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ABSTRACT

Learning models of the environment from pure interaction is often considered an
essential component of building lifelong reinforcement learning agents. However,
the common practice in model-based reinforcement learning is to learn models
that model every aspect of the agent’s environment, regardless of whether they
are important in coming up with optimal decxisions or not. In this paper, we ar-
gue that such models are not particularly well-suited for performing scalable and
robust planning in lifelong reinforcement learning scenarios and we propose new
kinds of models that only model the relevant aspects of the environment, which we
call minimal value-equivalent partial models. After providing the formal defini-
tions of these models, we provide theoretical results demonstrating the scalability
advantages of performing planning with such models and then perform experi-
ments to empirically illustrate our theoretical results. Finally, we provide some
useful heuristics on how to learn these kinds of models with deep learning archi-
tectures and empirically demonstrate that models learned in such a way can al-
low for performing planning that is robust to distribution shifts and compounding
model errors. Overall, both our theoretical and empirical results suggest that mini-
mal value-equivalent partial models can provide significant benefits to performing
scalable and robust planning in lifelong reinforcement learning scenarios.

1 INTRODUCTION

It has long been argued that in order for reinforcement learning (RL) agents to perform well in
lifelong RL (LRL) scenarios, they should be able to learn a model of their environment, which allows
for advanced computational abilities such as counterfactual reasoning and fast re-planning (Sutton
& Barto, 2018; Schaul et al., 2018; Sutton et al., 2022). Even though this is a widely accepted
view in the RL community, the question of what kinds of models would better suite for performing
LRL still remains unanswered. As LRL scenarios involve large environments with lots of irrelevant
aspects and periodic or non-periodic distribution shifts, directly applying the ideas developed in the
classical model-based RL literature (see e.g., Ch. 8 of Sutton & Barto, 2018) to these problems is
likely to lead to catastrophic results in building scalable and robust lifelong learning agents. Thus,
there is a need to rethink some of the ideas developed in the classical model-based RL literature
while developing new concepts and algorithms for performing model-based RL in LRL scenarios.

In this paper, we argue that one important idea to reconsider is whether if the agent’s model should
model every aspect of its environment. In classical model-based RL, the learned model is a model
over every aspect of the environment. However, due to the large state spaces of LRL environments,
these types of models are likely to lead to serious problems in performing scalable model-based
RL, i.e., in quickly learning a model and in quickly performing planning with the learned model to
come up with an optimal policy. Also, due to the inherent non-stationarity of LRL environments,
these types of detailed models are likely to lead to models that overfit to the irrelevant aspects of
the environment and cause serious problems in performing robust model-based RL, i.e., learning &
planning with models that are robust to distributions shifts and compounding model errors.

To this end, we argue that models that only model the relevant aspects of the agent’s environ-
ment, which we call minimal value-equivalent partial models, would be better suited for performing
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model-based RL in LRL scenarios. We first start by developing the theoretical underpinnings of
how such models could be defined and studied in model-based RL. Then, we provide theoretical
results demonstrating the scalability advantages, i.e., the value and planning loss and computational
and sample complexity advantages, of performing planning with minimal value-equivalent partial
models and then perform several experiments to empirically illustrate these theoretical results. Fi-
nally, we provide some useful heuristics on how to learn these kinds models with deep learning
architectures and empirically demonstrate that models learned in such a way can allow for perform-
ing planning that is robust to distribution shifts and compounding model errors. Overall, both our
theoretical and empirical results suggest that minimal value-equivalent partial models can provide
significant benefits to performing scalable and robust model-based RL in LRL scenarios. We hope
that our study will bring the community a step closer in building model-based RL agents that are
able to perform well in LRL scenarios.

2 BACKGROUND

Reinforcement Learning. In RL (Sutton & Barto, 2018), an agent interacts with its environment
through a sequence of actions to maximize its long-term cumulative reward. Here, the environment
is usually described as a Markov decision process (MDP) M ≡ (S,A, P,R, γ), where S and A are
the (finite) set of states and actions, P : S×A×S → [0, 1] is the transition distribution, R : S×A →
[0, Rmax] is the reward function, and γ ∈ [0, 1) is the discount factor. On the agent’s side, through
the use of a perfect state encoder ϕ∗ : S → F , every state s ∈ S can be represented, without any
loss of information, as an n-dimensional feature vector f = [f1, f2, . . . , fn]

⊤ ∈ F , which consists
of n different features F = {fi}ni=1 where fi ∈ Fi ∀i ∈ {1, . . . , n} (also see Boutilier et al. (2000)).
Note that as there is no loss of information, F contains all the possible features that are relevant in
describing the states of the environment. Thus, from the agent’s side, the MDP M can losslessly be
represented as another MDP m∗ = (F ,A, p∗, r∗, γ), where F and A are the (finite) set of feature
vectors and actions, p∗ : F × A × F → [0, 1] and r∗ : F × A → [0, Rmax] are the transition
distribution and reward function, and γ ∈ [0, 1) is the discount factor. For convenience, we take the
agent’s view and refer to the environment as m∗ throughout this study. The goal of the agent is to
learn a value estimator Q : F × A → R that induces a policy π ∈ Π ≡ {π | π : F × A → [0, 1]},
maximizing Eπ,p∗ [

∑∞
t=0 γ

tr∗(Ft, At) | F0] for all F0 ∈ F .

Model-Based RL. One of the prevalent ways of achieving this goal is through the use of model-
based RL methods in which there are two main phases: the learning and planning phases. In the
learning phase, the gathered experience is mainly used in learning an encoder ϕ : S → F and
a model m ≡ (p, r) ∈ M ≡ {(p, r) | p : F × A × F → [0, 1], r : F × A → [0, Rmax]},
and optionally, the experience may also be used in improving the value estimator. In the planning
phase, the learned model m is then used either for solving for the fixed point of a system of Bellman
equations (Bellman, 1957), or for simulating experience, either to be used alongside real experience
in improving the value estimator, or just to be used in selecting actions at decision time (Alver &
Precup, 2022; Sutton & Barto, 2018).

Value-Equivalence. One of the recent trends in model-based RL is to learn models that are specifi-
cally useful for value-based planning (see e.g., Silver et al., 2017; Schrittwieser et al., 2020), which
has been recently formalized in several different ways through the studies of Grimm et al. (2020;
2021). Inspired by these studies, we define a related form of value-equivalence as follows. Let
V π
m ∈ R|F| be the value vector of a policy π ∈ Π evaluated in model m, whose elements are defined
∀f ∈ F as V π

m(f) ≡ Eπ,p [
∑∞

t=0 γ
tr(Ft, At)|F0 = f ], and let V ∗

m ∈ R|F| be the optimal value
vector in model m. We say that a model m ∈ M is a value-equivalent (VE) model of the true
environment m∗ ∈M if the following equality holds:

V
π∗
m

m∗ = V ∗
m∗ ∀π∗

m ∈ Π, (1)

where π∗
m is an optimal policy obtained as a result of planning with model m.

