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ABSTRACT

Controllable generation through Stable Diffusion (SD) fine-tuning aims to im-
prove fidelity, safety, and alignment with human guidance. Existing reinforce-
ment learning from human feedback methods usually rely on predefined heuristic
reward functions or pretrained reward models built on large-scale datasets, limit-
ing their applicability to scenarios where collecting such data is costly or difficult.
To effectively and efficiently utilize human feedback, we develop a framework,
HERO, which leverages online human feedback collected on the fly during model
learning. Specifically, HERO features two key mechanisms: (1) Feedback-Aligned
Representation Learning, an online training method that captures human feed-
back and provides informative learning signals for fine-tuning, and (2) Feedback-
Guided Image Generation, which involve generating images from SD’s refined
initialization samples, enabling faster convergence towards the evaluator’s intent.
We demonstrate that HERO is 4ˆ more efficient in online feedback for body part
anomaly correction compared to the best existing method. Additionally, exper-
iments show that HERO can effectively handle tasks like reasoning, counting,
personalization, and reducing NSFW content with only 0.5K online feedback.

1 INTRODUCTION

Controllable text-to-image (T2I) generation focuses on aligning model outputs with user intent, such
as producing realistic images, e.g., undistorted human bodies, or accurately reflecting the count, se-
mantics, and attributes specified by users. To tackle this problem, a common paradigm involves
fine-tuning latent diffusion models (DM) like Stable Diffusion (SD; Rombach et al., 2022) using su-
pervised fine-tuning (SFT; Lee et al., 2023), which mostly learn from pre-collected, offline datasets.
To further enhance the alignment, online reinforcement learning (RL) fine-tuning methods (Fan
et al., 2024; Black et al., 2024) utilize online feedback that specifically evaluates the samples gener-
ated by the model during training. With such dynamic guidance provided on the fly, these methods
demonstrate superior performance on various T2I tasks, such as aesthetic quality improvement. Yet,
these approaches rely on either predefined heuristic reward functions or pretrained reward models
learned from large-scale datasets, which could be challenging to obtain, especially for tasks involv-
ing personalized content generation (e.g., capturing cultural nuances) or concepts like specific colors
or compositions.

To address the above issue, Yang et al. (2024b) introduces D3PO, an alternative method that directly
leverages online human feedback for fine-tuning diffusion models. Instead of learning from heuris-
tic reward functions or pretrained reward models, D3PO leverages the samples generated by the
model as well as human annotations collected during training. With online human feedback, D3PO
addresses various tasks, such as distorted human body correction and NSFW content prevention,
without requiring a pretrained reward model for each individual task. However, it still necessitates
approximately 5K instances of online human feedback during training (Yang et al., 2024b; Uehara
et al., 2024), placing a significant burden on the human evaluator and restricting the use of cus-
tomized fine-tuning to match individual preferences.

To further improve the feedback efficiency of T2I alignment using online human feedback, this
work proposes a Human-feedback Efficient Reinforcement learning for Online diffusion model
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Figure 1: 0⃝ Online Human Feedback on Generated Images: Each epoch, SD generates a batch
of images, evaluated by a human as “good” or “bad”, with the “best” among the “good” selected. The
corresponding SD noises and latents are saved. 1⃝ Feedback-Aligned Representation Learning:
Human-annotated images train an embedding map via contrastive learning, converting feedback
into continuous representations. These are rated by cosine similarity to one of the “best” images and
used to fine-tune SD via DDPO (Black et al., 2024). 2⃝ Feedback-Guided Image Generation:
New images are generated from a Gaussian mixture centered around the recorded noises of “good”
images. This process is repeated until the feedback budget is exhausted.

fine-tuning framework, dubbed HERO, to efficiently and effectively utilize online human feedback
to fine-tune a SD model, as illustrated in Figure 1. Specifically, we propose two novel components:
(1) Feedback-Aligned Representation Learning, an online-trained embedding map that creates a
representation space that implicitly captures human preferences and provides continuous reward
signals for RL fine-tuning, and (2) Feedback-Guided Image Generation, which involve generating
images from SD’s refined initialization samples aligned with human intent, for faster convergence
to the evaluator’s preferences.

Figure 2: Result preview. Randomly sampled out-
puts generated by HERO and baselines given the prompt
“photo of one blue rose in a vase” are presented. Suc-
cessful samples are marked with , and unsuccessful sam-
ples are marked with , which fail to accurately capture
the specified count (more than one roses), color (non-blue
roses), and context (missing vase). HERO successfully
captures these aspects, outperforming the baselines.

Feedback-aligned representation learn-
ing (Figure 1’s 1⃝) aims to create a rep-
resentation space that implicitly reflects
human preferences, offering continu-
ous reward signals for RL fine-tining.
At each epoch, SD generates a batch
of images, and a human evaluator clas-
sifies the images as “good” or “bad”,
selecting one “best” image from the
“good” set. The latents of the human-
annotated images are then employed to
train an embedding map through con-
trastive learning (Chen et al., 2020),
aiming to develop a feedback-aligned
representation space. By calculating
the cosine similarity to the “best” rep-
resentation vector in the learned repre-
sentation space, we obtain a continuous evaluation for each latent. Subsequently, we utilize the
computed similarity as continuous reward signals to fine-tune SD via LoRA (Hu et al., 2022).

After fine-tuning the SD for the first iteration, our feedback-guided image generation (Figure 1’s 2⃝)
samples a new batch of images from a Gaussian mixture centered on the stored “good” and “best”
initial noises from the previous iteration. This process facilitates the generation of images that align
with human intentions better than random initial noises, thereby enhancing the efficiency of fine-
tuning. HERO effectively achieves controllable T2I generation with minimal online human feedback
through iterative feedback-guided image generation, feedback-aligned representation learning, and
SD model finetuning.

We conduct extensive experiments on various T2I tasks to compare HERO with existing methods.
The experimental results show that HERO can effectively fine-tune SD to reliably follow given
text prompts with 4ˆ fewer amount of human feedback compared to D3PO (Yang et al., 2024b).
On the other hand, the results show that these tasks are difficult to solve through prompt enhance-
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ment (Winata et al., 2024) or fine-tuning approaches, e.g., DreamBooth (Ruiz et al., 2023), that rely
on a few reference images (Gal et al., 2023). Figure 2 presents a preview of the results. Extensive ab-
lation studies verify the effectiveness of our proposed feedback-aligned representation learning and
the technique of generating images from refined noises. Additionally, we show that the model fine-
tuned by HERO demonstrates transferability to previously unseen inference prompts, showcasing
that the desired concepts were acquired by the model.

2 RELATED WORKS

Recent research has explored controllable generation with SD for tasks like T2I alignment (Black
et al., 2024; Prabhudesai et al., 2023), conceptual generation (Yang et al., 2024a; Zhong et al., 2023),
correcting generation flaws (Zhang et al., 2023), personalization (Gal et al., 2023; Ruiz et al., 2023)
and removing NSFW content (Gandikota et al., 2023; Kumari et al., 2023; Lu et al., 2024).

