix B.

Birds Cars
Prototypes MiT-B4 ConvNeXt # Prototypes MiT-B4 ConvNeXt

BB Baseline - 17.7 74.2 - 1.9 57.5
CBM - 75.7 77.9 - 79.9 81.0

PP ProtoPNet (PPN) 2000 68.0 68.1 1960 86.4 87.0
PPN + HyperPG 2000 70.5 65.0 1960 87.4 77.3

CAP HyperPgNet −LRRC 300 76.5 76.9 180 88.6 88.9
(Ours) HyperPgNet +LRRC 300 74.1 71.5 180 81.2 86.0

Table 1: Test Top-1 Accuracy. Models are grouped by their reasoning process. BB: Black Box. PP:
Prototypical Parts. CAP: Concept Aligned Prototypes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6.1 QUANTITATIVE RESULTS

0 200 400

0

25

50

75

ConvNeXt
CBM
PPN
PPN +HyperPg
HyperPgNet -RRC
HyperPgNet +RRC

Figure 5: CUB Test Accuracy per Epoch.

Table 1 reports the top-1 accuracy for the tested
models on the CUB and CARS datasets with dif-
ferent backbones. HyperPgNet achieves compara-
ble results with the black box CBM and baseline
models. Notably, HyperPgNet outperforms CBM
on CARS, as it can differentiate between different
modes for the same concept by learning multiple
prototypes per concept. CBM is restricted to a bi-
nary concept presence prediction. Including LRRC

slightly lowers HyperPgNet’s performance but is
still comparable to the black-box models.

Fig. 5 shows the test accuracy over epochs for CUB
with ConvNeXt backbone. The concept aligned
models CBM and HyperPgNet are the fastest to con-
verge at around 100 epochs. ProtoPNet requires over

400 training epochs until the best performance level is reached. However, switching from the stan-
dard L2 based prototypes to HyperPg prototypes effectively halves the required training epochs.

6.2 QUALITATIVE COMPARISON

Fig. 7 shows the pixel attribution of the highest activated prototype on each image for the tested
prototype learning models with ConvNeXt backbone. In contrast to prior work (e.g., Chen et al.,
2019; Ukai et al., 2023), this visualization is based on the prototype gradients, similar to saliency
maps such as GradCAM (Selvaraju et al., 2017), which should avoid spatial misalignment often
observed in prototype explanations (Sacha et al., 2024). The concept aligned prototypes learned by
HyperPgNet focus more on the relevant parts of the image subject than the class-based prototypes of
ProtoPNet. The network seems to focus correctly on either the overall color of the bird and ignoring
the background (first three examples) or on specific markings (last three examples). The addition of
the LRRC loss seems to further increase the main focus of the prototype activation on the relevant
image regions. For ProtoPNet, no qualitative difference can be detected between the standard L2

or HyperPg prototypes. With both prototype formulations, ProtoPNet is likely to also activate on
parts of the image background. This is a fundamental weakness of training ProtoPNet in an opaque
manner without alignment to relevant concepts, which HyperPgNet addresses.

On the CARS dataset, the effect of LRRC is more apparent. The defined concepts for this dataset
are limited to car parts without fine-grained differentiation between patterns or shapes, such as the
concepts on CUB. For this dataset, one of the most predictive image regions across models seems
to be the front bumper of the cars, which has not been annotated with its own concept. As shown in
Fig. 6, the concept-aligned prototypes still activate in this region. However, by training the model
with the LRRC loss, the prototypes focus more on the annotated image regions.

Window Windscreen Bonnet

+LRRC +LRRC +LRRC-LRRC-LRRC-LRRC

Figure 6: Concept prototype activation after training with and without LRRC with MiT-B4 backbone.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

HyperPgNet
- LRRC

HyperPgNet
+ LRRC

ProtoPNet
(PPN)

PPN
+ HyperPg

Figure 7: Highest prototype activation per image with ConvNeXt backbone.

6.3 ABLATION

Prototypes CUB Accuracy
CBM 71.6

1 70.5
5 68.9
10 68.0
20 67.3

Table 2: Test Top-1 Accuracy
on CUB with ResNet50 backbone
with varying numbers of proto-
types per concept.