3 MINIMAL VALUE-EQUIVALENT PARTIAL MODELS

In classical model-based RL (Ch. 8 of Sutton & Barto, 2018), an agent learns a very detailed model
of its environment that models every aspect of it, regardless of whether these aspects are relevant
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in the process of coming up with optimal decisions or not. However, in LRL scenarios, where
the agent is “small” and the environment is “vast” (Schaul et al., 2018), this approach is likely to
be problematic as modeling every aspect of the environment becomes quite impractical. Even if the
agent overcomes its capacity limitations and manages to model every aspect, as we will demonstrate,
these kinds of detailed models can lead to large planning losses and dramatically slowdown both the
model-learning and planning processes. And, as we will further demonstrate, detailed models can
also be fragile to the distribution shifts in the environment and to the compounding model errors that
happen during the unrollment of the learned model. In order to overcome these challenges, we start
by proposing new kinds of models that only model certain aspects, either relevant or irrelevant, of
the agent’s environment. For this, we first start by clarifying the notion of “aspect”: in this study, by
“aspect”, we mean a feature of the environment fi ∈ Fi that is learnable by the agent (see Sec. 2).
We are now ready to define partial models:
Definition 1 (Partial Models). Given a set of features F, let FP ⊂ F s.t. |FP| < |F|. Let FP be a
space of feature vectors in which the feature vectors consist the features in FP. We say that a model
mP is a partial model of the true environment m∗ ∈ M if it is defined over the feature vector space
FP, i.e., mP ∈MP ≡ {(pP, rP) | pP : FP ×A×FP → [0, 1], rP : FP ×A → [0, Rmax]}.

According to Defn. 1, any model that only models certain features of the environment is a partial
model of the environment m∗ ∈M. However, in order for a partial model to be useful, it should be
able to model the relevant features of the environment that allow for achieving the task of interest.
In order to separate out the relevant features from the irrelevant ones, we define the relevant ones as:
Definition 2 (Relevant Features). Given a set of features F, let FR ⊂ F. Let FR be a space of feature
vectors in which the feature vectors consist of the features in FR. We say that the features fi ∈ FR
are relevant features of the task of interest if they are necessary and sufficient for defining a space
of modelsMR ≡ {(pR, rR) | pR : FR ×A× FR → [0, 1], rR : FR ×A → [0, Rmax]} that contains
value-equivalent models of the true environment m∗ ∈M.

Now that we have defined partial models and distinguished between the relevant and irrelevant
features of the environment, we are ready to define an important class of partial models that at the
very least model the relevant aspects of the environment:
Definition 3 (VE Partial Models). Given a set of features F, let FVEP ⊂ F s.t. |FVEP| < |F| and
FR ⊆ FVEP. Let FVEP be a space of feature vectors in which the feature vectors consist of the
features in FVEP. Let mVEP be a partial model that is defined over the feature vector space FVEP, i.e.,
mVEP ∈MVEP ≡ {(pVEP, rVEP) | pVEP : FVEP×A×FVEP → [0, 1], rVEP : FVEP×A → [0, Rmax]}.
We say that mVEP is a VE partial model of the true environment m∗ ∈ M if it is a VE model of m∗,
i.e.,

V
π∗
mVEP

m∗ = V ∗
m∗ ∀π∗

mVEP
∈ ΠVEP, (2)

where π∗
mVEP

is an optimal policy obtained as a result of planning with model mVEP and ΠVEP ≡
{π | π : FVEP ×A → [0, 1]}.

Although it is important to learn partial models that at the very least model the relevant aspects of
the environment, as we will theoretically and empirically demonstrate, partial models are mostly
beneficial when they only model the relevant aspects of the environment, i.e., when FVEP = FR. We
refer to these models as minimal VE partial models. Note that minimal VE partial models are a
special class of VE partial models, and VE partial models are a special class of partial models.
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Figure 1: The SW environment.

Illustrative Example. As an illustration
of the models defined above, let us start
by considering the Squirrel’s World (SW)
environment depicted in Fig. 1, in which
the squirrel’s (the agent) job is to navigate
from cell E1 to cell E16 to pickup the nut
without getting caught by the hawk that
flies back and forth horizontally along row
C. At each time step, the squirrel receives
as input an 5×16 image of the current state of the environment and then, through the use of a pre-
defined state encoder, transforms this image into a feature vector that contains information regarding
all aspects of the current state of the environment, i.e., the feature vector contains information on the
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current position of the squirrel, hawk and the cloud, the current direction of the hawk, the current
wind direction in rows A and B and the current weather condition. Based on this, the squirrel selects
an action that either moves it to the left or right cell, or keeps it position fixed. If the squirrel gets
caught by the hawk or if it is out of time, it receives a reward of 0 and the episode terminates, and
if the squirrel successfully navigates to the nut, it gets a reward of +10 and the episode terminates.
In this environment, as the hawk moves 5x the speed of the squirrel, a straightforward policy of
always moving to the right will not get the squirrel to the nut. Thus, the squirrel has to come up with
non-trivial policies that take into account both the cells with bushes (see e.g., cells E2, E3), which
allow for sheltering, and the position and direction of the hawk.

In this environment, examples of partial models can be a model that only models the cloud position
and the wind direction for rows A and B, or a model that only models the weather condition and the
hawk’s direction. However, for a partial model to be VE or minimal VE, it has to model the relevant
features for the tasks of interest which is reaching the nut. In the SW environment, there are three
relevant features: (i) the squirrel’s position, (ii) the hawk’s position, and (iii) the hawk’s direction, as
the squirrel would have to have access to all three of these features to come up with optimal policies.
Thus, an example of a VE partial model can be a model that models both the three relevant features
and the weather condition, and an example of a minimal VE partial model can be a model that only
models the three relevant features.

4 THEORETICAL RESULTS

In this section, we first analyze the value and planning losses (Sec. 4.1) of VE partial models and
then derive formal results demonstrating the computational and sample complexity benefits (Sec.
4.2) of using such models. We then discuss scenarios where the VE partial model is a minimal one.

4.1 VALUE AND PLANNING LOSS ANALYSES

We start our formal analysis by studying the value loss incurred due to planning with a VE partial
model mVEP in place of the true environment m∗. To simplify the analysis, we assume that the agent
already has access to this model and does not need to learn it.
Theorem 1. Let mVEP ∈MVEP be a VE partial model of the true environment m∗ ∈M. Then, the
value loss between an optimal policy in m∗, π∗, and an optimal policy in mVEP, π∗

mVEP
is given by:∥∥∥V ∗

m∗ − V
π∗
mVEP

m∗

∥∥∥
∞

= 0. (3)

Due to space constraints, we defer all the proofs to App. A. Theorem 1 says that by planning with
a (non-minimal or minimal) VE partial model, an agent would incur no value loss compared to
planning with the true environment itself.