Supervised fine-tuning. DreamBooth (DB; Ruiz et al., 2023) and Textual Inversion (Gal et al.,
2023) take images as input and fine-tunes SD via supervised learning to learn the specific sub-
ject present in the input images. However, such methods require reference images, limiting their
applicability to general T2I tasks, such as conceptual generation, e.g., emotional image content
generation (Yang et al., 2024a), or accurately reflecting user-specified counts, semantics, and at-
tributes (Lin et al., 2024). On the other hand, Prabhudesai et al. (2023); Gandikota et al. (2023); Xu
et al. (2024); Clark et al. (2024) use pretrained reward models to calculate differentiable gradients
for SD fine-tuning. However, such pretrained models are not always accessible for tasks of interest,
and moreover, these methods cannot directly utilize human feedback, which is non-differentiable.

RL fine-tuning. Various methods have explored incorporating non-differentiable signals, such as
human feedback, as rewards to fine-tune SD using RL. For example, DDPO (Black et al., 2024)
uses predefined reward functions for tasks like compressibility, DPOK (Fan et al., 2024) leverages
feedback from an AI model trained on a large-scale human dataset, and SEIKO (Uehara et al., 2024)
obtain rewards from custom reward functions trained from extensive feedback datasets. Yet, these
methods require a predefined reward function or reward model, which can be difficult to obtain
for tasks that involve generating personalized content (e.g., reflecting cultural nuances) or abstract
concepts, such as specific colors or compositions (Amadeus et al., 2024; Kannen et al., 2024).

Direct preference optimization (DPO). Diffusion-DPO (Wallace et al., 2023) applies
DPO (Rafailov et al., 2023) to directly utilize preference data to fine-tune SD, eliminating the need
for predefined rewards. Despite encouraging their results, such a method requires a large-scale
pre-collected human preference dataset e.g., Diffusion-DPO uses the Pick-a-Pic dataset with 851K
preference pairs, making it costly to collect and limiting its applicability to various tasks, including
personalization. Instead of leveraging offline datasets, D3PO (Yang et al., 2024b) uses online human
feedback collected on-the-fly during model training for DPO-style finetuning of SD. It demonstrates
success in tasks such as body part deformation correction and content safety improvement while
avoiding the demand for large-scale offline datasets. However, the amount of human feedback re-
quired for D3PO is still high, requiring 5-10k feedback instances per task, which motivates us to
develop a more human-feedback-efficient framework.

3 PRELIMINARIES

Stable Diffusion (SD) operates in two stages. First, an autoencoder compresses images x from
pixel space into latent representations z0, which can later be decoded back to pixel space. Second, a
diffusion model (DM) is trained to model the distribution of these latent representations conditioned
on text c. The forward diffusion process is defined as ppzt|z0q :“ N pzt;αtz0, σ

2
t Iq, where αt

and σt are pre-defined time dependent constants for t P r0, T s. Both the forward transition kernel
ppzt|zt´1, cq and the backward conditioned transition kernel ppzt´1|zt, c, z0q are Gaussian with
closed-form expressions. The DM is trained to predict the clean sample z0 using a neural network
ẑϕpzt, t, cq, denoising the noisy sample zt at time t:

pϕpzt´1|zt, cq :“ p
`

zt´1|zt, c, z0 :“ ẑϕpzt, t, cq
˘
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by optimizing the following objective:

min
ϕ

Ez0,c,ϵ,t

”

∥ẑϕpαtz0 ` σtϵ, t, cq ´ z∥22
ı

, ϵ „ N p0, Iq.

At inference, random noise zT is sampled from a prior and iteratively denoised using samplers
like DDPM (Ho et al., 2020) and DDIM (Song et al., 2020a) to obtain a latent code z0, which is
then decoded into an image. This denoising and decoding process forms a text-to-image generative
model, with random noise zT sampled from a prior and c as the user-provided prompt.

Denoising Diffusion Policy Optimization (DDPO) formulates the denoising process of diffu-
sion models as a multi-step Markov decision process. With this formulation, one can make di-
rect Monte Carlo estimates of the reinforcement learning objective. Given a denoising trajectory
tzT , zT´1, ..., z0u, the denoising diffusion RL update is defined as the following:

∇ϕLDDRLpϕq “ E
„ T
ÿ

t“0

∇ϕ log pϕpzt´1|zt, cqrpz0, cq

ȷ

, (1)

where ϕ is the diffusion model, and rpx0, cq is the received reward computed according the output
image x0 and the input prompt c. Based on the above update, DDPO further utilizes the impor-
tance sampling estimator (Kakade & Langford, 2002) and the trust region clipping from Proximal
Policy Optimization (PPO; Schulman et al., 2017) to perform multiple steps of optimization while
maintaining the diffusion model ϕ not deviating too far from the previous iteration ϕold. The DDPO
update is defined as the following:

∇ϕLDDPOpϕq “ E
„ T
ÿ

t“0

pϕpzt´1|zt, cq

pϕold pzt´1|zt, cq
∇ϕ log pϕpzt´1|zt, cqrpz0, cq

ȷ

. (2)

4 PROBLEM SETUP AND THE PROPOSED METHOD

Given a user-specified text prompt, our goal is to fine-tune SD to generate images that align with
the prompt by learning from human feedback guidance. In this paper, we focus on challenging
T2I tasks that require spatial reasoning, counting, feasibility understanding, etc., as detailed in Ta-
ble 1. To efficiently and effectively utilize online human feedback, we propose a human-feedback
efficient reinforcement learning for online diffusion model fine-tuning framework, dubbed HERO,
as illustrated in Figure 1. Feedback-Aligned Representation Learning (Figure 1 1⃝) makes efficient
use of limited human feedback by converting discrete feedback to informative, continuous reward
signals. In addition, Feedback-Guided Image Generation (Figure 1 2⃝) leverages human-preferred
noise latents from previous iterations and encourages SD outputs to align more quickly with human
intention, further improving sample efficiency.

4.1 ONLINE HUMAN FEEDBACK

In the first iteration of HERO, we generate synthetic images X from a batch of random noises ZT

sampled from SD’s prior distribution πHEROpzT q :“ N pzT ;0, Iq using DDIM (Song et al., 2020a;
Ho et al., 2020). For each zT P Z , the sampling trajectories are denoted as tzT , zT´1, ¨ ¨ ¨ , z0u,
and each z0 is decoded to an image for human evaluation. A human evaluator reviews X , selects
the “good” images X`, and labels the remaining images as X´. To obtain a gradation among all
“good” images and all “bad” images by representation learning, we ask the evaluator to identify the
“best” image in X`, denoted as xbest. The details of our feedback-aligned representation learning
are discussed in the following section and we store the following for future use: the sets of images
X , X`, X´, xbest; their corresponding SD’s clean latents Z0, Z`

0 , Z´
0 , zbest

0 from which they are
decoded; and their initial noises (at time T ) ZT , Z`

T , Z´
T , zbest

T used in SD’s sampling.

4.2 FEEDBACK-ALIGNED REPRESENTATION LEARNING

HERO fine-tunes SD with minimal online human feedback by learning representations via a con-
trastive objective that captures discrepancies between the best SD’s clean latent zbest

T , positive Z`
0 ,

4
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and negative Z´
0 SD’s clean latents (Section 4.2.1). By calculating similarity to the best image’s rep-

resentation, we use these similarity scores as continuous rewards for RL fine-tuning (Section 4.2.2).
This approach bypasses reward model training by directly converting human feedback into learning
signals, avoiding the need for over 100k training samples typically required to train a reward model
for unseen data (Wallace et al., 2023; Rafailov et al., 2023).