We conduct an ablation on the number of prototypes per con-
cept. Table 2 presents the test accuracies on CUB for Hyper-
PgNet with ResNet50 backbone. The difference in task per-
formance over the different model configurations is negligible.
However, looking at some qualitative examples as depicted in
Fig. 8 a difference in prototype quality can be observed. With
fewer prototypes per concept, the model is more likely to also
react to parts of the mage background in order to still achieve
a low training error. With too many prototypes per concept,
the latent space becomes too segmented. The prototypes start
to focus on smaller subparts of the image subject, potentially
decreasing the interpretability. The chosen configuration of 10
prototypes per concept seems to be a sweet spot regarding pre-
dictive performance and prototype quality for the experiments.

1 Prototype 5Prototypes 10 Prototypes 20 Prototypes

Figure 8: Qualitative Results for HyperPgNet with ResNet50 backbone and varying numbers of
prototypes per concept.

7 CONCLUSION

This work introduces HyperPg, a new prototype representation learning a probability distribution on
the surface of a hypersphere in latent space. HyperPg prototypes adapt to the variance of clusters
in latent space and improve training time and accuracy compared to other prototype formulations.
HyperPgNet leverages HyperPg to learn human-defined concept prototypes instead of black-box
optimized prototypes. The combination of probabilistic prototypes on the hypersphere and concept-
aligned prototypes allows HyperPgNet to outperform other prototype learning approaches with re-
gards to accuracy and interpretability. One limitation HyperPgNet faces are slightly higher computa-
tional requirements due to the inclusion of concept annotations and LRRC during training. However,
this is offset by faster convergence. Coupled with the increased transparency and interpretability of
the model, this makes HyperPgNet a strong contender for scenarios with higher requirements for
model trust and safety, like medical applications or human-robot interaction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

For reproducing the experiments, please refer to the following sections: Sec. 4 describes the required
loss functions and the overall network architecture. Subsection 3.3 details the activation function
of the newly introduced HyperPg prototypes. Appendix B provides detailed information on the
experiment implementations, including training hyperparameters, processing of the datasets and
model implementation details. Furthermore, we will publish the code on GitHub after the double-
blind review period.

REFERENCES

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This
looks like that: Deep learning for interpretable image recognition. Neural Information Processing
Systems, 2019.

Jonathan Crabbé and Mihaela van der Schaar. Concept activation regions: A generalized framework
for concept-based explanations. Advances in Neural Information Processing Systems, 35:2590–
2607, 2022.

Jonathan Donnelly, A. Barnett, and Chaofan Chen. Deformable protopnet: An interpretable image
classifier using deformable prototypes. Computer Vision and Pattern Recognition, 2021. doi:
10.1109/cvpr52688.2022.01002.

Thomas Fel, Agustin Picard, Louis Bethune, Thibaut Boissin, David Vigouroux, Julien Colin, Rémi
Cadène, and Thomas Serre. Craft: Concept recursive activation factorization for explainability.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2711–2721, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Thomas Hillen, Kevin J. Painter, Amanda C. Swan, and Albert D. Murtha. Moments of von mises
and fisher distributions and applications. Mathematical Biosciences and Engineering, 14(3):673–
694, 2017. ISSN 1551-0018. doi: 10.3934/mbe.2017038.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pp. 2668–2677. PMLR, 2018.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338–5348. PMLR, 2020.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning
through prototypes: a neural network that explains its predictions. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Arti-
ficial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence, AAAI’18/IAAI’18/EAAI’18, New Orleans, Louisiana, USA, 2018. AAAI Press.
ISBN 978-1-57735-800-8.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp.
4765–4774. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform manifold
approximation and projection. Journal of Open Source Software, 3(29):861, 2018. doi: 10.
21105/joss.00861.