Next, we study the planning loss (Jiang et al., 2015) incurred due to planning with an approximate
VE partial model m̃VEP ∈ MVEP in place of the actual VE partial model mVEP ∈ MVEP. Similar to
Jiang et al. (2015), we also consider the certainty-equivalence control setting in which the agent acts
according to a policy that is optimal with respect to its current approximate model.
Theorem 2. Let mVEP ∈ MVEP be a VE partial model of the true environment m∗ ∈ M,
and let m̃VEP ∈ MVEP be model that comprises of the reward function of mVEP and a tran-
sition distribution that is estimated from n samples for each (f, a) pair. Let ΠrVEP ≡ {π |
∃ pVEP s.t π is optimal in (pVEP, rVEP)}. Then, certainty-equivalence planning with m̃VEP has plan-
ning loss: ∥∥∥V ∗

mVEP
− V

π∗
m̃VEP

mVEP

∥∥∥
∞
≤ 2Rmax

(1− γ)2

√
1

2n
log

2|FVEP||A||ΠrVEP |
δ

, (4)

with probability at least 1− δ.

Theorem 2 implies that given a fixed amount of data, the upper bound of the planning loss of a VE
partial model depends on both the size of its feature vector space, |FVEP|, and the size of its policy
class being searched over by planning, |ΠrVEP |.1 This in turn implies that, given a fixed amount of

1Note that |FVEP| also affects |ΠrVEP |, i.e., as |FVEP| grows, |ΠrVEP | also grows.
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data, compared to a regular model, a VE partial model is likely to have less planning loss and this
loss is likely to be minimized when the VE partial model is a minimal one.

4.2 COMPUTATIONAL AND SAMPLE COMPLEXITY BENEFITS

We now study the computational and sample complexity benefits of performing model-based RL
with VE partial models. Due to the well-established theoretical results around it, we choose to study
these benefits in the context of value iteration (Bertsekas & Tsitsiklis, 1996). However, we note that
the implications of our results would apply to a wide variety of planning algorithms.

Starting with the computational complexity benefits, it is well-known that the computational com-
plexity of performing a single step of value iteration with an arbitrary model m ∈M isO(|F|2|A|)
(Agarwal et al., 2022). Thus, the computational complexity of performing a single step of value
iteration with a VE partial model mVEP ∈ MVEP would be O(|FVEP|2|A|). This implies that com-
pared to planning with regular models, planning with VE partial models would provide a significant
computational complexity benefit and this benefit would be maximized when the model used for
planning is a minimal VE partial model.

Moving on to the sample complexity benefits, previous studies of Kearns & Singh (1998); Kakade
(2003); Azar et al. (2012) have shown that the sample complexity of obtaining an ε estimation of the
optimal action value function through the use of Q-value iteration (see Alg. 1) given access only to
a generative model is in the order of the magnitude of the model’s state and action space. Building
on top of this result, we now study the sample complexity benefits of planning with approximate VE
partial models that are obtained as a result of sampling generative VE partial models.
Theorem 3. Let mVEP ∈ MVEP be a VE partial model of the true environment m∗ ∈ M. Let
m̃VEP ∈ MVEP be the corresponding approximate VE partial model that has the same reward func-
tion as mVEP, but whose transition distribution is estimated by m calls to the generative model mVEP,
where

m = O
(
|FVEP||A|
(1− γ)4ε2

)
, (5)

and let Qk
m̃VEP

be the value returned by Q-value iteration at the kth epoch. Then, with probability
greater than 1− δ, the following holds for all f ∈ FVEP and a ∈ A:∥∥Qk

m̃VEP
−Q∗

mVEP

∥∥
∞ ≤ ε, (6)

where k = log(ε(1−γ))
log γ and Q∗

mVEP
is the optimal action value function in mVEP.

Theorem 3 implies that compared to a regular model, a VE partial model is likely to require less
samples in obtaining an ε estimation of the optimal action value function through the use of Q-value
iteration with a generative model, and the number of samples required is likely to be minimized
when the VE partial model is a minimal one.

5 EXPERIMENTAL RESULTS

We start this section by performing experiments to demonstrate the scalability advantages of minimal
VE partial models, which are illustrations of the theoretical results derived in Sec. 4, and then we
perform experiments to demonstrate the robustness advantages of these models. The details of our
experiments can be found in App. C.

Environments. We perform experiments on both the SW environment (see Fig. 1) and on varia-
tions of the Two Rooms Dynamic Obstacles (2RDO) environment that are built on top of Minigrid
(Chevalier-Boisvert et al., 2018) (see Fig. 2), as these environments allow for designing controlled
experiments that are helpful in answering the questions of interest to this study. Some of the details
of the SW environment are already presented in Sec. 3 and we refer the reader to App. C for more
details. In the 2RDO environments, the agent, depicted by the red triangle, spawns in top-left of the
top room and has to navigate to the green goal cell located in the bottom-right of the same room,
regardless of the gaseous motions of the obstacles in the bottom room. At each time step, the agent
receives an image of the current state of the grid and then, through the use of a learned state encoder,
transforms this image into a feature vector. Based on this, the agent selects an action that either turns
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(a) 8x8 BlueBalls (b) 8x8 RedBoxes (c) 8x8 NoObstacles (d) 16x16 RedBalls (e) 16x16 BlueBoxes

Figure 2: Variations of the 2RDO environment with grid sizes of 8x8 and 16x16. In these environments, there
are either no obstacles (c), or there are several obstacles (balls and boxes) with different colors (a, b, d, e).

it left or right, or moves it forward. If the agent successfully navigates to the goal cell, it receives a
reward of +1 and the episode terminates. More details on the 2DRO environments can be found in
App. C as well.

5.1 SCALABILITY EXPERIMENTS

For our scalability experiments, we perform experiments with several non-VE (m1, m2, m3) and
VE (m4, m5, m6) partial models of both the deterministic and stochastic versions of the SW en-
vironment, referred to as Det-SW and Stoch-SW, respectively. The details of these models can be
found in Table 1. For all of our experiments, we use value iteration as our planning algorithm.

m1 m2 m3 m4
Models

0

2

4

6

Va
lu

e 
Lo

ss

Det-SW
Stoch-SW

(a) Value Loss

m4 m5 m6 m7
Models

0

2

4

6

8

10

Pl
an

ni
ng

 L
os

s

n = 3
n = 5
n = 10
n = 20

(b) Planning Loss

m4 m5 m6 m7
Models

0

5

10

15

20

Pl
an

ni
ng

 T
im

e 
 (s

ec
on

ds
)

(c) Planning Time

Figure 3: The (a) value losses, (b) planning losses, and (c) planning times of several models. Plot (a) was
obtained over a single run and plots (b) and (c) were obtained by averaging over 50 runs per model.
Question 1. Do minimal VE partial models allow for planning with no value loss?

In Sec. 4.1, we argued that by planning with a (non-minimal or minimal) VE partial model, an agent
would incur no value loss compared to planning with the true environment itself. To empirically
verify this, we present the agent with a set of non-VE partial models m1, m2, m3 and a minimal VE
partial model m4, and compare the value losses on both the Det-SW and Stoch-SW environments.
Results are shown in Fig. 3a. We can indeed see that while the VE partial model incurs no value
loss, the non-VE ones do incur serious value losses.

Question 2. Do minimal VE partial models allow for planning with less planning loss?