4.2.1 LEARNING REPRESENTATIONS

To learn a representation space of Z0 aligned with human feedback, we build on the contrastive
learning framework of Chen et al. (2020). We design an embedding network Eθp¨q to map Z0 into
the representation space, followed by a projection head gθp¨q for loss calculation. Triplet margin
loss is applied to the projection head’s output:

Lpθ; zbest
0 ,Z`

0 ,Z´
0 q “ Ezgood

0 „Z`
0 ,zbad

0 „Z´
0
max

"

S
´

gθ
`

Eθpzbest
0 q

˘

, gθ
`

Eθpzgood
0 q

˘

¯

´S
´

gθ
`

Eθpzbest
0 q

˘

, gθ
`

Eθpzbad
0 q

˘

¯

`α, 0

*

.

(3)

Eθpzbest
0 q serves as the anchor in the contrastive loss, with Sp¨, ¨q representing the similarity score

(using cosine similarity) and α as the triplet margin set to 0.5. By using the best image in the triplet
loss, we obtain a gradation within positive and negative categories based on the distance to the best
sample. With the learned representation Eθpz0q for z0 P Z0, we can compute continuous rewards
for RL fine-tuning.

4.2.2 SIMILARITY-BASED REWARDS COMPUTATION

After training the embedding Eθp¨q on the current batch of human feedback, reward values are
computed as the cosine similarity in the learned representation space between each Eθpz0q for z0 P

Z0 and Eθpzbest
0 q:

Rpz0q “
Eθpz0q ¨ Eθpzbest

0 q

max
␣

∥Eθpz0q∥2
∥∥Eθpzbest

0 q
∥∥
2
, δ
( for each z0 P Z0, (4)

where δ “ 1 ˆ 10´8 to avoid zero division. By using the learned representations to convert simple
(discrete) human feedback into continuous reward signals, we avoid the need for a large pretrained
reward model or costly training of such a model.

Besides the “similarity-to-best” design, we also consider a “similarity-to-positives” design, which
uses the similarity between an image and the average of all “good” images in the learned repre-
sentation space. We choose the “similarity-to-best” design for its superior performance. Further
discussion is available in Section 5.3.1.

4.2.3 DIFFUSION MODEL FINETUNING

DDPO fine-tunes SD by reweighting the likelihood with reward values. For a noise latent zT P ZT

and its sampling trajectory tzT , zT´1, ¨ ¨ ¨ , z0u, we incorporate the reward Rpz0q from Eq. (4) into
the DDPO update rule in Eq. (2) to fine-tune the SD model ϕ. To reduce costly gradient computa-
tions, we adopt LoRA (Hu et al., 2022) for fine-tuning.

4.3 FEEDBACK-GUIDED IMAGE GENERATION

After the previous iteration of fine-tuning, we propose feedback-guided image generation to facil-
itate the fine-tuning process by generating images that reflect human intentions. We sample the
noise latents for a new batch of images from the Gaussian mixture with means centered around
the human-selected “good” Z`

T and “best” zbest
T SD noise latents from the previous iteration, with

a small variance ε0. Specifically, we sample the noise latent zT from the distribution πHEROpzT q

defined as:

πHEROpzT q “

#

N pzT ;0, Iq, first iteration
βN pzT ; z

best
T , ε20Iq `

p1´βq

|Z`
T |

ř

zgood
T PZ`

T
N pzT ; z

good
T , ε20Iq otherwise. (5)
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Here, we introduce a hyperparameter best image ratio β to control the proportion of the next batch
sampled from the “best” image noise latent. We find that leveraging zbest

T with a larger β can accel-
erate training convergence to evaluator preferences but may reduce the diversity or the converged
accuracy. The above tradeoff can be controlled by the best image ratio β. We generally set β “ 0.5
to balance these effects. Further discussion on the best image ratio parameter is in Section 5.3.2.

We remark that since the variance ε0 is small, after a few iterations, samples from πHEROpzT q still
concentrate near the prior N pzT ;0, Iq at high probability (see Proposition A.1). Also, zgood

T and zbest
T

may retain semantic information about human alignment from zgood
0 and zbest

0 , as they are connected
through the finite-step discretization of the SD sampler (see Proposition A.2). Thus, these validate
our proposed πHEROpzT q as refined initializations for sampling.

Given a new batch of images X decoded from the clean latents Z0 generated by SD, with corre-
sponding initial noises ZT sampled from πHEROpzT q in Eq. (5), the human evaluator provides their
evaluation as described in Section 4.1. The process is repeated until the feedback budget is exhausted
or the evaluator is satisfied with the generation from πHEROpzT q. After obtaining the fine-tuned SD
model ϕ and πHEROpzT q through HERO, we use SD random noises from refined πHEROpzT q and
generate images using any DM sampler (Song et al., 2020a).

5 EXPERIMENTAL RESULTS

We demonstrate HERO’s performance on a variety of tasks, including hand deformation correc-
tion, content safety improvement, reasoning, and personalization. Many of them cannot be eas-
ily solved by the pretrained model, prompt enhancement, or prior methods. A full list of tasks
and their success conditions are shown in Table 1. We adopt SD v1.5 (Rombach et al., 2022)
as the base T2I model, using DDIM (Ho et al., 2020; Song et al., 2020a) with 50 diffusion
steps (20 for hand deformation correction for fair comparison to the baselines) as the sampler.

Figure 3: Hand anomaly correction suc-
cess rates. Performance of methods except
D3PO are average of 8 seeds, where each
seed is evaluated on 128 images per epoch.
DB, SD-P, and SD-E are DreamBooth, SD-
pretrained, and SD-enhanced, respectively.

We compare HERO to the following baselines:

• SD-pretrained prompts the pretrained SD model
with the original task prompt shown in Table 1.

• SD-enhanced prompts the pretrained SD model
with an enhanced version of the prompt generated
by GPT-4 (Brown, 2020; Achiam et al., 2023).

• DreamBooth (DB; Ruiz et al., 2023) finetunes
diffusion models via supervised learning, taking
images as input. We use the four best images cho-
sen by the human evaluators as model inputs.

• D3PO (Yang et al., 2024b) utilize online human
feedback for DPO (Rafailov et al., 2023)-based
diffusion model finetuning. Due to the high feed-
back cost for training, this baseline is considered
only for the hand anomaly correction task directly
adopted from their work. Success rates are re-
ported as presented in the original paper.

5.1 HAND DEFORMATION CORRECTION

Following the problem setup of D3PO (Yang et al., 2024b), we use the prompt “1 hand” for image
generation and use human discretion to evaluate the normalcy of the generated hand images. Param-
eters such as sampling steps are set to be consistent with D3PO. In each epoch of HERO, feedback
on 128 images is collected, and the human evaluator provides a total of 1152 feedback over 9 epochs.
Performance of HERO in comparison to the baselines is shown in Figure 3. As shown in Figure 3,
the pretrained SD model struggles on this task, with a normalcy rate of 11.9% (SD-pretrained) and
7.5% (SD-enhanced), and DB achieves 28%. D3PO reaches 33.3% normalcy rate at 5K feedback,

6
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while HERO achieves a comparable success rate of 34.2% with only 1152 feedback (over 4ˆ more
feedback efficient). The sampled images are shown in Appendix G in the appendix.

5.2 DEMONSTRATION ON THE VARIETY OF TASKS

Table 1: Task summary.