Pascal Mettes, Elise Van der Pol, and Cees Snoek. Hyperspherical prototype networks. Advances in
neural information processing systems, 32, 2019.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Nazanin Moradinasab, Laura S Shankman, Rebecca A Deaton, Gary K Owens, and Donald E
Brown. Protogmm: Multi-prototype gaussian-mixture-based domain adaptation model for se-
mantic segmentation. arXiv preprint arXiv:2406.19225, 2024.

Meike Nauta and Christin Seifert. The co-12 recipe for evaluating interpretable part-prototype image
classifiers. In World Conference on Explainable Artificial Intelligence, pp. 397–420. Springer,
2023.

Meike Nauta, Ron van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-
grained image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 14933–14943, June 2021.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
out supervision. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=a68SUt6zFt.

Mateusz Pach, Dawid Rymarczyk, Koryna Lewandowska, Jacek Tabor, and Bartosz Zieliński. Lu-
cidppn: Unambiguous prototypical parts network for user-centric interpretable computer vision,
2024. URL https://arxiv.org/abs/2405.14331.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714,
2024.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”: Explaining
the predictions of any classifier, 2016. URL https://arxiv.org/abs/1602.04938.

Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the right reasons:
Training differentiable models by constraining their explanations. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, pp. 2662–2670, 2017.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz Zieliński. Protopshare: Proto-
type sharing for interpretable image classification and similarity discovery. arXiv preprint
arXiv:2011.14340, 2020.

Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska, Jacek Tabor, and
Bartosz Zieliński. Interpretable image classification with differentiable prototypes assignment. In
European Conference on Computer Vision, pp. 351–368. Springer, 2022.

12

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://openreview.net/forum?id=a68SUt6zFt
https://arxiv.org/abs/2405.14331
https://arxiv.org/abs/1602.04938

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mikołaj Sacha, Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz Zieliński. Protoseg:
Interpretable semantic segmentation with prototypical parts. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 1481–1492, 2023.

Mikołaj Sacha, Bartosz Jura, Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz Zieliński.
Interpretability benchmark for evaluating spatial misalignment of prototypical parts explanations.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 21563–21573,
2024.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Y. Ukai, Tsubasa Hirakawa, Takayoshi Yamashita, and H. Fujiyoshi. This looks like it rather than
that: Protoknn for similarity-based classifiers. International Conference on Learning Represen-
tations, 2023.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Bor-Shiun Wang, Chien-Yi Wang, and Wei-Chen Chiu. Mcpnet: An interpretable classifier via
multi-level concept prototypes. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10885–10894, 2024.

Chong Wang, Yuanhong Chen, Fengbei Liu, Davis James McCarthy, Helen Frazer, and Gustavo
Carneiro. Mixture of gaussian-distributed prototypes with generative modelling for interpretable
image classification. arXiv preprint arXiv:2312.00092, 2023.

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Seg-
former: Simple and efficient design for semantic segmentation with transformers. Advances in
neural information processing systems, 34:12077–12090, 2021.

Tianfei Zhou, Yi Yang, Ender Konukoğlu, and Luc Van Goo. Rethinking semantic segmentation: A
prototype view. Computer Vision and Pattern Recognition, 2022. doi: 10.1109/cvpr52688.2022.
00261.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADAPTING HYPERPG TO OTHER PROBABILITY DISTRIBUTIONS

Subsection 3.3 defines HyperPg prototypes pH = (α, µ, σ) as a Gaussian Distribution with mean
µ and std σ of cosine similarities around an anchor vector α. This idea of learning a distribution
of cosine similarity values around an anchor α can be adapted to other distributions. This sections
introduces some potential candidates. As early experiments on the CUB-200-2011 dataset showed
no significant difference in performance, these sections are relegated to the appendix.

A.1 CAUCHY DISTRIBUTION

One theoretical disadvantage of the Gaussian distribution is the fast approach to zero, which is why
a distribution with heavier tails such as the Cauchy distribution might be desirable. The Cauchy
distribution’s PDF is defined as

C(x;x0, γ) =
1

πγ

(
1 +

(
x−x0

γ

)2) , (11)

with median x0 and average absolute deviation γ. The HyperPg prototypes with Cauchy are defined
as accordingly as pCauchy = (α, x0, γ).