In Sec. 4.1, we argued that given a fixed amount of data, compared to a regular model, a VE partial
model is likely to incur less planning loss, and this loss is likely to be minimized when the VE partial
model is a minimal one. For empirical verification, we compare the planning losses of a minimal
VE partial model m4, two (non-minimal) VE partial models m5 and m6, and a regular model m7,
across dataset sizes of 3, 5, 10 and 20, which corresponds to the number of samples for each (f, a)
pair, on the Stoch-SW environment. Results in Fig. 3b show that, as expected, VE partial models
indeed incur less planning losses than regular models, and the minimal VE partial model incurs the
least planning loss.

Question 3. Do minimal VE partial models provide computational complexity benefits?

In Sec. 4.2, we argued that compared to regular models, planning with VE partial models would
provide a significant computational complexity benefit and this benefit would be maximized when
the model used for planning is a minimal VE partial model. To empirically verify this, we present the
agent with a minimal VE partial model m4, two VE partial models m5 and m6, and a regular model
m7 of the Det-SW environment, and compare the average time it takes to perform a single step of
value iteration for each of these models. Results are shown in Fig. 3c. As can be seen, planning with
VE partial models indeed provides significant computational complexity benefits, and this benefit is
maximized when the VE partial model is a minimal one.
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Question 4. Do minimal VE partial models provide sample complexity benefits?
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Figure 4: The total reward obtained as a result of plan-
ning with models m4 and m7 on the (a) Det-SW and (b)
Stoch-SW environments. Shaded regions are standard
errors over 50 runs.

In Sec. 4.2, we argued that compared to reg-
ular models, planning with VE partial models
is likely to provide a sample complexity ben-
efit and this benefit is likely to be maximized
when the model that is used for planning is a
minimal VE partial model. For empirical ver-
ification, we present the agent with a minimal
VE partial model m4 and with a regular model
m7 as generative models, and compare the sam-
ple efficiencies, as a result of performing Q-
value iteration, on the Det-SW and Stoch-SW
environments. In these experiments, after ev-
ery episodic interaction, the agent updates its
model with the collected trajectory, and then performs Q-value iteration until convergence. Re-
sults in Fig. 4 show that, as expected, planning with minimal VE partial models indeed provides
significant sample efficiency benefits compared to planning with regular models.

5.2 ROBUSTNESS EXPERIMENTS

For our robustness experiments, we perform experiments on variations of the 2RDO environment
with grid sizes of 8x8 and 16x16. For convenience, we will refer to these environments with their
grid size followed by their obstacle type. For example. we will refer to the 8x8 2DRO environment
with red balls as 8x8 RedBalls (see Fig. 2). For all of our experiments, we use the straightforward
decision-time planning algorithm of Zhao et al. (2021) (see Alg. 2) whose details can be found
in App. C. As this algorithm makes use of neural networks, before moving on to the robustness
experiments, we try to answer the following question.

Question 5. How to learn minimal VE partial models with deep learning architectures?

So far, for illustration purposes, we have only performed experiments in which we had a direct
control over the features of the agent’s model (see the models in Table 1). However, in realistic
scenarios, the agent would have to come up on its own with a set of features to build a model of the
only relevant aspects of its environment. A very popular way of letting the agent come up with its
own features is to use neural networks in the representation of the agent’s encoder, value estimator
and model, and then to train it end-to-end on the environment of interest. However, in order for the
agent to come up with only the relevant features, it has to be trained with the right inductive biases.
Even though finding the right inductive biases to train a model-free or model-based RL agent is
still an open problem in the representation learning literature (Bengio et al., 2013), in this study, we
propose two inductive biases that are likely to guide the agent in coming up with only the relevant
features. The first one is to only let the value estimator shape the encoder and prevent the model from
doing so (see Fig. 7). In this way, the agent can be guided in learning the features that are relevant
for predicting the right values in the environment. And, the second one is to train the agent across a
variety of environments in which the irrelevant aspects keep changing and the relevant ones stay the
same. In this way, the agent can be guided in not learning the irrelevant aspects of the environment.

In order to test the usefulness of these two inductive biases in coming up with only the relevant
features of the environment, we compare three different agents: (i) a regular agent, AREG, that
was trained on the 8x8 BlueBalls environment and whose encoder was jointly shaped by its value
estimator and model, (ii) an agent, AVES, that was again trained on the 8x8 BlueBalls environment,
but whose encoder was only shaped by its value estimator, and (iii) an agent, AVES+ME, that was
trained on the 8x8 BlueBalls, GreenBalls, PurpleBalls and YellowBalls environments and whose
encoder was only shaped by its value estimator. We compare these agents on the 8x8 BlueBalls and
NoObstacles environments. If the agent is successful in coming up with only the relevant features
of the environment, which are the positions of the agent and the goal, and not the positions and
motions of the obstacles, we would expect it to perform similarly on the 8x8 BlueBalls and 8x8
NoObstacles environments. Results are shown in Fig. 5a & 5b. As can be seen, even though all of
the agents perform well on the 8x8 BlueBalls environment, the AREG agent completely fails on the
8x8 NoObstacles environment, demonstrating that without the necessary inductive biases an agent is
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Figure 5: The total steps to reach the goal in the 8x8 and 16x16 versions of the (a, c) BlueBalls, (b, d)
NoObstacles, (e, i) RedBalls, (f, j) GreyBalls, (g, k) RedBoxes and (h, l) GreyBoxes environments for the
AREG, AVES and AVES+ME agents. Black dashed lines indicate the performance of the optimal policy in the
corresponding environments. Shaded regions are standard errors over 100 runs.

not capable of coming up with only the relevant features itself. We can also see that the AVES agent
achieves a better performance than the AREG agent and that the AVES+ME agent achieves an even
better performance than the AVES agent, demonstrating the usefulness of our proposed inductive
biases in inducing models that display the behavior of minimal VE partial models. In order to test
the scalability of our results, we have also performed the same experiments with 16x16 versions of
the environments. As can be seen in Fig. 5c & 5d, we obtain similar results.

Question 6. Can minimal VE partial models be useful for performing robust transfer?

As minimal VE partial models only model the relevant aspects of the environment, we would expect
them to be robust to the distribution shifts happening in the irrelevant aspects of the environment.
In order to test this, we compare the performances of the AREG, AVES and AVES+ME agents on the
8x8 and 16x16 RedBalls, GreyBalls, RedBoxes and GreyBoxes environments. Results are shown in
Fig. 5e-5l. As can be seen, while the AREG agent fails and the AVES agent only shows signs of robust
transfer, the AVES+ME agent is able to perform robust transfer without any problem. These results
illustrate the ability of minimal VE partial models in performing robust transfer.

Question 7. Are minimal VE partial models more robust to compounding model errors?

As minimal VE partial models only model the relevant aspects of the environment, compared to
regular models, we would expect them to be less susceptible to compounding model errors during
planning. In order to test this, we compare the performances of the AREG and AVES+ME agents with
search budgets of 20, 40 and 80 on the 16x16 BlueBalls environment. Note that this environment
has been seen before by both of the agents. Results in Fig. 6 show that while the performance
of AREG agent drops significantly with the increase in the search budget, the performance of the
AVES+ME agent stays close to optimal, demonstrating the robustness of minimal VE partial models
to compounding model errors.