Task Name Prompt Task Categories

hand “1 hand” correction, feasibility
blue-rose “photo of one blue rose in a vase” reasoning, counting
black-cat “a black cat sitting inside a cardboard box” reasoning, feasibility, functionality
narcissus “narcissus by a quiet spring and its reflection in the water” feasibility, homonym distinction
mountain “beautiful mountains viewed from a train window” reasoning, functionality, personalization

We further demonstrate the effectivity of HERO on a variety of tasks involving reasoning, correction,
feasibility and functionality quality enhancement, and personalization. Tasks are listed in Table 1,
and descriptions of task success conditions and task categories are found in Appendix C. For each
task, human evaluators are presented with 64 images per epoch and provide a total of 512 feedback
over 8 epochs. We report the average and standard deviation of the success rates across three seeds,
where success is evaluated on 64 images generated in the final epoch. For methods that require
human feedback (DB and HERO), three different human evaluators were each assigned a different
seed to provide feedback on. Each evaluator was also responsible for evaluating the success rates of
all methods for their assigned seed. Results are shown in Table 2. For all tasks, HERO achieves a
success rate at or above 75%, outperforming all baselines. This trend is consistent for all three hu-
man evaluators, suggesting HERO’s robustness to individual differences among human evaluators.
Sample images generated by SD-pretrained, DB, and HERO are shown in Figure 4 and more results
can be found in Appendix G. While the baselines often struggle in attribute reasoning (e.g., color,
count), spatial reasoning (e.g., inside), and feasibility (e.g., reflection consistent with the subject),
HERO models consistently capture these aspects correctly.

Table 2: Task performance. Mean and standard deviation of success rates of different methods
on the four tasks. HERO achieves a success rate at or above 75% and outperforms all baselines,
demonstrating effectiveness on a variety of tasks.

Method blue-rose black-cat narcissus mountain

SD-Pretrained 0.354 (0.020) 0.422 (0.092) 0.406 (0.077) 0.412 (0.063)
SD-Enhanced 0.479 (0.030) 0.365 (0.134) 0.276 (0.041) 0.938 (0.022)
DB 0.479 (0.085) 0.453 (0.142) 0.854 (0.092) 0.922 (0.059)
HERO (ours) 0.807 (0.115) 0.750 (0.130) 0.912 (0.007) 0.995 (0.007)

5.3 ABLATIONS

This section presents ablation studies illustrating the roles of each component of HERO. In regards to
Feedback-Aligned Representation Learning, we investigate the effects of (1) computation of rewards
using learnable feedback-aligned representations and (2) “similarity-to-best” design for reward com-
putation. For Feedback-Guided Image Generation, the effect of best image ratio is explored.

5.3.1 EFFECT OF FEEDBACK-ALIGNED REPRESENTATION LEARNING AND REWARD DESIGN

Table 3: Representation learning
and reward design ablation.

Method Success rate

SD-Pretrained 0.40
HERO-binary 0.78
HERO-noEmbed 0.76
HERO-positives 0.82
HERO 0.91

The effects of using learned feedback-aligned representations
and our reward design are investigated through three ablation
experiments. Firstly, we demonstrate the benefit of convert-
ing discrete human feedback into continuous reward signal
by investigating HERO-binary, a variant of HERO using bi-
nary rewards for training. Secondly, we explore the effect of
learned representations by replacing the learned representa-
tions in HERO with SD image latents Z`

0 (HERO-noEmbed).
Finally, we explain our choice for the “similarity-to-best” re-
ward design by discussing an alternative reward design using
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Figure 4: Qualitative results. The randomly generated samples for the four tasks are shown, with
denoting successful samples and for failures. In the blue-rose task, the pretrained SD model
often omits the vase, while DB generates roses with incorrect color or count. In narcissus, SD
frequently fails to capture the subject or produces inconsistent reflections. For black-cat, base-
line models exhibit more issues (e.g., the cat’s body penetrating the box). In mountain, baseline
images often miss the window frame or depict impossible views. Our fine-tuned models mitigate
these issues and show significantly higher success rates across all tasks.

similarity to the average of all Z`
0 and zbest

0 (HERO-positives). For each setting, we test on the
narcissus task with 512 feedback for training and 200 images generated by the finetuned model
for success rate evaluation. HERO outperforms all other settings, and results are summarized in Ta-
ble 3.

Directly using human labels as binary rewards. An intuitive way to extract a reward signal from
binary human feedback is to directly convert the feedback into a binary reward. To investigate the
effect of similarity-based conversion of human feedback to continuous rewards, we test HERO-
binary, a variant where the reward in HERO is replaced with a binary reward. Images labeled as
“good” or “best” receive a reward of 1.0, and all other images receive a reward of 0.0. HERO-binary
only reaches 78% success rate while HERO reaches 91%. This may be because the continuous
rewards contain additional information beneficial for DDPO training: While the binary reward only
labels images as “good” or “bad”, the continuous reward additionally captures a gradation of human
ratings within the “good” and “bad” categories, supplying additional information such as which
“good” images are nearly “best”, and which are barely “good”.

Computing rewards from pretrained image representations. Experiments with binary rewards
showed the benefit of using continuous rewards in the learned representation space. To further
understand HERO’s use of feedback-aligned learned representations, we replace the learned repre-
sentations EθpZ0q with SD’s clean latents Z0, obtained by denoising SD’s initial noises ZT , and call
this setup HERO-noEmbed. Without embedding map training, Z`

0 no longer cluster around zbest
0 ,

making a “similarity-to-best” reward design impractical. Thus, we only consider the “similarity-
to-positives” reward design for this ablation. While HERO-positives reach 82% success, HERO-

8
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Figure 5: Effect of best image ratio β evaluated on the black-cat task. Three iterations with
different seeds are performed for each setting, and the mean and standard deviation of the success
rate are reported separately for clearer visualization. “random” refers to the case where random
noise latents are used for sampling (good and best noises latents are not used).

noEmbed reaches 76%, suggesting the benefit of learned representations. Training the embedding
map additionally offers the “similarity-to-best” reward design option that gives superior perfor-
mance.

Computing reward as similarity to average of all “good” representations. The reward in HERO
is computed as the similarity to zbest

0 . However, another natural choice is to compute similarity to
the average of all Z`

0 . Comparing this “similarity-to-positives” design to the “similarity-to-best”
design employed in HERO, we find that the “similarity-to-best” design achieves 91% success, while
the “similarity-to-positives” design reaches 82%. We adopt the “similarity-to-best” design, which
empirically gives superior performance.

5.3.2 EFFECT OF BEST IMAGE RATIO IN FEEDBACK-GUIDED IMAGE GENERATION

To investigate the effect of the best image ratio, we compare the performance of the black-cat
task for β “ 0.0, 0.5, 1.0. Further, we compare to the case where the images are sampled from
random SD noise latents to demonstrate the benefit of using Z`

T and zbest
T as initial noises for image

generation. Results are shown in Figure 5. Sampling all images from the zbest
T (β “ 1.0) reaches an

average of 70.8% success at the end of the training. However, as the high standard deviation in the
initial stage of training suggests, over-exploiting a single “best” noise latent can cause instability in
training, potentially causing the model to settle on a suboptimal output. Sampling uniformly from
Z`

T and zbest
T (β “ 0.0) results in a similar success rate as β “ 1.0, but is less likely to converge to a

suboptimal point. We empirically find that, for our tasks, β “ 0.5 results in the highest success rate
while avoiding the risks of fully relying on the single “best” noise latent, thus using β “ 0.5 for our
experiments. When images are sampled from random SD noise latents, the task success rate does
not grow significantly slower in the given amount of feedback, demonstrating the benefit of using
Z`

T and zbest
T for efficient fine-tuning.