Fig. 9 illustrates the PDF of the Gaussian and Cauchy distributions with µ = x0 = 1 and σ = γ =
0.2, i.e., the main probability mass is aligned with the anchor α. The Gaussian distributions PDF
quickly approaches zero and stays near constant. This could potentially cause vanishing gradient
issues during training. The heavier tails of the Cauchy distribution ensure that for virtually the
entire value range of the cosine similarity, gradients could be propagated back through the model.
However, experiments on CUB-200-2011 showed no significant performance difference between
using HyperPg with the Gaussian or Cauchy distribution.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Cosine Similarity

0.0

0.5

1.0

1.5

2.0

Pr
ob

ab
ilit

y
De

ns
ity

Gauss μ= 1 σ= 0.2
Cauchy x0 = 1 γ= 0.2

Figure 9: PDF for the Gaussian and Cauchy distribution of cosine similarity values. The Cauchy
distribution has heavier tails, avoiding vanishing gradients issues.

A.2 TRUNCATED DISTRIBUTIONS

The cosine similarity is defined only on the interval [−1, 1]. This makes it attractive to also use trun-
cated probability distributions, which are also only defined on this interval. The truncation imposes
a limit on the range of the PDF, thereby limiting the influence of large values for the distribution’s σ
or γ parameter, respectively. The truncated Gaussian pdf TGauss requires the cumulative probability
function G and error function ferr, and is defined as

ferr(x) =
2√
π

∫ x

0

exp
(
−z2

)
dz, (12)

N (x;µ, σ) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
, (13)

G(x, µ, σ) = 1

2

(
1 + ferr

(
x− µ

σ
√
2

))
, (14)

TGauss(x, µ, σ, a, b) =
N (scos(z|α);µ, σ)

G(1, µ, σ)− G(−1, µ, σ).
, (15)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 20 40
Epoch

0.00

0.25

0.50

0.75

Te
st

 A
cc

ur
ac

y

Comparison CUB-200-2011

Gauss
truncated Cauchy
truncated Gauss

Figure 10: CUB-200-2011 Test Accuracy of HyperPgNet with different probability distributions.
The difference in performance is only marginal.

with lower bound a and upper bound b, e.g., for the cosine similarity a = −1 and b = 1. Similarly,
the truncated Cauchy distribution can be applied, which is defined as

TCauchy(x, x0, γ, a, b) =
1

γ

(
1 +

(
x− x0

σ

)2
)−1(

arctan

(
b− x0

γ

)
− arctan

(
a− x0

γ

))−1

.

(16)

Fig. 10 shows the test accuracy of three HyperPgNet models with Gaussian, truncated Gaussian and
truncated Cauchy distribution on the CUB-200-2011 dataset. While difference in test performance
and learning speed were minimal on the CUB-200-2011 dataset, further exploration is necessary,
as other experiments showed that the concept-alignment on CUB-200-2011 dominates the learning
process, lessening the influence of the prototypes.

A.3 VON MISES-FISHER DISTRIBUTION

The von Mises-Fisher distribution (vMF) is the analogue of the Gaussian distribution on the surface
of a hypersphere Hillen et al. (2017). The density function fd of the vMF distribution for a D-
dimensional unit-length vector v is defined as

fd(v|α, κ) = Cd(κ) exp
(
κα⊤v

)
, (17)

with mean vector α, scalar concentration parameter κ and normalization constant Cd(κ). The nor-
malization constant Cd(κ) is a complex function and difficult to compute for higher dimensions,
which is why, for example, Tensorflow1 only supports the vMF distribution for D ≤ 5. However,
the vMF distribution is a viable similarity measure when using the unnormalized density function
with Cd(κ) = 1. Working with unnormalized densities highlights the relationship between the
normal distribution and the vMF distribution.