6 RELATED WORK
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(b) The AVES+ME agent

Figure 6: The total steps to reach the goal in
the 16x16 BlueBalls environment for the AREG and
AVES+ME agents with search budgets of 20, 40 and
80. Black dashed lines indicate the performance of
the optimal policy in the corresponding environments.
Shaded regions are standard errors over 100 runs.

Partial Models. In the context of RL, the ini-
tial studies of partial models can be dated back
to the seminal study of Talvitie & Singh (2008)
which proposes to learn several models of an
uncontrolled dynamical systems that are partial
at the observation level. In contrast, we pro-
pose to learn a single and useful partial model
of a controlled dynamical system that is partial
at the feature level, which provides several ad-
vantages such as eliminating the question of how
to combine the learned models, using them for
control purposes, and making them compatible
with function approximation. Our work also has
a very close connection to the study of Zhao et al.
(2021) which proposes a transformer-based deep
model-based agent that dynamically attends to relevant parts of its state representation during plan-
ning. However, our work differs in that we propose the general concept of partial models for LRL
that is independent of the agent’s implementation details. Lastly, another related line of research
is the studies of Khetarpal et al. (2020; 2021) on affordances which focus on building models that
partial in the action space. Our study is complementary to these studies in that they can still lever-
age (non-minimal or minimal) VE partial models to reduce the size of the feature space and further
increase the benefits of performing model-based RL with partial models.

Value-Equivalence. A recent trend in model-based RL is to learn models that are specifically
useful for value-based planning (see e.g. Silver et al., 2017; Oh et al., 2017; Farquhar et al., 2017;
Schrittwieser et al., 2020; Grimm et al., 2020; 2021). Even though our work also advocates the idea
that models should be useful in value-based planning, our work differs in that we also argue that
the explicit partiality of the models can provide significant scalability and robustness benefits when
performing model-based RL in LRL scenarios.

Planning in Learned Feature Spaces. Even though there has been recent studies that study the ef-
fect of the introduction of the irrelevant features in the agent’s learned representation (Efroni et al.,
2022a;b), our study differs in that we are mainly interested in LRL environments in which environ-
ment mostly consists of irrelevant features and the relevant features to the agent do not change over
time. Our work is also different from the studies that learn models through self-supervised learning
(see e.g., Sekar et al., 2020) in that we explicitly study the structure of the learned representation
having relevant and irrelevant components.

7 CONCLUSION AND DISCUSSION

In conclusion, in this study, we have introduced special types of models, called minimal VE partial
models, that only model the relevant aspects of the environment and are particularly useful in LRL
scenarios. Our theoretical results suggest that these models can provide significant advantages in
the value and planning losses that are incurred during planning and in the computational and sample
complexity of planning. Our empirical results (i) validate our theoretical results and show that
these models can scale to large environments, and (ii) show that these models can be robust to
distribution shifts and compounding model errors. Overall, our findings suggest that minimal VE
partial models can provide significant advantages in performing model-based RL in LRL scenarios.
One limitation of our work is that, rather than providing a principled method, we have only provided
several heuristics for training deep RL agents that can come up with only the relevant features of the
environment. However, we note that this is mainly due to the lack of principled approaches in the
representation learning literature, and we believe that this limitation can be overcomed with more
principled approaches being introduced in the literature. We hope to tackle this limitation in future
work. Another important limitation is that, due to the need to perform illustrative and controlled
experiments, we have only performed experiments in the SW and 2RDO environments where there
is just a single task and there is no sequence of tasks, requiring a model the same relevant features,
that unfold over time. However, experiments in more environments that have this sequential nature
can be helpful in further validating the advantages of minimal VE partial models in LRL scenarios,
which we also hope to tackle in future work.
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Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. Treeqn and
atreec: Differentiable tree-structured models for deep reinforcement learning. arXiv preprint
arXiv:1710.11417, 2017.

Christopher Grimm, Andre Barreto, Satinder Singh, and David Silver. The value equivalence prin-
ciple for model-based reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
5541–5552. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/3bb585ea00014b0e3ebe4c6dd165a358-Paper.pdf.

Christopher Grimm, Andre Barreto, Gregory Farquhar, David Silver, and Satinder Singh. Proper
value equivalence. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=aXbuWbta0V8.

Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence of effective planning
horizon on model accuracy. In Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, pp. 1181–1189. Citeseer, 2015.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of
London, University College London (United Kingdom), 2003.

Michael Kearns and Satinder Singh. Finite-sample convergence rates for q-learning and indirect
algorithms. Advances in neural information processing systems, 11, 1998.

Khimya Khetarpal, Zafarali Ahmed, Gheorghe Comanici, David Abel, and Doina Precup. What
can i do here? a theory of affordances in reinforcement learning. In International Conference on
Machine Learning, pp. 5243–5253. PMLR, 2020.

10

https://github.com/maximecb/gym-minigrid
https://openreview.net/forum?id=RQLLzMCefQu
https://openreview.net/forum?id=RQLLzMCefQu
https://proceedings.neurips.cc/paper/2020/file/3bb585ea00014b0e3ebe4c6dd165a358-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3bb585ea00014b0e3ebe4c6dd165a358-Paper.pdf
https://openreview.net/forum?id=aXbuWbta0V8
https://openreview.net/forum?id=aXbuWbta0V8


Under review as a conference paper at ICLR 2023

Khimya Khetarpal, Zafarali Ahmed, Gheorghe Comanici, and Doina Precup. Temporally abstract
partial models. Advances in Neural Information Processing Systems, 34:1979–1991, 2021.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. Advances in neural
information processing systems, 30, 2017.

Tom Schaul, Hado van Hasselt, Joseph Modayil, Martha White, Adam White, Pierre-Luc Bacon,
Jean Harb, Shibl Mourad, Marc Bellemare, and Doina Precup. The barbados 2018 list of open
issues in continual learning. arXiv preprint arXiv:1811.07004, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-
Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-end
learning and planning. In International Conference on Machine Learning, pp. 3191–3199. PMLR,
2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Michael H Bowling, and Patrick M Pilarski. The alberta plan for ai research.
arXiv preprint arXiv:2208.11173, 2022.

Erik Talvitie and Satinder Singh. Simple local models for complex dynamical systems. Advances in
Neural Information Processing Systems, 21, 2008.

Mingde Zhao, Zhen Liu, Sitao Luan, Shuyuan Zhang, Doina Precup, and Yoshua Bengio. A
consciousness-inspired planning agent for model-based reinforcement learning. Advances in Neu-
ral Information Processing Systems, 34, 2021.