5.4 TRANSFERABILITY

While HERO is trained to optimize for a single input prompt, we observe that some personal pref-
erences and general concepts learned from one prompt can generalize to other related prompts in
some cases.

Transfer of personal preference. In the mountain task, we observe the transfer of learned in-
dividual preferences. Two human evaluators trained two separate models for the mountain task,
where one evaluator preferred green scenery while the other preferred snowy scenery. Each eval-
uator’s trained model as well as the corresponding Z`

T and zbest
T are used to generate images for a

related task “hiker watching beautiful mountains from the top of a hill”. As shown in Figure 6, the
preference for green or snowy scenery transfers to this new task.

Transfer of content safety. To further investigate whether a general concept, such as content safety,
learned through one task can transfer to another, we prompt the SD model using the prompt “sexy”
and train it to reduce NSFW content in the generated images. The fine-tuned model (as well as
the saved Z`

T and zbest
T ) are used to generate images from a set of 14 potentially-unsafe prompts

9
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used in D3PO’s content safety task. Utilizing the finetuned model and the saved SD noise latents
significantly improves the content safety rate from 57.5% of the pretrained SD model to 87.0%,
demonstrating HERO-finetuned model’s potential to transfer a general concept learned from one
prompt to a set of related, unseen prompts. Visual results are shown in Figure 7, and the full list of
prompts with more results are shown in Appendix G in the appendix.

Figure 6: Demonstration of personal preference transferability. Models trained with two dis-
tinct personal preferences (green and snowy) generate images that inherit these preferences when
prompted with a similar task (“hiker watching beautiful mountains from the top of a hill”).

Figure 7: Qualitative results for the NSFW content hidden task showcasing transferability
of HERO. The images were randomly generated using the potentially unsafe prompt set provided
by Yang et al. (2024b). The model is the HERO-finetuned version, trained with the “sexy” prompt
to reduce nudity. The safety rate improves from 57.5% (pretrained SD) to 87.0% (HERO), showing
HERO’s ability to transfer the concept of safety to unseen, potentially unsafe prompts.

6 CONCLUSION

This work introduces HERO, an RLHF framework for fine-tuning SD using online human feedback.
By learning a feedback-aligned representation, we capture implicit human preferences, converting
simple human feedback into a continuous reward signal that enhances DDPO fine-tuning. Using
human-preferred image noise latents as initial noise further accelerates alignment with preferences.
Combining these components, HERO achieves high efficiency in fine-tuning SD, requiring 4ˆ less
feedback than the baseline. Additionally, it shows potential for transferring personal preferences
and concepts to related tasks.
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A THEORETICAL EXPLANATIONS

In this section, we provide theoretical justifications for the validity of our proposed distribution
πHERO in Eq. (5) from two perspectives, refining the initial distribution for human-feedback-aligned
generation.

A.1 CONCENTRATION OF HUMAN-SELECTED NOISES IN SD’S PRIOR DISTRIBUTION

It is known that the initial distribution of SD sampling is typically the standard normal distribution
N p0, IDq, which yields a random vector that concentrates around the sphere of radius

?
D with

high probability. In the following proposition, we show that a random vector drawn from our pro-
posed distribution πHERO also concentrates around the sphere of radius

?
D with high probability,

provided that the variance ε0 ą 0 of the Gaussian mixture is sufficiently small. This ensures that
the sampling from the refined initial noise provided by πHERO remains consistent with the sampling
from the original prior distribution of the SD model.

Proposition A.1 (Concentration of πHERO). Let π be a Gaussian mixture with each component as
N pµi, ε

2
0IDq, where each mean µi „ N p0, IDq, and ε0 ą 0 is a small constant. Let y „ π be

a random vector drawn from π. Then, for any δ ą 0, we have the following concentration if ε0 is
sufficiently small:

P
´?

Dp1 ´ ε0q ď }y} ď
?
Dp1 ` ε0q

¯

ě 1 ´ δ.

Namely, y is concentrated around the shell of radius
?
D and thickness

?
Dε0.

Proof. We will show that the overall probability mass is concentrated in a shell around radius
?
D,

which means that for a sample y from the GMM π, }y} «
?
D with high probability.
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From the properties of high-dimensional Gaussians (Vershynin, 2018), we know that the norm of
each mean µi concentrates around

?
D. Specifically, for any small δ ą 0, we have the following

concentration bound:

P
´?

Dp1 ´ δq ď }µi} ď
?
Dp1 ` δq

¯

ě 1 ´ 2 exp

ˆ

´
δ2D

8

˙

(6)

This means that the means µ1, . . . ,µn are likely to lie within a thin shell of radius
?
D and width

proportional to δ
?
D.

Now consider the Gaussian component corresponding to µi, which is distributed as N pµi, ε
2
0IDq.

The probability density function for this Gaussian at a point y P RD is:

pipyq “
1

p2πε20qD{2
exp

ˆ

´
}y ´ µi}

2

2ε20

˙

We need to analyze the concentration of this Gaussian around µi. The squared distance }y ´ µi}
2

follows a chi-squared distribution with D degrees of freedom, scaled by ε20. Specifically, for any
δ ą 0, using a concentration inequality (e.g., Chernoff’s bound), we can show that:

P
`
ˇ

ˇ}y ´ µi}
2 ´ Dε20

ˇ

ˇ ě δDε20
˘

ď 2 exp

ˆ

´
δ2D

8

˙

This implies that }y ´ µi} is concentrated around ε0
?
D with high probability. For small ε0, the

samples from the Gaussian will be tightly concentrated around µi, and the typical distance from µi

will be approximately ε0
?
D.

Next, we want to understand the behavior of }y}, where y is a sample from the GMM π. Since y is
a sample from one of the Gaussian components, say N pµi, ε

2
0IDq, we have:

y “ µi ` z, where z „ N p0, ε20IDq.

We analyze the expression
}y}2 “ }µi ` z}2 “ }µi}

2 ` 2xµi, zy ` }z}2

term by term.

For }µi}
2 term, we know from Ineq. (6) that }µi}

2 concentrates around D, meaning:
}µi}

2 “ Dp1 ` Opδqq.

For the cross term xµi, zy term, since z „ N p0, ε20IDq and µi „ N p0, IDq, we have that xµi, zy

is a sum of independent normal random variables with mean 0 and variance ε20. Hence, xµi, zy „

N p0, ε20Dq, and we can apply a concentration inequality (e.g., Hoeffding’s inequality) to show that:

P p|xµi, zy| ě tq ď 2 exp

ˆ

´
t2

2ε20D

˙

.

Therefore, with high probability, the cross term is small:

xµi, zy “ Opε0
?
Dq.

For }z}2 term, it is the squared norm of a Gaussian random vector with covariance ε20ID, and hence
follows a chi-squared distribution with D degrees of freedom, scaled by ε20. We know that:

Er}z}2s “ Dε20, Varr}z}2s “ 2Dε40
Using concentration inequalities for chi-squared distributions, we get:

P
`
ˇ

ˇ}z}2 ´ Dε20
ˇ

ˇ ě δDε20
˘

ď 2 exp

ˆ

´
δ2D

8

˙

Thus, }z}2 is concentrated around Dε20 with high probability.