Let Ĝ be the unnormalized PDF of a multivariate Gaussian with normalized mean α and isotropic
covariance σ2 = κ−1I , then it is proportional to the vMF distribution for normalized vectors v with

1Tensorflow API Documentation - Accessed 2024-09-20

15

https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/VonMisesFisher

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

|v| = 1, as shown by

Ĝ(v|α, κ) = exp

(
−κ

(v −α)⊤(v −α)

2

)
(18)

= exp

(
−κ

v⊤v +α⊤α− 2v⊤α

2

)
(19)

= exp

(
−κ

1 + 1− 2v⊤α

2

)
(20)

= exp

(
−κ

2− 2v⊤α

2

)
(21)

= exp

(
−κ

1− v⊤α

1

)
(22)

= exp
(
κ(v⊤α− 1)

)
(23)

= exp(κv⊤α− κ) (24)

= exp(κ)−1 exp(κv⊤α) (25)

∼ exp
(
κv⊤α

)
. (26)

Eq. 23 also shows the relationship to the HyperPg similarity with an untruncated Gaussian distri-
bution and prototype mean activation µ = 1. Fig. 11 presents a simulation of the vMF distribution
on a 3D sphere. While both the vMF distribution and HyperPg activation can produce a spherical,
gaussian-like activation pattern on the surface of a hypersphere, the vMF distribution cannot produce
the ring pattern shown in Fig. 2. The ring pattern produced by adapting HyperPg’s mean similarity
µ could be approximated by a mixture of vMF distributions.

−1

0

1 −1

0

1

−1

0

1

κ=1

−1

0

1 −1

0

1

−1

0

1

κ=5

Figure 11: Changing the concentration parameter κ is akin to changing HyperPg’s std σ.

A.4 FISHER-BINGHAM DISTRIBUTION

As the vMF distribution is the equivalent of an isotropic Gaussian distribution on the surface of a hy-
persphere, the Fisher-Bingham (FB) distribution is the equivalent of a Gaussian with full covariance
matrix. Similar to the vMF, the normalization constant is difficult to compute for higher dimensions,
but the unnormalized density function remains feasible.

For a D dimensional space, the FB distribution is by a D × D matrix A of orthogonal vectors
(α1,α2, . . . ,αD), concentration parameter κ and ellipticity factors [β]2:D where

∑D
j=2 βj = 1 and

0 ≤ 2|βj | < κ. The FB unnormalzied PDF is defined as

b(v|A, κ, β) = exp

κα⊤
1 v +

D∑
j=2

βj

(
α⊤

j v
)2 . (27)

The FB distribution’s main advantage is the elliptic form of the distribution on the surface of the
hypersphere, offering higher adaptability than the other formulations (see Fig. 12. However, the
parameter count and constraints are higher.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 12: Illustration of the Fisher-Bingham Distribution in D = 3

A.5 MIXTURE MODELS

HyperPg’s probabilistic nature lends itself to a mixture formulation. Let the definition of a HyperPg
Mixture Prototype be pM = (α, µ, σ, π) with additionally learned mixture weight π. Further, let’s
define the probability of a latent vector z belonging to a Gaussian HyperPg prototype p as

ϕ(z|p) = sHyperPg(z|p). (28)

Then the probability of z belonging to class c can be expressed through the mixture of all prototypes
pc ∈ Pc of class c, i.e.,

ϕ(z|c) =
∑

pc∈Pc

π(pc)ϕ(z|pc). (29)

First experiments with mixture of HyperPg prototypes did not show any improvement over the
standard formulation. However, this might change with other datasets.

B IMPLEMENTATION DETAILS

B.1 DATA PREPROCESSING

In contrast to prior work (e.g. Chen et al., 2019; Rymarczyk et al., 2020; Ukai et al., 2023) the
experiment used an online augmentation process, resulting in 30 training images per class and epoch.
The input images were first resized to a resolution of 224 × 224 without cropping to bounding
box annotations. The augmentations consisted of RandomPerspective, RandomHorizontalFlip and
RandomAffine.

B.2 HYPERPARAMETERS

The prototypical part networks ProtoPNet and HyperPgNet use a convolutional neck after the feature
encoder and work on a latent feature map of size 7 × 7 × 256. The models were trained with
a minibatch size of 96 images using AdamW optimizer with learning rate 1e-4 and weight decay
1e-4.