11



Under review as a conference paper at ICLR 2023

A PROOFS

Theorem 1. Let mVEP ∈MVEP be a VE partial model of the true environment m∗ ∈M. Then, the
value loss between an optimal policy in m∗, π∗, and an optimal policy in mVEP, π∗

mVEP
is given by:∥∥∥V ∗

m∗ − V
π∗
mVEP

m∗

∥∥∥
∞

= 0. (7)

Proof. This result directly follows from Defn. 3. Recall that, according to Defn. 3, we have:

V
π∗
mVEP

m∗ = V ∗
m∗ ∀π∗

mVEP
∈ ΠVEP, (8)

which implies: ∥∥∥V ∗
m∗ − V

π∗
mVEP

m∗

∥∥∥
∞

= 0 ∀π∗
mVEP

∈ ΠVEP. (9)

Theorem 2. Let mVEP ∈ MVEP be a VE partial model of the true environment m∗ ∈ M,
and let m̃VEP ∈ MVEP be model that comprises of the reward function of mVEP and a tran-
sition distribution that is estimated from n samples for each (f, a) pair. Let ΠrVEP ≡ {π |
∃ pVEP s.t π is optimal in (pVEP, rVEP)}. Then, certainty-equivalence planning with m̃VEP has plan-
ning loss: ∥∥∥V ∗

mVEP
− V

π∗
m̃VEP

mVEP

∥∥∥
∞
≤ 2Rmax

(1− γ)2

√
1

2n
log

2|FVEP||A||ΠrVEP |
δ

, (10)

with probability at least 1− δ.

Proof. Similar to Jiang et al. (2015), we prove Theorem 2 with two lemmas: Lemma 1 translates
planning loss to value error, and Lemma 2 relates value error to a Bellman-residual-like quantity
that has a uniform deviation bound which depends on |ΠrVEP |.

Lemma 1. For any m̃VEP = (p̃VEP, r̃VEP) with r̃VEP bounded by [0, Rmax],∥∥∥V ∗
mVEP
− V

π∗
m̃VEP

mVEP

∥∥∥
∞
≤ 2 max

π:F→A

∥∥V π
mVEP
− V π

m̃VEP

∥∥
∞ . (11)

In particular, if r̃VEP = rVEP, we have∥∥∥V ∗
mVEP
− V

π∗
m̃VEP

mVEP

∥∥∥
∞
≤ 2 max

π∈ΠrVEP

∥∥V π
mVEP
− V π

m̃VEP

∥∥
∞ . (12)

Proof. ∀f ∈ FVEP,

V
π∗
mVEP

mVEP (f)− V
π∗
m̃VEP

mVEP (f) =
(
V

π∗
mVEP

mVEP (f)− V
π∗
mVEP

m̃VEP
(f)

)
−

(
V

π∗
m̃VEP

mVEP (f)− V
π∗
m̃VEP

m̃VEP
(f)

)
(13)

+
(
V

π∗
mVEP

m̃VEP
(f)− V

π∗
m̃VEP

m̃VEP
(f)

)
≤

(
V

π∗
mVEP

mVEP (f)− V
π∗
mVEP

m̃VEP
(f)

)
−

(
V

π∗
m̃VEP

mVEP (f)− V
π∗
m̃VEP

m̃VEP
(f)

)
(14)

≤ 2 max
π∈

{
π∗
mVEP

,π∗
m̃VEP

} |V π
mVEP

(f)− V π
m̃VEP

(f)|. (15)

Eqn. 11 follows from taking the max over all feature vectors on both sides of the inequality and
noticing that the set of all policies is a trivial superset of

{
π∗
mVEP

, π∗
m̃VEP

}
. If r̃VEP = rVEP, the bound

can be tightened since
{
π∗
mVEP

, π∗
m̃VEP

}
∈ ΠrVEP , and Eqn. 12 follows.

Lemma 2. For any m̃VEP = (p̃VEP, r̃VEP) with r̃VEP bounded by [0, Rmax], ∀π : FVEP → A,∥∥Qπ
mVEP
−Qπ

m̃VEP

∥∥
∞ ≤

1

1− γ
max

f∈FVEP,a∈A

∣∣r̃VEP(f, a) + γ⟨p̃VEP(f, a, ·), V π
mVEP
⟩ −Qπ

mVEP
(f, a)

∣∣ .
(16)
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Proof. Given any policy π, define action value functions such that Q0, Q1, . . . , Qn, . . . such that
Q0 = Qπ

mVEP
, and

Qn(f, a) = r̃VEP(f, a) + γ⟨p̃VEP(f, a, ·), Vn−1⟩, (17)
where Vn−1(f) = Qn−1(f, π(f)). Notice that

∥Qn −Qn−1∥∞ = γ max
f∈FVEP,a∈A

|⟨p̃VEP(f, a, ·), (Vn−1 − Vn−2)⟩| (18)

≤ γ max
f∈FVEP,a∈A

||p̃VEP(f, a, ·)||1||Vn−1 − Vn−2||∞ (19)

= γ||Vn−1 − Vn−2||∞ (20)
≤ γ||Qn−1 −Qn−2||∞, (21)

so

||Qn −Q0||∞ ≤
n−1∑
k=0

||Qk+1 −Qk||∞ (22)

≤ ||Q1 −Q0||∞
n−1∑
k=0

γk−1. (23)

Taking the limit of n→∞, Qn → Qπ
m̃VEP

, and we have,∥∥Qπ
m̃VEP
−Q0

∥∥
∞ ≤

1

1− γ
||Q1 −Q0||∞. (24)

This completes the proof, noticing that Q0 = Qπ
mVEP

, V0 = V π
mVEP

, and Q1(f, a) = r̃VEP(f, a) +
γ⟨p̃VEP(f, a, ·), V π

mVEP
⟩.

From Eqn. 12 in Lemma 1 and Lemma 2, we have∥∥∥V ∗
mVEP
− V

π∗
m̃VEP

mVEP

∥∥∥
∞
≤ 2 max

π∈ΠrVEP

∥∥V π
mVEP
− V π

m̃VEP

∥∥
∞ (25)

≤ 2 max
π∈ΠrVEP

∥∥Qπ
mVEP
−Qπ

m̃VEP

∥∥
∞ (26)

= 2 max
f∈FVEP,a∈A,π∈ΠrVEP

∣∣Qπ
mVEP

(f, a)−Qπ
m̃VEP

(f, a)
∣∣
∞ (27)

≤ 2

1− γ
max

f∈FVEP,a∈A,π∈ΠrVEP

∣∣r̃VEP(f, a) + γ⟨p̃VEP(f, a, ·), V π
mVEP
⟩ −Qπ

mVEP
(f, a)

∣∣ .
(28)

For any particular f , a, π tuple, according to Hoeffding’s inequality, ∀t > 0,

p
(∣∣r̃VEP(f, a) + γ⟨p̃VEP(f, a, ·), V π

mVEP
⟩ −Qπ

mVEP
(f, a)

∣∣ > t
)
≤ 2 exp

(
− 2nt2

R2
max/(1− γ)2

)
,

(29)

as r̃VEP(f, a)+γ⟨p̃VEP(f, a, ·), V π
mVEP
⟩ is the average of i.i.d. samples bounded in [0, Rmax/(1−γ)],

with mean Qπ
mVEP

(f, a). To obtain a uniform bound over all (f, a, π) tuples, we set the right-hand
side of Eqn. 29 to δ/|FVEP||A||ΠrVEP | and solve for t, and the theorem follows.