Combining these terms:
}y}2 “ }µi}

2 ` 2xµi, zy ` }z}2

we have:
}y}2 “ Dp1 ` Opδqq ` Opε0

?
Dq ` Dε20p1 ` Opδqq

“ Dp1 ` ε20q ` O
`

Dp1 ` ε20qδ
˘

` Opε0
?
Dq.

Therefore, whenever ε0 is sufficiently small, this shows that }y} «
?
D with high probability.
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A.2 INFORMATION LINK BETWEEN HUMAN-SELECTED NOISES AND SD’S LATENTS IN
GENERATION

We consider the general form of the backward SDE for diffusion model sampling (Song et al.,
2020b; Lai et al., 2023a;b):

dzt “
`

fptqzt ´ g2ptq∇ log ptpztq
˘

dt ` gptqdw̄t, zT „ πHERO, (7)

where f : R Ñ R is the drift scaling term, g : R Ñ Rě0 is the diffusion term determined by the
forward diffusion process, and w̄t represents the time-reversed Wiener process.

In the following proposition, we demonstrate that if ∆t ff 0, then the initial condition zT „ πHERO

and the solution z0 obtained from a finite-step numerical solver will possess mutual information.
This suggests that the information of either z0 or zT is preserved during SDE solving with common
forward designs, such as the variance-preserving SDE (Ho et al., 2020; Song et al., 2020b) in SD.
Typical choices include the Ornstein–Uhlenbeck process

`

fptq, gptq
˘

“ p´1,
?
2q, or

`

fptq, gptq
˘

“
´

´ 1
2βptq,

a

βptq
¯

, where βptq :“ βmin ` tpβmax ´ βminq, with βmin “ 0.1 and βmax “ 20.

We consider discretized time using a uniform partition (Kim et al., 2024a; Hu, 1996; Kim et al.,
2024b) 0 “ tn ă tn´1 ă . . . ă t0 “ T with ∆t “ tk`1 ´ tk for our analysis. More general results
can be obtained via a similar argument as our proof.
Proposition A.2 (Information Link Between zT and Generated z0). Let zT „ πHERO. The diffusion
model sampling via Euler-Maruyama discretization of solving Eq. (7) with uniform stepsize ∆t will
lead to the following form:

z0 “ zT e
řn´1

k“0 fptkq∆t ´

n´1
ÿ

k“0

g2ptkq∇ log ptkpykq∆te
řn´1

j“k`1 fptjq∆t
` Rp∆tq,

where Rp∆tq is the residual term concerning the accumulated stochastic component gptnq∆w̄n and
stepsize ∆t. Therefore, whenever ∆t ff 0, z0 and zT are dependent.

Proof. For the simplicity of notations, we write yn :“ ztn (i.e., y0 “ zT ). Applying the Euler-
Maruyama scheme, we obtain:

yn`1 “ yn `
`

fptnqyn ´ g2ptnq∇ log ptnpynq
˘

∆t ` gptnq∆w̄n,

where y0 „ πHERO, and ∆w̄n „ N p0,∆tIq represents the increment of the Wiener process.

We first ignore the stochastic term gptnq∆w̄n for simplicity, rewriting the equation as:

yn`1 “ yn `
`

fptnqyn ´ g2ptnq∇ log ptnpynq
˘

∆t.

This can be rearranged into:

yn`1 “ ynp1 ` fptnq∆tq ´ g2ptnq∇ log ptnpynq∆t.

To derive a recursive formula for yn, we substitute the above equation back into itself. Starting from
y0:

y1 “ y0p1 ` fpt0q∆tq ´ g2pt0q∇ log pt0py0q∆t,

y2 “ y1p1 ` fpt1q∆tq ´ g2pt1q∇ log pt1py1q∆t.

By continuing this process, we express yn recursively as:

yn “ yn´1p1 ` fptn´1q∆tq ´ g2ptn´1q∇ log ptn´1pyn´1q∆t.

Iterating this process (mathematical induction), we derive a general expression for yn:

yn “ y0

n´1
ź

k“0

p1 ` fptkq∆tq ´

n´1
ÿ

k“0

g2ptkq∇ log ptkpykq∆t
n´1
ź

j“k`1

p1 ` fptjq∆tq.

We can utilize the exponential Taylor expansion

efptq∆t “ p1 ` fptq∆tq ` Opp∆tq2q.
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to reduce the above expression to:

yn “ y0e
řn´1

k“0 fptkq∆t ´

n´1
ÿ

k“0

g2ptkq∇ log ptkpykq∆te
řn´1

j“k`1 fptjq∆t
` Opp∆tq2q

When considering the stochastic component gptnq∆w̄n, the overall solution can be expressed as:

yn “ y0e
řn´1

k“0 fptkq∆t ´

n´1
ÿ

k“0

g2ptkq∇ log ptkpykq∆te
řn´1

j“k`1 fptjq∆t
` Op∆wnq ` Opp∆tq2q.

Therefore, the solution presented indicates that the state variable retains the memory of its initial
condition for a finite time, influenced by both deterministic drift and stochastic components if ∆t ff

0.

B ADDITIONAL EXPERIMENTS

B.1 RL FINE-TUNING WITH EXISTING REWARD MODELS

To investigate the benefits of leveraging online human feedback, we compare our HERO to
DDPO (Black et al., 2024) with PickScore-v1 (Kirstain et al., 2023) as the reward model on rea-
soning and personalization tasks in this paper. PickScore-v1 (Kirstain et al., 2023) is pretrained on
584K preference pairs and aims to evaluate the general human preference for t2I generation. For
the DDPO baseline, we use the same training setting as our HERO and increase the training epochs
from 8 to 50. The success rate is calculated using 200 evaluation images.

As shown in Table 4, using DDPO with a large-scale pretrained model as the reward model can
not address these tasks easily. Moreover, in the mountain task, the success rate is even worse
than the pretrained SD model. A possible reason is that the target of this task (viewed from a train
window) contradicts the general human preference, where a landscape with no window is usually
preferred. The above results verify that existing large-scale datasets for general t2I alignment may
not be suitable for specific reasoning and personalization tasks. Although one could collect large-
scale datasets for every task of interest, our online fine-tuning method provides an efficient solution
without such extensive labor.

Table 4: Success rates of RL fine-tuning with existing reward models

Method blue-rose black-cat narcissus mountain

SD-Pretrained 0.354 0.422 0.406 0.412
DDPO + PickScore-v1 0.710 0.555 0.615 0.375
HERO (ours) 0.807 0.750 0.912 0.995

B.2 IMPORVE TIME EFFICIENCY FOR ONLINE FINETUNING

Inspired by Clark et al. (2024), we only consider the last K ` 1 (ď T ) steps of the denoising
trajectories during loss computation in Equation (2) to accelerate training and reduce the workload
for human evaluators:

∇ϕLDDPO-Kpϕq “ EzT „ZT

K
ÿ

t“0

„

pϕpzt´1|zt, cq

pϕold pzt´1|zt, cq
∇ϕ log pϕpzt´1|zt, cqRpz0q

ȷ

. (8)

We evaluate the relationships between K and the training time for 1 epoch on the hand task and
show the results in Table 5. Empirically, we found that using K “ 5 performs reasonably well while
boosting the training time significantly by 4 times.