B.3 COMPUTE RESOURCES

All experiments were performed on a workstation with a single NVIDIA RTX 3090 GPU (24 GB
VRAM) per model.

B.4 MODEL IMPLEMENTATION

The models were implement with different feature encoding backbones. ConvNeXt-tiny (Liu et al.,
2022) and ResNet50 (He et al., 2016) with pretrained weights on ImageNet provide CNN based
backbones. As a transformer based backbone MiT-B4 (Xie et al., 2021) as provided by HuggingFace
is used. MiT-B4 is pretrained on ImageNet and finetuned on ADE20k, Cityscapes and COCO-stuff.

The models are implemented as follows:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• The black box baseline model uses the pretrained feature encoder as backbone followed by
the classification head: a single linear output layer and softmax activation.

• Concept Bottleneck Models (Koh et al., 2020) integrate the concept bottleneck, a linear
layer with one neuron per concept, between the backbone and classification head.

• ProtoPNet (Chen et al., 2019) use a L2 based prototype layer between backbone and clas-
sification head.

• ProtoPNet + HyperPg use a HyperPg based prototype module between backbone and clas-
sification head.

• HyperPgNet −LRRC uses a HyperPg prototype module between backbone and classifica-
tion head. The prototypes are trained with concept alignment, but without the LRRC loss.

• HyperPgNet +LRRC uses a HyperPg prototype module between backbone and classifi-
cation head. The prototypes are trained with concept alignment and including the LRRC

loss.

C EXTENDED INTERPRETABILITY ANALYSIS

C.1 LATENT SPACE STRUCTURE

Prototype learning is based on learning structures in the latent space. HyperPg specifically learns
Gaussian distributions on the surface of a hypersphere in a high-dimensional latent space. Dimen-
sionality reduction techniques like UMAP (McInnes et al., 2018) aim to preserve global and local
structures from a high dimensional space when projecting into a low dimensional one. UMAP sup-
ports multiple distance metrics, including hyperspheric manifold distances, thus retaining some of
the high dimensional structure when projecting onto a 3D sphere.

Fig. 13 illustrates UMAP projections of HyperPg concept-aligned prototypes trained on Stanford
Cars. This visualization indicates that HyperPgNet is able to disentangle the different concepts in
latent space, as the projection shows no overlap of the different clusters. When trained with LRRC,
the prototypes are packed closer together. This could indicate, that the chosen hyper parameter of 20
prototypes per concept is higher than required as not all concept embeddings have the same diversity
in the latent space.

Fig. 14 illustrates one UMAP projection of HyperPg concept-aligned prototypes trained on CUB-
200-2011. In comparison to Stanford Cars, the latent space appears less structured. This could
explain the higher difficulty associated with this dataset.

1

0

1 1

0

1

1

0

1

(a) HyperPgNet - LRRC

1

0

1 1

0

1

1

0

1

(b) HyperPgNet + LRRC

Figure 13: UMAP projection of HyperPg concept prototypes learned on Stanford Cars. Each dot
represents one prototype with the color indicating a concept.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1

0

1 1

0

1

1

0

1

Figure 14: UMAP Projection of HyperPg concept prototypes learned on CUB-200-2011.

19

	Introduction
	Related Work
	Prototypical Gaussians on the Hypersphere
	Point Based Prototypes
	Gaussian Prototypes
	Gaussian Prototypes on the Hypersphere - HyperPg

	Training
	Prototype Losses
	Right Concept Loss
	Multi-Objective Loss Function
	Network Architecture

	Concept Extraction at Scale
	Experiments
	Quantitative Results
	Qualitative Comparison
	Ablation

	Conclusion
	Adapting HyperPg to other Probability Distributions
	Cauchy Distribution
	Truncated Distributions
	von Mises-Fisher Distribution
	Fisher-Bingham Distribution
	Mixture Models

	Implementation Details
	Data Preprocessing
	Hyperparameters
	Compute Resources
	Model Implementation

	Extended Interpretability Analysis
	Latent Space Structure