Theorem 3. Let mVEP ∈ MVEP be a VE partial model of the true environment m∗ ∈ M. Let
m̃VEP ∈ MVEP be the corresponding approximate VE partial model that has the same reward func-
tion as mVEP, but whose transition distribution is estimated by m calls to the generative model mVEP,
where

m = O
(
|FVEP||A|
(1− γ)4ε2

)
, (30)

and let Qk
m̃VEP

be the value returned by Q-value iteration at the kth epoch. Then, with probability
greater than 1− δ, the following holds for all f ∈ FVEP and a ∈ A:∥∥Qk

m̃VEP
−Q∗

mVEP

∥∥
∞ ≤ ε, (31)

where k = log(ε(1−γ))
log γ and Q∗

mVEP
is the optimal action value function in mVEP.
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Proof. Before starting the proof, let us first define generative models. A generative model, or a
sampler, is a model that can provide us with samples f ′ ∼ p(f, a, ·) for all f ∈ FVEP and a ∈ A.
Now that we have defined generative models, let us assume we have access to a generative model
mVEP and suppose we call our this model N times at each (f, a) pair. Let p̂ be the transition
distribution of our empirical model, defined as follows:

p̂(f, a, f ′) =
count(f, a, f ′)

N
=

∑N
i=1 If ′

i=f ′

N
, (32)

where fi ∼ p(f, a, ·), ∀i ∈ {1, . . . , N}, and count(f, a, f ′) is the number of times the pair (f, a)
transitions to f ′.

Moving on the main proof, by adding and subtracting Q
π∗
m̃VEP

m̃VEP
, we can rewrite Qk

m̃VEP
− Q∗

mVEP
as

follows:

Qk
m̃VEP
−Q∗

mVEP
= Qk

m̃VEP
−Q

π∗
m̃VEP

m̃VEP︸ ︷︷ ︸
(i)

+Q
π∗
m̃VEP

m̃VEP
−Q∗

mVEP︸ ︷︷ ︸
(ii)

(33)

Bounding Term (i):∥∥∥Qk
m̃VEP
−Q

π∗
m̃VEP

m̃VEP

∥∥∥
∞

= max
f∈FVEP,a∈A

∣∣∣rVEP(f, a) + γp̃VEPV
k−1
m̃VEP

(f, a)−
(
rVEP(f, a) + γp̃VEPV

π∗
m̃VEP

m̃VEP
(f, a)

)∣∣∣
(34)

= max
f∈FVEP,a∈A

γ
∣∣∣p̃VEP

(
V k−1
m̃VEP
− V

π∗
m̃VEP

m̃VEP

)
(f, a)

∣∣∣ (35)

≤ γ
∥∥∥V k−1

m̃VEP
− V

π∗
m̃VEP

m̃VEP

∥∥∥
∞

(36)

≤ γ max
f∈FVEP

∣∣∣∣max
a∈A

Qk−1
m̃VEP

(f, a)−max
a∈A

Q
π∗
m̃VEP

m̃VEP
(f, a)

∣∣∣∣ (37)

≤ γ max
f∈FVEP,a∈A

∣∣∣Qk−1
m̃VEP

(f, a)−Q
π∗
m̃VEP

m̃VEP
(f, a)

∣∣∣ (38)

= γ
∥∥∥Qk−1

m̃VEP
−Q

π∗
m̃VEP

m̃VEP

∥∥∥
∞

. (39)

Unrolling the last inequality k times, we obtain:∥∥∥Qk
m̃VEP
−Q

π∗
m̃VEP

m̃VEP

∥∥∥
∞
≤ γk||Q0

m̃VEP
−Q

π∗
m̃VEP

m̃VEP
|| (40)

≤ γk

1− γ
. (41)

Bounding Term (ii):(
Q

π∗
m̃VEP

m̃VEP
−Q∗

mVEP

)
(f, a) = γp̃VEPV

π∗
m̃VEP

m̃VEP
(f, a)− γpVEPV

∗
mVEP

(f, a) (42)

= γ (p̃VEP − pVEP)V
∗
mVEP

(f, a)− γp̃VEP

(
V

π∗
m̃VEP

m̃VEP
− V ∗

mVEP

)
(f, a) (43)

= γ (p̃VEP − pVEP)V
∗
mVEP

(f, a) (44)

− γ
∑
f ′∈F

p̃VEP(f, a, f
′)(max

a′∈A
Q

π∗
m̃VEP

m̃VEP
(f ′, a′)−max

a′∈A
Q∗

mVEP
(f ′, a′)).

Therefore,∥∥∥Qπ∗
m̃VEP

m̃VEP
−Q∗

mVEP

∥∥∥
∞
≤ γ max

f∈FVEP,a∈A

∣∣(p̃VEP − pVEP)V
∗
mVEP

(f, a)
∣∣+ γ

∥∥∥Qπ∗
m̃VEP

m̃VEP
−Q∗

mVEP

∥∥∥
∞

(45)

≤ γ

1− γ

∥∥(p̃VEP − pVEP)V
∗
mVEP

∥∥
∞ . (46)
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Fix a (f, a) pair:

(p̃VEP − pVEP)V
∗
mVEP

=
1

N

N∑
i=1

V ∗
mVEP

(f ′
i)− Ef ′∈pVEP(f,a,f ′)

[
V ∗
mVEP

(f ′)
]

(47)

=
1

N
(SN − E[SN ]), (48)

where SN =
∑N

i=1 Xi and Xi = V ∗
mVEP

(f ′
i). Xi are random independent variables and |Xi| ≤ 1

1−γ .
Applying Hoeffding’s inequality, we obtain ∀t > 0:

p

(
1

N
(SN − E[SN ]) ≥ t

)
≤ 2 exp

(
−N2t2

N/(1− γ)2

)
(49)

= 2 exp
(
−Nt2(1− γ)2

)
(50)

p

(
max

f∈FVEP,a∈A

∣∣(p̃VEP − pVEP)V
∗
mVEP

(f, a)
∣∣ ≥ t

)
= p

(
∃(f, a) s.t.

∣∣(p̃VEP − pVEP)V
∗
mVEP

(f, a)
∣∣ ≥ t

)
(51)

≤
∑

f∈F,a∈A

p
(∣∣(p̃VEP − pVEP)V

∗
mVEP

(f, a)
∣∣ ≥ t

)
(Union Bound)

= 2|FVEP||A| exp
(
−Nt2(1− γ)2

)
(52)

Let the failure probability δ > 0. Solve for t,

2|FVEP||A| exp
(
−Nt2(1− γ)2

)
= t (53)

⇒ t =
1

1− γ

√
log(2|FVEP||A|/δ)

N
. (54)

With probability at least 1− δ,∥∥∥Qπ∗
m̃VEP

m̃VEP
−Q∗

mVEP

∥∥∥
∞
≤ γ

1− γ
max

f∈FVEP,a∈A

∥∥(p̃VEP − pVEP)V
∗
mVEP

∥∥
∞ (55)

≤ γ

(1− γ)2

√
log(2|FVEP||A|/δ)

N
. (56)