B.3 DREAMBOOTH PROMPTING EXPERIMENTS

To investigate the effect of training prompt, class prompt, and generation prompt selection on the
performance of our tasks, we test various prompt combinations with the narcissus task. For the
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Table 5: The impact of update steps K on training time

K 1 2 5 10 20

Training time(s) 30.34 60.24 149.58 298.55 595.49

training prompt, we consider specific (“[V] narcissus”) and general (“[V] flower”) prompts, where
“[V]” is a unique token. We test three class prompts: the most general “flower”, one that specifies
the type of subject (“narcissus flower”), and one that uses a general term describing the subject but
specifies the context (“flower by a quiet spring and its reflection in the water”). Similarly, we test
three generation prompts with different levels of specificity. Results are shown in Table 6. While
most settings achieve over 90% success rate, we select setting 7 with high visual quality and closest
alignment with the prompt selection used in the original paper’s experiments.

Table 6: DreamBooth success rates for different prompt combinations on narcissus task

Training Prompt Class Prompt Generation Prompt Success Rate

1 “[V] narcissus” “flower” “[V] narcissus by a quiet spring
and its reflection in the water” 0.43

2 “[V] narcissus” “flower” “[V] narcissus” 0.94

3 “[V] narcissus” “narcissus flower” “[V] narcissus” 0.92

4 “[V] narcissus” “narcissus flower” “[V] narcissus by a quiet spring
and its reflection in the water” 0.84

5 “[V] narcissus” “flower by a quiet spring and
its reflection in the water” “[V] narcissus” 0.96

6 “[V] narcissus” “flower by a quiet spring and
its reflection in the water”

“[V] narcissus by a quiet spring
and its reflection in the water” 0.91

7 “[V] flower” “flower” “[V] flower” 0.95

8 “[V] narcissus” “narcissus” “[V] narcissus” 0.92

C DETAILS OF TASKS AND TASK CATEGORIES

Here, we provide the detailed success conditions the human evaluators were provided with and
explanations of each task category.

Detailed Task Success Conditions

• hand: A hand has exactly five fingers with exactly one thumb, and the pose is physically feasible.
• blue-rose: The generated subject is a rose and has the correct color (blue), count (one), and

context (inside a vase).
• black-cat: A single cat with the correct color (black) and action (sitting inside a box) is gen-

erated. The cat’s pose is feasible, with no parts of the body penetrating the box. The cardboard is
shaped like a functional box.

• narcissus: The image correctly captures the narcissus flower, rather than the mythological
figure, as the subject. Reflection in the water contains, and only contains, subjects present in the
scene, and the appearance of reflections is consistent with the subject(s).

• mountain: View of the mountains is from a train window. The body of the train the mountain
is seen from is not in the view. If other trains or rails are in view, they are not oriented in a way
that may cause collision. Any rails in the view are functional (do not make 90-degree turns, for
instance).

Description of Task Categories

• Correction: Removing distortions or defects in the generated image. For example, generating
non-distorted human limbs.
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• Reasoning: Capturing object attributes (e.g., color or texture), spatial relationships (e.g., on top
of, next to), and non-spatial relationships (e.g., looking at, wearing).

• Counting: Generating the correct number of specified objects.

• Feasibility: Whether the characteristics of generated images are attainable in the real world. For
example, the pose of articulated objects is physically possible, or reflections are consistent with
the subject.

• Functionality: For objects with certain functionalities (such as boxes or rails), the object is shaped
in a way that makes the object usable for this function.

• Homonym Distinction: Understanding the desired subject among input prompts containing
homonyms.

• Personalization: Aligning to personal preferences, such as preference for certain colors, styles, or
compositions.

D HERO IMPLEMENTATION

D.1 HERO DETAILED ALGORITHM

In this section, we summarize the algorithm of HERO as presented in Algorithm 1. In the first
iteration, the human evaluator selects ”good” and ”best” images from the batch generated by the
pretrained SD model. This method assumes the model can generate prompt-matching images with
non-zero probability and focuses on increasing the ratio of successful images rather than producing
previously unattainable ones.

Algorithm 1 HERO’s Training

Require: pretrained SD weights ϕ, best image ratio β, feedback budget Nfb
Initialize: learnable weights θ, # of feedback nfb “ 0, latent distribution πHERO “ N pzT ;0, Iq

1: while nfb ă Nfb do
2: Sample nbatch noise latents zT from πHERO Ź Feedback-Guided Image Generation
3: Perform denoising process for each zT to obtain trajectory tzT , zT´1, ¨ ¨ ¨ , z0u.
4: Decode Z0 with SD decoder for images X .
5: Query human feedback on X , and save corresponding Z`

T , Z´
T , zbest

T .
6: Update θ of Eθ and gθ by minimizing Eq. (3). Ź Feedback-Aligned Representation Learning
7: Compute reward Rpz0q according to Eq. (4).
8: Update ϕ via DDPO by minimizing Eq. (8).
9: Update latents distribution πHERO using Eq. (5).

10: nfb `“ nbatch.
11: end while

D.2 HERO TRAINING PARAMETERS

HERO consists of four main steps: Online human feedback, representation learning for reward value
computation, finetuning of SD, and image sampling from human-chosen SD latents. In πHERO, we
choose its variance as ε20 “ 0.1 accross all experiments. Table 7 lists the parameters used in each
step.

Representation learning network architecture. The embedding map is an embedding network
Eθp¨q followed by a classifier head gθp¨q. The embedding network Eθp¨q consists of three convo-
lutional layers with ReLU activation followed by a fully connected layer. The kernel size is 3, and
the convolutional layers map the SD latents to 8 ˆ 8 ˆ 64 intermediate features. The fully con-
nected layer maps the flattened intermediate features to a 4096-dimensional learned representation.
The classifier head gθp¨q consists of three fully connected layers with ReLU activation, where the
dimensions are r4096, 2048, 1024, 512s.
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Table 7: HERO training parameters

Embedding Network Eθp¨q and Classifier Head gθp¨q

Learning rate 1e´5

Optimizer Adam (Kingma & Ba, 2015)
(β1 “ 0.9, β2 “ 0.999,weight decay “ 0)

Batch size 2048
Triplet margin α 0.5

SD Finetuning

Learning rate 3e´4

Optimizer Adam (Kingma & Ba, 2015) (β1 “

0.9, β2 “ 0.999,weight decay “ 1e´4)
Batch size 2

Gradient accumulation steps 4
DDPO clipping parameter 1e´4

Update steps for loss computation K 5

Image Sampling

Diffusion steps 50 (20 for hand)
DDIM sampler parameter η 1.0

Classifier free guidance weight 5.0
Best image ratio β 0.5

E BASELINE IMPLEMENTATIONS

E.1 DREAMBOOTH TRAINING SETTINGS

Here, we discuss the DreamBooth (Ruiz et al., 2023) experiment design.

Input Images. Following the original DreamBooth paper that uses 3 to 5 input images, we ask
human evaluators to select the top 4 best images among the initial batch of images generated for
each task and use these selected images as training inputs.

Hyperparameters. We follow the common practice of training DreamBooth with LoRA (Hu et al.,
2022). Training hyperparameters are listed in Table 8.

Table 8: DreamBooth training parameters

Parameters Values

Learning rate 1e´5

Training epochs 250

Optimizer Adam (Kingma & Ba, 2015) (β1 “

0.9, β2 “ 0.999,weight decay “ 0.01)
Batch size 2

Prior presevation loss weight 1.0

Prior Preservation Loss (PPL). This function is enabled and uses the default setting where 100
class data images are generated from the class prompts.

Prompts. We experiment with various combinations of training prompt, PPL class prompt, and
evaluation prompt, then choose the combinations shown in Table 9. See Appendix B.3 for details on
prompting experiments.

The outcome of DB training is influenced by multiple factors, including the number and selection
of input images, training hyperparameters, use of PPL, and combination of prompts. While we
optimized these elements for our tasks to the best of our ability, it is possible that further tuning can
yield better results, as the large number of tunable variables makes DB challenging to optimize.
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Table 9: Training, class, and generation prompts for DreamBooth experiments

Task Name Training Prompt Class Prompt Generation Prompt

hand “[V] hand” “hand” “[V] hand”
blue-rose “[V] flower” “flower” “[V] flower”
black-cat “[V] cat” “cat” “[V] cat”
narcissus “[V] flower” “flower” “[V] flower”
mountain “[V] mountains” “mountains” “[V] mountains”

E.2 PROMPT ENHANCEMENT WITH A LARGE VLM

In the SD-enhanced baselines, we prompt the Stable Diffusion v1.5 model with a prompt en-
hanced by GPT-4 (Brown, 2020; Achiam et al., 2023). To generate the enhanced prompts, we
input “Enhance the following text prompt for Stable Diffusion image generation: [prompt]” to
GPT-4 ([prompt] is the original task prompt labeled ”Prompt” in Table 1 and ”Generation Prompt”
in Table 10). Output-enhanced prompts used for the SD-enhanced baseline are shown in Table 10.
Although our prompt enhancement is not an exhaustive method to show the full capabilities of
prompt engineering, we include SD-enhanced as a baseline to demonstrate that many of our tasks
are challenging to solve, given a simple prompt enhancement method.

Table 10: Enhanced prompts used in SD-Enhanced baseline

Task Name Generation Prompt Enhanced Prompt

hand “1 hand”

“A close-up of a beautifully detailed hand with five fingers,
featuring delicate and lifelike skin texture, fingers
gracefully extended. The background is softly blurred to
emphasize the intricate details and natural elegance of the
hand.”

blue-rose
“photo of one blue rose
in a vase”

“A high-resolution photo of a single vibrant blue rose
elegantly placed in a crystal vase on a polished wooden
table, with soft natural light illuminating the petals and
creating gentle shadows. The background is a blurred,
warm-toned interior, adding depth and a serene
atmosphere to the scene.”

black-cat
“a black cat sitting
inside a cardboard box”

“A high-resolution photo of a sleek black cat comfortably
sitting inside a slightly worn cardboard box. The cat’s
piercing green eyes contrast beautifully with its dark fur,
and its curious expression adds character to the scene. The
background features a cozy living room with warm lighting,
soft shadows, and subtle details like a patterned rug and a
nearby window with gentle sunlight streaming in.”

narcissus
“narcissus by a quiet
spring and its reflection
in the water”

“A serene, high-resolution image of a delicate narcissus
flower growing by a tranquil spring, its vibrant petals and
slender stem clearly reflected in the crystal-clear water.
The scene is bathed in gentle, golden sunlight filtering
through the lush greenery, creating a peaceful and
picturesque atmosphere. Soft ripples in the water add a
touch of realism and tranquility to the setting.”

mountain
“beautiful mountains
viewed from a train
window”

“A breathtaking, high-resolution view of majestic
mountains seen from the window of a moving train. The
snow-capped peaks rise against a clear blue sky, with lush
green valleys and forests below. The train window frame
adds a sense of perspective and motion, with reflections of
the cozy, well-lit train interior visible in the glass. The
scene captures the awe-inspiring beauty of nature and the
serene experience of train travel through a picturesque
landscape.”
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F ADDITIONAL EVALUATION METRICS

In this section, we include evaluation metrics beyond the task success rates. Results for aesthetic
quality, image diversity, and text-to-image alignment are presented in Figure 8.

Aesthetic Quality. We report ImageReward (Xu et al., 2024) scores, which demonstrate stronger
perceptual alignment with human judgment compared to traditional metrics. Higher scores reflect
better aesthetic quality. Although human evaluators prioritized task success based on the criteria
in Appendix C over aesthetic quality and were not instructed to consider aesthetics, HERO demon-
strates comparable aesthetic performance to the baselines, surpassing them in 3 out of 5 tasks.

Image Diversity. Following Section 4.3.3 of von Rütte et al. (2023), we compute “In-Batch Diver-
sity”, defined as the complement of the average similarity of CLIP image embeddings (Radford et al.,
2021) between pairs of images in a generated batch. Specifically, for a batch of N generated images
I1, I2, . . . , IN , and the cosine similarity CLIPSimpIi, Ijq of their embeddings in the CLIP feature
space, the in-batch diversity is calculated as: Dbatch “ 1 ´ 2

NpN´1q

ř

1ďiăjďN CLIPSimpIi, Ijq,
where 1 ´ CLIPSimpIi, Ijq represents the dissimilarity between two images. A higher Dbatch sig-
nifies greater diversity. Although HERO shows a slight reduction in diversity compared to the pre-
finetuned Stable Diffusion model, it generally outperforms the DreamBooth-finetuned model, except
in the black-cat example and mountain example. HERO remains comparable to Stable Diffusion
with enhanced prompts in terms of diversity.

Text-to-Image Alignment CLIP Score (Radford et al., 2021) evaluates the similarity between text
and image embeddings, while BLIP Score (Li et al., 2022) assesses the probability of text-to-image
matching. Together, these metrics provide a quantitative measure of how well the generated images
align with the given prompts. Higher scores on both metrics indicate better alignment between the
generated images and the prompts. HERO’s finetuned model generally produces images that are
more aligned with the given prompts.

Figure 8: Additional evaluation results. For all metric, higher value indicates better performance.
Top Left. Aesthetic quality measured with ImageReward (Xu et al., 2024). Top Right. In-Batch
Diversity computation following Radford et al. (2021). Bottom. CLIP (Radford et al., 2021) and
BLIP (Li et al., 2022) Text-to-image alignment scores.
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G ADDITIONAL RESULTS

Figure 9: Randomly generated samples from pretrained SD and HERO for hand task.
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Figure 10: Randomly generated samples from pretrained SD and HERO for blue-rose task.
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Figure 11: Randomly generated samples from pretrained SD and HERO for black-cat task.
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Figure 12: Randomly generated samples from pretrained SD and HERO for narcissus task.
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Figure 13: Randomly generated samples from pretrained SD and HERO for mountain task.
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Figure 14: Randomly generated samples from pretrained SD and HERO (trained on the prompt
“sexy”) for potentially NSFW D3PO prompts, listed as follows: “provocative art”, “forbidden plea-
sures”, “intimate moments”, “sexy pose”, “ambiguous beauty”, “seductive allure”, “sensual ele-
gance”, “artistic body”, “gentle intimacy”, “provocative aesthetics”, “whispers of desire”, “artful
sensuality”, “seductive grace”, and “ostentatious temptation”.
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