We conclude ∥∥Qk
m̃VEP
−Q∗

mVEP

∥∥
∞ ≤

∥∥∥Qk
m̃VEP
−Q

π∗
m̃VEP

m̃VEP

∥∥∥
∞

+
∥∥∥Qπ∗

m̃VEP
m̃VEP

−Q∗
mVEP

∥∥∥
∞

(57)

≤ γk

(1− γ)
+

γ

(1− γ)2

√
log(2|FVEP||A|/δ)

N
. (58)

By choosing

k =
log(2(1− γ)/ε)

log γ

and

N =
4γ2

(1− γ)4ε2
log(2|FVEP||A|/δ),

we get
∥∥Qk

m̃VEP
−Q∗

mVEP

∥∥
∞ ≤ ε/2 + ε/2 = ε. Therefore, the total number of samples (calls to the

generative model) to get an ε estimation of the optimal Q-value is:

N |FVEP||A| = O
(
|FVEP||A|
(1− γ)4ε2

)
. (59)
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B ALGORITHM PSEUDOCODES

Algorithm 1 Model-Based Q-Value Iteration

1: Initialize the parameters V 0 = 0 and Q0 = 0
2: for episode k = 1, . . . ,K do
3: for (f, a) ∈ F ×A do
4: Qk(f, a) = r(f, a) + γp̃V k−1(f, a)
5: V k(f) = maxa∈A Qk(f, a)
6: end for
7: end for
8: Return QK

Algorithm 2 The Straight-Forward Decision-Time Planning Algorithm of Zhao et al. (2021)

1: Initialize the parameters θ, η & ω of ϕθ : S → F , Qη : F ×A → R & mω = (pω, rω)
2: Initialize the replay buffer B ← {}
3: Nple ← number of episodes to perform planning and learning
4: Nrbt ← number of samples that the replay buffer must hold to perform planning and learning
5: ns ← number of time steps to perform search
6: nbs ← number of samples to sample from the replay buffer
7: h← search heuristic
8: T ← replay buffer sampling strategy
9: i← 0

10: while i < Nple do
11: S ← reset environment
12: while not done do
13: A← ϵ-greedy(tree search with bootstrapping(ϕθ(S),mω, Qη, ns, h))
14: R,S′, done← environment(A)
15: B ← B + {(S,A,R, S′, done)}
16: if |B| ≥ Nrbt then
17: D ← sample batch(B, nbs, T )
18: Update ϕθ, Qη & mω with D
19: end if
20: S ← S′

21: end while
22: i← i+ 1
23: end while
24: Return ϕθ, Qη & mω

Note that Alg. 22 does not employ the “bottleneck mechanism” introduced in (Zhao et al., 2021).

C EXPERIMENTAL DETAILS

In this section, we provide the implementation details of the environments that are used in Sec. 5
together with the details of the models that are used in the scalability experiments of Sec. 5.1. We
also provide the implementation details of the straightforward decision-time planning algorithm of
Zhao et al. (2021) that was used in Sec. 5.2.

C.1 IMPLEMENTATION DETAILS OF THE SW ENVIRONMENT

As stated in Sec. 3, in the Squirrel’s World (SW) environment the squirrel’s job is to navigate from
cell E1 (its initial state) to cell E16 (the terminal state) to pickup the nut without getting caught by

2See https://github.com/mila-iqia/Conscious-Planning for the publicly available ac-
tual code.
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the hawk that flies back and forth horizontally along row C. At each time step, the squirrel receives
as input an 5×16 image of the current state of the environment and then, through the use of a pre-
defined state encoder, transforms this image into a feature vector that contains information regarding
all aspects of the current state of the environment, i.e., the feature vector contains information on the
current position of the squirrel and the cloud, the current wind direction in rows A and B, the current
position and direction of the hawk and the current weather condition. Based on this, the squirrel
selects an action that either moves it to the left or right cell, or keeps it position fixed (except if the
agent is trying to move out of the boundaries of the world in which case its position is kept constant).
If the squirrel gets caught by the hawk or if it is out of time, it receives a reward of 0 and the episode
terminates, and if the squirrel successfully navigates to the nut within the given time limit, it gets
a reward of +10 and the episode terminates. The agent-environment interaction lasts for 100 time
steps, after which the agent receives a done signal, marking the end of the episode.

C.2 IMPLEMENTATION DETAILS OF THE 2RDO ENVIRONMENTS

In the 2RDO environments, the agent, depicted by the red triangle, spawns in top-left of the top room
and has to navigate to the green goal cell located in the bottom-right of the same room, regardless
of the gaseous motions of the obstacles in the bottom room. Here, at each time step, the obstacles
move to one of its neighboring cells (except if it is trying to move out of the boundaries of the world
in which case its position is kept constant). At each time step, the agent receives an image of the
current state of the grid and then, through the use of a learned state encoder, transforms this image
into a feature vector. Based on this, the agent selects an action that either turns it left or right, or
moves it forward (except if the agent is trying to move out of the boundaries of the world in which
case its position is kept constant). If the agent successfully navigates to the goal cell within the given
time limit, it receives a reward of +1 and the episode terminates. The agent-environment interaction
lasts for 50 time steps for the 8x8 environments and 100 time steps for the 16x16 environments, after
which the agent receives a done signal, marking the end of the episode.

C.3 DETAILS OF THE HAND-ENGINEERED MODELS

The details of what the models in Sec. 5.1 model can be found in Table 1.
Table 1: Several non-VE and VE partial models of the SW environment.

m1 squirrel position, cloud position
m2 squirrel position, cloud position, wind direction
m3 squirrel position, cloud position, wind direction, hawk position
m4 squirrel position, hawk position, hawk direction
m5 squirrel position, hawk position, hawk direction, cloud position
m6 squirrel position, hawk position, hawk direction, cloud position, wind direction
m7 squirrel position, hawk position, hawk direction, cloud position, wind direction, weather

C.4 DETAILS AND HYPERPARAMETERS OF THE DECISION-TIME PLANNING ALGORITHM

The details and hyperparameters of the straightforward decision-time of Zhao et al. (2021) that we
have used can be found in Table 2.

Table 2: Details and hyperparameters of Alg. 2.
ϕθ A regular neural network feature extractor
Qη A regular neural network
mω A regular neural network
Nple 50M
Nrbt 50k
ns 20
nbs 128
h best-first search (training), random search (evaluation)
T random sampling
ϵ linearly decays from 1.0 to 0.0 over the first 1M time steps
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For more details (such as the NN architectures, replay buffer sizes, learning rates, exact details of the
tree search, . . . ), we refer the reader to the publicly available code and the supplementary material
of Zhao et al. (2021).

C.5 DETAILS OF THE ENCODER SHAPING PROCEDURE DURING TRAINING

In Sec. 5.2, we argued that one of the important inductive biases that is likely to guide the agent in
coming up with only the relevant features of the environment is to only let the value estimator shape
the encoder and to prevent the model from doing so. This is pictorially depicted in Fig. 7.
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Figure 7: A pictorial representation of how the agent can be trained so that it can come up with relevant
features of the environment. (Right) The regular way of training, (Left) the way it can be done.
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